Access Analysis-Based Tight
Localization of Abstract Memories

Hakjoo Oh, Lucas Brutschy; and Kwangkeun Yi'

, 'Seoul National University, Korea
RWTH Aachen University, Germany

VMCAI 201 | @ Austin, Texas, USA

| ocalization

“framing”
“abstract garbage collection”

Key to scalability

Memory Localization

local
e
............. >
\ 4 : '-4
call f : >
v
| | global f
return <«—

Benefits of Localization

int g;

£ G) < i)

int main() {

A Catch-22 Situation

The optimal localization is impossible

7\

L ocalization

Need Approximation

Input state Estimated
local state

/

The optimal

6

Reachability-based Localization

® Remove the unreachable from params and globals

reachable
v oo e > | |- .

call f — >
v f
|

unreachable

Key Observation

Reachability is too conservative

Program LOC accessed memory
/ reachable memory
spell-1.0 2,213 5/ 453 (1.1%)

barcode-0.96 | 4,460 19 / 1175 (1.6%)
httptunnel-3.3| 6,174 10 / 673 (1.5%)
ozip-1.24a | 7,327| 22 /1002 (2.2%)
jwhois-3.0.1 | 9.344] 28 /830 (3.4%)
parser 10,900 75 / 1787 (4.2%)
be-1.06 13,0903 24 /824 (2.9%)
less-290 18,449 86 / 1546 (5.6%)

average : 4%

Goal

Conventional
reachability-based
approach

Input state

Our approach

The ideal
9

Basic ldea

Analyze the procedure and
observe which resources are used

RN

analysis

Input state /

Basic ldea

Over-approximated access-info
from an over-approximated analysis

over-approximation of
the orlglnal analysis

Input state

Access-based Localization

® Staging the analysis into two phases

~|original analysis|-

g 5
o
g ; >
° L
& R
o - . &
o .
v conservative v

access information

pre-analysis > lactual analysis

Deriving a Pre-analysis
® Original analysis: abstract interpretation
(D,F) IfpF (F:D — D)

® Goal: finding an over-approximation

prF C i}

Deriving a Pre-analysis

® Pre-analysis is a further abstract interpretation

e define (D,, E,) such that

A0 A
D= D,
OKOF: Apo& (Ap ﬁpﬁf)p)

Our Pre-analysis

PgmPt — Mem Mem
I I
N Y=AM.An.m N
D - =D,

a=M\d. I—lpEPngt d(p)

ignore statement orders

Experiments

® |nterval-domain-based abstract interpreter
® Baseline:no localization

® Reach: Baseline with reachability-based
localization

® Access: Baseline with access-based localization

e |5 GNU/SPEC 2000 benchmarks

Reach vs.Access

78.5%-98.5% reduction
92.1% in average

100

75

50

25

spell barcodehttptunnel gzip jwhois parser bc twolf tar less make AVERAGE

(20m - 4mj b 7h > 15m) o Rooch
eac
" Access

Baseline vs. Reach

~6x speed-up

15 112
100

spell barcode httptunnel gzip jwhois parser tar make

" Baseline
C 3h = 50m B Reach

Pre-analysis Overhead

® Small overhead compared to the total analysis time

o 0.1 ~8%

Program | LOC — e o Overhead
gZip 7,327 95s |.3s |.4%
bc 13,093 /730s 4.1s 0.6%
bash 105,174 | 2011s 20.2s 1.0%

Block-level Localization

Access-based localization at any level

loops branches basic blocks

lM:P*R

o
M =Q+R <<>P_>Q C |P—Q
S LM = Qe

20

Block Selection Strategy

® |n a nested way

e |block| = k

M St
1 ok

0 © o |1
|

|

|

|

|

|

|

< |

- |

L

21

Block-level Localization

On average 3 1% reduction in time (k=6)

m|q1q11|nﬁ1|
AU

spell barcode httptunnel gzip jwhois parser bc twolf tar less make AVERAGE

" AccessProc
" AccessBlock

22

Precision

® No precision loss
® Sometimes, even improved

int g;

void £ () {
while (...) { ... } 8:[0,0]V [I,1]=[0,+o0]

f does not

access g)

void main () {
0; £ ()7
1; £ ()
; g :[0,+00] vs.[I,I1]

g:
g:

23

Conclusion

Reachability is too conservative
Access-based localization is a good alternative
(‘fast”

“extensible”

Thank you

24

