
VeriSmart
스마트 컨트랙트 안전성 검증기

오학주

고려대학교 정보대학 컴퓨터학과

10 Dec 2019 @KAIST 정보보호대학원

2

연구 분야
• Q) 어떻게 안전한 소프트웨어를 손쉽게 만들것인가?

• A) 소프트웨어 자동 분석, 패치, 합성 기술

코드

오류 목록

검증 성공

코드 분석
패치

오류 수정

명세

코드 합성

3

스마트 컨트랙트

코인 거래만 가능 임의의 거래가 가능

vs.

블록체인 1.0 블록체인 2.0

3

스마트 컨트랙트

코인 거래만 가능 임의의 거래가 가능

vs.

블록체인 1.0 블록체인 2.0

3

스마트 컨트랙트

코인 거래만 가능 임의의 거래가 가능

vs.

블록체인 1.0 블록체인 2.0

3

스마트 컨트랙트

코인 거래만 가능 임의의 거래가 가능

vs.

Key: 스마트 컨트랙트

블록체인 1.0 블록체인 2.0

스마트 컨트랙트 생김새

4

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [?] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender] + R
^ balance[ms�.sender] + R � balance[ms�.sender]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance)).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender] � �alue) yields:

totalSuppl� � balance[ms�.sender] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

데이터

생성자

함수

함수

스마트 컨트랙트 생김새

4

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [?] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender] + R
^ balance[ms�.sender] + R � balance[ms�.sender]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance)).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender] � �alue) yields:

totalSuppl� � balance[ms�.sender] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

데이터

생성자

함수

함수

사용자의 계좌 정보

스마트 컨트랙트 생김새

4

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [?] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender] + R
^ balance[ms�.sender] + R � balance[ms�.sender]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance)).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender] � �alue) yields:

totalSuppl� � balance[ms�.sender] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

데이터

생성자

함수

함수

사용자의 계좌 정보

송금

스마트 컨트랙트 생김새

4

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [?] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender] + R
^ balance[ms�.sender] + R � balance[ms�.sender]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance)).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender] � �alue) yields:

totalSuppl� � balance[ms�.sender] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

데이터

생성자

함수

함수

잔고가 충분하면

사용자의 계좌 정보

송금

스마트 컨트랙트 생김새

4

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [?] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender] + R
^ balance[ms�.sender] + R � balance[ms�.sender]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance)).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender] � �alue) yields:

totalSuppl� � balance[ms�.sender] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

데이터

생성자

함수

함수

잔고가 충분하면
거래를 실행

사용자의 계좌 정보

송금

스마트 컨트랙트의 위험성

• 스마트 컨트랙트는 매우 엄밀한 수준의 안전성 검증이 필요

• 공격에 성공하면 막대한 금전적 피해가 발생

• 누구나 온라인에서 소스코드 열람 가능하지만 수정 불가

5

å⌅∏Ë¥ ∞h ¨@

SmartMesh (2018)

$Y¸ (‡$�YP �Ù�Y ÙË0Y¸) 2018 Fall, Lecture 1 11 / 72

SmartMesh (2018)

천문학적 금액 인출 시도

The DAO (2016)

750억원

왜 해킹의 대상이 되는가?
- Smart contract는 기본적으로 항상 online + open
- 공격자가 즉각적인 reward를 얻는다.
- Immutable!
- 개발자들에게도 생소한 execution model
- Solidity의 abstraction과 실제 EVM과의 mismatch

…

TheDAO
Hack

Parity
MultiSig
Wallet

Parity Wallet (2017)

350억원

SmartMesh 사례 (2018)

6

• SmartMesh 토큰 스마트 컨트랙트의 정수 오버플로우 취약점
(CVE-2018-10376)을 이용하여 천문학적 금액의 토큰을 생성

https://etherscan.io/tx/0x1abab4c8db9a30e703114528e31dee129a3a758f7f8abc3b6494aad3d304e43f

SmartMesh 사례 (2018)

7

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

• 정수 오버플로우 (integer overflow) 취약점

• 방어적으로 코드를 작성했음에도 문제가 된 경우

SmartMesh 사례 (2018)

7

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

• 정수 오버플로우 (integer overflow) 취약점

• 방어적으로 코드를 작성했음에도 문제가 된 경우

송금

SmartMesh 사례 (2018)

7

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

• 정수 오버플로우 (integer overflow) 취약점

• 방어적으로 코드를 작성했음에도 문제가 된 경우

보내는 사람의 잔고
가 충분한지 체크

송금

SmartMesh 사례 (2018)

7

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

• 정수 오버플로우 (integer overflow) 취약점

• 방어적으로 코드를 작성했음에도 문제가 된 경우

보내는 사람의 잔고
가 충분한지 체크

송금 오버플로우
체크

SmartMesh 사례 (2018)

7

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

• 정수 오버플로우 (integer overflow) 취약점

• 방어적으로 코드를 작성했음에도 문제가 된 경우

보내는 사람의 잔고
가 충분한지 체크

송금 오버플로우
체크

(실질적) 오버플로우/언더플로우
발생하지 않음

SmartMesh 사례 (2018)

8

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

SmartMesh 사례 (2018)

8

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

balance[from] = balance[to] = balance[msg.sender] = 0

SmartMesh 사례 (2018)

8

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

balance[from] = balance[to] = balance[msg.sender] = 0
value: 8fff
fee : 7001

SmartMesh 사례 (2018)

8

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

balance[from] = balance[to] = balance[msg.sender] = 0
value: 8fff
fee : 7001

0!

SmartMesh 사례 (2018)

8

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

balance[from] = balance[to] = balance[msg.sender] = 0
value: 8fff
fee : 7001

0!false

SmartMesh 사례 (2018)

8

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

balance[from] = balance[to] = balance[msg.sender] = 0
value: 8fff
fee : 7001

0!false

false

SmartMesh 사례 (2018)

8

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

balance[from] = balance[to] = balance[msg.sender] = 0
value: 8fff
fee : 7001

0!false

false

8fffff…ff

SmartMesh 사례 (2018)

8

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

balance[from] = balance[to] = balance[msg.sender] = 0
value: 8fff
fee : 7001

0!false

false

8fffff…ff
700…00

SmartMesh 사례 (2018)

8

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

balance[from] = balance[to] = balance[msg.sender] = 0
value: 8fff
fee : 7001

0!false

false

8fffff…ff
700…00

0!

목표: 정수 오버플로우 취약점 검증

• Solidity에서는 정수를 256비트로 표현

• 정수 연산시 표현 가능한 범위를 넘어서는지 여부를 검증

• 사람이 오버플로우 유무를 판단하기는 매우 까다로움

• CVE 등록된 취약점 대부분이 정수 오버플로우에서 비롯

9

VeriSmart: Precise and Sound Verification of Numerical
Properties for Ethereum Smart Contracts

Sunbeom So
Korea University

sunbeom_so@korea.ac.kr

Myungho Lee
Korea University

myungho_lee@korea.ac.kr

Jisu Park
Korea University

jisu_park@korea.ac.kr

Heejo Lee
Korea University
heejo@korea.ac.kr

Hakjoo Oh
Korea University

hakjoo_oh@korea.ac.kr

1 function transferProxy

2 (address from , address to , uint value , uint fee) public

3 returns (bool) {

4 if (balance[from] < fee + value) revert (); // vulnerable

5
6 if (balance[to] + value < balance[to]

7 || balance[msg.sender] + fee < balance[msg.sender])

8 revert ();

9
10 balance[to] += value;

11 balance[msg.sender] += fee;

12 balance[from] -= value + fee;

13 return true;

14 }

Figure 1: A simpli�ed vulnerable function from SmartMesh
contract (CVE-2018-10376). Attackers exploited the vulnera-
bility at line 4, where fee+value may over�ow with crafted
input arguments.

ABSTRACT
TODO

CCS CONCEPTS
• Security and privacy → Use https://dl.acm.org/ccs.cfm to gen-
erate actual concepts section for your paper;

KEYWORDS
template; formatting; pickling

1 INTRODUCTION
TODO

2 OVERVIEW
2.1 Motivating Examples
In this section, we motivate the signi�cance of V���S����’s precise
and sound veri�cation. Example 1 emphasizes the importance of
sound veri�cation in safety-critical smart contracts using a real-
world accident example. Example 2 demonstrates V���S����’s
capability for precise veri�cation, which has not been achieved in
existing smart contract analyzers.

1 contract Netkoin {

2 mapping (address => uint) public balance;

3 uint public totalSupply;

4
5 constructor (uint initialSupply) {

6 totalSupply = initialSupply;

7 balance[msg.sender] = totalSupply;

8 }

9
10 function transfer (address to, uint value) public

11 returns (bool) {

12 require (balance[msg.sender] >= value);

13 require (balance[to] + value > balance[to]);

14 balance[msg.sender] -= value;

15 balance[to] += value;

16 return true;

17 }

18
19 function burn (uint value) public returns (bool) {

20 require (balance[msg.sender] >= value);

21 balance[msg.sender] -= value;

22 totalSupply -= value;

23 return true;

24 }

25 }

Figure 2: Example code adapted from Netkoin contract that
hasmore than 43,000 transactions at the time of the writing.

Example 1 (Necessity for Sound Veri�cation). In Figure 1,
we show the simpli�ed implementation of the transferProxy func-
tion from SmartMesh (SMT) token contract. In April 2018, attackers
created unauthorized tokens worth about 6⇤1042 USD by exploiting
the integer over�ow vulnerability in the function. This vulnerability,
named proxyOver�ow, was reported in CVE-2018-10376.

The function �rst checks whether the sender’s balance is greater
than or equal to fee+value tokens to be sent (line 4), and fur-
ther examines whether recipients’ balances would over�ow when
fee+value is added (line 6–7). After passing these two checks, the
function transfers the tokens to the recipients (line 10–11) and
subtracts the tokens by the amount of the sent tokens (line 12).

The attackers exploited the vulnerability at line 4; the conditional
statement does not check whether fee+value over�ows or not. Let
us investigate one possible attack scenario. 1 Suppose the sender
the recipients initially have no balances, i.e., balance[from] =
balance[to] = balance[msg.sender] = 0. With value = 1 and

1The actual input values that were used in the attack can be found in the link here.

1

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value; // Safe , Needs global reasoning
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply += value; // Safe , Needs global reasoning
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [?] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender] + R
^ balance[ms�.sender] + R � balance[ms�.sender]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance)).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender] � �alue) yields:

totalSuppl� � balance[ms�.sender] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

1 function multipleTransfer(address [] to, uint value) {
2 require(value * to.length > 0);
3 require(balances[msg.sender] >= value * to.length);
4 balances[msg.sender] -= value * to.length;
5 for (uint i = 0; i < to.length; ++i) {
6 balances[to[i]] += value;
7 }
8 return true;
9 }

Figure 2: A vulnerable function adapted from the Neo Gen-
esis Token contract (CVE-2018-14006).

Example 2. Figure 2 shows the multipleTransfer function
adapted from the Neo Genesis Token contract (CVE-2018-14006).
The function transfers the same amount of tokens (value) to every
account address stored in the array (to). It �rst checks whether
the total amount of tokens to be sent are greater than zero (line
2). Next, the function checks if the message sender has enough
money to transfer (line 3). If so, the function subtracts the money
from the sender’s account (line 4), and then transfers tokens to
designated accounts by iterating the loop at line 5–7. If all transfers
are successful, the function terminates by returning true.

Note that the function has a similar vulnerability to that of the
�rst example. At line 3 in Figure 2, the function prevents the under-
�ow possibility of the token sender’s account but does not protects
the over�ow of the tokens to be sent (value * to.length), which
is analogous to the situation at line 2 of Figure 1. That is, in a
similar way, an attacker can send huge amounts of tokens to any
users by spending only few tokens [6]. For example, suppose an
attacker (msg.sender) attempts to send 2255 + 1 tokens to each
of two addresses (i.e., value = 2255 + 1 and to.length = 2). If
the attacker initially has tokens greater than or equal to 2 (i.e.,
balance[msg.sender] � 2), then the attacker can pass the checks
at lines 2 and 3, because value * to.length evaluates to 2 in un-
signed 256 bit integers (i.e., ((2255 + 1) * 2) mod 2256 = 2). Finally, the
attacker can transfer 2255 + 1 tokens to each of the two addresses
respectively, by spending only 2 tokens.

Despite the similarity between vulnerabilities in Example 1 and
2, unsound bug-�nders have no guarantees of consistently �nding
them. For example, O�����, which succeeded to detect the vulnera-
bility in Example 1, now fails to report the smilar bug in Example 2.
The other bug-�nders are ine�ective too; M������ does not report
any issues, O����� obscurely reports that the entire function body
is vulnerable without specifying certain operations, and M�����
C��� does not respond within 3 days. On the other hand, V���S�
���� reliably reports that the expression value * to.length at
lines 2–4 would over�ow.

One of the main reasons for the unstable results of bug-�nders is
that they rely heavily on a range of heuristics to avoid false positives
(e.g., see [43]). Though such heuristics are good at reducing false
positives, the resulting analyzer is often very brittle: even small
changes in programs may end up with missing fatal vulnerabilities
as shown in Example 1 and 2, which is particularly undesirable for
safety-critical software like smart contracts.

Example 3. Figure 3 shows a simpli�ed version of the contract,
called BTX. The program has two global state variables: balance

1 contract BTX {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor () {
6 totalSupply = 10000;
7 balance[msg.sender] = 10000;
8 }
9
10 function transfer (address to, uint value) public

returns (bool) {
11 require (balance[msg.sender] >= value);
12 balance[msg.sender] -= value;
13 balance[to] += value; // Safe
14 return true;
15 }
16
17 function transferFrom (address from , address to , uint

value) public returns (bool) {
18 require (balance[from] >= value);
19 balance[to] += value; // Safe
20 balance[from] -= value;
21 return true;
22 }
23 }

Figure 3: Example code simpli�ed from CVE-2018-13326.

stores balances of each account address (line 2), and totalSupply
is the total amount of the supplied tokens (line 3). The constructor
function initializes totalSupply with 10000 tokens (line 6), and
gives the same amount of tokens to the creator of the contract (line
7). The transfer function sends value tokens from the transaction
message sender’s account to the recipient’s account (lines 12–13),
if it does not incur the under�ow in the message sender’s balance
(line 11). The transferFrom function is similar to transfer with
an exception to the order of performing addition and subtraction.

The contract has four arithmetic operations at lines 12, 13, 19,
and 20, all of which are safe from integer over/under�ows. However,
it is nontrivial to see why they are all safe. In particular, the safety
of the two addition operations at lines 13 and 19 is tricky, because
there are no direct safety-checking statements in each function. To
see why they do not over�ow, we need to discover the following
two invariants that are not explicitly given in code but always hold
no matter how the transactions (transfer and transferFrom) are
interleaved:

• the sum of all account values is 10000, i.e.,
X

i
balance[i] = 10000, (1)

• and computing
P
i balance[i] does not cause over�ow.

By combining these two conditions and the preconditions expressed
in the require statements at lines 11 and 18, we can conclude that,
at lines 13 and 19, the maximum values of both balance[to] and
value are 10000, and thus the expression balance[to]+value does
not over�ow in 256-bit unsigned integer operations.

Since reasoning about the safety in this case is tricky, it is likely
for human auditors to make a wrong conclusion that the contract
is unsafe. This is in fact what happened in the recent CVE report

3

(2019.05)

VERISMART: A Highly Precise Safety Verifier for
Ethereum Smart Contracts

Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, Hakjoo Oh⇤
Department of Computer Science and Engineering

Korea University

Abstract—We present VERISMART, a highly precise verifier

for ensuring arithmetic safety of Ethereum smart contracts.

Writing safe smart contracts without unintended behavior is

critically important because smart contracts are immutable and

even a single flaw can cause huge financial damage. In particular,

ensuring that arithmetic operations are safe is one of the most

important and common security concerns of Ethereum smart

contracts nowadays. In response, several safety analyzers have

been proposed over the past few years, but state-of-the-art

is still unsatisfactory; no existing tools achieve high precision

and recall at the same time, inherently limited to producing

annoying false alarms or missing critical bugs. By contrast,

VERISMART aims for an uncompromising analyzer that performs

exhaustive verification without compromising precision or scala-

bility, thereby greatly reducing the burden of manually checking

undiscovered or incorrectly-reported issues. To achieve this goal,

we present a new domain-specific algorithm for verifying smart

contracts, which is able to automatically discover and leverage

transaction invariants that are essential for precisely analyzing

smart contracts. Evaluation with real-world smart contracts

shows that VERISMART can detect all arithmetic bugs with a

negligible number of false alarms, far outperforming existing

analyzers.

I. INTRODUCTION

Safe smart contracts are indispensable for trustworthy
blockchain ecosystems. Blockchain is widely recognized as
one of the most disruptive technologies and smart contracts lie
at the heart of this revolution (e.g., [1], [2]). Smart contracts
are computer programs that run on blockchains in order
to automatically fulfill agreed obligations between untrusted
parties without intermediaries. Unfortunately, despite their
potential, smart contracts are more likely to be vulnerable than
traditional programs because of their unique characteristics
such as openness and immutability [3]. As a result, unsafe
smart contracts are prevalent and are increasingly becoming a
serious threat to the success of the blockchain technology. For
example, recent infamous attacks on the Ethereum blockchain
such as the DAO [4] and the Parity Wallet [5] attacks were
caused by unsafe smart contracts.

In this paper, we present VERISMART, a fully automated
safety analyzer for verifying Ethereum smart contracts with a
particular focus on arithmetic safety. We focus on detecting
arithmetic bugs such as integer over/underflows and division-
by-zeros because smart contracts typically involve lots of

To appear in the IEEE Symposium on Security & Privacy, May 2020
⇤Corresponding author: Hakjoo Oh, hakjoo oh@korea.ac.kr

TABLE I
STATISTICS ON CVE-REPORTED SECURITY VULNERABILITIES OF

ETHEREUM SMART CONTRACTS (AS OF MAY. 31, 2019)

Arithmetic Bad Access Unsafe Input Others TotalOver/underflow Randomness Control Dependency
487 (95.7 %) 10 (1.9 %) 4 (0.8 %) 4 (0.8 %) 4 (0.8%) 509

arithmetic operations and they are major sources of security
vulnerabilities nowadays. For example, arithmetic over/un-
derflows account for 95.7% (487/509) of CVEs assigned to
Ethereum smart contracts, as shown in Table I. Even worse,
arithmetic bugs, once exploited, are likely to cause significant
but unexpected financial damage (e.g., the integer overflow
in the SmartMesh contract [6] explained in Section II). Our
goal is to detect all arithmetic bugs before deploying smart
contracts on the blockchain.

