
Access Analysis-Based Tight
Localization of Abstract Memories

Hakjoo Oh, Lucas Brutschy, and Kwangkeun Yi

VMCAI 2011 @ Austin, Texas, USA

1 12

Seoul National University, Korea
RWTH Aachen University, Germany

1

2

Localization

2

Key to scalability

“framing”
“abstract garbage collection”

Memory Localization

3

f

call f

local

return

global

Benefits of Localization

4

int g;

int f() {...}

int main() {
 g = 0;
 f();

 g = 1;
 f();
}

f does not access g

A Catch-22 Situation

Analysis Localization

5

The optimal localization is impossible

Need Approximation

Input state

The optimal

6

Estimated
local state

Reachability-based Localization

• Remove the unreachable from params and globals

7

f
call f

reachable

unreachable

Key Observation

8

2 Hakjoo Oh and Kwangkeun Yi

Table 1. Reachability-based Approach Is Too Conservative.

Program LOC accessed memory

/ reachable memory

spell-1.0 2,213 5 / 453 (1.1%)
barcode-0.96 4,460 19 / 1175 (1.6%)
httptunnel-3.3 6,174 10 / 673 (1.5%)
gzip-1.2.4a 7,327 22 / 1002 (2.2%)
jwhois-3.0.1 9,344 28 / 830 (3.4%)
parser 10,900 75 / 1787 (4.2%)
bc-1.06 13,093 24 / 824 (2.9%)
less-290 18,449 86 / 1546 (5.6%)

the called procedure bodies. Table 1 shows, given a reachability-based localized
input state to a procedure, how much is actually accessed inside the (directly or
transitively) called procedures.1 For each a/b (r%) in the table, a is the average
number of memory entries accessed in the called procedures, b is the average size
of the reachable input state, and r is their ratio. The results show that only a
few reachable memory entries were actually accessed: procedures accessed only
1.1%–5.6% of reachable memory states. Nonetheless, the reachability-based ap-
proach propagates all the reachable parts to procedures. So, it’s possible for
a procedure body to be needlessly recomputed for input memory states whose
only differences lie in the reachable-but-unaccessed portions. This means that
the reachability-based approach is too conservative for real C programs and
hence is inefficient both in time and memory cost. This finding originates from
the difficulty of having a fast enough industrial-strength static analyzers [10–12,
16] that uses the reachability-based localization.

In this paper we present a new memory localization technique that localizes
the input memory states more aggressively than the reachability-based approach.
In our approach, in addition to excluding unreachable memory entries from the
localized state, we also exclude memory entries that are reachable but unac-
cessed. The main problem is finding the memory parts that will be needed to
analyze a procedure before actually analyzing the procedure. We solve the prob-
lem by staging: (1) the set of memory cells that are accessed by a procedure is
conservatively estimated by a pre-analysis before the actual analysis; (2) then,
the actual analysis uses the accessed-cells-information and filters out memory
cells that will definitely not be accessed by called procedures. The pre-analysis
aggressively applies a conservative abstraction to the abstract semantics of the
original analysis and runs with a small cost. By reducing the sizes of localized

1 The reachable- and accessed-memory ratio is an average over the procedures. We
ran the reachability-based analysis and recorded, for every analysis of procedures,
the sizes of localized memory and its accessed portion. We average the size ratio over
the total number of analyses of procedures.

Reachability is too conservative

average : 4%

Goal

Input state
Conventional

reachability-based
approach

The ideal

Our approach

9

Basic Idea

Analyze the procedure and
observe which resources are used

analysis

10

Input state

Basic Idea
Over-approximated access-info

from an over-approximated analysis

analysis

over-approximation of
the original analysis

11

Input state

Access-based Localization

original analysis

pre-analysis actual analysis
conservative

access information

• Staging the analysis into two phases
ov

er
-a

pp
ro

x. localized

12

Deriving a Pre-analysis

Access-analysis-based Tight Localization of Abstract Memories 11

Deriving a Further Abstraction We design an analysis that computes such a T �(� T). To
this end, we apply a conservative abstraction to the original analysis. The abstract domain D̂
and semantic function F̂ : D̂ → D̂ for the original (actual) analysis was defined as follows (the
following is just a repetition, for convenience, of the definition in Section 2.2) :

D̂ = Node→ ˆMem
F̂ = λT.λn.f̂n (

�
p∈predof(n) T (p))

We apply a simple abstraction that ignores the orders of program statements (à la flow-insensitivity).
The abstract domain D̂p is obtained by defining an abstraction and concretization function (α, γ):

α : D̂ → D̂p

γ : D̂p → D̂

α(d) =
�

n∈Node d(n)
γ(m) = λn ∈ Node.m

The semantic function F̂p : D̂p → D̂p is defined as follows:

F̂p = λm.(
�

n∈Node f̂n(m))

The following lemma ensures us that our pre-analysis (D̂p, F̂p) is a conservative abstraction of the
actual analysis (D̂, F̂).

Lemma 6. lfp(F̂) � γ(lfp(F̂p))

Proof. We prove it by showing that (D̂p, F̂p) is an abstract interpretation of (D̂, F̂). By the help
of the fixpoint transfer theorem, showing the following two properties

– D̂ −→←−α
γ

D̂p, that is, D̂ and D̂p are related by Galois connection
– α ◦ F̂ � F̂p ◦ α

corresponds to showing lfpF̂ � γ(lfp(F̂p)).
For the first part (Galois connection), we have to show ∀x ∈ D̂, y ∈ D̂p.α(x) � y ⇔ x � γ(y).

