Access Analysis-Based Tight Localization of Abstract Memories

Hakjoo Oh¹, Lucas Brutschy², and Kwangkeun Yi¹

¹Seoul National University, Korea ²RWTH Aachen University, Germany

VMCAI 2011 @ Austin, Texas, USA

Localization

"'framing" "abstract garbage collection"

Key to scalability

Memory Localization

Benefits of Localization

A Catch-22 Situation

The optimal localization is impossible

Need Approximation

Reachability-based Localization

• Remove the unreachable from params and globals

Key Observation

Reachability is too conservative

Program	LOC	accessed memory		
		/ reachable memory		
spell-1.0	2,213	5 / 453 (1.1%)		
barcode-0.96	4,460	$19 \ / \ 1175 \ (1.6\%)$		
httptunnel-3.3	6,174	10 / 673 (1.5%)		
gzip-1.2.4a	7,327	22 / 1002 (2.2%)		
jwhois-3.0.1	9,344	28 / 830 (3.4%)		
parser	10,900	75 / 1787 (4.2%)		
bc-1.06	$13,\!093$	24 / 824 (2.9%)		
less- 290	18,449	86 / 1546 (5.6%)		

average: 4%

Basic Idea

Analyze the procedure and observe which resources are used

Basic Idea

Over-approximated access-info from an over-approximated analysis

Access-based Localization

• Staging the analysis into two phases

Deriving a Pre-analysis

• Original analysis: abstract interpretation

$$(\hat{D}, \hat{F})$$
 $\mathsf{lfp}\hat{F}$ $(\hat{F}: \hat{D} \to \hat{D})$

• Goal: finding an over-approximation

$$\mathsf{lfp}\hat{F}\sqsubseteq\bigstar$$

Deriving a Pre-analysis

• Pre-analysis is a further abstract interpretation

• define (\hat{D}_p, \hat{F}_p) such that

$$\hat{D} \xleftarrow{\gamma}{\alpha} \hat{D}_{p}$$
$$\alpha \circ \hat{F} \sqsubseteq \hat{F}_{p} \circ \alpha \quad (\hat{F}_{p} : \hat{D}_{p} \to \hat{D}_{p})$$

$$\mathsf{lfp}(\hat{F}) \sqsubseteq \gamma(\mathsf{lfp}(\hat{F}_p))$$

Our Pre-analysis

Experiments

- Interval-domain-based abstract interpreter
 - Baseline:no localization
 - Reach: Baseline with reachability-based localization
 - Access: Baseline with access-based localization
- 15 GNU / SPEC 2000 benchmarks

Reach vs. Access

78.5%-98.5% reduction 92.1% in average

Baseline vs. Reach

~6x speed-up

Pre-analysis Overhead

• Small overhead compared to the total analysis time

• 0.1 ~ 8%

Drogram		Time		Overboad
Frogram	LUC	Total	Pre	Overnead
gzip	7,327	95s	1.3s	I.4%
bc	13,093	730s	4. l s	0.6%
bash	105,174	2011s	20.2s	1.0%

Block-level Localization

Access-based localization at any level

basic blocks

Block Selection Strategy

- In a nested way
- $|block| \ge k$

Block-level Localization

On average 31% reduction in time (k=6)

Precision

- No precision loss
- Sometimes, even improved

Conclusion

Reachability is too conservative

Access-based localization is a good alternative "fast" "extensible"

Thank you