Unlike existing techniques, VERISMART aims to be a truly
practical tool by performing automatic, scalable, exhaustive,
yet highly precise verification of smart contracts. Recent years
have seen an increased interest in automated tools for ana-
lyzing arithmetic safety of smart contracts [7], [8], [9], [10],
[11], [12]. However, existing tools are still unsatisfactory. A
major weakness of bug-finding approaches (e.g., [7], [9], [8],
[10]) is that they are likely to miss fatal bugs (i.e., resulting in
false negatives), because they do not consider all the possible
behaviors of the program. On the other hand, verification
approaches (e.g., [11], [12]) are exhaustive and therefore miss
no vulnerabilities, but they typically do so at the expense of
precision (i.e., resulting in false positives). In practice, both
false negatives and positives burden developers with error-
prone and time-consuming process for manually verifying a
number of undiscovered issues or incorrectly reported alarms.
VERISMART aims to overcome these shortcomings of existing
approaches by being exhaustive yet precise.

To achieve this goal, we present a new verification algorithm
for smart contracts. The key feature of the algorithm, which
departs significantly from the existing analyzers for smart
contracts [7], [8], [9], [10], [11], [12], is to automatically
discover domain-specific invariants of smart contracts during
the verification process. In particular, our algorithm automates
the discovery of transaction invariants, which are distinctive
properties of smart contracts that hold under arbitrary inter-
leaving of transactions and enable to analyze smart contracts
exhaustively without exploring all program paths separately. A

ar
X

iv
:1

90
8.

11
22

7v
2

 [c
s.P

L]
 3

0
A

ug
 2

01
9

스마트 컨트랙트 자동 분석 기술

• 오류 검출기 (bug-detector)

• 오류 검증기 (verifier)

10

manticore Osiris

Zeus

현재 자동 분석 기술의 한계 (1)
• 오류 검출기(e.g., Mythril, Osiris, Oyente): 놓치는 취약점이 존재

11

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

Osiris만 검출 가능

CVE-2018-10376

현재 자동 분석 기술의 한계 (1)

12

1 function multipleTransfer(address [] to, uint value) {
2 require(value * to.length > 0);
3 require(balances[msg.sender] >= value * to.length);
4 balances[msg.sender] -= value * to.length;
5 for (uint i = 0; i < to.length; ++i) {
6 balances[to[i]] += value;
7 }
8 return true;
9 }

Figure 2: A vulnerable function adapted from the Neo Gen-
esis Token contract (CVE-2018-14006).

Example 2. Figure 2 shows the multipleTransfer function
adapted from the Neo Genesis Token contract (CVE-2018-14006).
The function transfers the same amount of tokens (value) to every
account address stored in the array (to). It �rst checks whether
the total amount of tokens to be sent are greater than zero (line
2). Next, the function checks if the message sender has enough
money to transfer (line 3). If so, the function subtracts the money
from the sender’s account (line 4), and then transfers tokens to
designated accounts by iterating the loop at line 5–7. If all transfers
are successful, the function terminates by returning true.

Note that the function has a similar vulnerability to that of the
�rst example. At line 3 in Figure 2, the function prevents the under-
�ow possibility of the token sender’s account but does not protects
the over�ow of the tokens to be sent (value * to.length), which
is analogous to the situation at line 2 of Figure 1. That is, in a
similar way, an attacker can send huge amounts of tokens to any
users by spending only few tokens [6]. For example, suppose an
attacker (msg.sender) attempts to send 2255 + 1 tokens to each
of two addresses (i.e., value = 2255 + 1 and to.length = 2). If
the attacker initially has tokens greater than or equal to 2 (i.e.,
balance[msg.sender] � 2), then the attacker can pass the checks
at lines 2 and 3, because value * to.length evaluates to 2 in un-
signed 256 bit integers (i.e., ((2255 + 1) * 2) mod 2256 = 2). Finally, the
attacker can transfer 2255 + 1 tokens to each of the two addresses
respectively, by spending only 2 tokens.

Despite the similarity between vulnerabilities in Example 1 and
2, unsound bug-�nders have no guarantees of consistently �nding
them. For example, O�����, which succeeded to detect the vulnera-
bility in Example 1, now fails to report the smilar bug in Example 2.
The other bug-�nders are ine�ective too; M������ does not report
any issues, O����� obscurely reports that the entire function body
is vulnerable without specifying certain operations, and M�����
C��� does not respond within 3 days. On the other hand, V���S�
���� reliably reports that the expression value * to.length at
lines 2–4 would over�ow.

One of the main reasons for the unstable results of bug-�nders is
that they rely heavily on a range of heuristics to avoid false positives
(e.g., see [43]). Though such heuristics are good at reducing false
positives, the resulting analyzer is often very brittle: even small
changes in programs may end up with missing fatal vulnerabilities
as shown in Example 1 and 2, which is particularly undesirable for
safety-critical software like smart contracts.

Example 3. Figure 3 shows a simpli�ed version of the contract,
called BTX. The program has two global state variables: balance

1 contract BTX {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor () {
6 totalSupply = 10000;
7 balance[msg.sender] = 10000;
8 }
9
10 function transfer (address to , uint value) public

returns (bool) {
11 require (balance[msg.sender] >= value);
12 balance[msg.sender] -= value;
13 balance[to] += value; // Safe
14 return true;
15 }
16
17 function transferFrom (address from , address to , uint

value) public returns (bool) {
18 require (balance[from] >= value);
19 balance[to] += value; // Safe
20 balance[from] -= value;
21 return true;
22 }
23 }

Figure 3: Example code simpli�ed from CVE-2018-13326.

stores balances of each account address (line 2), and totalSupply
is the total amount of the supplied tokens (line 3). The constructor
function initializes totalSupply with 10000 tokens (line 6), and
gives the same amount of tokens to the creator of the contract (line
7). The transfer function sends value tokens from the transaction
message sender’s account to the recipient’s account (lines 12–13),
if it does not incur the under�ow in the message sender’s balance
(line 11). The transferFrom function is similar to transfer with
an exception to the order of performing addition and subtraction.

The contract has four arithmetic operations at lines 12, 13, 19,
and 20, all of which are safe from integer over/under�ows. However,
it is nontrivial to see why they are all safe. In particular, the safety
of the two addition operations at lines 13 and 19 is tricky, because
there are no direct safety-checking statements in each function. To
see why they do not over�ow, we need to discover the following
two invariants that are not explicitly given in code but always hold
no matter how the transactions (transfer and transferFrom) are
interleaved:

• the sum of all account values is 10000, i.e.,
X

i
balance[i] = 10000, (1)

• and computing
P
i balance[i] does not cause over�ow.

By combining these two conditions and the preconditions expressed
in the require statements at lines 11 and 18, we can conclude that,
at lines 13 and 19, the maximum values of both balance[to] and
value are 10000, and thus the expression balance[to]+value does
not over�ow in 256-bit unsigned integer operations.

Since reasoning about the safety in this case is tricky, it is likely
for human auditors to make a wrong conclusion that the contract
is unsafe. This is in fact what happened in the recent CVE report

3

• 오류 검출기(e.g., Mythril, Osiris, Oyente): 놓치는 취약점이 존재

앞의 경우와 비슷한 오류
이지만 검출 모두 실패

CVE-2018-14006

현재 자동 분석 기술의 한계 (2)

13

• 오류 검증기(SMTChecker, Zeus): 허위경보 존재

허위 경보 (False alarm)

허위 경보 (False alarm)

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [?] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender] + R
^ balance[ms�.sender] + R � balance[ms�.sender]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance)).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender] � �alue) yields:

totalSuppl� � balance[ms�.sender] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

VeriSmart

14

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

1 function multipleTransfer(address [] to, uint value) {
2 require(value * to.length > 0);
3 require(balances[msg.sender] >= value * to.length);
4 balances[msg.sender] -= value * to.length;
5 for (uint i = 0; i < to.length; ++i) {
6 balances[to[i]] += value;
7 }
8 return true;
9 }

Figure 2: A vulnerable function adapted from the Neo Gen-
esis Token contract (CVE-2018-14006).

Example 2. Figure 2 shows the multipleTransfer function
adapted from the Neo Genesis Token contract (CVE-2018-14006).
The function transfers the same amount of tokens (value) to every
account address stored in the array (to). It �rst checks whether
the total amount of tokens to be sent are greater than zero (line
2). Next, the function checks if the message sender has enough
money to transfer (line 3). If so, the function subtracts the money
from the sender’s account (line 4), and then transfers tokens to
designated accounts by iterating the loop at line 5–7. If all transfers
are successful, the function terminates by returning true.

Note that the function has a similar vulnerability to that of the
�rst example. At line 3 in Figure 2, the function prevents the under-
�ow possibility of the token sender’s account but does not protects
the over�ow of the tokens to be sent (value * to.length), which
is analogous to the situation at line 2 of Figure 1. That is, in a
similar way, an attacker can send huge amounts of tokens to any
users by spending only few tokens [6]. For example, suppose an
attacker (msg.sender) attempts to send 2255 + 1 tokens to each
of two addresses (i.e., value = 2255 + 1 and to.length = 2). If
the attacker initially has tokens greater than or equal to 2 (i.e.,
balance[msg.sender] � 2), then the attacker can pass the checks
at lines 2 and 3, because value * to.length evaluates to 2 in un-
signed 256 bit integers (i.e., ((2255 + 1) * 2) mod 2256 = 2). Finally, the
attacker can transfer 2255 + 1 tokens to each of the two addresses
respectively, by spending only 2 tokens.

Despite the similarity between vulnerabilities in Example 1 and
2, unsound bug-�nders have no guarantees of consistently �nding
them. For example, O�����, which succeeded to detect the vulnera-
bility in Example 1, now fails to report the smilar bug in Example 2.
The other bug-�nders are ine�ective too; M������ does not report
any issues, O����� obscurely reports that the entire function body
is vulnerable without specifying certain operations, and M�����
C��� does not respond within 3 days. On the other hand, V���S�
���� reliably reports that the expression value * to.length at
lines 2–4 would over�ow.

One of the main reasons for the unstable results of bug-�nders is
that they rely heavily on a range of heuristics to avoid false positives
(e.g., see [43]). Though such heuristics are good at reducing false
positives, the resulting analyzer is often very brittle: even small
changes in programs may end up with missing fatal vulnerabilities
as shown in Example 1 and 2, which is particularly undesirable for
safety-critical software like smart contracts.

Example 3. Figure 3 shows a simpli�ed version of the contract,
called BTX. The program has two global state variables: balance

1 contract BTX {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor () {
6 totalSupply = 10000;
7 balance[msg.sender] = 10000;
8 }
9
10 function transfer (address to, uint value) public

returns (bool) {
11 require (balance[msg.sender] >= value);
12 balance[msg.sender] -= value;
13 balance[to] += value; // Safe
14 return true;
15 }
16
17 function transferFrom (address from , address to , uint

value) public returns (bool) {
18 require (balance[from] >= value);
19 balance[to] += value; // Safe
20 balance[from] -= value;
21 return true;
22 }
23 }

Figure 3: Example code simpli�ed from CVE-2018-13326.

stores balances of each account address (line 2), and totalSupply
is the total amount of the supplied tokens (line 3). The constructor
function initializes totalSupply with 10000 tokens (line 6), and
gives the same amount of tokens to the creator of the contract (line
7). The transfer function sends value tokens from the transaction
message sender’s account to the recipient’s account (lines 12–13),
if it does not incur the under�ow in the message sender’s balance
(line 11). The transferFrom function is similar to transfer with
an exception to the order of performing addition and subtraction.

The contract has four arithmetic operations at lines 12, 13, 19,
and 20, all of which are safe from integer over/under�ows. However,
it is nontrivial to see why they are all safe. In particular, the safety
of the two addition operations at lines 13 and 19 is tricky, because
there are no direct safety-checking statements in each function. To
see why they do not over�ow, we need to discover the following
two invariants that are not explicitly given in code but always hold
no matter how the transactions (transfer and transferFrom) are
interleaved:

• the sum of all account values is 10000, i.e.,
X

i
balance[i] = 10000, (1)

• and computing
P
i balance[i] does not cause over�ow.

By combining these two conditions and the preconditions expressed
in the require statements at lines 11 and 18, we can conclude that,
at lines 13 and 19, the maximum values of both balance[to] and
value are 10000, and thus the expression balance[to]+value does
not over�ow in 256-bit unsigned integer operations.

Since reasoning about the safety in this case is tricky, it is likely
for human auditors to make a wrong conclusion that the contract
is unsafe. This is in fact what happened in the recent CVE report

3

• 안전하면서 정확한 스마트 컨트랙트 취약점 자동 분석기

CVE-2018-10376

CVE-2018-14006

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [?] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender] + R
^ balance[ms�.sender] + R � balance[ms�.sender]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance)).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender] � �alue) yields:

totalSuppl� � balance[ms�.sender] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

모든 오류를 검출 허위 경보 최소화

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

15

 기존 취약점 검출기와 성능 비교

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

15

 기존 취약점 검출기와 성능 비교

Table 2: Evaluation of existing tools on CVE reports. LOC: the number of lines for each contract. #Alarm: the number of
total alarms for each tool. #FP: the number of false alarms. CVE: a marker that indicates whether each tool successfully
detects vulnerabilities in CVE. 3: a tool successfully pinpoint all vulnerable locations in CVE. 4: a tool detects only a part of
vulnerabilities in CVE, or obscurely reports that an entire function body–including vulnerable locations in CVE–is vulnerable
without pinpointing. 7: a tool totally failed to detect all vulnerabilities in CVE. N/A: all vulnerabilities reported in CVE are
actually safe (#13, #31). If partly incorrect, the CVE bug detection is valid (#20, #32).

No. CVE ID Name LOC #Q V���S���� O����� [43] O����� [9, 34] M������ [7] M����C��� [2]
#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 1 0 3 1 0 4 0 0 7 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 0 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 34 0 3 9 0 7 4 0 4 0 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 0 0 7
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 3 2 0 7 0 0 7 0 0 7
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 3 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 10 2 7 11 4 7 2 1 7 0 0 7
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 0 0 7 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 0 0 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 5 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 internal error
#13 2018-13113 ETT 142 9 2 0 N/A 3 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 3 0 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 3 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 3 0 0 7 0 0 7
#18 2018-13131 SpadePreSale 312 3 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#19 2018-13132 Spadeico 403 8 6 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 0 0 7 internal error
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 4 0 7 3 0 7 0 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 0 0 7 internal error
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 internal error
#26 2018-13224 VEU 244 16 9 0 3 5 0 3 4 0 7 1 0 7 internal error
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 3 0 7 2 0 7 0 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#30 2018-13325 GROW 176 12 5 0 3 3 0 7 1 0 7 2 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 3 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 internal error
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 1 0 7 internal error
#34 2018-13533 ALUXToken 191 23 15 0 3 7 0 3 2 0 3 0 0 7 internal error
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 5 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 9 0 3 0 0 7 0 0 7 1 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 0 0 7
#39 2018-13703 CERB_Coin 262 17 8 0 3 5 0 3 2 0 7 0 0 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 internal error
#43 2018-13779 YLCToken 180 17 11 0 3 4 0 3 6 0 3 0 0 7 internal error
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 0 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 12 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 0 0 4 0 0 7
#47 2018-14001 SKT 152 19 10 0 3 4 0 3 3 0 4 1 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 0 0 4 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 3 2 0 4 1 0 7 internal error
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 internal error
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 0 0 4 internal error
#52 2018-14006 NGT 249 27 11 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 1 0 7 internal error
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 internal error
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 1 0 3 0 0 7
#57 2018-14089 Virgo_ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 13 0 3 internal error
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 internal error
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 3 0 3 2 0 7 0 0 7

Total
3: 58 3: 42 3: 23 3: 6 3:0

12556 973 496 2 4: 0 234 11 4: 0 164 13 4: 11 51 4 4: 3 0 0 4: 0
7: 0 7: 16 7: 24 7: 49 7: 33

9

Table 2: Evaluation of existing tools on CVE reports. LOC: the number of lines for each contract. #Alarm: the number of
total alarms for each tool. #FP: the number of false alarms. CVE: a marker that indicates whether each tool successfully
detects vulnerabilities in CVE. 3: a tool successfully pinpoint all vulnerable locations in CVE. 4: a tool detects only a part of
vulnerabilities in CVE, or obscurely reports that an entire function body–including vulnerable locations in CVE–is vulnerable
without pinpointing. 7: a tool totally failed to detect all vulnerabilities in CVE. N/A: all vulnerabilities reported in CVE are
actually safe (#13, #31). If partly incorrect, the CVE bug detection is valid (#20, #32).