– α(x) � y ⇒ x � γ(y):

α(x) � y
⇒

�
n∈Node x(n) � y · · · def. of α

⇒ ∀n.x(n) � y · · · ∀n.x(n) �
�

k∈Node x(k)
⇒ x � λn.y · · · def. of � on D̂
⇒ x � γ(y) · · · def. of γ

– α(x) � y ⇐ x � γ(y):

x � γ(y)
⇒ x � λn.y · · · def. of γ
⇒ ∀n.x(n) � y (= (λn.y)(n)) · · · def. of � on D̂p

⇒
�

n∈Node x(n) � y · · · y is an upper bound of {x(n) | n ∈ Node}
⇒ α(x) � y · · · def. of α

Next, we show α ◦ F̂ � F̂p ◦ α, i.e., ∀d ∈ D̂.α(F̂ (d)) � F̂p(α(d)).

α(F̂ (d)) = α(λn.f̂n(
�

p∈predof(n) d(p))) · · · def. of F̂

=
�

n∈Node f̂n(
�

p∈predof(n) d(p)) · · · def. of α

�
�

n∈Node f̂n(
�

p∈Node d(p)) · · · ∀n ∈ Node.f̂n is mono., pred(n) ⊆ Node
=

�
n∈Node f̂n(α(d)) · · · def. of α

= F̂p(α(d)) · · · def. of F̂p

��

• Original analysis: abstract interpretation

Access-analysis-based Tight Localization of Abstract Memories 11

Deriving a Further Abstraction We design an analysis that computes such a T �(� T). To
this end, we apply a conservative abstraction to the original analysis. The abstract domain D̂
and semantic function F̂ : D̂ → D̂ for the original (actual) analysis was defined as follows (the
following is just a repetition, for convenience, of the definition in Section 2.2) :

D̂ = Node→ ˆMem
F̂ = λT.λn.f̂n (

�
p∈predof(n) T (p))

We apply a simple abstraction that ignores the orders of program statements (à la flow-insensitivity).
The abstract domain D̂p is obtained by defining an abstraction and concretization function (α, γ):

α : D̂ → D̂p

γ : D̂p → D̂

α(d) =
�

n∈Node d(n)
γ(m) = λn ∈ Node.m

The semantic function F̂p : D̂p → D̂p is defined as follows:

F̂p = λm.(
�

n∈Node f̂n(m))

The following lemma ensures us that our pre-analysis (D̂p, F̂p) is a conservative abstraction of the
actual analysis (D̂, F̂).

Lemma 6. lfp(F̂) � γ(lfp(F̂p))

Proof. We prove it by showing that (D̂p, F̂p) is an abstract interpretation of (D̂, F̂). By the help
of the fixpoint transfer theorem, showing the following two properties

– D̂ −→←−α
γ

D̂p, that is, D̂ and D̂p are related by Galois connection
–
– α, γ, F̂p

–
– α ◦ F̂ � F̂p ◦ α

corresponds to showing lfpF̂ � γ(lfp(F̂p)).
For the first part (Galois connection), we have to show ∀x ∈ D̂, y ∈ D̂p.α(x) � y ⇔ x � γ(y).

– α(x) � y ⇒ x � γ(y):

α(x) � y
⇒

�
n∈Node x(n) � y · · · def. of α

⇒ ∀n.x(n) � y · · · ∀n.x(n) �
�

k∈Node x(k)
⇒ x � λn.y · · · def. of � on D̂
⇒ x � γ(y) · · · def. of γ

– α(x) � y ⇐ x � γ(y):

x � γ(y)
⇒ x � λn.y · · · def. of γ
⇒ ∀n.x(n) � y (= (λn.y)(n)) · · · def. of � on D̂p

⇒
�

n∈Node x(n) � y · · · y is an upper bound of {x(n) | n ∈ Node}
⇒ α(x) � y · · · def. of α

Access-analysis-based Tight Localization of Abstract Memories 11

Deriving a Further Abstraction We design an analysis that computes such a T �(� T). To
this end, we apply a conservative abstraction to the original analysis. The abstract domain D̂
and semantic function F̂ : D̂ → D̂ for the original (actual) analysis was defined as follows (the
following is just a repetition, for convenience, of the definition in Section 2.2) :

D̂ = Node→ ˆMem
F̂ = λT.λn.f̂n (

�
p∈predof(n) T (p))

We apply a simple abstraction that ignores the orders of program statements (à la flow-insensitivity).
The abstract domain D̂p is obtained by defining an abstraction and concretization function (α, γ):

α : D̂ → D̂p

γ : D̂p → D̂

α(d) =
�

n∈Node d(n)
γ(m) = λn ∈ Node.m

The semantic function F̂p : D̂p → D̂p is defined as follows:

F̂p = λm.(
�

n∈Node f̂n(m))

The following lemma ensures us that our pre-analysis (D̂p, F̂p) is a conservative abstraction of the
actual analysis (D̂, F̂).

