
Machine-Learning-Guided
Adaptive Program Analysis

Hakjoo Oh Hongseok Yang
Kihong Heo

Kwangkeun Yi

Korea University Oxford UniversitySeoul National University

7 September 2016
 TAPAS 2016 @ Edinburgh, Scotland

2

Challenge in Static Analysis

precision

scalability

2

Challenge in Static Analysis

precision

scalability

?

2

Challenge in Static Analysis

precision

scalability

? key: “selectivity”

3

Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1

x [1,1]
y [0,0]
z [1,1]

x [1,1]
y [0,0]
z [2,2]

x [1,1]
y [1,1]
z [2,2]

precise but costly

x [0,0]
y [0,0]
z [1,1]

4

Flow-Insensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1

x [0,+∞]

y [0,+∞]

z [1,+∞]

cheap but imprecise

5

Selective Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1
FS : {x,y} FI : {z}

x [0,0]
y [0,0]

x [1,+∞]
y [0,0]

x [1,+∞]
y [0,0]

x [1,+∞]
y [1,+∞]

z [1,+∞]

6

Selective Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1
FS : {y,z} FI : {x}
y [0,0]
z [1,1]

y [0,0]
z [1,1]

y [0,0]
z [2,2]

y [0,+∞]
z [2,2]

x [0,+∞]

fail to prove

7

Hard Search Problem

• Intractably large space, if not infinite

• 2Var different abstractions for FS

• Most of them are too imprecise or costly

• P({x,y,z}) = {∅,{x},{y},{z},{x,y},{y,z},{x,z},{x,y,z}}

Our Research

• How to automatically find a good abstraction?

• pre-analysis [PLDI’14, TOPLAS’16]  
 
 

• machine learning techniques [OOPSLA’15, SAS’16, APLAS’16]

8

main analysispre-analysis
{x,y,z,…}

Our Learning Approaches

• Learning via black-box optimization [OOPSLA’15]

• Learning via white-box optimization [APLAS’16]

• Learning from automatically labelled data [SAS’16]

• Learning with automatically generated features (in progress)

• …

9

Static Analyzer

10

F(p, a) ⇒ n

abstraction
(e.g., a set of variables)

number of
proved assertions

11

Our Learning ApproachOOPSLA’15

11

Our Learning Approach

• Parameterized adaptation strategy

Sw : pgm → 2Var

OOPSLA’15

11

Our Learning Approach

• Learn a good parameter W from existing codebase

P1, P2, …,Pm

Codebase

⇒ W

• Parameterized adaptation strategy

Sw : pgm → 2Var

OOPSLA’15

11

Our Learning Approach

• Learn a good parameter W from existing codebase

• For new program P, run static analysis with Sw(P)

P1, P2, …,Pm

Codebase

⇒ W

• Parameterized adaptation strategy

Sw : pgm → 2Var

OOPSLA’15

12

1. Parameterized Strategy

(1) Represent program variables as feature vectors.

(2) Compute the score of each variable.

(3) Choose the top-k variables based on the score.

Sw : pgm → 2Var

13

(1) Features

• Predicates over variables:

f = {f1, f2,…,f5} (fi : Var → {0,1})

• 45 simple syntactic features for variables: e.g,

• local / global variable, passed to / returned from
malloc, incremented by constants, etc

(1) Features

14

f(x) = ⟨f1(x), f2(x), f3(x),f4(x),f5(x)⟩

• Represent each variable as a feature vector:

f(x) = ⟨1,0,1,0,0⟩
f(y) = ⟨1,0,1,0,1⟩
f(z) = ⟨0,0,1,1,0⟩

15

(2) Scoring

• The parameter w is a real-valued vector: e.g.,

• Compute scores of variables:

w = ⟨0.9, 0.5, -0.6, 0.7, 0.3⟩

score(x) = ⟨1,0,1,0,0⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.3
score(y) = ⟨1,0,1,0,1⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.6
score(z) = ⟨0,0,1,1,0⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.1

16

(3) Choose Top-k Variables

• Choose the top-k variables based on their scores:  
e.g., when k=2,

score(x) = 0.3
score(y) = 0.6
score(z) = 0.1

{x,y}

• In experiments, we chosen 10% of variables with
highest scores.