No. CVE ID Name LOC #Q V���S���� O����� [43] O����� [9, 34] M������ [7] M����C��� [2]
#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 1 0 3 1 0 4 0 0 7 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 0 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 34 0 3 9 0 7 4 0 4 0 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 0 0 7
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 3 2 0 7 0 0 7 0 0 7
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 3 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 10 2 7 11 4 7 2 1 7 0 0 7
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 0 0 7 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 0 0 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 5 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 internal error
#13 2018-13113 ETT 142 9 2 0 N/A 3 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 3 0 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 3 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 3 0 0 7 0 0 7
#18 2018-13131 SpadePreSale 312 3 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#19 2018-13132 Spadeico 403 8 6 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 0 0 7 internal error
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 4 0 7 3 0 7 0 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 0 0 7 internal error
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 internal error
#26 2018-13224 VEU 244 16 9 0 3 5 0 3 4 0 7 1 0 7 internal error
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 3 0 7 2 0 7 0 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#30 2018-13325 GROW 176 12 5 0 3 3 0 7 1 0 7 2 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 3 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 internal error
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 1 0 7 internal error
#34 2018-13533 ALUXToken 191 23 15 0 3 7 0 3 2 0 3 0 0 7 internal error
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 5 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 9 0 3 0 0 7 0 0 7 1 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 0 0 7
#39 2018-13703 CERB_Coin 262 17 8 0 3 5 0 3 2 0 7 0 0 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 internal error
#43 2018-13779 YLCToken 180 17 11 0 3 4 0 3 6 0 3 0 0 7 internal error
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 0 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 12 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 0 0 4 0 0 7
#47 2018-14001 SKT 152 19 10 0 3 4 0 3 3 0 4 1 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 0 0 4 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 3 2 0 4 1 0 7 internal error
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 internal error
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 0 0 4 internal error
#52 2018-14006 NGT 249 27 11 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 1 0 7 internal error
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 internal error
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 1 0 3 0 0 7
#57 2018-14089 Virgo_ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 13 0 3 internal error
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 internal error
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 3 0 3 2 0 7 0 0 7

Total
3: 58 3: 42 3: 23 3: 6 3:0

12556 973 496 2 4: 0 234 11 4: 0 164 13 4: 11 51 4 4: 3 0 0 4: 0
7: 0 7: 16 7: 24 7: 49 7: 33

9

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

15

 기존 취약점 검출기와 성능 비교

Table 2: Evaluation of existing tools on CVE reports. LOC: the number of lines for each contract. #Alarm: the number of
total alarms for each tool. #FP: the number of false alarms. CVE: a marker that indicates whether each tool successfully
detects vulnerabilities in CVE. 3: a tool successfully pinpoint all vulnerable locations in CVE. 4: a tool detects only a part of
vulnerabilities in CVE, or obscurely reports that an entire function body–including vulnerable locations in CVE–is vulnerable
without pinpointing. 7: a tool totally failed to detect all vulnerabilities in CVE. N/A: all vulnerabilities reported in CVE are
actually safe (#13, #31). If partly incorrect, the CVE bug detection is valid (#20, #32).

No. CVE ID Name LOC #Q V���S���� O����� [43] O����� [9, 34] M������ [7] M����C��� [2]
#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 1 0 3 1 0 4 0 0 7 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 0 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 34 0 3 9 0 7 4 0 4 0 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 0 0 7
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 3 2 0 7 0 0 7 0 0 7
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 3 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 10 2 7 11 4 7 2 1 7 0 0 7
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 0 0 7 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 0 0 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 5 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 internal error
#13 2018-13113 ETT 142 9 2 0 N/A 3 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 3 0 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 3 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 3 0 0 7 0 0 7
#18 2018-13131 SpadePreSale 312 3 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#19 2018-13132 Spadeico 403 8 6 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 0 0 7 internal error
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 4 0 7 3 0 7 0 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 0 0 7 internal error
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 internal error
#26 2018-13224 VEU 244 16 9 0 3 5 0 3 4 0 7 1 0 7 internal error
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 3 0 7 2 0 7 0 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#30 2018-13325 GROW 176 12 5 0 3 3 0 7 1 0 7 2 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 3 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 internal error
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 1 0 7 internal error
#34 2018-13533 ALUXToken 191 23 15 0 3 7 0 3 2 0 3 0 0 7 internal error
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 5 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 9 0 3 0 0 7 0 0 7 1 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 0 0 7
#39 2018-13703 CERB_Coin 262 17 8 0 3 5 0 3 2 0 7 0 0 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 internal error
#43 2018-13779 YLCToken 180 17 11 0 3 4 0 3 6 0 3 0 0 7 internal error
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 0 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 12 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 0 0 4 0 0 7
#47 2018-14001 SKT 152 19 10 0 3 4 0 3 3 0 4 1 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 0 0 4 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 3 2 0 4 1 0 7 internal error
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 internal error
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 0 0 4 internal error
#52 2018-14006 NGT 249 27 11 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 1 0 7 internal error
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 internal error
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 1 0 3 0 0 7
#57 2018-14089 Virgo_ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 13 0 3 internal error
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 internal error
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 3 0 3 2 0 7 0 0 7

Total
3: 58 3: 42 3: 23 3: 6 3:0

12556 973 496 2 4: 0 234 11 4: 0 164 13 4: 11 51 4 4: 3 0 0 4: 0
7: 0 7: 16 7: 24 7: 49 7: 33

9

Table 2: Evaluation of existing tools on CVE reports. LOC: the number of lines for each contract. #Alarm: the number of
total alarms for each tool. #FP: the number of false alarms. CVE: a marker that indicates whether each tool successfully
detects vulnerabilities in CVE. 3: a tool successfully pinpoint all vulnerable locations in CVE. 4: a tool detects only a part of
vulnerabilities in CVE, or obscurely reports that an entire function body–including vulnerable locations in CVE–is vulnerable
without pinpointing. 7: a tool totally failed to detect all vulnerabilities in CVE. N/A: all vulnerabilities reported in CVE are
actually safe (#13, #31). If partly incorrect, the CVE bug detection is valid (#20, #32).

No. CVE ID Name LOC #Q V���S���� O����� [43] O����� [9, 34] M������ [7] M����C��� [2]
#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 1 0 3 1 0 4 0 0 7 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 0 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 34 0 3 9 0 7 4 0 4 0 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 0 0 7
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 3 2 0 7 0 0 7 0 0 7
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 3 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 10 2 7 11 4 7 2 1 7 0 0 7
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 0 0 7 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 0 0 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 5 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 internal error
#13 2018-13113 ETT 142 9 2 0 N/A 3 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 3 0 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 3 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 3 0 0 7 0 0 7
#18 2018-13131 SpadePreSale 312 3 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#19 2018-13132 Spadeico 403 8 6 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 0 0 7 internal error
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 4 0 7 3 0 7 0 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 0 0 7 internal error
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 internal error
#26 2018-13224 VEU 244 16 9 0 3 5 0 3 4 0 7 1 0 7 internal error
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 3 0 7 2 0 7 0 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#30 2018-13325 GROW 176 12 5 0 3 3 0 7 1 0 7 2 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 3 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 internal error
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 1 0 7 internal error
#34 2018-13533 ALUXToken 191 23 15 0 3 7 0 3 2 0 3 0 0 7 internal error
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 5 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 9 0 3 0 0 7 0 0 7 1 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 0 0 7
#39 2018-13703 CERB_Coin 262 17 8 0 3 5 0 3 2 0 7 0 0 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 internal error
#43 2018-13779 YLCToken 180 17 11 0 3 4 0 3 6 0 3 0 0 7 internal error
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 0 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 12 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 0 0 4 0 0 7
#47 2018-14001 SKT 152 19 10 0 3 4 0 3 3 0 4 1 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 0 0 4 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 3 2 0 4 1 0 7 internal error
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 internal error
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 0 0 4 internal error
#52 2018-14006 NGT 249 27 11 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 1 0 7 internal error
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 internal error
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 1 0 3 0 0 7
#57 2018-14089 Virgo_ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 13 0 3 internal error
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 internal error
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 3 0 3 2 0 7 0 0 7

Total
3: 58 3: 42 3: 23 3: 6 3:0

12556 973 496 2 4: 0 234 11 4: 0 164 13 4: 11 51 4 4: 3 0 0 4: 0
7: 0 7: 16 7: 24 7: 49 7: 33

9

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

정확도: 99.5%
검출률: 100%

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

15

 기존 취약점 검출기와 성능 비교

Table 2: Evaluation of existing tools on CVE reports. LOC: the number of lines for each contract. #Alarm: the number of
total alarms for each tool. #FP: the number of false alarms. CVE: a marker that indicates whether each tool successfully
detects vulnerabilities in CVE. 3: a tool successfully pinpoint all vulnerable locations in CVE. 4: a tool detects only a part of
vulnerabilities in CVE, or obscurely reports that an entire function body–including vulnerable locations in CVE–is vulnerable
without pinpointing. 7: a tool totally failed to detect all vulnerabilities in CVE. N/A: all vulnerabilities reported in CVE are
actually safe (#13, #31). If partly incorrect, the CVE bug detection is valid (#20, #32).

No. CVE ID Name LOC #Q V���S���� O����� [43] O����� [9, 34] M������ [7] M����C��� [2]
#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 1 0 3 1 0 4 0 0 7 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 0 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 34 0 3 9 0 7 4 0 4 0 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 0 0 7
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 3 2 0 7 0 0 7 0 0 7
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 3 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 10 2 7 11 4 7 2 1 7 0 0 7
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 0 0 7 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 0 0 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 5 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 internal error
#13 2018-13113 ETT 142 9 2 0 N/A 3 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 3 0 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 3 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 3 0 0 7 0 0 7
#18 2018-13131 SpadePreSale 312 3 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#19 2018-13132 Spadeico 403 8 6 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 0 0 7 internal error
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 4 0 7 3 0 7 0 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 0 0 7 internal error
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 internal error
#26 2018-13224 VEU 244 16 9 0 3 5 0 3 4 0 7 1 0 7 internal error
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 3 0 7 2 0 7 0 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#30 2018-13325 GROW 176 12 5 0 3 3 0 7 1 0 7 2 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 3 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 internal error
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 1 0 7 internal error
#34 2018-13533 ALUXToken 191 23 15 0 3 7 0 3 2 0 3 0 0 7 internal error
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 5 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 9 0 3 0 0 7 0 0 7 1 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 0 0 7
#39 2018-13703 CERB_Coin 262 17 8 0 3 5 0 3 2 0 7 0 0 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 internal error
#43 2018-13779 YLCToken 180 17 11 0 3 4 0 3 6 0 3 0 0 7 internal error
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 0 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 12 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 0 0 4 0 0 7
#47 2018-14001 SKT 152 19 10 0 3 4 0 3 3 0 4 1 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 0 0 4 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 3 2 0 4 1 0 7 internal error
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 internal error
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 0 0 4 internal error
#52 2018-14006 NGT 249 27 11 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 1 0 7 internal error
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 internal error
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 1 0 3 0 0 7
#57 2018-14089 Virgo_ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 13 0 3 internal error
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 internal error
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 3 0 3 2 0 7 0 0 7

Total
3: 58 3: 42 3: 23 3: 6 3:0

12556 973 496 2 4: 0 234 11 4: 0 164 13 4: 11 51 4 4: 3 0 0 4: 0
7: 0 7: 16 7: 24 7: 49 7: 33

9

Table 2: Evaluation of existing tools on CVE reports. LOC: the number of lines for each contract. #Alarm: the number of
total alarms for each tool. #FP: the number of false alarms. CVE: a marker that indicates whether each tool successfully
detects vulnerabilities in CVE. 3: a tool successfully pinpoint all vulnerable locations in CVE. 4: a tool detects only a part of
vulnerabilities in CVE, or obscurely reports that an entire function body–including vulnerable locations in CVE–is vulnerable
without pinpointing. 7: a tool totally failed to detect all vulnerabilities in CVE. N/A: all vulnerabilities reported in CVE are
actually safe (#13, #31). If partly incorrect, the CVE bug detection is valid (#20, #32).

No. CVE ID Name LOC #Q V���S���� O����� [43] O����� [9, 34] M������ [7] M����C��� [2]
#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 1 0 3 1 0 4 0 0 7 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 0 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 34 0 3 9 0 7 4 0 4 0 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 0 0 7
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 3 2 0 7 0 0 7 0 0 7
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 3 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 10 2 7 11 4 7 2 1 7 0 0 7
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 0 0 7 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 0 0 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 5 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 internal error
#13 2018-13113 ETT 142 9 2 0 N/A 3 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 3 0 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 3 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 3 0 0 7 0 0 7
#18 2018-13131 SpadePreSale 312 3 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#19 2018-13132 Spadeico 403 8 6 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 0 0 7 internal error
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 4 0 7 3 0 7 0 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 0 0 7 internal error
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 internal error
#26 2018-13224 VEU 244 16 9 0 3 5 0 3 4 0 7 1 0 7 internal error
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 3 0 7 2 0 7 0 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#30 2018-13325 GROW 176 12 5 0 3 3 0 7 1 0 7 2 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 3 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 internal error
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 1 0 7 internal error
#34 2018-13533 ALUXToken 191 23 15 0 3 7 0 3 2 0 3 0 0 7 internal error
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 5 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 9 0 3 0 0 7 0 0 7 1 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 0 0 7
#39 2018-13703 CERB_Coin 262 17 8 0 3 5 0 3 2 0 7 0 0 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 internal error
#43 2018-13779 YLCToken 180 17 11 0 3 4 0 3 6 0 3 0 0 7 internal error
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 0 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 12 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 0 0 4 0 0 7
#47 2018-14001 SKT 152 19 10 0 3 4 0 3 3 0 4 1 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 0 0 4 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 3 2 0 4 1 0 7 internal error
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 internal error
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 0 0 4 internal error
#52 2018-14006 NGT 249 27 11 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 1 0 7 internal error
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 internal error
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 1 0 3 0 0 7
#57 2018-14089 Virgo_ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 13 0 3 internal error
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 internal error
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 3 0 3 2 0 7 0 0 7

Total
3: 58 3: 42 3: 23 3: 6 3:0

12556 973 496 2 4: 0 234 11 4: 0 164 13 4: 11 51 4 4: 3 0 0 4: 0
7: 0 7: 16 7: 24 7: 49 7: 33

9

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

정확도: 99.5%
검출률: 100%

정확도: < 94.6%
검출률: < 70.7%

기존 취약점 검증기와 성능 비교

16

TABLE IV
EVALUATION ON THE ZEUS DATASET. VERIFIED: A TOOL DETECTS ALL

BUGS WITHOUT FALSE POSITIVES (3: SUCCESS, 7: FAILURE)

No. LOC #Q
VERISMART SMTCHECKER [12] ZEUS [11]

#Alarm #FP Verified #Alarm #FP Verified Verified

#1 42 3 0 0 3 3 3 7 7
#2 78 2 1 0 3 2 1 7 7
#3 75 7 2 0 3 7 5 7 7
#4 70 7 0 0 3 7 7 7 7
#5 103 8 0 0 3 6 6 7 7
#6 141 5 2 0 3 internal error 7
#7 74 6 1 0 3 6 5 7 7
#8 84 6 0 0 3 4 4 7 7
#9 82 6 0 0 3 6 6 7 7
#10 99 2 1 0 3 internal error 7
#11 171 15 9 0 3 internal error 7
#12 139 7 0 0 3 internal error 7
#13 139 7 0 0 3 internal error 7
#14 139 7 0 0 3 internal error 7
#15 139 7 0 0 3 internal error 7
#16 141 16 10 0 3 internal error 7
#17 153 5 0 0 3 internal error 7
#18 139 7 0 0 3 internal error 7
#19 113 4 0 0 3 4 4 7 7
#20 40 3 0 0 3 3 3 7 7
#21 59 3 0 0 3 internal error 7
#22 28 3 1 0 3 1 0 3 7
#23 19 3 0 0 3 3 3 7 7
#24 457 30 13 6 7 internal error 7
#25 17 3 0 0 3 3 3 7 7

Total 2741 172 40 6 3:24 55 50 3: 1 3: 0
7 : 1 7: 12 7:25

Results: Table IV shows the evaluation results on the
ZEUS dataset. For each contract, the table shows the number
of alarms (#Alarm), the number of false positives (#FP)
produced by VERISMART and SMTCHECKER. The column
Verified indicates whether each tool detected all bugs without
false positives (3: success, 7: failure).

The results show that VERISMART successfully addresses
limitations of ZEUS and SMTCHECKER. The 25 contracts
contain 172 arithmetic operations, where VERISMART pointed
out 40 operations as potential bugs. We have manually checked
that 34 out of total alarms are true positives. In benchmark #24,
VERISMART produced 6 false positives due to unsupported
invariants (quantified invariants and compound invariants, Sec-
tion III-C), and imprecise function call analysis. We manually
checked that the remaining 132 (=172-40) queries proven to be
safe by VERISMART are actually true negatives. By contrast,
according to the publicly available data [28], ZEUS produces
at least one false positives for each contract in Table IV
(i.e., � 25 false alarms in total). SMTCHECKER could
only analyze 13 contracts as it raised internal errors for the
other 12 contracts, which is due to its immature support of
Solidity syntax [29]. Among 61 operations from 13 contracts,
SMTCHECKER succeeded to detect all 5 bugs in them thanks
to its exhaustive verification approach. However, it reported
55 alarms in total, of which 50 are false positives. In terms of
efficiency, SMTCHECKER took about 1 second per contract
and VERISMART took about 20 seconds per contract.

Importance of Transaction Invariants: The key enabler
for high precision was the ability of VERISMART to lever-
age transaction invariants. We also ran VERISMART without
inferring transaction invariants (i.e., using true as transaction
invariants); without transaction invariants, VERISMART fails

to verify 17 out of 25 contracts.

C. Case Study: Application to Other Types of Vulnerabilities
VERISMART can be used for analyzing other safety prop-

erties as well. To show this, we applied VERISMART to
finding bugs related to access control, where security-sensitive
variables can be manipulated by anyone for malicious use.
For example, consider the code snippet adapted from the
EtherCartel contract for crypto idle game (CVE 2018-11329):

function DrugDealer() public { ceoAddr = msg.sender; }

function buyDrugs () public payable {

ceoAddr.transfer(msg.value); // send Ether to ceoAddr

drugs[msg.sender] += ...; // buy drugs by paying Ether

}

Observe that the address-typed variable ceoAddr, the benefi-
ciary of Ether, can be taken by anyone who calls the function
DrugDealer. If an attacker becomes the beneficiary by
calling DrugDealer, the attacker might illegally take some
digital assets whenever benign users buy some digital assets
(i.e., drugs) by calling buyDrugs where transfer in it is
a built-in function that sends Ether to ceoAddr. This vulner-
ability was exploited in about 1 hour after deployment [30].

To detect this bug, we used VERISMART as follows. First,
we specified safety properties by automatically generating
the assertion assert(msg.sender==addr) right before
each assignment of the form addr=...;, where addr is a
global address-typed variable which is often security-sensitive
(excluding assignments in constructors, which typically set the
contract owners). Next, we ran VERISMART without any mod-
ification of its verification algorithm. With this simple exten-
sion, VERISMART worked effectively; it not only detected all
known CVE vulnerabilities (2018-10666, 2018-10705, 2018-
11329) but also proved the absence of this bug scenario for
55 contracts out of 60 from Table II. VERISMART could not
prove safety of the remaining 5 contracts due to the imprecise
specification described above.