Lemma 6. lfp(F̂) � γ(lfp(F̂p))

Proof. We prove it by showing that (D̂p, F̂p) is an abstract interpretation of (D̂, F̂). By the help
of the fixpoint transfer theorem, showing the following two properties

– D̂ −→←−α
γ

D̂p, that is, D̂ and D̂p are related by Galois connection
– α ◦ F̂ � F̂p ◦ α

corresponds to showing lfpF̂ � γ(lfp(F̂p)).
For the first part (Galois connection), we have to show ∀x ∈ D̂, y ∈ D̂p.α(x) � y ⇔ x � γ(y).

– α(x) � y ⇒ x � γ(y):

α(x) � y
⇒

�
n∈Node x(n) � y · · · def. of α

⇒ ∀n.x(n) � y · · · ∀n.x(n) �
�

k∈Node x(k)
⇒ x � λn.y · · · def. of � on D̂
⇒ x � γ(y) · · · def. of γ

– α(x) � y ⇐ x � γ(y):

x � γ(y)
⇒ x � λn.y · · · def. of γ
⇒ ∀n.x(n) � y (= (λn.y)(n)) · · · def. of � on D̂p

⇒
�

n∈Node x(n) � y · · · y is an upper bound of {x(n) | n ∈ Node}
⇒ α(x) � y · · · def. of α

Next, we show α ◦ F̂ � F̂p ◦ α, i.e., ∀d ∈ D̂.α(F̂ (d)) � F̂p(α(d)).

α(F̂ (d)) = α(λn.f̂n(
�

p∈predof(n) d(p))) · · · def. of F̂

=
�

n∈Node f̂n(
�

p∈predof(n) d(p)) · · · def. of α

�
�

n∈Node f̂n(
�

p∈Node d(p)) · · · ∀n ∈ Node.f̂n is mono., pred(n) ⊆ Node
=

�
n∈Node f̂n(α(d)) · · · def. of α

= F̂p(α(d)) · · · def. of F̂p

��

• Goal: finding an over-approximation

Access-analysis-based Tight Localization of Abstract Memories 11

Deriving a Further Abstraction We design an analysis that computes such a T �(� T). To
this end, we apply a conservative abstraction to the original analysis. The abstract domain D̂
and semantic function F̂ : D̂ → D̂ for the original (actual) analysis was defined as follows (the
following is just a repetition, for convenience, of the definition in Section 2.2) :

D̂ = Node→ ˆMem
F̂ = λT.λn.f̂n (

�
p∈predof(n) T (p))

We apply a simple abstraction that ignores the orders of program statements (à la flow-insensitivity).
The abstract domain D̂p is obtained by defining an abstraction and concretization function (α, γ):

α : D̂ → D̂p

γ : D̂p → D̂

α(d) =
�

n∈Node d(n)
γ(m) = λn ∈ Node.m

The semantic function F̂p : D̂p → D̂p is defined as follows:

F̂p = λm.(
�

n∈Node f̂n(m))

The following lemma ensures us that our pre-analysis (D̂p, F̂p) is a conservative abstraction of the
actual analysis (D̂, F̂).

Lemma 6. lfp(F̂) � γ(lfp(F̂p))

Proof. We prove it by showing that (D̂p, F̂p) is an abstract interpretation of (D̂, F̂). By the help
of the fixpoint transfer theorem, showing the following two properties

– D̂ −→←−α
γ

D̂p, that is, D̂ and D̂p are related by Galois connection
–
– (F̂ : D̂ → D̂)
–
– α ◦ F̂ � F̂p ◦ α

corresponds to showing lfpF̂ � γ(lfp(F̂p)).
For the first part (Galois connection), we have to show ∀x ∈ D̂, y ∈ D̂p.α(x) � y ⇔ x � γ(y).

– α(x) � y ⇒ x � γ(y):

α(x) � y
⇒

�
n∈Node x(n) � y · · · def. of α

⇒ ∀n.x(n) � y · · · ∀n.x(n) �
�

k∈Node x(k)
⇒ x � λn.y · · · def. of � on D̂
⇒ x � γ(y) · · · def. of γ

– α(x) � y ⇐ x � γ(y):

x � γ(y)
⇒ x � λn.y · · · def. of γ
⇒ ∀n.x(n) � y (= (λn.y)(n)) · · · def. of � on D̂p

⇒
�

n∈Node x(n) � y · · · y is an upper bound of {x(n) | n ∈ Node}
⇒ α(x) � y · · · def. of α

13

Deriving a Pre-analysis

• Pre-analysis is a further abstract interpretation

• define such that

Access-analysis-based Tight Localization of Abstract Memories 11

Deriving a Further Abstraction We design an analysis that computes such a T �(� T). To
this end, we apply a conservative abstraction to the original analysis. The abstract domain D̂
and semantic function F̂ : D̂ → D̂ for the original (actual) analysis was defined as follows (the
following is just a repetition, for convenience, of the definition in Section 2.2) :

D̂ = Node→ ˆMem
F̂ = λT.λn.f̂n (

�
p∈predof(n) T (p))

We apply a simple abstraction that ignores the orders of program statements (à la flow-insensitivity).
The abstract domain D̂p is obtained by defining an abstraction and concretization function (α, γ):

α : D̂ → D̂p

γ : D̂p → D̂

α(d) =
�

n∈Node d(n)
γ(m) = λn ∈ Node.m

The semantic function F̂p : D̂p → D̂p is defined as follows:

F̂p = λm.(
�

n∈Node f̂n(m))

The following lemma ensures us that our pre-analysis (D̂p, F̂p) is a conservative abstraction of the
actual analysis (D̂, F̂).