17

2. Learn a Good Parameter

• Solve the optimization problem:

P1, P2, …,Pm

Codebase

⇒ W

X

Pi

F (Pi, Sw(Pi))Find w that maximizes

Learning via Random
Sampling

18

repeat N times

 pick w ∈ Rn randomly

evaluate

return best w found

X

Pi

F (Pi, Sw(Pi))

Learning via Random
Sampling

19

Training Testing
FI FS partial FS FI FS partial FS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 7,316 7,089 75.7 % 2,788 48 4,009 627 13.2 x 3,692 78 74.0 % 1.6 x
2 5,788 7,422 7,219 87.6 % 3,383 55 3,903 531 9.6 x 3,721 93 65.0 % 1.7 x
3 6,148 7,842 7,595 85.4 % 3,023 49 3,483 1,898 38.6 x 3,303 99 60.9 % 2.0 x
4 6,138 7,895 7,599 83.2 % 3,033 38 3,430 237 6.2 x 3,286 51 63.7 % 1.3 x
5 7,343 9,150 8,868 84.4 % 1,828 28 2,175 577 20.5 x 2,103 54 79.3 % 1.9 x

TOTAL 31,800 39,625 38,370 84.0 % 14,055 218 17,000 3,868 17.8 x 16,105 374 69.6 % 1.7 x

Table 4. Effectiveness of our method for flow-sensitivity. prove: the number of proved queries in each analysis (FI: flow-
insensitivity, FS: flow-sensitivity, partial FS: partial flow-sensitivity). quality: the ratio of proved queries among the queries
that require flow-sensitivity. cost: cost increase compared to the FI analysis.

Training Testing
FICI FSCS partial FSCS FICI FSCS partial FSCS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 9,237 8,674 80.3 % 2,788 46 4,275 5,425 118.2 x 3,907 187 75.3 % 4.1 x
2 5,788 8,287 7,598 72.4 % 3,383 57 5,225 4,495 79.4 x 4,597 194 65.9 % 3.4 x
3 6,148 8,737 8,123 76.3 % 3,023 48 4,775 5,235 108.8 x 4,419 150 79.7 % 3.1 x
4 6,138 9,883 8,899 73.7 % 3,033 38 3,629 1,609 42.0 x 3,482 82 75.3 % 2.1 x
5 7,343 10,082 10,040 98.5 % 1,828 30 2,670 7,801 258.3 x 2,513 104 81.4 % 3.4 x

TOTAL 31,800 46,226 43,334 80.0 % 14,055 219 20,574 24,565 112.1 x 18,918 717 74.6 % 3.3 x

Table 5. Effectiveness for Flow-sensitivity + Context-sensitivity.

(a) Random sampling (b) Bayesian optimisation

Figure 2. Comparison of Bayesian optimisation with random sampling

programs, which supports the full C language and has been
being developed for the past seven years [19]. This baseline
analyser tracks both numeric and pointer-related informa-
tion simultaneously in its fixpoint computation. For numeric
values, it uses the interval abstract domain, and for pointer
values, it uses an allocation-site-based heap abstraction. The
analysis is field-sensitive (i.e., separates different structure
fields) and flow-sensitive, but it is not context-sensitive. We
applied the sparse analysis technique [20] to improve the
scalability.

By modifying the baseline analyser, we implemented a
partially flow-sensitive analyser, which controls its flow-
sensitivity according to a given set of abstract locations (pro-

gram variables, structure fields and allocation sites) as de-
scribed in Section 6.1. We also implemented our learning
algorithm based on Bayesian optimisation.7 Our implemen-
tations were tested against 30 open source programs from
GNU and Linux packages (Table 6 in Appendix).

The key questions that we would like to answer in our
experiments are whether our learning algorithm produces
a good adaptation strategy and how much it gets benefited
from Bayesian optimisation. To answer the first question,
we followed a standard method in the machine learning lit-
erature, called cross validation. We randomly divide the 30

7 The implementation of our learning algorithm is available at http://
prl.korea.ac.kr/

~

hakjoo/research/oopsla15/.

Bayesian Optimization

20

• A powerful method for solving difficult black-box
optimization problems.

• Especially powerful when the objective function is
expensive to evaluate.

• Key idea: use a probabilistic model to reduce the number
of objective function evaluations.

Learning via Bayesian Optimization

21

• Probabilistic model: Gaussian processes

• Selection strategy: Expected improvement

repeat N times

 select a promising w using the model

evaluate

return best w found

X

Pi

F (Pi, Sw(Pi))

 update the probabilistic model

22

Training Testing
FI FS partial FS FI FS partial FS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 7,316 7,089 75.7 % 2,788 48 4,009 627 13.2 x 3,692 78 74.0 % 1.6 x
2 5,788 7,422 7,219 87.6 % 3,383 55 3,903 531 9.6 x 3,721 93 65.0 % 1.7 x
3 6,148 7,842 7,595 85.4 % 3,023 49 3,483 1,898 38.6 x 3,303 99 60.9 % 2.0 x
4 6,138 7,895 7,599 83.2 % 3,033 38 3,430 237 6.2 x 3,286 51 63.7 % 1.3 x
5 7,343 9,150 8,868 84.4 % 1,828 28 2,175 577 20.5 x 2,103 54 79.3 % 1.9 x

TOTAL 31,800 39,625 38,370 84.0 % 14,055 218 17,000 3,868 17.8 x 16,105 374 69.6 % 1.7 x

Table 4. Effectiveness of our method for flow-sensitivity. prove: the number of proved queries in each analysis (FI: flow-
insensitivity, FS: flow-sensitivity, partial FS: partial flow-sensitivity). quality: the ratio of proved queries among the queries
that require flow-sensitivity. cost: cost increase compared to the FI analysis.