D. Threats to Validity
We summarize limitations of our evaluation and consequent

threats to validity. Firstly, the benchmark contracts that we
used (60 CVE dataset + 25 ZEUS dataset) might not be repre-
sentative although we made effort to avoid bias in the datasets
(e.g., removal of duplicates). Secondly, the performance of
VERISMART may vary depending on the performance of the
off-the-shelf SMT solver (i.e., Z3) used internally or timeout
options used in the experiments. Thirdly, we did not study
the exploitability of bugs in this paper and did not compare
VERISMART and other tools in this regard. Thus, the results
may be different if those tools are evaluated with exploitability
in mind. Lastly, although we did our best, we realized that
manually classifying static analysis alarms into true or false
positives is extremely challenging and the classification can
be even subjective in a few cases.

VI. RELATED WORK

In this section, we place our work in the literature and clar-
ify our contributions regarding existing works. Section VI-A

VeriSmart 핵심 차별점

17

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [?] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender] + R
^ balance[ms�.sender] + R � balance[ms�.sender]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance)).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender] � �alue) yields:

totalSuppl� � balance[ms�.sender] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

• 트랜잭션 불변 성질 (Transaction invariant) 자동 추론

VeriSmart 핵심 차별점

17

totalSupply = Σbalance

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [?] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender] + R
^ balance[ms�.sender] + R � balance[ms�.sender]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance)).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender] � �alue) yields:

totalSuppl� � balance[ms�.sender] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

• 트랜잭션 불변 성질 (Transaction invariant) 자동 추론

VeriSmart 핵심 차별점

17

totalSupply = Σbalance

totalSupply = Σbalance

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [?] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender] + R
^ balance[ms�.sender] + R � balance[ms�.sender]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance)).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender] � �alue) yields:

totalSuppl� � balance[ms�.sender] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

• 트랜잭션 불변 성질 (Transaction invariant) 자동 추론

VeriSmart 핵심 차별점

17

totalSupply = Σbalance

totalSupply = Σbalance

totalSupply = Σbalance

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [?] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender] + R
^ balance[ms�.sender] + R � balance[ms�.sender]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance)).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender] � �alue) yields:

totalSuppl� � balance[ms�.sender] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

• 트랜잭션 불변 성질 (Transaction invariant) 자동 추론

VeriSmart 핵심 차별점

17

totalSupply = Σbalance

totalSupply = Σbalance

totalSupply = Σbalance

totalSupply = Σbalance

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [?] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender] + R
^ balance[ms�.sender] + R � balance[ms�.sender]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance)).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender] � �alue) yields:

totalSuppl� � balance[ms�.sender] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

• 트랜잭션 불변 성질 (Transaction invariant) 자동 추론

VeriSmart 핵심 차별점

17

totalSupply = Σbalance

totalSupply = Σbalance

totalSupply = Σbalance

totalSupply = Σbalance

totalSupply = Σbalance

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [?] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender] + R
^ balance[ms�.sender] + R � balance[ms�.sender]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance)).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender] � �alue) yields:

totalSuppl� � balance[ms�.sender] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

• 트랜잭션 불변 성질 (Transaction invariant) 자동 추론

VeriSmart 핵심 차별점

18

VeriSmart: Precise and Sound Verification of Numerical
Properties for Ethereum Smart Contracts

Sunbeom So
Korea University

sunbeom_so@korea.ac.kr

Myungho Lee
Korea University

myungho_lee@korea.ac.kr

Jisu Park
Korea University

jisu_park@korea.ac.kr

Heejo Lee
Korea University
heejo@korea.ac.kr

Hakjoo Oh
Korea University

hakjoo_oh@korea.ac.kr

1 function transferProxy

2 (address from , address to , uint value , uint fee) public

3 returns (bool) {

4 if (balance[from] < fee + value) revert (); // vulnerable

5
6 if (balance[to] + value < balance[to]

7 || balance[msg.sender] + fee < balance[msg.sender])

8 revert ();

9
10 balance[to] += value;

11 balance[msg.sender] += fee;

12 balance[from] -= value + fee;

13 return true;

14 }

Figure 1: A simpli�ed vulnerable function from SmartMesh
contract (CVE-2018-10376). Attackers exploited the vulnera-
bility at line 4, where fee+value may over�ow with crafted
input arguments.

ABSTRACT
TODO

CCS CONCEPTS
• Security and privacy → Use https://dl.acm.org/ccs.cfm to gen-
erate actual concepts section for your paper;

KEYWORDS
template; formatting; pickling

1 INTRODUCTION
TODO

2 OVERVIEW
2.1 Motivating Examples
In this section, we motivate the signi�cance of V���S����’s precise
and sound veri�cation. Example 1 emphasizes the importance of
sound veri�cation in safety-critical smart contracts using a real-
world accident example. Example 2 demonstrates V���S����’s
capability for precise veri�cation, which has not been achieved in
existing smart contract analyzers.

1 contract Netkoin {

2 mapping (address => uint) public balance;

3 uint public totalSupply;

4
5 constructor (uint initialSupply) {

6 totalSupply = initialSupply;

7 balance[msg.sender] = totalSupply;

8 }

9
10 function transfer (address to , uint value) public

11 returns (bool) {

12 require (balance[msg.sender] >= value);

13 require (balance[to] + value > balance[to]);

14 balance[msg.sender] -= value;

15 balance[to] += value;

16 return true;

17 }

18
19 function burn (uint value) public returns (bool) {

20 require (balance[msg.sender] >= value);

21 balance[msg.sender] -= value;

22 totalSupply -= value;

23 return true;

24 }

25 }

Figure 2: Example code adapted from Netkoin contract that
hasmore than 43,000 transactions at the time of the writing.

Example 1 (Necessity for Sound Veri�cation). In Figure 1,
we show the simpli�ed implementation of the transferProxy func-
tion from SmartMesh (SMT) token contract. In April 2018, attackers
created unauthorized tokens worth about 6⇤1042 USD by exploiting
the integer over�ow vulnerability in the function. This vulnerability,
named proxyOver�ow, was reported in CVE-2018-10376.

The function �rst checks whether the sender’s balance is greater
than or equal to fee+value tokens to be sent (line 4), and fur-
ther examines whether recipients’ balances would over�ow when
fee+value is added (line 6–7). After passing these two checks, the
function transfers the tokens to the recipients (line 10–11) and
subtracts the tokens by the amount of the sent tokens (line 12).

The attackers exploited the vulnerability at line 4; the conditional
statement does not check whether fee+value over�ows or not. Let
us investigate one possible attack scenario. 1 Suppose the sender
the recipients initially have no balances, i.e., balance[from] =
balance[to] = balance[msg.sender] = 0. With value = 1 and

1The actual input values that were used in the attack can be found in the link here.

1

assert (totalSupply >= value)

totalSupply = Σbalance … transaction invariant
≥ balance[msg.sender] … def. of Σbalance
≥ value … assumption (require)

• 트랜잭션의 불변 성질을 이용한 안전성 증명

VeriSmart 핵심 차별점

18

VeriSmart: Precise and Sound Verification of Numerical
Properties for Ethereum Smart Contracts

Sunbeom So
Korea University

sunbeom_so@korea.ac.kr

Myungho Lee
Korea University

myungho_lee@korea.ac.kr

Jisu Park
Korea University

jisu_park@korea.ac.kr

Heejo Lee
Korea University
heejo@korea.ac.kr

Hakjoo Oh
Korea University

hakjoo_oh@korea.ac.kr

1 function transferProxy

2 (address from , address to , uint value , uint fee) public

3 returns (bool) {

4 if (balance[from] < fee + value) revert (); // vulnerable

5
6 if (balance[to] + value < balance[to]

7 || balance[msg.sender] + fee < balance[msg.sender])

8 revert ();

9
10 balance[to] += value;

11 balance[msg.sender] += fee;

12 balance[from] -= value + fee;

13 return true;

14 }

Figure 1: A simpli�ed vulnerable function from SmartMesh
contract (CVE-2018-10376). Attackers exploited the vulnera-
bility at line 4, where fee+value may over�ow with crafted
input arguments.

ABSTRACT
TODO

CCS CONCEPTS
• Security and privacy → Use https://dl.acm.org/ccs.cfm to gen-
erate actual concepts section for your paper;

KEYWORDS
template; formatting; pickling

1 INTRODUCTION
TODO

2 OVERVIEW
2.1 Motivating Examples
In this section, we motivate the signi�cance of V���S����’s precise
and sound veri�cation. Example 1 emphasizes the importance of
sound veri�cation in safety-critical smart contracts using a real-
world accident example. Example 2 demonstrates V���S����’s
capability for precise veri�cation, which has not been achieved in
existing smart contract analyzers.

1 contract Netkoin {

2 mapping (address => uint) public balance;

3 uint public totalSupply;

4
5 constructor (uint initialSupply) {

6 totalSupply = initialSupply;

7 balance[msg.sender] = totalSupply;

8 }

9
10 function transfer (address to , uint value) public

11 returns (bool) {

12 require (balance[msg.sender] >= value);

13 require (balance[to] + value > balance[to]);

14 balance[msg.sender] -= value;

15 balance[to] += value;

16 return true;

17 }

18
19 function burn (uint value) public returns (bool) {

20 require (balance[msg.sender] >= value);

21 balance[msg.sender] -= value;

22 totalSupply -= value;

23 return true;

24 }

25 }

Figure 2: Example code adapted from Netkoin contract that
hasmore than 43,000 transactions at the time of the writing.

Example 1 (Necessity for Sound Veri�cation). In Figure 1,
we show the simpli�ed implementation of the transferProxy func-
tion from SmartMesh (SMT) token contract. In April 2018, attackers
created unauthorized tokens worth about 6⇤1042 USD by exploiting
the integer over�ow vulnerability in the function. This vulnerability,
named proxyOver�ow, was reported in CVE-2018-10376.

The function �rst checks whether the sender’s balance is greater
than or equal to fee+value tokens to be sent (line 4), and fur-
ther examines whether recipients’ balances would over�ow when
fee+value is added (line 6–7). After passing these two checks, the
function transfers the tokens to the recipients (line 10–11) and
subtracts the tokens by the amount of the sent tokens (line 12).

The attackers exploited the vulnerability at line 4; the conditional
statement does not check whether fee+value over�ows or not. Let
us investigate one possible attack scenario. 1 Suppose the sender
the recipients initially have no balances, i.e., balance[from] =
balance[to] = balance[msg.sender] = 0. With value = 1 and

1The actual input values that were used in the attack can be found in the link here.

1

assert (totalSupply >= value)

totalSupply = Σbalance … transaction invariant
≥ balance[msg.sender] … def. of Σbalance
≥ value … assumption (require)

• 트랜잭션의 불변 성질을 이용한 안전성 증명

기존 취약점 검출기 / 검증기들은 이러한 추론을 못하고 FN / FP 발생

VeriSmart 검증 알고리즘

19

• Generator: 트랜잭션 불변 성질을 추론 시도

• Validator: 추론된 불변 성질을 이용하여 안전성 검증 시도

Generator

unproven queries

candidate invariants

Solidity
Program

Verification
Result

Validator

Solver

Figure 5: Algorithm overview.

Algorithm 1 Our Search-based Veri�cation
Input: A smart contract c to verify
Output: Veri�cation success or potential safety violations
1: W {(true, �l .true)}
2: repeat
3: Choose a candidate invariant (� , µ) fromW
4: W W \ {(� , µ)}
5: U V��������(c,� , µ)
6: if U = ; then veri�cation succeeds
7: else
8: W W [G��������(U ,� , µ)
9: untilW = ; or timeout
10: return potential safety violations

and the output is a veri�cation result that indicates whether each
query (i.e., assertion) in the program is proven safe or not. The
algorithm consists of two components, a validator and a generator,
where the validator has a solver as a subcomponent.

The algorithm aims to �nd contract-speci�c invariants that are
inductive and strong enough to prove all provable queries in the
given contract. The role of the generator is to produce candidate
invariants that help the validator to prove as many queries as pos-
sible. Given a candidate invariant, the validator checks whether
the invariant is useful for proving the queries. If it fails to prove
the queries, it provides the set of unproven queries as feedback
to the generator. The generator uses this feedback to re�ne the
current invariant and generate new ones. This way, the validator
and generator form an iterative loop that continuously re�nes the
analysis results until the program is proven to be safe or the given
time budget is exhausted. Upon termination, all unproven queries
are reported to users as potential safety violations.

Algorithm 1 shows our search-based veri�cation algorithm. It
uses a workset (W) to maintain candidate invariants, which initially
contains the trivial invariant (true, �l .true) (line 1): the transaction
invariant � is true and the loop invariant mapping µ maps every
label (l) to true. The repeat-until loop at lines 2–9 correspond to the
feedback loop in Figure 5. At lines 3 and 4, the algorithm chooses
and removes a candidate invariant (� , µ) from the workset. We
choose a candidate invariant that is smallest in size. At line 5, we
run the validator to check whether the current invariant is inductive
and strong enough to prove queries, which returns the set U of
unproven queries. IfU is empty (line 6), the algorithm terminates
and the contract is completely proven to be safe. Otherwise (line 8),
we generate a new set of candidate invariants and add them to the

worklist. The algorithm iterates until it times out or the worklist
becomes empty. We assume that the algorithm implicitly maintains
previously generated invariants to avoid redundant trials.

Nowwe describe themain components, i.e., validator (Section 3.2),
generator (Section 3.3), and solver (Section 3.4), of the algorithm.

3.2 Validator
The goal of the validator is to check whether the current candidate
invariant (� , µ) is inductive and strong enough to prove the safety
of the queries. The input to the validator is an annotated program
(c,� , µ), i.e., the smart contract c annotated with transaction (�)
and loop (µ) invariants. The validator proceeds in three steps.

Basic PathConstruction. Given an annotated program (c,� , µ),
we �rst break down the program into a �nite set of basic paths. A
basic path is a sequence of atomic statements that begins at the
entry of a function or a loop, and ends at the exit of a function or
the entry of a loop, without passing through other loop entries. We
represent a basic path p by the �ve components:

((l1,�1),a1; . . . ;an , (l2,�2)) (2)

where l1 is the label of the starting point of the path, �1 2 FOL is
the invariant annotated at l1, a1, . . . ,an are atomic statements, l2 is
the label of the end point of the path, and �2 2 FOL is the invariant
annotated at l2. The basic path satis�es the following properties:

(1) If l1 is the entry of a function, �1 = � . An exception is:
�1 = true if l1 is the entry of the constructor.

(2) If l2 is the exit of a function, including constructor, �2 = � .
(3) Otherwise, i.e., when l1 and l2 are labels of loops,�1 = µ (l1)

and �2 = µ (l2).

We can convert (c,� , µ) to a set of basic paths that satisfy the three
properties by traversing the control �ows of c .

Example 3.2. Consider the contract in Figure 4 annotated with
the transaction invariant � = n  100. We do not consider loop
invariants as the contract does not have any loops. The annotated
program is converted into the three basic paths:

p1 : ((entry0, true),n := 1, (exit0,n  100))
p2 : ((entryf ,n  100),a1, (exitf ,n  100))
p3 : ((entryf ,n  100),a2, (exitf ,n  100))

wherea1 = assert (n+1 � n);n := n+1; assume(n � 100);n := 1 and
a2 = assert (n + 1 � n);n := n + 1; assume(n < 100). p1 represents
the basic path of the constructor (whose entry and exit labels are
entry0 and exit0, respectively). p2 and p3 represent the basic paths
of the function f that follow the true and false branches of the
conditional statement at line 7, respectively. Note that conditional
statements and loops do not appear as they are broken into basic
paths with original conditions given as assume statements.

Generation of Veri�cation Conditions. Let P be the set of
basic paths constructed from the annotated program. We next gen-
erate veri�cation conditions (VCs) for each of basic paths.

To derive the VCs, we should be able to express e�ects of program
statements in FOL. To do so, we de�ne a strongest postcondition
predicate transformer sp : stmt ! FOL ⇥ FOL ! FOL ⇥ FOL,

5

20

Verifier

프로그램

증명할 성질

증명성공!