Lemma 6. lfp(F̂) � γ(lfp(F̂p))

Proof. We prove it by showing that (D̂p, F̂p) is an abstract interpretation of (D̂, F̂). By the help
of the fixpoint transfer theorem, showing the following two properties

– D̂ −→←−α
γ

D̂p, that is, D̂ and D̂p are related by Galois connection
– α ◦ F̂ � F̂p ◦ α

corresponds to showing lfpF̂ � γ(lfp(F̂p)).
For the first part (Galois connection), we have to show ∀x ∈ D̂, y ∈ D̂p.α(x) � y ⇔ x � γ(y).

– α(x) � y ⇒ x � γ(y):

α(x) � y
⇒

�
n∈Node x(n) � y · · · def. of α

⇒ ∀n.x(n) � y · · · ∀n.x(n) �
�

k∈Node x(k)
⇒ x � λn.y · · · def. of � on D̂
⇒ x � γ(y) · · · def. of γ

– α(x) � y ⇐ x � γ(y):

x � γ(y)
⇒ x � λn.y · · · def. of γ
⇒ ∀n.x(n) � y (= (λn.y)(n)) · · · def. of � on D̂p

⇒
�

n∈Node x(n) � y · · · y is an upper bound of {x(n) | n ∈ Node}
⇒ α(x) � y · · · def. of α

Next, we show α ◦ F̂ � F̂p ◦ α, i.e., ∀d ∈ D̂.α(F̂ (d)) � F̂p(α(d)).

α(F̂ (d)) = α(λn.f̂n(
�

p∈predof(n) d(p))) · · · def. of F̂

=
�

n∈Node f̂n(
�

p∈predof(n) d(p)) · · · def. of α

�
�

n∈Node f̂n(
�

p∈Node d(p)) · · · ∀n ∈ Node.f̂n is mono., pred(n) ⊆ Node
=

�
n∈Node f̂n(α(d)) · · · def. of α

= F̂p(α(d)) · · · def. of F̂p

��

Access-analysis-based Tight Localization of Abstract Memories 11

Deriving a Further Abstraction We design an analysis that computes such a T �(� T). To
this end, we apply a conservative abstraction to the original analysis. The abstract domain D̂
and semantic function F̂ : D̂ → D̂ for the original (actual) analysis was defined as follows (the
following is just a repetition, for convenience, of the definition in Section 2.2) :

D̂ = Node→ ˆMem
F̂ = λT.λn.f̂n (

�
p∈predof(n) T (p))

We apply a simple abstraction that ignores the orders of program statements (à la flow-insensitivity).
The abstract domain D̂p is obtained by defining an abstraction and concretization function (α, γ):

α : D̂ → D̂p

γ : D̂p → D̂

α(d) =
�

n∈Node d(n)
γ(m) = λn ∈ Node.m

The semantic function F̂p : D̂p → D̂p is defined as follows:

F̂p = λm.(
�

n∈Node f̂n(m))

The following lemma ensures us that our pre-analysis (D̂p, F̂p) is a conservative abstraction of the
actual analysis (D̂, F̂).

Lemma 6. lfp(F̂) � γ(lfp(F̂p))

Proof. We prove it by showing that (D̂p, F̂p) is an abstract interpretation of (D̂, F̂). By the help
of the fixpoint transfer theorem, showing the following two properties

– D̂ −→←−α
γ

D̂p, that is, D̂ and D̂p are related by Galois connection
–
– α ◦ F̂ � F̂p ◦ α

corresponds to showing lfpF̂ � γ(lfp(F̂p)).
For the first part (Galois connection), we have to show ∀x ∈ D̂, y ∈ D̂p.α(x) � y ⇔ x � γ(y).

– α(x) � y ⇒ x � γ(y):

α(x) � y
⇒

�
n∈Node x(n) � y · · · def. of α

⇒ ∀n.x(n) � y · · · ∀n.x(n) �
�

k∈Node x(k)
⇒ x � λn.y · · · def. of � on D̂
⇒ x � γ(y) · · · def. of γ

– α(x) � y ⇐ x � γ(y):

x � γ(y)
⇒ x � λn.y · · · def. of γ
⇒ ∀n.x(n) � y (= (λn.y)(n)) · · · def. of � on D̂p

⇒
�

n∈Node x(n) � y · · · y is an upper bound of {x(n) | n ∈ Node}
⇒ α(x) � y · · · def. of α

Next, we show α ◦ F̂ � F̂p ◦ α, i.e., ∀d ∈ D̂.α(F̂ (d)) � F̂p(α(d)).