Training Testing
FICI FSCS partial FSCS FICI FSCS partial FSCS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 9,237 8,674 80.3 % 2,788 46 4,275 5,425 118.2 x 3,907 187 75.3 % 4.1 x
2 5,788 8,287 7,598 72.4 % 3,383 57 5,225 4,495 79.4 x 4,597 194 65.9 % 3.4 x
3 6,148 8,737 8,123 76.3 % 3,023 48 4,775 5,235 108.8 x 4,419 150 79.7 % 3.1 x
4 6,138 9,883 8,899 73.7 % 3,033 38 3,629 1,609 42.0 x 3,482 82 75.3 % 2.1 x
5 7,343 10,082 10,040 98.5 % 1,828 30 2,670 7,801 258.3 x 2,513 104 81.4 % 3.4 x

TOTAL 31,800 46,226 43,334 80.0 % 14,055 219 20,574 24,565 112.1 x 18,918 717 74.6 % 3.3 x

Table 5. Effectiveness for Flow-sensitivity + Context-sensitivity.

(a) Random sampling (b) Bayesian optimisation

Figure 2. Comparison of Bayesian optimisation with random sampling

programs, which supports the full C language and has been
being developed for the past seven years [19]. This baseline
analyser tracks both numeric and pointer-related informa-
tion simultaneously in its fixpoint computation. For numeric
values, it uses the interval abstract domain, and for pointer
values, it uses an allocation-site-based heap abstraction. The
analysis is field-sensitive (i.e., separates different structure
fields) and flow-sensitive, but it is not context-sensitive. We
applied the sparse analysis technique [20] to improve the
scalability.

By modifying the baseline analyser, we implemented a
partially flow-sensitive analyser, which controls its flow-
sensitivity according to a given set of abstract locations (pro-

gram variables, structure fields and allocation sites) as de-
scribed in Section 6.1. We also implemented our learning
algorithm based on Bayesian optimisation.7 Our implemen-
tations were tested against 30 open source programs from
GNU and Linux packages (Table 6 in Appendix).

The key questions that we would like to answer in our
experiments are whether our learning algorithm produces
a good adaptation strategy and how much it gets benefited
from Bayesian optimisation. To answer the first question,
we followed a standard method in the machine learning lit-
erature, called cross validation. We randomly divide the 30

7 The implementation of our learning algorithm is available at http://
prl.korea.ac.kr/

~

hakjoo/research/oopsla15/.

Learning via Bayesian Optimization

23

Effectiveness
• Implemented in Sparrow, an interval analyzer for C

• Evaluated on 30 open-source programs

• 20 for training, 10 for testing

23

Effectiveness
• Implemented in Sparrow, an interval analyzer for C

• Evaluated on 30 open-source programs

• 20 for training, 10 for testing

FSFI

0 100

SFS

70

Precision

23

Effectiveness
• Implemented in Sparrow, an interval analyzer for C

• Evaluated on 30 open-source programs

• 20 for training, 10 for testing

FSFI

0 100

SFS

70

Precision

FSFI

1x 18x

SFS

2x

Cost

Limitations

• While promising, the method has limitations:

• black-box optimization is inherently inefficient

• manual feature engineering is needed

• Follow-up work to overcome the limitations:

• improving the efficiency [APLAS’16, SAS’16]

• automating feature engineering [on-going]

24

Improving Efficiency

• A white-box optimization method [APLAS’16]  
 
 
 

• A supervised learning method [SAS’16]

25

6 Sooyoung Cha, Sehun Jeong, and Hakjoo Oh

3.3 Existing Approach

In [13], a learning algorithm based on Bayesian optimization has been proposed.
To simply put, this algorithm performs a random sampling guided by a proba-
bilistic model:

1: repeat
2: sample w from Rn using probabilistic model M
3: s obj (w)
4: update the model M with (w, s)
5: until timeout
6: return best w found so far

The algorithm uses a probabilistic model M that approximates the objective
function by a probabilistic distribution on function spaces (using the Gaussian
Process [14]). The purpose of the probabilistic model is to pick a next parameter
to evaluate that is predicted to work best according the approximation of the
objective function (line 2). Next, the algorithm evaluates the objective function
with the chosen parameter w (line 3). The model M gets updated with the
current parameter and its evaluation result (line 4). The algorithm repeats this
process until the cost budget is exhausted and returns the best parameter found
so far.