반례
(counterexample)

P

� P ^ ¬�SMT()

UNSAT

SAT

• 프로그램과 증명할 성질을 일차 논리식(first-order logic)으로 표현

• 논리식의 satisfiability 여부를 SMT solver로 판별

기반 기술: Software Verification

검증조건 (Verification Condition)

예제

21

int f(bool a) {
 x = 0; y = 0;
 if (a) {
 x = 1;
 }
 if (a) {
 y = 1;
 }
 assert (x == y)
}

예제

22

((a ∧ x) ∨ (¬a ∧ ¬x)) ∧
((a ∧ y) ∨ (¬a ∧ ¬y)) ∧
¬(x == y)

int f(bool a) {
 x = 0; y = 0;
 if (a) {
 x = 1;
 }
 if (a) {
 y = 1;
 }
 assert (x == y)
}

Verification Condition:
①

예제

22

((a ∧ x) ∨ (¬a ∧ ¬x)) ∧
((a ∧ y) ∨ (¬a ∧ ¬y)) ∧
¬(x == y)

② SMT solver: unsatisfiable!

int f(bool a) {
 x = 0; y = 0;
 if (a) {
 x = 1;
 }
 if (a) {
 y = 1;
 }
 assert (x == y)
}

Verification Condition:
①

예제

23

int f(a, b) {
 x = 0; y = 0;
 if (a) {
 x = 1;
 }
 if (b) {
 y = 1;
 }
 assert (x == y)
}

((a ∧ x) ∨ (¬a ∧ ¬x)) ∧
((b ∧ y) ∨ (¬b ∧ ¬y)) ∧
¬(x == y)

①
Verification Condition:

예제

23

int f(a, b) {
 x = 0; y = 0;
 if (a) {
 x = 1;
 }
 if (b) {
 y = 1;
 }
 assert (x == y)
}

((a ∧ x) ∨ (¬a ∧ ¬x)) ∧
((b ∧ y) ∨ (¬b ∧ ¬y)) ∧
¬(x == y)

② SMT solver:
 satisfiable when a=1 and b=0

①
Verification Condition:

반복문 불변 성질

24

i = 0;
j = 0;
while  
(i < 10) {
 i++;
 j++;
}
assert (i-j==0)

반복문 불변 성질

24

i = 0;
j = 0;
while  
(i < 10) {
 i++;
 j++;
}
assert (i-j==0)

@(i==j)

반복문 불변 성질

24

i = 0;
j = 0;
while  
(i < 10) {
 i++;
 j++;
}
assert (i-j==0)

@(i==j)
((i=0∧j=0)→(i=j))
∧ ((i=j)→(i-j))

반복문 불변 성질

24

i = 0;
j = 0;
while  
(i < 10) {
 i++;
 j++;
}
assert (i-j==0)

@(i==j)
((i=0∧j=0)→(i=j))
∧ ((i=j)→(i-j))

증명에 실패하는 불변 성질은 무용지물
(i >= 0,j >= 0,i == j,true,…)

소프트웨어 자동 검증의 어려움

25

Example: Bubble Sort

@pre : >
@post : sorted(rv, 0, |rv| � 1)
bool BubbleSort (int a[]) {

int[] a := a0

@L1

2

4
�1  i < |a|
^ partitioned(a, 0, i, i + 1, |a| � 1)
^ sorted(a, i, |a| � 1)

3

5

for (int i := |a| � 1; i > 0; i := i � 1) {

@L2

2

664

1  i < |a| ^ 0  j  i
^ partitioned(a, 0, i, i + 1, |a| � 1)
^ partitioned(a, 0, j � 1, j, j)
^ sorted(a, i, |a| � 1)

3

775

for (int j := 0; j < i; j := j + 1) {
if (a[j] > a[j + 1]) {

int t := a[j];
int a[j] := a[j + 1];
int a[j + 1] := t;

}
}

}
return a;

}

partitioned(a, l1, u1, l2, u2) () 8i, j. l1  i  u1 < l2  j  u2 ! a[i]  a[j].
Hakjoo Oh AAA528 2018 Fall, Lecture 6 October 12, 2018 14 / 33

스마트 컨트랙트의 경우

26

• 상대적으로 코드가 단순하여 불변식 자동 추론이 가능

• 단, 반복문이 트랜잭션 호출로 주로 만들어지므로 트랜잭션
불변 성질 (Transaction invariant) 유추가 중요

컨트랙트 트랜잭션1

T

T

트랜잭션2

T

T

postcondition predicate transformer sp : stmt ! FOL ⇥
FOL ! FOL ⇥ FOL, which is defined in a standard way
for each atomic statement as follows:

sp(x := e)(�1,�2) = (x = e[x0/x] ^ �1[x
0/x],�2)

sp(x[y] := e)(�1,�2) = (x = x0hy C e[x0/x]i ^ �1[x
0/x],�2)

sp(assume(e))(�1,�2) = (�1 ^ e,�2)
sp(assert(e))(�1,�2) = (�1,�2 ^ (�1 ! e))

where unprimed variables (e.g., x) and primed variables (e.g.,
x
0) represent the current and previous program states, respec-

tively. In each rule, �1 is a precondition and sp transforms it
into a postcondition while accumulating the safety conditions
of assertions in �2. We write x

0hy C ei for the modified array
x
0 that stores the value of e at position y. With sp, we define

the procedure GENVC that generates the VC of a basic path:

GENVC(((l1,�1), a1; . . . ; an, (l2,�2))) = (�01 ! �2,�
0
2)

where (�01,�
0
2) = (sp(an)�· · ·�sp(a2)�sp(a1))(�1, true). The

generated VC consists of two parts: �01 ! �2 is a formula for
checking that the annotated invariants are inductive, and �02 is
a formula for checking the safety properties in assertions.

Example 3: Consider the basic path p3 in Example 2. The
corresponding VC is a pair of (n0  100 ^ n = n

0 + 1 ^ n <

100 ! n  100, n  100 ! n + 1 � n), both of which are
valid in the bitvector theory.

Collecting Unproven Paths: Finally, we return a pair of
the boolean variable inductive and the subset U ✓ P of basic
paths whose VCs are invalid:

(inductive, U) =8
<

:

if 9p 2 P.GENVC(p).1 is invalid then

(false, {p 2 P | GENVC(p).1 is invalid})
else (true, {p 2 P | 9F 2 GENVC(p).2 is invalid})

GENVC(p).1 and GENVC(p).2 denote the first (i.e., the VC
on inductiveness) and the second (i.e., the VC on safety)
component of GENVC(p), respectively. We also write F 2
GENVC(p).2 for a clause of GENVC(p).2, where F corre-
sponds to the safety condition of a single query. In the above
procedure, we first check whether some VCs regarding induc-
tiveness are invalid. If it does so (if-case), we set inductive
to false and U becomes the basic paths where inductiveness
checking failed. Note that, in this case, we accelerate our
verification procedure by excluding from U the paths where
safety checking may fail. That is, we first focus on refining
invariants to be inductive and then strengthen them further to
prove safety rather than trying to achieve both at the same
time. When the current candidate invariant is inductive (else-
case), we set inductive to true and collect the basic paths
where some queries are not proven to be safe. To check the
validity of the VCs, we use a domain-specific solver, which
will be explained in Section III-D.

C. Generator
The generator takes the set U as feedback and produces

new candidate invariants by refining the current one (, µ).
GENERATOR(U, , µ) returns the following set:

{(, µ0) | µ0 2 LOOP(µ,U)} [{(0
, µ) | 0 2 TRAN(, U)}

where LOOP and TRAN generate new loop and transaction
invariants, respectively, based on the current ones. We define
LOOP(µ,U) so as to return the following set of refined loop
invariants:

[

((l1,),a,(l2,))2U

{µ[li 7! �i] | i 2 [1, 2],�i 2 REFINEL(µ(li), a)}

where we assume l1 and l2 are loop labels, and a is the
sequence of atomic statements in the basic path. The definition
of TRAN(, U):

{ 0 | ((l1,), a, (l2,)) 2 U,
0 2 REFINET(, a)}

where we assume l1 is the label of a function entry or l2

is the label of a function exit. In the definitions above, the
procedures REFINEL and REFINET are actually responsible
for refining loop and transaction invariants, which ultimately
determine the effectiveness of the generator and the overall
verification algorithm.

Domain-Specific Refinement: We define REFINEL and
REFINET in terms of refinement relation. A refinement relation
(X,C) ✓ FOL ⇥ FOL is a binary relation on logical
formulas, parameterized by variable set X and constant set
C, which describes how a candidate invariant is refined in one
step: i.e., � can be refined to any of {�0 | � X,C �

0}. In our
approach, choosing a right refinement relation holds the key
to cost-effective verification since it defines the search space
of candidate invariants. For example, simply choosing a very
general or specific refinement relation would not be practical
because of the huge or too limited search space. Instead, we
have to carefully design a refinement relation tailored for real-
world smart contracts to make our algorithm cost-effective.

Fortunately, we observed that smart contracts in practice
share common properties and accordingly considered the
following points when we design the refinement relation.
First, smart contracts often use loops in simple and restricted
forms, e.g., for(i = 0; i < x ; i++), and therefore
it is sufficient to consider simple numerical invariants. In
particular, we decided to focus on invariants of the forms
x = y, x � y, x = n, x � n, and x  n, where x, y are
variables and n denotes integer constants. That is, we do not
consider non-linear or compound invariants such as x = y

2

and x = y+ z. Second, because smart contracts use the map-
ping datatype extensively (e.g., balance in token contracts),
it is particularly important to capture their common properties
(e.g., the sum of balance is equal to totalSupply).
Currently, we support the function symbol sum for variables
of mapping type: for example, sum(balance) means the
sum of all balances. Third, we consider invariants that are
quantifier-free conjunctive formulas. That is, we do not allow
disjunctions or quantifiers to be used in candidate invariants.

Based on the observations, we define the refinement relation:

�1 X,C �2 () �2 = �1 ^ ' and ' 2 A

where A is the set of atomic predicates of the forms x =
y, x � y, x = n, x � n, x  n, sum(x) = e, where x, y 2 X ,
n 2 C, and e 2 C [X . That is, the current invariant

탐색 기반 프로그램 합성을 이용

• 스마트 컨트랙트 불변식을 위한 도메인 특화 언어 설계

• 단순한 형태의 연산식

• 스마트 컨트랙트에서 자주 사용되는 데이터 특성 반영 (e.g. the sum
of balance is equal to totalSupply)

• quantifier-free, conjunctive formulas

• 모든 가능한 불변식을 크기순으로 탐색하면서 검증 시도

27

x = y, x � y, x = n, x � n, . . .

In the paper https://arxiv.org/pdf/1908.11227.pdf

• VC 생성 & 불변식 유추

• VC 효율적으로 풀기

• 구현 이슈

• …

28

VERISMART: A Highly Precise Safety Verifier for
Ethereum Smart Contracts

Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, Hakjoo Oh⇤
Department of Computer Science and Engineering

Korea University

Abstract—We present VERISMART, a highly precise verifier

for ensuring arithmetic safety of Ethereum smart contracts.

Writing safe smart contracts without unintended behavior is

critically important because smart contracts are immutable and

even a single flaw can cause huge financial damage. In particular,

ensuring that arithmetic operations are safe is one of the most

important and common security concerns of Ethereum smart

contracts nowadays. In response, several safety analyzers have

been proposed over the past few years, but state-of-the-art

is still unsatisfactory; no existing tools achieve high precision

and recall at the same time, inherently limited to producing

annoying false alarms or missing critical bugs. By contrast,

VERISMART aims for an uncompromising analyzer that performs

exhaustive verification without compromising precision or scala-

bility, thereby greatly reducing the burden of manually checking

undiscovered or incorrectly-reported issues. To achieve this goal,

we present a new domain-specific algorithm for verifying smart

contracts, which is able to automatically discover and leverage

transaction invariants that are essential for precisely analyzing

smart contracts. Evaluation with real-world smart contracts

shows that VERISMART can detect all arithmetic bugs with a

negligible number of false alarms, far outperforming existing

analyzers.

I. INTRODUCTION

Safe smart contracts are indispensable for trustworthy
blockchain ecosystems. Blockchain is widely recognized as
one of the most disruptive technologies and smart contracts lie
at the heart of this revolution (e.g., [1], [2]). Smart contracts
are computer programs that run on blockchains in order
to automatically fulfill agreed obligations between untrusted
parties without intermediaries. Unfortunately, despite their
potential, smart contracts are more likely to be vulnerable than
traditional programs because of their unique characteristics
such as openness and immutability [3]. As a result, unsafe
smart contracts are prevalent and are increasingly becoming a
serious threat to the success of the blockchain technology. For
example, recent infamous attacks on the Ethereum blockchain
such as the DAO [4] and the Parity Wallet [5] attacks were
caused by unsafe smart contracts.

In this paper, we present VERISMART, a fully automated
safety analyzer for verifying Ethereum smart contracts with a
particular focus on arithmetic safety. We focus on detecting
arithmetic bugs such as integer over/underflows and division-
by-zeros because smart contracts typically involve lots of
arithmetic operations and they are major sources of security

⇤Corresponding author: Hakjoo Oh, hakjoo oh@korea.ac.kr

TABLE I
STATISTICS ON CVE-REPORTED SECURITY VULNERABILITIES OF

ETHEREUM SMART CONTRACTS (AS OF MAY. 31, 2019)

Arithmetic Bad Access Unsafe Input Others TotalOver/underflow Randomness Control Dependency
487 (95.7 %) 10 (1.9 %) 4 (0.8 %) 4 (0.8 %) 4 (0.8%) 509

vulnerabilities nowadays. For example, arithmetic over/un-
derflows account for 95.7% (487/509) of CVEs assigned to
Ethereum smart contracts, as shown in Table I. Even worse,
arithmetic bugs, once exploited, are likely to cause significant
but unexpected financial damage (e.g., the integer overflow
in the SmartMesh contract [6] explained in Section II). Our
goal is to detect all arithmetic bugs before deploying smart
contracts on the blockchain.

Unlike existing techniques, VERISMART aims to be a truly
practical tool by performing automatic, scalable, exhaustive,
yet highly precise verification of smart contracts. Recent years
have seen an increased interest in automated tools for ana-
lyzing arithmetic safety of smart contracts [7], [8], [9], [10],
[11], [12]. However, existing tools are still unsatisfactory. A
major weakness of bug-finding approaches (e.g., [7], [9], [8],
[10]) is that they are likely to miss fatal bugs (i.e., resulting in
false negatives), because they do not consider all the possible
behaviors of the program. On the other hand, verification
approaches (e.g., [11], [12]) are exhaustive and therefore miss
no vulnerabilities, but they typically do so at the expense of
precision (i.e., resulting in false positives). In practice, both
false negatives and positives burden developers with error-
prone and time-consuming process for manually verifying a
number of undiscovered issues or incorrectly reported alarms.
VERISMART aims to overcome these shortcomings of existing
approaches by being exhaustive yet precise.

To achieve this goal, we present a new verification algorithm
for smart contracts. The key feature of the algorithm, which
departs significantly from the existing analyzers for smart
contracts [7], [8], [9], [10], [11], [12], is to automatically
discover domain-specific invariants of smart contracts during
the verification process. In particular, our algorithm automates
the discovery of transaction invariants, which are distinctive
properties of smart contracts that hold under arbitrary inter-
leaving of transactions and enable to analyze smart contracts
exhaustively without exploring all program paths separately. A
technical challenge is to efficiently discover precise invariants

실험

• 벤치마크 (https://github.com/kupl/VeriSmart-benchmarks)

• CVE 취약점이 있는 60개 컨트랙트

• Zeus (NDSS’18) 공개 데이터 25개

• 비교 대상 분석기

• 오류 검출기: Oyente, Mythril, Manticore, Osiris,

• 오류 검증기: Zeus, SMTChecker

29

https://github.com/kupl/VeriSmart-benchmarks

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

30

 기존 취약점 검출기와 성능 비교

Table 2: Evaluation of existing tools on CVE reports. LOC: the number of lines for each contract. #Alarm: the number of
total alarms for each tool. #FP: the number of false alarms. CVE: a marker that indicates whether each tool successfully
detects vulnerabilities in CVE. 3: a tool successfully pinpoint all vulnerable locations in CVE. 4: a tool detects only a part of
vulnerabilities in CVE, or obscurely reports that an entire function body–including vulnerable locations in CVE–is vulnerable
without pinpointing. 7: a tool totally failed to detect all vulnerabilities in CVE. N/A: all vulnerabilities reported in CVE are
actually safe (#13, #31). If partly incorrect, the CVE bug detection is valid (#20, #32).

No. CVE ID Name LOC #Q V���S���� O����� [43] O����� [9, 34] M������ [7] M����C��� [2]
#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 1 0 3 1 0 4 0 0 7 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 0 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 34 0 3 9 0 7 4 0 4 0 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 0 0 7
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 3 2 0 7 0 0 7 0 0 7
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 3 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 10 2 7 11 4 7 2 1 7 0 0 7
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 0 0 7 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 0 0 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 5 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 internal error
#13 2018-13113 ETT 142 9 2 0 N/A 3 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 3 0 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 3 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 3 0 0 7 0 0 7
#18 2018-13131 SpadePreSale 312 3 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#19 2018-13132 Spadeico 403 8 6 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 0 0 7 internal error
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 4 0 7 3 0 7 0 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 0 0 7 internal error
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 internal error
#26 2018-13224 VEU 244 16 9 0 3 5 0 3 4 0 7 1 0 7 internal error
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 3 0 7 2 0 7 0 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#30 2018-13325 GROW 176 12 5 0 3 3 0 7 1 0 7 2 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 3 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 internal error
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 1 0 7 internal error
#34 2018-13533 ALUXToken 191 23 15 0 3 7 0 3 2 0 3 0 0 7 internal error
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 5 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 9 0 3 0 0 7 0 0 7 1 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 0 0 7
#39 2018-13703 CERB_Coin 262 17 8 0 3 5 0 3 2 0 7 0 0 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 internal error
#43 2018-13779 YLCToken 180 17 11 0 3 4 0 3 6 0 3 0 0 7 internal error
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 0 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 12 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 0 0 4 0 0 7
#47 2018-14001 SKT 152 19 10 0 3 4 0 3 3 0 4 1 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 0 0 4 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 3 2 0 4 1 0 7 internal error
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 internal error
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 0 0 4 internal error
#52 2018-14006 NGT 249 27 11 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 1 0 7 internal error
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 internal error
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 1 0 3 0 0 7
#57 2018-14089 Virgo_ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 13 0 3 internal error
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 internal error
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 3 0 3 2 0 7 0 0 7

Total
3: 58 3: 42 3: 23 3: 6 3:0

12556 973 496 2 4: 0 234 11 4: 0 164 13 4: 11 51 4 4: 3 0 0 4: 0
7: 0 7: 16 7: 24 7: 49 7: 33

9

Table 2: Evaluation of existing tools on CVE reports. LOC: the number of lines for each contract. #Alarm: the number of
total alarms for each tool. #FP: the number of false alarms. CVE: a marker that indicates whether each tool successfully
detects vulnerabilities in CVE. 3: a tool successfully pinpoint all vulnerable locations in CVE. 4: a tool detects only a part of
vulnerabilities in CVE, or obscurely reports that an entire function body–including vulnerable locations in CVE–is vulnerable
without pinpointing. 7: a tool totally failed to detect all vulnerabilities in CVE. N/A: all vulnerabilities reported in CVE are
actually safe (#13, #31). If partly incorrect, the CVE bug detection is valid (#20, #32).