α(F̂ (d)) = α(λn.f̂n(
�

p∈predof(n) d(p))) · · · def. of F̂

=
�

n∈Node f̂n(
�

p∈predof(n) d(p)) · · · def. of α

�
�

n∈Node f̂n(
�

p∈Node d(p)) · · · ∀n ∈ Node.f̂n is mono., pred(n) ⊆ Node
=

�
n∈Node f̂n(α(d)) · · · def. of α

= F̂p(α(d)) · · · def. of F̂p

��

Access-analysis-based Tight Localization of Abstract Memories 11

Deriving a Further Abstraction We design an analysis that computes such a T �(� T). To
this end, we apply a conservative abstraction to the original analysis. The abstract domain D̂
and semantic function F̂ : D̂ → D̂ for the original (actual) analysis was defined as follows (the
following is just a repetition, for convenience, of the definition in Section 2.2) :

D̂ = Node→ ˆMem
F̂ = λT.λn.f̂n (

�
p∈predof(n) T (p))

We apply a simple abstraction that ignores the orders of program statements (à la flow-insensitivity).
The abstract domain D̂p is obtained by defining an abstraction and concretization function (α, γ):

α : D̂ → D̂p

γ : D̂p → D̂

α(d) =
�

n∈Node d(n)
γ(m) = λn ∈ Node.m

The semantic function F̂p : D̂p → D̂p is defined as follows:

F̂p = λm.(
�

n∈Node f̂n(m))

The following lemma ensures us that our pre-analysis (D̂p, F̂p) is a conservative abstraction of the
actual analysis (D̂, F̂).

Lemma 6. lfp(F̂) � γ(lfp(F̂p))

Proof. We prove it by showing that (D̂p, F̂p) is an abstract interpretation of (D̂, F̂). By the help
of the fixpoint transfer theorem, showing the following two properties

– D̂ −→←−α
γ

D̂p, that is, D̂ and D̂p are related by Galois connection
–
– α, γ, F̂p

–
– α ◦ F̂ � F̂p ◦ α

corresponds to showing lfpF̂ � γ(lfp(F̂p)).
For the first part (Galois connection), we have to show ∀x ∈ D̂, y ∈ D̂p.α(x) � y ⇔ x � γ(y).

– α(x) � y ⇒ x � γ(y):

α(x) � y
⇒

�
n∈Node x(n) � y · · · def. of α

⇒ ∀n.x(n) � y · · · ∀n.x(n) �
�

k∈Node x(k)
⇒ x � λn.y · · · def. of � on D̂
⇒ x � γ(y) · · · def. of γ

– α(x) � y ⇐ x � γ(y):

x � γ(y)
⇒ x � λn.y · · · def. of γ
⇒ ∀n.x(n) � y (= (λn.y)(n)) · · · def. of � on D̂p

⇒
�

n∈Node x(n) � y · · · y is an upper bound of {x(n) | n ∈ Node}
⇒ α(x) � y · · · def. of α

Access-analysis-based Tight Localization of Abstract Memories 11

Deriving a Further Abstraction We design an analysis that computes such a T �(� T). To
this end, we apply a conservative abstraction to the original analysis. The abstract domain D̂
and semantic function F̂ : D̂ → D̂ for the original (actual) analysis was defined as follows (the
following is just a repetition, for convenience, of the definition in Section 2.2) :

D̂ = Node→ ˆMem
F̂ = λT.λn.f̂n (

�
p∈predof(n) T (p))

We apply a simple abstraction that ignores the orders of program statements (à la flow-insensitivity).
The abstract domain D̂p is obtained by defining an abstraction and concretization function (α, γ):

α : D̂ → D̂p

γ : D̂p → D̂

α(d) =
�

n∈Node d(n)
γ(m) = λn ∈ Node.m

The semantic function F̂p : D̂p → D̂p is defined as follows:

F̂p = λm.(
�

n∈Node f̂n(m))

The following lemma ensures us that our pre-analysis (D̂p, F̂p) is a conservative abstraction of the
actual analysis (D̂, F̂).

Lemma 6. lfp(F̂) � γ(lfp(F̂p))

Proof. We prove it by showing that (D̂p, F̂p) is an abstract interpretation of (D̂, F̂). By the help
of the fixpoint transfer theorem, showing the following two properties

– D̂ −→←−α
γ

D̂p, that is, D̂ and D̂p are related by Galois connection
–
– (F̂p : D̂p → D̂p)
–
– α ◦ F̂ � F̂p ◦ α

corresponds to showing lfpF̂ � γ(lfp(F̂p)).
For the first part (Galois connection), we have to show ∀x ∈ D̂, y ∈ D̂p.α(x) � y ⇔ x � γ(y).

– α(x) � y ⇒ x � γ(y):

α(x) � y
⇒

�
n∈Node x(n) � y · · · def. of α

⇒ ∀n.x(n) � y · · · ∀n.x(n) �
�

k∈Node x(k)
⇒ x � λn.y · · · def. of � on D̂
⇒ x � γ(y) · · · def. of γ

– α(x) � y ⇐ x � γ(y):

x � γ(y)
⇒ x � λn.y · · · def. of γ
⇒ ∀n.x(n) � y (= (λn.y)(n)) · · · def. of � on D̂p

⇒
�

n∈Node x(n) � y · · · y is an upper bound of {x(n) | n ∈ Node}
⇒ α(x) � y · · · def. of α

14

Access-analysis-based Tight Localization of Abstract Memories 11

Deriving a Further Abstraction We design an analysis that computes such a T �(� T). To
this end, we apply a conservative abstraction to the original analysis. The abstract domain D̂
and semantic function F̂ : D̂ → D̂ for the original (actual) analysis was defined as follows (the
following is just a repetition, for convenience, of the definition in Section 2.2) :

D̂ = Node→ ˆMem
F̂ = λT.λn.f̂n (

�
p∈predof(n) T (p))

We apply a simple abstraction that ignores the orders of program statements (à la flow-insensitivity).
The abstract domain D̂p is obtained by defining an abstraction and concretization function (α, γ):

α : D̂ → D̂p

γ : D̂p → D̂

α(d) =
�

n∈Node d(n)
γ(m) = λn ∈ Node.m

The semantic function F̂p : D̂p → D̂p is defined as follows:

F̂p = λm.(
�

n∈Node f̂n(m))

The following lemma ensures us that our pre-analysis (D̂p, F̂p) is a conservative abstraction of the
actual analysis (D̂, F̂).