No. CVE ID Name LOC #Q V���S���� O����� [43] O����� [9, 34] M������ [7] M����C��� [2]
#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 1 0 3 1 0 4 0 0 7 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 0 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 34 0 3 9 0 7 4 0 4 0 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 0 0 7
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 3 2 0 7 0 0 7 0 0 7
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 3 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 10 2 7 11 4 7 2 1 7 0 0 7
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 0 0 7 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 0 0 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 5 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 internal error
#13 2018-13113 ETT 142 9 2 0 N/A 3 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 3 0 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 3 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 3 0 0 7 0 0 7
#18 2018-13131 SpadePreSale 312 3 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#19 2018-13132 Spadeico 403 8 6 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 0 0 7 internal error
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 4 0 7 3 0 7 0 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 0 0 7 internal error
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 internal error
#26 2018-13224 VEU 244 16 9 0 3 5 0 3 4 0 7 1 0 7 internal error
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 3 0 7 2 0 7 0 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 0 0 7 0 0 7
#30 2018-13325 GROW 176 12 5 0 3 3 0 7 1 0 7 2 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 3 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 internal error
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 1 0 7 internal error
#34 2018-13533 ALUXToken 191 23 15 0 3 7 0 3 2 0 3 0 0 7 internal error
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 5 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 9 0 3 0 0 7 0 0 7 1 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 0 0 7
#39 2018-13703 CERB_Coin 262 17 8 0 3 5 0 3 2 0 7 0 0 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 internal error
#43 2018-13779 YLCToken 180 17 11 0 3 4 0 3 6 0 3 0 0 7 internal error
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 0 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 12 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 0 0 4 0 0 7
#47 2018-14001 SKT 152 19 10 0 3 4 0 3 3 0 4 1 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 0 0 4 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 3 2 0 4 1 0 7 internal error
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 internal error
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 0 0 4 internal error
#52 2018-14006 NGT 249 27 11 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 1 0 7 internal error
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 internal error
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 1 0 3 0 0 7
#57 2018-14089 Virgo_ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 13 0 3 internal error
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 internal error
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 3 0 3 2 0 7 0 0 7

Total
3: 58 3: 42 3: 23 3: 6 3:0

12556 973 496 2 4: 0 234 11 4: 0 164 13 4: 11 51 4 4: 3 0 0 4: 0
7: 0 7: 16 7: 24 7: 49 7: 33

9

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

정확도: 99.5%
검출률: 100%

정확도: < 94.6%
검출률: < 70.7%

기존 오류 검출기들의 한계

• 총 37개의 허위 경보중 18개는 불변 성질 유추에 실패해서,
19개는 조건식을 정교하게 추적 못해서 발생

31

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. 3: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. 4: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. 7: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q
VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]

#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 3 0 0 7 1 0 4 2 0 3 0 0 7
#2 2018-10376 SMT 294 22 13 0 3 1 0 3 2 0 7 1 0 7 timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 3 9 0 7 8 0 3 5 0 3 0 0 7
#4 2018-10706 SCA 404 48 33 0 3 9 0 7 4 0 4 2 0 7 internal error
#5 2018-11239 HXG 102 11 7 0 3 6 0 3 2 0 7 3 0 3 2 0 3
#6 2018-11411 DimonCoin 126 15 7 0 3 5 0 7 5 0 3 5 0 3 3 0 3
#7 2018-11429 ATL 165 9 4 0 3 3 0 3 2 0 4 0 0 7 0 0 7
#8 2018-11446 GRX 434 39 24 2 3 8 2 7 12 4 7 4 2 7 internal error
#9 2018-11561 EETHER 146 10 5 0 3 4 0 3 2 0 4 2 0 3 0 0 7
#10 2018-11687 BTCR 99 20 4 0 3 2 0 3 2 0 4 3 2 7 0 0 7
#11 2018-12070 SEC 269 40 8 0 3 6 0 3 4 0 7 3 1 7 0 0 7
#12 2018-12230 RMC 161 9 5 0 3 3 0 3 5 0 3 0 0 7 0 0 7
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#15 2018-13127 DSPX 238 6 4 0 3 3 0 3 3 0 4 1 0 7 0 0 7
#16 2018-13128 ETY 193 10 4 0 3 3 0 3 3 0 4 0 0 7 0 0 7
#17 2018-13129 SPX 276 9 6 0 3 5 0 3 3 0 4 1 0 7 internal error
#18 2018-13131 SpadePreSale 312 4 3 0 3 0 0 7 0 0 7 0 0 7 internal error
#19 2018-13132 SpadeIco 403 9 6 0 3 0 0 7 0 0 7 0 0 7 internal error
#20 2018-13144 PDX 103 5 2 0 3 2 1 3 2 1 3 internal error 0 0 7
#21 2018-13189 UNLB 335 4 3 0 3 2 0 3 3 0 3 1 0 7 0 0 7
#22 2018-13202 MyBO 183 17 11 0 3 5 0 3 3 0 7 1 0 7 internal error
#23 2018-13208 MoneyTree 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#24 2018-13220 MAVCash 171 15 10 0 3 4 0 3 2 0 7 1 0 7 0 0 7
#25 2018-13221 XT 186 15 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#26 2018-13225 MyYLCToken 181 17 11 0 3 5 0 3 6 0 7 0 0 7 0 0 7
#27 2018-13227 MCN 172 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#28 2018-13228 CNX 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#29 2018-13230 DSN 171 17 10 0 3 4 0 3 2 0 7 2 0 7 0 0 7
#30 2018-13325 GROW 176 12 2 0 3 4 2 3 1 1 7 0 0 7 0 0 7
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 3 2 1 3 2 1 3 0 0 7 0 0 7
#33 2018-13493 DaddyToken 344 40 22 0 3 8 0 7 2 0 7 3 0 7 internal error
#34 2018-13533 ALUXToken 191 23 13 0 3 8 0 3 2 0 3 1 0 7 1 0 7
#35 2018-13625 Krown 271 22 9 0 3 1 0 7 3 0 3 0 0 7 internal error
#36 2018-13670 GFCB 103 14 11 0 3 6 1 3 3 1 3 1 0 7 0 0 7
#37 2018-13695 CTest7 301 17 8 0 3 0 0 7 0 0 7 0 0 7 0 0 7
#38 2018-13698 Play2LivePromo 131 8 7 0 3 7 0 3 7 0 3 5 0 7 5 0 7
#39 2018-13703 CERB Coin 262 17 8 0 3 5 0 3 2 0 7 2 1 7 0 0 7
#40 2018-13722 HYIPToken 410 8 3 0 3 2 0 3 2 0 3 0 0 7 internal error
#41 2018-13777 RRToken 166 8 3 0 3 2 0 3 2 0 3 0 0 7 0 0 7
#42 2018-13778 CGCToken 224 13 6 0 3 4 0 3 4 0 3 1 0 7 1 0 7
#43 2018-13779 YLCToken 180 17 11 0 3 5 0 3 6 0 3 0 0 7 0 0 7
#44 2018-13782 ENTR 171 17 10 0 3 4 0 3 2 0 3 2 0 7 0 0 7
#45 2018-13783 JiucaiToken 271 19 11 0 3 6 0 3 4 0 3 0 0 7 internal error
#46 2018-13836 XRC 119 22 7 0 3 5 0 7 3 0 4 3 1 3 timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 3 4 0 7 3 0 4 3 0 3 0 0 7
#48 2018-14002 MP3 83 12 4 0 3 2 0 7 2 0 4 2 1 7 timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 3 3 0 7 2 0 4 3 0 3 1 0 7
#50 2018-14004 GLB 299 40 8 0 3 5 0 3 1 0 4 0 0 7 0 0 7
#51 2018-14005 Xmc 255 29 11 0 3 8 0 3 1 0 4 3 0 4 0 0 7
#52 2018-14006 NGT 249 27 13 0 3 1 0 7 5 0 4 0 0 7 timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 3 1 0 3 1 0 3 4 2 3 0 0 7
#54 2018-14084 MKCB 273 17 10 0 3 5 0 3 4 0 7 2 0 7 1 0 7
#55 2018-14086 SCO 107 16 14 0 3 7 2 3 5 2 7 0 0 7 0 0 7
#56 2018-14087 EUC 174 15 7 0 3 4 0 7 4 0 7 0 0 7 0 0 7
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 3 12 0 3 5 0 3 14 0 3 0 0 7
#58 2018-14576 SunContract 194 12 4 0 3 1 0 3 0 0 7 0 0 7 0 0 7
#59 2018-17050 AI 141 8 3 0 3 1 0 3 1 0 3 0 0 7 0 0 7
#60 2018-18665 NXX 79 7 5 0 3 4 0 3 4 0 3 0 0 7 0 0 7

Total

3:58 3:41 3:20 3:10 3: 2
12493 976 492 2 4: 0 240 13 4: 0 171 14 4:15 94 10 4: 1 14 0 4: 0

7 : 0 7 :17 7 :23 7 :46 7 :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {

if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);

}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement

• 컨트랙트간 함수 호출로 발생하는 취약점 탐지에 주로 실패

1 function unlockReward(address addr, uint value) {

2 require(totalLocked[addr] > value);

3 require(locked[addr][msg.sender] >= value);

4 if(value == 0) value = locked[addr][msg.sender];
5 totalLocked[addr] -= value; // false positive

6 locked[addr][msg.sender] -= value;

7 }

Fig. 6. A function simplified from the benchmark #8. OSIRIS, OYENTE,
and VERISMART warn that the subtraction at line 5 can cause arithmetic
underflow, which is false positive (i.e., the subtraction is safe).

precisely and do not produce such false alarms.
False Alarms of VERISMART: VERISMART produced

two false alarms in the benchmark #8, because it is currently
unable to capture quantified transaction invariants. Consider
the unlockReward function in Figure 6. The subtraction
operation at line 5 seems to cause arithmetic underflow; the
value may be changed at line 4, and thereafter the relation
totalLocked[addr] > value seems not to hold any-
more. However, the subtraction is safe because the following
transaction invariant holds over the entire contract:

8x.totalLocked[x] =
X

i

locked[x][i] (2)

with an additional condition that computing the summa-
tion (

P
i
locked[x][i]) does not cause overflow. With

this transaction invariant, value is always less than
totalLocked[addr]. Because VERISMART considers
quantifier-free invariants only (Section III-C), it falsely re-
ported that an underflow would occur at line 5. OSIRIS and
OYENTE produced the false alarm too at the same location.

False Negatives of Bug-finders: We inspected CVE vul-
nerabilities that were commonly missed by the four bug-
finders, and we found that the bug-finders often fail to detect
bugs when vulnerabilities could happen via inter-contract
function calls. For example, consider code adapted from #18:

function mint (address holder, uint value) {

require (total+ value <= TOKEN_LIMIT); // CVE bug

balances[holder] += value; // CVE bug

total += value; // CVE bug

}

There is a function call token.mint (...,...) in
a main contract, where token is a contract object. We
can see that all three addition operations possibly over-
flow with some inputs. For example, suppose total=1,
value=0xfff...ff, and TOKEN_LIMIT=10000. Then,
total+value overflows in unsigned 256-bit and thus
the safety checking statement can be bypassed. Next, if
balances[holder]=0, the holder can have tokens
more than the predetermined limit TOKEN_LIMIT. VERIS-
MART detected the bugs as it conservatively analyzes inter-
contract calls (Section IV).

Incorrect CVE Reports Found by VERISMART: Inter-
estingly, VERISMART unexpectedly identified six incorrectly-
reported CVE vulnerabilities. In Table III, the column #

Incorrect Queries denotes the number of queries incorrectly
reported to be vulnerable for each CVE ID. We could discover
them as VERISMART did not produce any alarms for those
queries and then we manually confirmed that the CVE reports

TABLE III
LIST OF INCORRECT CVE REPORTS FOUND BY VERISMART.

#INCORRECT QUERIES: THE NUMBER OF INCORRECTLY REPORTED
QUERIES TO BE VULNERABLE. #FP: THE NUMBER OF ALARMS RAISED BY

EACH TOOL FOR THE INCORRECTLY REPORTED QUERIES.

CVE ID Name
#Incorrect #FP

Queries OSIRIS OYENTE VERISMART
2018-13113 ETT 2 2 2 0
2018-13144 PDX 1 1 1 0
2018-13326 BTX 2 2 2 0
2018-13327 CCLAG 1 1 1 0

are actually incorrect. We have submitted a request for revising
these issues to the CVE assignment team.

With the capability of automatically computing transaction
invariants, VERISMART successfully proved the safety for all
the incorrectly reported vulnerabilities (i.e., zero false posi-
tives). In other words, VERISMART could not have discovered
incorrect CVE reports if it were without transaction invariants.
The transaction invariants generated for proving the safety
were similar to those in Example 3 of Section II. In contrast,
existing bug-finders cannot be used for this purpose such as
proving the safety; for example, OSIRIS and OYENTE pro-
duced false positives for all of the 6 safe queries (i.e., the 6
incorrectly reported queries).

B. Comparison with Verifiers
We now compare VERISMART with SMTCHECKER [12]

and ZEUS [11], two recently-developed verifiers for smart
contracts. In particular, SMTCHECKER is the “official” veri-
fier for Ethereum smart contracts developed by the Ethereum
Foundation, which is available in the Solidity compiler. Like
VERISMART, the primary goal of SMTCHECKER is to detect
arithmetic over/underflows and division-by-zeros [12].

Setup: First of all, we must admit that the comparison with
ZEUS and SMTCHECKER in this subsection is rather limited,
because ZEUS is not publicly available and SMTCHECKER is
currently an experimental tool that does not support the
full Solidity language. Since we cannot run ZEUS on our
dataset, the only option was to use the public evaluation
data [28] provided by the ZEUS authors. However, the public
data was not detailed enough to accurately interprete as the
ZEUS authors classify each benchmark contract simply as
‘safe’ or ‘unsafe’ without specific alarm information such
as line numbers. The only objective information we could
obtain from the data [28] was the fact that ZEUS produces
some (nonzero) number of false (arithmetic-overflow) alarms
on 40 contracts, and we decided to use those in our evaluation.
Starting with those 40 contracts, we removed duplicates with
trivial syntactic differences, resulting in a total of 25 unique
contracts (Table IV). Thus, the objective of our evaluation is
to run VERISMART and SMTCHECKER on the 25 contracts
to see how many of them can be successfully analyzed by
VERISMART and SMTCHECKER without false alarms. We
ran SMTCHECKER with the default setting.

Results: Table IV shows the evaluation results on the
ZEUS dataset. For each contract, the table shows the number
of alarms (#Alarm), the number of false positives (#FP)

1 function unlockReward(address addr, uint value) {

2 require(totalLocked[addr] > value);

3 require(locked[addr][msg.sender] >= value);

4 if(value == 0) value = locked[addr][msg.sender];
5 totalLocked[addr] -= value; // false positive

6 locked[addr][msg.sender] -= value;

7 }

Fig. 6. A function simplified from the benchmark #8. OSIRIS, OYENTE,
and VERISMART warn that the subtraction at line 5 can cause arithmetic
underflow, which is false positive (i.e., the subtraction is safe).

precisely and do not produce such false alarms.
False Alarms of VERISMART: VERISMART produced

two false alarms in the benchmark #8, because it is currently
unable to capture quantified transaction invariants. Consider
the unlockReward function in Figure 6. The subtraction
operation at line 5 seems to cause arithmetic underflow; the
value may be changed at line 4, and thereafter the relation
totalLocked[addr] > value seems not to hold any-
more. However, the subtraction is safe because the following
transaction invariant holds over the entire contract:

8x.totalLocked[x] =
X

i

locked[x][i] (2)

with an additional condition that computing the summa-
tion (

P
i
locked[x][i]) does not cause overflow. With

this transaction invariant, value is always less than
totalLocked[addr]. Because VERISMART considers
quantifier-free invariants only (Section III-C), it falsely re-
ported that an underflow would occur at line 5. OSIRIS and
OYENTE produced the false alarm too at the same location.

False Negatives of Bug-finders: We inspected CVE vul-
nerabilities that were commonly missed by the four bug-
finders, and we found that the bug-finders often fail to detect
bugs when vulnerabilities could happen via inter-contract
function calls. For example, consider code adapted from #18:

function mint (address holder, uint value) {

require (total+ value <= TOKEN_LIMIT); // CVE bug

balances[holder] += value; // CVE bug

total += value; // CVE bug

}

There is a function call token.mint (...,...) in
a main contract, where token is a contract object. We
can see that all three addition operations possibly over-
flow with some inputs. For example, suppose total=1,
value=0xfff...ff, and TOKEN_LIMIT=10000. Then,
total+value overflows in unsigned 256-bit and thus
the safety checking statement can be bypassed. Next, if
balances[holder]=0, the holder can have tokens
more than the predetermined limit TOKEN_LIMIT. VERIS-
MART detected the bugs as it conservatively analyzes inter-
contract calls (Section IV).

Incorrect CVE Reports Found by VERISMART: Inter-
estingly, VERISMART unexpectedly identified six incorrectly-
reported CVE vulnerabilities. In Table III, the column #

Incorrect Queries denotes the number of queries incorrectly
reported to be vulnerable for each CVE ID. We could discover
them as VERISMART did not produce any alarms for those
queries and then we manually confirmed that the CVE reports

TABLE III
LIST OF INCORRECT CVE REPORTS FOUND BY VERISMART.

#INCORRECT QUERIES: THE NUMBER OF INCORRECTLY REPORTED
QUERIES TO BE VULNERABLE. #FP: THE NUMBER OF ALARMS RAISED BY

EACH TOOL FOR THE INCORRECTLY REPORTED QUERIES.

CVE ID Name
#Incorrect #FP

Queries OSIRIS OYENTE VERISMART
2018-13113 ETT 2 2 2 0
2018-13144 PDX 1 1 1 0
2018-13326 BTX 2 2 2 0
2018-13327 CCLAG 1 1 1 0

are actually incorrect. We have submitted a request for revising
these issues to the CVE assignment team.

With the capability of automatically computing transaction
invariants, VERISMART successfully proved the safety for all
the incorrectly reported vulnerabilities (i.e., zero false posi-
tives). In other words, VERISMART could not have discovered
incorrect CVE reports if it were without transaction invariants.
The transaction invariants generated for proving the safety
were similar to those in Example 3 of Section II. In contrast,
existing bug-finders cannot be used for this purpose such as
proving the safety; for example, OSIRIS and OYENTE pro-
duced false positives for all of the 6 safe queries (i.e., the 6
incorrectly reported queries).

B. Comparison with Verifiers
We now compare VERISMART with SMTCHECKER [12]

and ZEUS [11], two recently-developed verifiers for smart
contracts. In particular, SMTCHECKER is the “official” veri-
fier for Ethereum smart contracts developed by the Ethereum
Foundation, which is available in the Solidity compiler. Like
VERISMART, the primary goal of SMTCHECKER is to detect
arithmetic over/underflows and division-by-zeros [12].

Setup: First of all, we must admit that the comparison with
ZEUS and SMTCHECKER in this subsection is rather limited,
because ZEUS is not publicly available and SMTCHECKER is
currently an experimental tool that does not support the
full Solidity language. Since we cannot run ZEUS on our
dataset, the only option was to use the public evaluation
data [28] provided by the ZEUS authors. However, the public
data was not detailed enough to accurately interprete as the
ZEUS authors classify each benchmark contract simply as
‘safe’ or ‘unsafe’ without specific alarm information such
as line numbers. The only objective information we could
obtain from the data [28] was the fact that ZEUS produces
some (nonzero) number of false (arithmetic-overflow) alarms
on 40 contracts, and we decided to use those in our evaluation.
Starting with those 40 contracts, we removed duplicates with
trivial syntactic differences, resulting in a total of 25 unique
contracts (Table IV). Thus, the objective of our evaluation is
to run VERISMART and SMTCHECKER on the 25 contracts
to see how many of them can be successfully analyzed by
VERISMART and SMTCHECKER without false alarms. We
ran SMTCHECKER with the default setting.

Results: Table IV shows the evaluation results on the
ZEUS dataset. For each contract, the table shows the number
of alarms (#Alarm), the number of false positives (#FP)

…

VeriSmart 한계

• 복잡한 불변 성질은 유추하지 못하고 허위 경보 발생

32

1 function unlockReward(address addr, uint value) {

2 require(totalLocked[addr] > value);

3 require(locked[addr][msg.sender] >= value);

4 if(value == 0) value = locked[addr][msg.sender];
5 totalLocked[addr] -= value; // false positive

6 locked[addr][msg.sender] -= value;

7 }

Fig. 6. A function simplified from the benchmark #8. OSIRIS, OYENTE,
and VERISMART warn that the subtraction at line 5 can cause arithmetic
underflow, which is false positive (i.e., the subtraction is safe).

precisely and do not produce such false alarms.
False Alarms of VERISMART: VERISMART produced

two false alarms in the benchmark #8, because it is currently
unable to capture quantified transaction invariants. Consider
the unlockReward function in Figure 6. The subtraction
operation at line 5 seems to cause arithmetic underflow; the
value may be changed at line 4, and thereafter the relation
totalLocked[addr] > value seems not to hold any-
more. However, the subtraction is safe because the following
transaction invariant holds over the entire contract:

8x.totalLocked[x] =
X

i

locked[x][i] (2)

with an additional condition that computing the summa-
tion (

P
i
locked[x][i]) does not cause overflow. With

this transaction invariant, value is always less than
totalLocked[addr]. Because VERISMART considers
quantifier-free invariants only (Section III-C), it falsely re-
ported that an underflow would occur at line 5. OSIRIS and
OYENTE produced the false alarm too at the same location.

False Negatives of Bug-finders: We inspected CVE vul-
nerabilities that were commonly missed by the four bug-
finders, and we found that the bug-finders often fail to detect
bugs when vulnerabilities could happen via inter-contract
function calls. For example, consider code adapted from #18:

function mint (address holder, uint value) {

require (total+ value <= TOKEN_LIMIT); // CVE bug

balances[holder] += value; // CVE bug

total += value; // CVE bug

}

There is a function call token.mint (...,...) in
a main contract, where token is a contract object. We
can see that all three addition operations possibly over-
flow with some inputs. For example, suppose total=1,
value=0xfff...ff, and TOKEN_LIMIT=10000. Then,
total+value overflows in unsigned 256-bit and thus
the safety checking statement can be bypassed. Next, if
balances[holder]=0, the holder can have tokens
more than the predetermined limit TOKEN_LIMIT. VERIS-
MART detected the bugs as it conservatively analyzes inter-
contract calls (Section IV).

Incorrect CVE Reports Found by VERISMART: Inter-
estingly, VERISMART unexpectedly identified six incorrectly-
reported CVE vulnerabilities. In Table III, the column #

Incorrect Queries denotes the number of queries incorrectly
reported to be vulnerable for each CVE ID. We could discover
them as VERISMART did not produce any alarms for those
queries and then we manually confirmed that the CVE reports

TABLE III
LIST OF INCORRECT CVE REPORTS FOUND BY VERISMART.

#INCORRECT QUERIES: THE NUMBER OF INCORRECTLY REPORTED
QUERIES TO BE VULNERABLE. #FP: THE NUMBER OF ALARMS RAISED BY

EACH TOOL FOR THE INCORRECTLY REPORTED QUERIES.

CVE ID Name
#Incorrect #FP

Queries OSIRIS OYENTE VERISMART
2018-13113 ETT 2 2 2 0
2018-13144 PDX 1 1 1 0
2018-13326 BTX 2 2 2 0
2018-13327 CCLAG 1 1 1 0

are actually incorrect. We have submitted a request for revising
these issues to the CVE assignment team.

With the capability of automatically computing transaction
invariants, VERISMART successfully proved the safety for all
the incorrectly reported vulnerabilities (i.e., zero false posi-
tives). In other words, VERISMART could not have discovered
incorrect CVE reports if it were without transaction invariants.
The transaction invariants generated for proving the safety
were similar to those in Example 3 of Section II. In contrast,
existing bug-finders cannot be used for this purpose such as
proving the safety; for example, OSIRIS and OYENTE pro-
duced false positives for all of the 6 safe queries (i.e., the 6
incorrectly reported queries).

B. Comparison with Verifiers
We now compare VERISMART with SMTCHECKER [12]

and ZEUS [11], two recently-developed verifiers for smart
contracts. In particular, SMTCHECKER is the “official” veri-
fier for Ethereum smart contracts developed by the Ethereum
Foundation, which is available in the Solidity compiler. Like
VERISMART, the primary goal of SMTCHECKER is to detect
arithmetic over/underflows and division-by-zeros [12].

Setup: First of all, we must admit that the comparison with
ZEUS and SMTCHECKER in this subsection is rather limited,
because ZEUS is not publicly available and SMTCHECKER is
currently an experimental tool that does not support the
full Solidity language. Since we cannot run ZEUS on our
dataset, the only option was to use the public evaluation
data [28] provided by the ZEUS authors. However, the public
data was not detailed enough to accurately interprete as the
ZEUS authors classify each benchmark contract simply as
‘safe’ or ‘unsafe’ without specific alarm information such
as line numbers. The only objective information we could
obtain from the data [28] was the fact that ZEUS produces
some (nonzero) number of false (arithmetic-overflow) alarms
on 40 contracts, and we decided to use those in our evaluation.
Starting with those 40 contracts, we removed duplicates with
trivial syntactic differences, resulting in a total of 25 unique
contracts (Table IV). Thus, the objective of our evaluation is
to run VERISMART and SMTCHECKER on the 25 contracts
to see how many of them can be successfully analyzed by
VERISMART and SMTCHECKER without false alarms. We
ran SMTCHECKER with the default setting.

Results: Table IV shows the evaluation results on the
ZEUS dataset. For each contract, the table shows the number
of alarms (#Alarm), the number of false positives (#FP)

1 function unlockReward(address addr, uint value) {

2 require(totalLocked[addr] > value);

3 require(locked[addr][msg.sender] >= value);

4 if(value == 0) value = locked[addr][msg.sender];
5 totalLocked[addr] -= value; // false positive

6 locked[addr][msg.sender] -= value;

7 }

Fig. 6. A function simplified from the benchmark #8. OSIRIS, OYENTE,
and VERISMART warn that the subtraction at line 5 can cause arithmetic
underflow, which is false positive (i.e., the subtraction is safe).

precisely and do not produce such false alarms.
False Alarms of VERISMART: VERISMART produced

two false alarms in the benchmark #8, because it is currently
unable to capture quantified transaction invariants. Consider
the unlockReward function in Figure 6. The subtraction
operation at line 5 seems to cause arithmetic underflow; the
value may be changed at line 4, and thereafter the relation
totalLocked[addr] > value seems not to hold any-
more. However, the subtraction is safe because the following
transaction invariant holds over the entire contract:

8x.totalLocked[x] =
X

i

locked[x][i] (2)

with an additional condition that computing the summa-
tion (

P
i
locked[x][i]) does not cause overflow. With

this transaction invariant, value is always less than
totalLocked[addr]. Because VERISMART considers
quantifier-free invariants only (Section III-C), it falsely re-
ported that an underflow would occur at line 5. OSIRIS and
OYENTE produced the false alarm too at the same location.

False Negatives of Bug-finders: We inspected CVE vul-
nerabilities that were commonly missed by the four bug-
finders, and we found that the bug-finders often fail to detect
bugs when vulnerabilities could happen via inter-contract
function calls. For example, consider code adapted from #18:

function mint (address holder, uint value) {

require (total+ value <= TOKEN_LIMIT); // CVE bug

balances[holder] += value; // CVE bug

total += value; // CVE bug

}

There is a function call token.mint (...,...) in
a main contract, where token is a contract object. We
can see that all three addition operations possibly over-
flow with some inputs. For example, suppose total=1,
value=0xfff...ff, and TOKEN_LIMIT=10000. Then,
total+value overflows in unsigned 256-bit and thus
the safety checking statement can be bypassed. Next, if
balances[holder]=0, the holder can have tokens
more than the predetermined limit TOKEN_LIMIT. VERIS-
MART detected the bugs as it conservatively analyzes inter-
contract calls (Section IV).

Incorrect CVE Reports Found by VERISMART: Inter-
estingly, VERISMART unexpectedly identified six incorrectly-
reported CVE vulnerabilities. In Table III, the column #

Incorrect Queries denotes the number of queries incorrectly
reported to be vulnerable for each CVE ID. We could discover
them as VERISMART did not produce any alarms for those
queries and then we manually confirmed that the CVE reports

TABLE III
LIST OF INCORRECT CVE REPORTS FOUND BY VERISMART.

#INCORRECT QUERIES: THE NUMBER OF INCORRECTLY REPORTED
QUERIES TO BE VULNERABLE. #FP: THE NUMBER OF ALARMS RAISED BY

EACH TOOL FOR THE INCORRECTLY REPORTED QUERIES.

CVE ID Name
#Incorrect #FP

Queries OSIRIS OYENTE VERISMART
2018-13113 ETT 2 2 2 0
2018-13144 PDX 1 1 1 0
2018-13326 BTX 2 2 2 0
2018-13327 CCLAG 1 1 1 0

are actually incorrect. We have submitted a request for revising
these issues to the CVE assignment team.

With the capability of automatically computing transaction
invariants, VERISMART successfully proved the safety for all
the incorrectly reported vulnerabilities (i.e., zero false posi-
tives). In other words, VERISMART could not have discovered
incorrect CVE reports if it were without transaction invariants.
The transaction invariants generated for proving the safety
were similar to those in Example 3 of Section II. In contrast,
existing bug-finders cannot be used for this purpose such as
proving the safety; for example, OSIRIS and OYENTE pro-
duced false positives for all of the 6 safe queries (i.e., the 6
incorrectly reported queries).

B. Comparison with Verifiers
We now compare VERISMART with SMTCHECKER [12]

and ZEUS [11], two recently-developed verifiers for smart
contracts. In particular, SMTCHECKER is the “official” veri-
fier for Ethereum smart contracts developed by the Ethereum
Foundation, which is available in the Solidity compiler. Like
VERISMART, the primary goal of SMTCHECKER is to detect
arithmetic over/underflows and division-by-zeros [12].

Setup: First of all, we must admit that the comparison with
ZEUS and SMTCHECKER in this subsection is rather limited,
because ZEUS is not publicly available and SMTCHECKER is
currently an experimental tool that does not support the
full Solidity language. Since we cannot run ZEUS on our
dataset, the only option was to use the public evaluation
data [28] provided by the ZEUS authors. However, the public
data was not detailed enough to accurately interprete as the
ZEUS authors classify each benchmark contract simply as
‘safe’ or ‘unsafe’ without specific alarm information such
as line numbers. The only objective information we could
obtain from the data [28] was the fact that ZEUS produces
some (nonzero) number of false (arithmetic-overflow) alarms
on 40 contracts, and we decided to use those in our evaluation.
Starting with those 40 contracts, we removed duplicates with
trivial syntactic differences, resulting in a total of 25 unique
contracts (Table IV). Thus, the objective of our evaluation is
to run VERISMART and SMTCHECKER on the 25 contracts
to see how many of them can be successfully analyzed by
VERISMART and SMTCHECKER without false alarms. We
ran SMTCHECKER with the default setting.

Results: Table IV shows the evaluation results on the
ZEUS dataset. For each contract, the table shows the number
of alarms (#Alarm), the number of false positives (#FP)

잘못된 CVE 발견
• CVE를 부여받은 일부 취약점이 실제 취약점이 아님을 발견

33

1 function unlockReward(address addr, uint value) {

2 require(totalLocked[addr] > value);

3 require(locked[addr][msg.sender] >= value);

4 if(value == 0) value = locked[addr][msg.sender];
5 totalLocked[addr] -= value; // false positive

6 locked[addr][msg.sender] -= value;

7 }

Fig. 6. A function simplified from the benchmark #8. OSIRIS, OYENTE,
and VERISMART warn that the subtraction at line 5 can cause arithmetic
underflow, which is false positive (i.e., the subtraction is safe).

precisely and do not produce such false alarms.
False Alarms of VERISMART: VERISMART produced

two false alarms in the benchmark #8, because it is currently
unable to capture quantified transaction invariants. Consider
the unlockReward function in Figure 6. The subtraction
operation at line 5 seems to cause arithmetic underflow; the
value may be changed at line 4, and thereafter the relation
totalLocked[addr] > value seems not to hold any-
more. However, the subtraction is safe because the following
transaction invariant holds over the entire contract:

8x.totalLocked[x] =
X

i

locked[x][i] (2)

with an additional condition that computing the summa-
tion (

P
i
locked[x][i]) does not cause overflow. With

this transaction invariant, value is always less than
totalLocked[addr]. Because VERISMART considers
quantifier-free invariants only (Section III-C), it falsely re-
ported that an underflow would occur at line 5. OSIRIS and
OYENTE produced the false alarm too at the same location.

False Negatives of Bug-finders: We inspected CVE vul-
nerabilities that were commonly missed by the four bug-
finders, and we found that the bug-finders often fail to detect
bugs when vulnerabilities could happen via inter-contract
function calls. For example, consider code adapted from #18:

function mint (address holder, uint value) {

require (total+ value <= TOKEN_LIMIT); // CVE bug

balances[holder] += value; // CVE bug

total += value; // CVE bug

}

There is a function call token.mint (...,...) in
a main contract, where token is a contract object. We
can see that all three addition operations possibly over-
flow with some inputs. For example, suppose total=1,
value=0xfff...ff, and TOKEN_LIMIT=10000. Then,
total+value overflows in unsigned 256-bit and thus
the safety checking statement can be bypassed. Next, if
balances[holder]=0, the holder can have tokens
more than the predetermined limit TOKEN_LIMIT. VERIS-
MART detected the bugs as it conservatively analyzes inter-
contract calls (Section IV).

Incorrect CVE Reports Found by VERISMART: Inter-
estingly, VERISMART unexpectedly identified six incorrectly-
reported CVE vulnerabilities. In Table III, the column #

Incorrect Queries denotes the number of queries incorrectly
reported to be vulnerable for each CVE ID. We could discover
them as VERISMART did not produce any alarms for those
queries and then we manually confirmed that the CVE reports

TABLE III
LIST OF INCORRECT CVE REPORTS FOUND BY VERISMART.

#INCORRECT QUERIES: THE NUMBER OF INCORRECTLY REPORTED
QUERIES TO BE VULNERABLE. #FP: THE NUMBER OF ALARMS RAISED BY

EACH TOOL FOR THE INCORRECTLY REPORTED QUERIES.

CVE ID Name
#Incorrect #FP

Queries OSIRIS OYENTE VERISMART
2018-13113 ETT 2 2 2 0
2018-13144 PDX 1 1 1 0
2018-13326 BTX 2 2 2 0
2018-13327 CCLAG 1 1 1 0

are actually incorrect. We have submitted a request for revising
these issues to the CVE assignment team.

With the capability of automatically computing transaction
invariants, VERISMART successfully proved the safety for all
the incorrectly reported vulnerabilities (i.e., zero false posi-
tives). In other words, VERISMART could not have discovered
incorrect CVE reports if it were without transaction invariants.
The transaction invariants generated for proving the safety
were similar to those in Example 3 of Section II. In contrast,
existing bug-finders cannot be used for this purpose such as
proving the safety; for example, OSIRIS and OYENTE pro-
duced false positives for all of the 6 safe queries (i.e., the 6
incorrectly reported queries).

B. Comparison with Verifiers
We now compare VERISMART with SMTCHECKER [12]

and ZEUS [11], two recently-developed verifiers for smart
contracts. In particular, SMTCHECKER is the “official” veri-
fier for Ethereum smart contracts developed by the Ethereum
Foundation, which is available in the Solidity compiler. Like
VERISMART, the primary goal of SMTCHECKER is to detect
arithmetic over/underflows and division-by-zeros [12].

Setup: First of all, we must admit that the comparison with
ZEUS and SMTCHECKER in this subsection is rather limited,
because ZEUS is not publicly available and SMTCHECKER is
currently an experimental tool that does not support the
full Solidity language. Since we cannot run ZEUS on our
dataset, the only option was to use the public evaluation
data [28] provided by the ZEUS authors. However, the public
data was not detailed enough to accurately interprete as the
ZEUS authors classify each benchmark contract simply as
‘safe’ or ‘unsafe’ without specific alarm information such
as line numbers. The only objective information we could
obtain from the data [28] was the fact that ZEUS produces
some (nonzero) number of false (arithmetic-overflow) alarms
on 40 contracts, and we decided to use those in our evaluation.
Starting with those 40 contracts, we removed duplicates with
trivial syntactic differences, resulting in a total of 25 unique
contracts (Table IV). Thus, the objective of our evaluation is
to run VERISMART and SMTCHECKER on the 25 contracts
to see how many of them can be successfully analyzed by
VERISMART and SMTCHECKER without false alarms. We
ran SMTCHECKER with the default setting.