Lemma 6. lfp(F̂) � γ(lfp(F̂p))

Proof. We prove it by showing that (D̂p, F̂p) is an abstract interpretation of (D̂, F̂). By the help
of the fixpoint transfer theorem, showing the following two properties

– D̂ −→←−α
γ

D̂p, that is, D̂ and D̂p are related by Galois connection
– α ◦ F̂ � F̂p ◦ α

corresponds to showing lfpF̂ � γ(lfp(F̂p)).
For the first part (Galois connection), we have to show ∀x ∈ D̂, y ∈ D̂p.α(x) � y ⇔ x � γ(y).

– α(x) � y ⇒ x � γ(y):

α(x) � y
⇒

�
n∈Node x(n) � y · · · def. of α

⇒ ∀n.x(n) � y · · · ∀n.x(n) �
�

k∈Node x(k)
⇒ x � λn.y · · · def. of � on D̂
⇒ x � γ(y) · · · def. of γ

– α(x) � y ⇐ x � γ(y):

x � γ(y)
⇒ x � λn.y · · · def. of γ
⇒ ∀n.x(n) � y (= (λn.y)(n)) · · · def. of � on D̂p

⇒
�

n∈Node x(n) � y · · · y is an upper bound of {x(n) | n ∈ Node}
⇒ α(x) � y · · · def. of α

Next, we show α ◦ F̂ � F̂p ◦ α, i.e., ∀d ∈ D̂.α(F̂ (d)) � F̂p(α(d)).

α(F̂ (d)) = α(λn.f̂n(
�

p∈predof(n) d(p))) · · · def. of F̂

=
�

n∈Node f̂n(
�

p∈predof(n) d(p)) · · · def. of α

�
�

n∈Node f̂n(
�

p∈Node d(p)) · · · ∀n ∈ Node.f̂n is mono., pred(n) ⊆ Node
=

�
n∈Node f̂n(α(d)) · · · def. of α

= F̂p(α(d)) · · · def. of F̂p

��

Our Pre-analysis

Access-analysis-based Tight Localization of Abstract Memories 11

Deriving a Further Abstraction We design an analysis that computes such a T �(� T). To
this end, we apply a conservative abstraction to the original analysis. The abstract domain D̂
and semantic function F̂ : D̂ → D̂ for the original (actual) analysis was defined as follows (the
following is just a repetition, for convenience, of the definition in Section 2.2) :

D̂ = Node→ ˆMem
F̂ = λT.λn.f̂n (

�
p∈predof(n) T (p))

We apply a simple abstraction that ignores the orders of program statements (à la flow-insensitivity).
The abstract domain D̂p is obtained by defining an abstraction and concretization function (α, γ):

α : D̂ → D̂p

γ : D̂p → D̂

α(d) =
�

n∈Node d(n)
γ(m) = λn ∈ Node.m

The semantic function F̂p : D̂p → D̂p is defined as follows:

F̂p = λm.(
�

n∈Node f̂n(m))

The following lemma ensures us that our pre-analysis (D̂p, F̂p) is a conservative abstraction of the
actual analysis (D̂, F̂).

Lemma 6. lfp(F̂) � γ(lfp(F̂p))

Proof. We prove it by showing that (D̂p, F̂p) is an abstract interpretation of (D̂, F̂). By the help
of the fixpoint transfer theorem, showing the following two properties

– D̂ −→←−α
γ

D̂p, that is, D̂ and D̂p are related by Galois connection
–
– D̂ −→←−

α=λd.
F

p∈PgmPt d(p)

γ=λm.λn.m
D̂p

–
– PgmPt → ˆMem
– ˆMem
–
– α ◦ F̂ � F̂p ◦ α

corresponds to showing lfpF̂ � γ(lfp(F̂p)).
For the first part (Galois connection), we have to show ∀x ∈ D̂, y ∈ D̂p.α(x) � y ⇔ x � γ(y).

– α(x) � y ⇒ x � γ(y):

α(x) � y
⇒

�
n∈Node x(n) � y · · · def. of α

⇒ ∀n.x(n) � y · · · ∀n.x(n) �
�

k∈Node x(k)
⇒ x � λn.y · · · def. of � on D̂
⇒ x � γ(y) · · · def. of γ

– α(x) � y ⇐ x � γ(y):

x � γ(y)
⇒ x � λn.y · · · def. of γ
⇒ ∀n.x(n) � y (= (λn.y)(n)) · · · def. of � on D̂p

⇒
�

n∈Node x(n) � y · · · y is an upper bound of {x(n) | n ∈ Node}
⇒ α(x) � y · · · def. of α

ignore statement orders

15

Access-analysis-based Tight Localization of Abstract Memories 11

Deriving a Further Abstraction We design an analysis that computes such a T �(� T). To
this end, we apply a conservative abstraction to the original analysis. The abstract domain D̂
and semantic function F̂ : D̂ → D̂ for the original (actual) analysis was defined as follows (the
following is just a repetition, for convenience, of the definition in Section 2.2) :