Results: Table IV shows the evaluation results on the
ZEUS dataset. For each contract, the table shows the number
of alarms (#Alarm), the number of false positives (#FP)

1 function multipleTransfer(address[] to, uint value) {

2 require(value * to.length > 0);

3 require(balances[msg.sender] >= value * to.length);

4 balances[msg.sender] -= value * to.length;

5 for (uint i = 0; i < to.length; ++i) {

6 balances[to[i]] += value;

7 }

8 }

Fig. 2. A vulnerable function from Neo Genesis Token (CVE-2018-14006).

underflow possibility of the token sender’s account but does
not protect the overflow of the tokens to be sent (value *

to.length), which is analogous to the situation at line 2
of Figure 1. That is, in a similar way, an attacker can send
huge amounts of tokens to any users by spending only few
tokens [16].

Despite the similarity between vulnerabilities in Example 1
and 2, bug-finders have no guarantees of consistently finding
them. For example, OSIRIS, which succeeded to detect the
vulnerability in Example 1, now fails to report the similar
bug in Example 2. The other bug-finders are ineffective
too; MYTHRIL does not report any issues and OYENTE ob-
scurely reports that the entire function body is vulnerable
without specifying certain operations. On the other hand,
VERISMART reliably reports that the expression value *

to.length at lines 2–4 would overflow.
One of the main reasons for the unstable results of bug-

finders is that they rely heavily on a range of heuristics to
avoid false positives (e.g., see [7]). Though heuristics are good
at reducing false positives, the resulting analyzer is often very
brittle; even small changes in programs may end up with
missing fatal vulnerabilities as shown in Example 1 and 2,
which is particularly undesirable for safety-critical software
like smart contracts.

Example 3: Figure 3 shows a simplified version of the
contract, called BTX. The program has two global state
variables: balance stores balances of each account address
(line 2), and totalSupply is the total amount of the
supplied tokens (line 3). The constructor function initializes
totalSupply with 10000 tokens (line 6), and gives the
same amount of tokens to the creator of the contract (line
7). The transfer function sends value tokens from the
transaction message sender’s account to the recipient’s account
(lines 12–13), if it does not incur the underflow in the message
sender’s balance (line 11). The transferFrom function
is similar to transfer with an exception to the order of
performing addition and subtraction.

The contract has four arithmetic operations at lines 12, 13,
18, and 19, all of which are free of integer over/underflows.
However, it is nontrivial to see why they are all safe. In
particular, the safety of the two addition operations at lines 13
and 18 is tricky, because there are no direct safety-checking
statements in each function. To see why they do not overflow,
we need to discover the following two transaction invariants
that always hold no matter how the transactions (transfer
and transferFrom) are interleaved:

1 contract BTX {

2 mapping (address => uint) public balance;

3 uint public totalSupply;

4
5 constructor () {

6 totalSupply = 10000;

7 balance[msg.sender] = 10000;

8 }

9
10 function transfer (address to, uint value) {

11 require (balance[msg.sender] >= value);

12 balance[msg.sender] -= value;

13 balance[to] += value; // Safe

14 }

15
16 function transferFrom (address from, address to, uint

value) {

17 require (balance[from] >= value);

18 balance[to] += value; // Safe

19 balance[from] -= value;

20 }

21 }

Fig. 3. Example contract simplified from CVE-2018-13326.

• the sum of all account values is 10000, i.e.,
X

i

balance[i] = 10000, (1)

• and computing
P

i
balance[i] does not cause over-

flow.
By combining these two conditions and the preconditions
expressed in the require statements at lines 11 and 17, we
can conclude that, at lines 13 and 18, the maximum values
of both balance[to] and value are 10000, and thus the
expression balance[to]+value does not overflow in 256-
bit unsigned integer operations.

Since reasoning about the safety in this case is tricky, it
is likely for human auditors to make a wrong conclusion
that the contract is unsafe. This is in fact what happened in
the recent CVE report (CVE-2018-13326)2; the CVE report
incorrectly states that the two addition operations at lines 13
and 18 are vulnerable and thus the operations may overflow.
Unfortunately, existing safety analyzers do not help here. In
particular, verifiers, ZEUS [11] and SMTCHECKER [12], are
not precise enough to keep track of the implicit invariants such
as (1) and therefore cannot prove the safety at lines 13 and 18.
Bug-finders OSIRIS and OYENTE also produce false alarms.
MYTHRIL does not report any issues, but this does not mean
that it proved the absence of vulnerabilities.

By contrast, VERISMART is able to prove that the contract is
safe without any false alarms. Notably, VERISMART does so
by automatically inferring hidden invariants described above.
To our knowledge, VERISMART is the first of its kind, which
discovers global invariants of smart contracts and leverages
them during the verification process in a fully automated way.

III. VERISMART ALGORITHM

This section describes the verification algorithm of VERIS-
MART. We formally present the algorithm in a general setting,
so it can be used for analyzing other safety properties as well
beyond our application to arithmetic safety.

2https://nvd.nist.gov/vuln/detail/CVE-2018-13326

• E.g.,

기존 취약점 검증기와 성능 비교

34

• 기존 검증기들은 스마트 컨트랙트 주요 성질 검증에 실패

• 트랜잭션 자동 유추 기능을 끄면 VeriSmart도 17개 실패
TABLE IV

EVALUATION ON THE ZEUS DATASET. VERIFIED: A TOOL DETECTS ALL
BUGS WITHOUT FALSE POSITIVES (3: SUCCESS, 7: FAILURE)

No. LOC #Q
VERISMART SMTCHECKER [12] ZEUS [11]

#Alarm #FP Verified #Alarm #FP Verified Verified

#1 42 3 0 0 3 3 3 7 7
#2 78 2 1 0 3 2 1 7 7
#3 75 7 2 0 3 7 5 7 7
#4 70 7 0 0 3 7 7 7 7
#5 103 8 0 0 3 6 6 7 7
#6 141 5 2 0 3 internal error 7
#7 74 6 1 0 3 6 5 7 7
#8 84 6 0 0 3 4 4 7 7
#9 82 6 0 0 3 6 6 7 7
#10 99 2 1 0 3 internal error 7
#11 171 15 9 0 3 internal error 7
#12 139 7 0 0 3 internal error 7
#13 139 7 0 0 3 internal error 7
#14 139 7 0 0 3 internal error 7
#15 139 7 0 0 3 internal error 7
#16 141 16 10 0 3 internal error 7
#17 153 5 0 0 3 internal error 7
#18 139 7 0 0 3 internal error 7
#19 113 4 0 0 3 4 4 7 7
#20 40 3 0 0 3 3 3 7 7
#21 59 3 0 0 3 internal error 7
#22 28 3 1 0 3 1 0 3 7
#23 19 3 0 0 3 3 3 7 7
#24 457 30 13 6 7 internal error 7
#25 17 3 0 0 3 3 3 7 7

Total 2741 172 40 6 3:24 55 50 3: 1 3: 0
7 : 1 7: 12 7:25

Results: Table IV shows the evaluation results on the
ZEUS dataset. For each contract, the table shows the number
of alarms (#Alarm), the number of false positives (#FP)
produced by VERISMART and SMTCHECKER. The column
Verified indicates whether each tool detected all bugs without
false positives (3: success, 7: failure).

The results show that VERISMART successfully addresses
limitations of ZEUS and SMTCHECKER. The 25 contracts
contain 172 arithmetic operations, where VERISMART pointed
out 40 operations as potential bugs. We have manually checked
that 34 out of total alarms are true positives. In benchmark #24,
VERISMART produced 6 false positives due to unsupported
invariants (quantified invariants and compound invariants, Sec-
tion III-C), and imprecise function call analysis. We manually
checked that the remaining 132 (=172-40) queries proven to be
safe by VERISMART are actually true negatives. By contrast,
according to the publicly available data [28], ZEUS produces
at least one false positives for each contract in Table IV
(i.e., � 25 false alarms in total). SMTCHECKER could
only analyze 13 contracts as it raised internal errors for the
other 12 contracts, which is due to its immature support of
Solidity syntax [29]. Among 61 operations from 13 contracts,
SMTCHECKER succeeded to detect all 5 bugs in them thanks
to its exhaustive verification approach. However, it reported
55 alarms in total, of which 50 are false positives. In terms of
efficiency, SMTCHECKER took about 1 second per contract
and VERISMART took about 20 seconds per contract.

Importance of Transaction Invariants: The key enabler
for high precision was the ability of VERISMART to lever-
age transaction invariants. We also ran VERISMART without
inferring transaction invariants (i.e., using true as transaction
invariants); without transaction invariants, VERISMART fails

to verify 17 out of 25 contracts.

C. Case Study: Application to Other Types of Vulnerabilities
VERISMART can be used for analyzing other safety prop-

erties as well. To show this, we applied VERISMART to
finding bugs related to access control, where security-sensitive
variables can be manipulated by anyone for malicious use.
For example, consider the code snippet adapted from the
EtherCartel contract for crypto idle game (CVE 2018-11329):

function DrugDealer() public { ceoAddr = msg.sender; }

function buyDrugs () public payable {

ceoAddr.transfer(msg.value); // send Ether to ceoAddr

drugs[msg.sender] += ...; // buy drugs by paying Ether

}

Observe that the address-typed variable ceoAddr, the benefi-
ciary of Ether, can be taken by anyone who calls the function
DrugDealer. If an attacker becomes the beneficiary by
calling DrugDealer, the attacker might illegally take some
digital assets whenever benign users buy some digital assets
(i.e., drugs) by calling buyDrugs where transfer in it is
a built-in function that sends Ether to ceoAddr. This vulner-
ability was exploited in about 1 hour after deployment [30].

To detect this bug, we used VERISMART as follows. First,
we specified safety properties by automatically generating
the assertion assert(msg.sender==addr) right before
each assignment of the form addr=...;, where addr is a
global address-typed variable which is often security-sensitive
(excluding assignments in constructors, which typically set the
contract owners). Next, we ran VERISMART without any mod-
ification of its verification algorithm. With this simple exten-
sion, VERISMART worked effectively; it not only detected all
known CVE vulnerabilities (2018-10666, 2018-10705, 2018-
11329) but also proved the absence of this bug scenario for
55 contracts out of 60 from Table II. VERISMART could not
prove safety of the remaining 5 contracts due to the imprecise
specification described above.

D. Threats to Validity
We summarize limitations of our evaluation and consequent

threats to validity. Firstly, the benchmark contracts that we
used (60 CVE dataset + 25 ZEUS dataset) might not be repre-
sentative although we made effort to avoid bias in the datasets
(e.g., removal of duplicates). Secondly, the performance of
VERISMART may vary depending on the performance of the
off-the-shelf SMT solver (i.e., Z3) used internally or timeout
options used in the experiments. Thirdly, we did not study
the exploitability of bugs in this paper and did not compare
VERISMART and other tools in this regard. Thus, the results
may be different if those tools are evaluated with exploitability
in mind. Lastly, although we did our best, we realized that
manually classifying static analysis alarms into true or false
positives is extremely challenging and the classification can
be even subjective in a few cases.

VI. RELATED WORK

In this section, we place our work in the literature and clar-
ify our contributions regarding existing works. Section VI-A

다른 종류의 취약점 검출에 응용

• 일반적으로 임의의 assert로 표현된 성질 검증에 활용 가능

• 액세스 컨트롤 관련 취약점: e.g. CVE 2018-11329

35

TABLE IV
EVALUATION ON THE ZEUS DATASET. VERIFIED: A TOOL DETECTS ALL

BUGS WITHOUT FALSE POSITIVES (3: SUCCESS, 7: FAILURE)

No. LOC #Q
VERISMART SMTCHECKER [12] ZEUS [11]

#Alarm #FP Verified #Alarm #FP Verified Verified

#1 42 3 0 0 3 3 3 7 7
#2 78 2 1 0 3 2 1 7 7
#3 75 7 2 0 3 7 5 7 7
#4 70 7 0 0 3 7 7 7 7
#5 103 8 0 0 3 6 6 7 7
#6 141 5 2 0 3 internal error 7
#7 74 6 1 0 3 6 5 7 7
#8 84 6 0 0 3 4 4 7 7
#9 82 6 0 0 3 6 6 7 7
#10 99 2 1 0 3 internal error 7
#11 171 15 9 0 3 internal error 7
#12 139 7 0 0 3 internal error 7
#13 139 7 0 0 3 internal error 7
#14 139 7 0 0 3 internal error 7
#15 139 7 0 0 3 internal error 7
#16 141 16 10 0 3 internal error 7
#17 153 5 0 0 3 internal error 7
#18 139 7 0 0 3 internal error 7
#19 113 4 0 0 3 4 4 7 7
#20 40 3 0 0 3 3 3 7 7
#21 59 3 0 0 3 internal error 7
#22 28 3 1 0 3 1 0 3 7
#23 19 3 0 0 3 3 3 7 7
#24 457 30 13 6 7 internal error 7
#25 17 3 0 0 3 3 3 7 7

Total 2741 172 40 6 3:24 55 50 3: 1 3: 0
7 : 1 7: 12 7:25

produced by VERISMART and SMTCHECKER. The column
Verified indicates whether each tool detected all bugs without
false positives (3: success, 7: failure).

The results show that VERISMART successfully addresses
limitations of ZEUS and SMTCHECKER. The 25 contracts
contain 172 arithmetic operations, where VERISMART pointed
out 40 operations as potential bugs. We have manually checked
that 34 out of total alarms are true positives. In benchmark #24,
VERISMART produced 6 false positives due to unsupported
invariants (quantified invariants and compound invariants, Sec-
tion III-C), and imprecise function call analysis. We manually
checked that the remaining 132 (=172-40) queries proven to be
safe by VERISMART are actually true negatives. By contrast,
according to the publicly available data [28], ZEUS produces
at least one false positives for each contract in Table IV
(i.e., � 25 false alarms in total). SMTCHECKER could
only analyze 13 contracts as it raised internal errors for the
other 12 contracts, which is due to its immature support of
Solidity syntax [29]. Among 61 operations from 13 contracts,
SMTCHECKER succeeded to detect all 5 bugs in them thanks
to its exhaustive verification approach. However, it reported
55 alarms in total, of which 50 are false positives. In terms of
efficiency, SMTCHECKER took about 1 second per contract
and VERISMART took about 20 seconds per contract.

Importance of Transaction Invariants: The key enabler
for high precision was the ability of VERISMART to lever-
age transaction invariants. We also ran VERISMART without
inferring transaction invariants (i.e., using true as transaction
invariants); without transaction invariants, VERISMART fails
to verify 17 out of 25 contracts.

C. Case Study: Application to Other Types of Vulnerabilities
VERISMART can be used for analyzing other safety prop-

erties as well. To show this, we applied VERISMART to
finding bugs related to access control, where security-sensitive
variables can be manipulated by anyone for malicious use.
For example, consider the code snippet adapted from the
EtherCartel contract for crypto idle game (CVE 2018-11329):

function DrugDealer() public { ceoAddr = msg.sender; }

function buyDrugs () public payable {

ceoAddr.transfer(msg.value); // send Ether to ceoAddr

drugs[msg.sender] += ...; // buy drugs by paying Ether

}

Observe that the address-typed variable ceoAddr, the benefi-
ciary of Ether, can be taken by anyone who calls the function
DrugDealer. If an attacker becomes the beneficiary by
calling DrugDealer, the attacker might illegally take some
digital assets whenever benign users buy some digital assets
(i.e., drugs) by calling buyDrugs where transfer in it is
a built-in function that sends Ether to ceoAddr. This vulner-
ability was exploited in about 1 hour after deployment [30].

To detect this bug, we used VERISMART as follows. First,
we specified safety properties by automatically generating
the assertion assert(msg.sender==addr) right before
each assignment of the form addr=...;, where addr is a
global address-typed variable which is often security-sensitive
(excluding assignments in constructors, which typically set the
contract owners). Next, we ran VERISMART without any mod-
ification of its verification algorithm. With this simple exten-
sion, VERISMART worked effectively; it not only detected all
known CVE vulnerabilities (2018-10666, 2018-10705, 2018-
11329) but also proved the absence of this bug scenario for
55 contracts out of 60 from Table II. VERISMART could not
prove safety of the remaining 5 contracts due to the imprecise
specification described above.

D. Threats to Validity
We summarize limitations of our evaluation and consequent

threats to validity. Firstly, the benchmark contracts that we
used (60 CVE dataset + 25 ZEUS dataset) might not be repre-
sentative although we made effort to avoid bias in the datasets
(e.g., removal of duplicates). Secondly, the performance of
VERISMART may vary depending on the performance of the
off-the-shelf SMT solver (i.e., Z3) used internally or timeout
options used in the experiments. For example, if we set the Z3
timeout to 5 seconds, VERISMART produces 1 false positive
for #9 in Table IV. Thirdly, we did not study the exploitability
of bugs in this paper and did not compare VERISMART and
other tools in this regard. Thus, the results may be different if
those tools are evaluated with exploitability in mind. Lastly,
although we did our best, we realized that manually classifying
static analysis alarms into true or false positives is extremely
challenging and the classification can be even subjective in a
few cases.

VI. RELATED WORK

In this section, we place our work in the literature and clar-
ify our contributions regarding existing works. Section VI-A

• 액세스 컨트롤 관련 모든 CVE 검출 (CVE-10666, 2018-10705,
2018-11329)

• 60개 중 55개 컨트랙트에 대해서 안전성 검증 성공

마무리

• 스마트 컨트랙트는 보안취약점 검증이 필수

• 현재 스마트 컨트랙트 분석 기술은 성능이 제한적

• 안전성과 정확성 둘 중 하나를 포기

• VeriSmart: 안전하면서 정확한 스마트 컨트랙트 자동 검증기

• 트랜잭션 불변 성질을 자동 추론하며 검증하는 첫 사례

• 소프트웨어 검증 기술을 자동으로 유용하게 사용한 사례

36

Thank you!

• Research areas: programming languages, software engineering,
software security

• program analysis and testing

• program synthesis and repair

• Publication: top-venues in PL, SE,
Security, and AI:

• PLDI(’12,’14),OOPSLA(’15,’17a,’17b,’18a,’18b,’19),TOPLAS(’14,’16,’17,’1
8,’19), ICSE(’17,’18,’19,’20), FSE(’18,’19), ASE’18, S&P(’17,’20),
IJCAI(’17,’18), etc

http://prl.korea.ac.kr

http://prl.korea.ac.kr