D̂ = Node→ ˆMem
F̂ = λT.λn.f̂n (

�
p∈predof(n) T (p))

We apply a simple abstraction that ignores the orders of program statements (à la flow-insensitivity).
The abstract domain D̂p is obtained by defining an abstraction and concretization function (α, γ):

α : D̂ → D̂p

γ : D̂p → D̂

α(d) =
�

n∈Node d(n)
γ(m) = λn ∈ Node.m

The semantic function F̂p : D̂p → D̂p is defined as follows:

F̂p = λm.(
�

n∈Node f̂n(m))

The following lemma ensures us that our pre-analysis (D̂p, F̂p) is a conservative abstraction of the
actual analysis (D̂, F̂).

Lemma 6. lfp(F̂) � γ(lfp(F̂p))

Proof. We prove it by showing that (D̂p, F̂p) is an abstract interpretation of (D̂, F̂). By the help
of the fixpoint transfer theorem, showing the following two properties

– D̂ −→←−α
γ

D̂p, that is, D̂ and D̂p are related by Galois connection
– α ◦ F̂ � F̂p ◦ α

corresponds to showing lfpF̂ � γ(lfp(F̂p)).
For the first part (Galois connection), we have to show ∀x ∈ D̂, y ∈ D̂p.α(x) � y ⇔ x � γ(y).

– α(x) � y ⇒ x � γ(y):

α(x) � y
⇒

�
n∈Node x(n) � y · · · def. of α

⇒ ∀n.x(n) � y · · · ∀n.x(n) �
�

k∈Node x(k)
⇒ x � λn.y · · · def. of � on D̂
⇒ x � γ(y) · · · def. of γ

– α(x) � y ⇐ x � γ(y):

x � γ(y)
⇒ x � λn.y · · · def. of γ
⇒ ∀n.x(n) � y (= (λn.y)(n)) · · · def. of � on D̂p

⇒
�

n∈Node x(n) � y · · · y is an upper bound of {x(n) | n ∈ Node}
⇒ α(x) � y · · · def. of α

Next, we show α ◦ F̂ � F̂p ◦ α, i.e., ∀d ∈ D̂.α(F̂ (d)) � F̂p(α(d)).

α(F̂ (d)) = α(λn.f̂n(
�

p∈predof(n) d(p))) · · · def. of F̂

=
�

n∈Node f̂n(
�

p∈predof(n) d(p)) · · · def. of α

�
�

n∈Node f̂n(
�

p∈Node d(p)) · · · ∀n ∈ Node.f̂n is mono., pred(n) ⊆ Node
=

�
n∈Node f̂n(α(d)) · · · def. of α

= F̂p(α(d)) · · · def. of F̂p

��

= =

Access-analysis-based Tight Localization of Abstract Memories 11

Deriving a Further Abstraction We design an analysis that computes such a T �(� T). To
this end, we apply a conservative abstraction to the original analysis. The abstract domain D̂
and semantic function F̂ : D̂ → D̂ for the original (actual) analysis was defined as follows (the
following is just a repetition, for convenience, of the definition in Section 2.2) :

D̂ = Node→ ˆMem
F̂ = λT.λn.f̂n (

�
p∈predof(n) T (p))

We apply a simple abstraction that ignores the orders of program statements (à la flow-insensitivity).
The abstract domain D̂p is obtained by defining an abstraction and concretization function (α, γ):

α : D̂ → D̂p

γ : D̂p → D̂

α(d) =
�

n∈Node d(n)
γ(m) = λn ∈ Node.m

The semantic function F̂p : D̂p → D̂p is defined as follows:

F̂p = λm.(
�

n∈Node f̂n(m))

The following lemma ensures us that our pre-analysis (D̂p, F̂p) is a conservative abstraction of the
actual analysis (D̂, F̂).

Lemma 6. lfp(F̂) � γ(lfp(F̂p))

Proof. We prove it by showing that (D̂p, F̂p) is an abstract interpretation of (D̂, F̂). By the help
of the fixpoint transfer theorem, showing the following two properties

– D̂ −→←−α
γ

D̂p, that is, D̂ and D̂p are related by Galois connection
–
– PgmPt → ˆMem
–
– α ◦ F̂ � F̂p ◦ α

corresponds to showing lfpF̂ � γ(lfp(F̂p)).
For the first part (Galois connection), we have to show ∀x ∈ D̂, y ∈ D̂p.α(x) � y ⇔ x � γ(y).

– α(x) � y ⇒ x � γ(y):

α(x) � y
⇒

�
n∈Node x(n) � y · · · def. of α

⇒ ∀n.x(n) � y · · · ∀n.x(n) �
�

k∈Node x(k)
⇒ x � λn.y · · · def. of � on D̂
⇒ x � γ(y) · · · def. of γ

– α(x) � y ⇐ x � γ(y):

x � γ(y)
⇒ x � λn.y · · · def. of γ
⇒ ∀n.x(n) � y (= (λn.y)(n)) · · · def. of � on D̂p

⇒
�

n∈Node x(n) � y · · · y is an upper bound of {x(n) | n ∈ Node}
⇒ α(x) � y · · · def. of α

Experiments

• Interval-domain-based abstract interpreter

• Baseline:no localization

• Reach: Baseline with reachability-based
localization

• Access: Baseline with access-based localization

• 15 GNU / SPEC 2000 benchmarks

16

Reach vs. Access

0

25

50

75

100

spell barcodehttptunnel gzip jwhois parser bc twolf tar less make AVERAGE

8
13

19

2452

21

32
10

5

100100100100100100100100100100100100

Reach
Access

78.5%-98.5% reduction
92.1% in average

17

20m ➔ 4m 17h ➔ 15m

18

Baseline vs. Reach

spell barcode httptunnel gzip jwhois parser bc tar make

112

72

16

3135

23

50

88

115

100100100100100100100100100

Baseline
Reach3h ➔ 50m

~6x speed-up

Pre-analysis Overhead

• Small overhead compared to the total analysis time

• 0.1 ~ 8%

19

Program LOC TimeTime
OverheadProgram LOC

Total Pre
Overhead

gzip 7,327 95s 1.3s 1.4%

bc 13,093 730s 4.1s 0.6%

bash 105,174 2011s 20.2s 1.0%

Block-level Localization

20

M = P ∗ R

P → Q

M � = Q ∗ R

M = P ∗ R

M � = Q ∗ R

P → Q

loops branches

C

M = P ∗ R

P → Q

M � = Q ∗ R

basic blocks

Access-based localization at any level

Block Selection Strategy

21

Access-analysis-based Tight Localization of Abstract Memories 13

call(fx,e), reachable locations R(fx, m̂), and accessed locations procacc(f), the transfer function

f̂ for the call statement call(fx,e) is changed as follows:

f̂ call(fx,e) m̂ = (m̂ �|R(fx,m̂�))|procacc(f) where m̂ �
= m̂{V̂(e)(m̂)//{x}}

After parameter binding (m̂ �
) the memory is first restricted to the reachable locations (R(fx, m̂ �

))

and then the resulting memory is restricted to procacc(f). The reason why we restrict the memory

to R(fx, m̂ �
) ∩ procacc(f) is that procacc(f) may have locations that are unreachable, i.e., not

contained in R(fx, m̂ �
), because m̂pre is computed by the less precise pre-analysis but R(fx, m̂ �

)

is computed during the more precise actual analysis. Hence, the memory states localized by the

combination of reachability- and access-based approach are always smaller than (or equal) to those

localized by the reachability-based approach.

4.3 Access-based Localization for Arbitrary Code Blocks

We generalize the access-based, procedural localization (AiracProcAcc) for code blocks smaller than

procedures. Given a code block, it is straightforward to collect accessed locations for the block

because our pre-analysis provides access information (A) for each node in the control flow graph.

We localize the input memories to the block according to the access information for the block, and

analyze the block with the localized memory state, which avoids re-analyses of blocks and speeds

up memory operations. We select localization target blocks before starting the actual analysis.

For effectiveness, we have to carefully select blocks to apply localization. Localization improves

the analysis performance, but at the same time, introduces a performance overhead. At the entry of

a selected block, additional set-operations to localize the input memory state have to be performed

and at the exit of the block, non-localized memory portions of the input memory have to be merged

with the output of the block. In order to balance against the localization overhead, we select code

blocks �entry, exit, B� that consists of one entry node, one exit node, and a selected block B that

satisfy the following properties:

– the entry (respectively, the exit) node strictly dominates (respectively, post-dominates) all

nodes in B, and B contains all nodes that are strictly dominated and post-dominated by the

entry and exit, respectively

– code block size |B| ≥ k for parameter k

Using the parameter k, we are able to find a balance between actual reduction and overhead

introduced by localizing operations. The above selection strategy is applied recursively: a block

satisfying the requirements can be selected inside another selected block.

Example 3. Consider the following control flow graph of a procedure.

1 2 3 4 15 16 17

5

6

9

7

10

8

11

1213

14

ENTRY EXIT

B1

B2
B3

B4

B5

B6

The dashed nested boxes are the selected blocks by our algorithm when k = 2. First, the entire

body of the procedure is selected (B1). Inside B1, the algorithm selects B2, B3, B4, B5 and B6

recursively. As an example, consider block B4 whose entry and exit are node 5 and 14, respectively.

We localize B4’s input memory (the output memory of node 5) according to the set of abstract

locations accessed by B4 (the set of nodes 6, 7, 8, 9, 10, 11, 12, 13). And the non-localized memory

portions at the entry (node 5) are merged with output memory of B4 at the exit (node 14).

• In a nested way

• |block| ≧ k

22

Block-level Localization

0

25

50

75

100

spell barcode httptunnel gzip jwhois parser bc twolf tar less make AVERAGE

69

91

70
65

47

75
7074

58

69
59

86

100100100100100100100100100100100100

AccessProc
AccessBlock

On average 31% reduction in time (k=6)

Precision

• No precision loss

• Sometimes, even improved

23

int g;

void f () {
 while (...) { ... }
}

void main () {
g = 0; f ();
g = 1; f ();

}

g : [0,0] [1,1] = [0,+oo]

g : [0,+oo] vs. [1,1]

f does not
access g

24

Conclusion

Reachability is too conservative

Access-based localization is a good alternative
“fast”

“extensible”

Thank you