Although this algorithm is significantly more e�cient than the random sam-
pling [13], it still requires a number of iterations of the loop to learn a good
parameter. According to our experience, the algorithm with Bayesian optimiza-
tion typically requires more than 100 iterations to find good parameters (Section
5). Note that even a single iteration of the loop can be very expensive in practice
because it involves running the static analyzer over the entire codebase. When
the codebase is massive and the static analyzer is costly, evaluating the objective
function multiple times is prohibitively expensive.

3.4 Our Oracle-Guided Approach

In this paper, we present a method for learning a good parameter without ana-
lyzing the codebase multiple times. By analyzing each program in the codebase
only once, our method is able to find a parameter that is as good as the param-
eter found by the Bayesian optimization method.

We achieve this by an oracle-guided approach to learning. Our method as-
sumes the presence of an oracle OP for each program P , which maps program
parts in JP to real numbers in R = [�1, 1]:

OP : JP ! R.

For each j 2 JP , the oracle returns a real number that quantifies the relative
contribution of j in achieving the precision of F (P, JP). That is, O(j1) < O(j2)
means that j2 more contributes than j1 to improving the precision during the
analysis of F (P, JP). We assume that the oracle is given together with the adap-
tive static analysis. In Section 4.3, we show that such an oracle easily results
from analyzing the program for interval analysis with widening thresholds.

Learning a Strategy for Choosing Widening Thresholds 7

In the presence of the oracle, we can establish an easy-to-solve optimization
problem which serves as a proxy of the original optimization problem in (2).
For simplicity, assume that the codebase consists of a single program: P = {P}.
Shortly, we extend the method to multiple training programs. Let O be the
oracle for program P . Then, the goal of our method is to learn w such that, for
every j 2 JP , the scoring function in (1) instantiated with w produces a value
that is as close to O(j) as possible. We formalize this optimization problem as
follows:

Find w⇤ that minimizes E(w⇤)

where E(w) is defined to be the mean square error of w:

E(w) =
X

j2JP
(scorewP (j)�O(j))2

=
X

j2JP
(fP (j) ·w �O(j))2

=
X

j2JP
(

nX

i=1

f i
P (j)wi �O(j))2.

Note that the body of the objective function E(w) is a di↵erentiable, closed-
form expression, so we can use the standard gradient decent algorithm to find a
minimum of E. The algorithm is simply stated as follows:

1: sample w from Rn

2: repeat
3: w = w � ↵ ·rE(w)
4: until convergence
5: return w

Starting from a random parameter w (line 1), the algorithm keeps going down
toward the minimum in the direction against the gradient rE(w). The single
step size is determined by the learning rate ↵. The gradient of E is defined as
follows:

rE(w) =
� @

@w1
E(w),

@

@w2
E(w), · · · , @

@wn
E(w)

�

where the partial derivatives are

@

@wk
E(w) = 2

X

j2JP
(

nX

i=1

f i
P (j)wi �O(j))fk

P (j)

Because the optimization problem does not involve the static analyzer and code-
base, learning a parameter w is done quickly regardless of the cost of the analysis
and the size of the codebase, and in the next section, we show that a good-enough
oracle can be obtained by analyzing the codebase only once.

It is easy to extend the method to multiple programs. Let P = {P1, . . . , Pm}
be the codebase. We assume the presence of oracles OP1 , . . . ,OPm for each pro-
gram Pi 2 P. We establish the error function EP over the entire codebase as

Learning a Strategy for Choosing Widening Thresholds 7

In the presence of the oracle, we can establish an easy-to-solve optimization
problem which serves as a proxy of the original optimization problem in (2).
For simplicity, assume that the codebase consists of a single program: P = {P}.
Shortly, we extend the method to multiple training programs. Let O be the
oracle for program P . Then, the goal of our method is to learn w such that, for
every j 2 JP , the scoring function in (1) instantiated with w produces a value
that is as close to O(j) as possible. We formalize this optimization problem as
follows:

Find w⇤ that minimizes E(w⇤)

where E(w) is defined to be the mean square error of w:

E(w) =
X

j2JP
(scorewP (j)�O(j))2

=
X

j2JP
(fP (j) ·w �O(j))2

=
X

j2JP
(

nX

i=1

f i
P (j)wi �O(j))2.

Note that the body of the objective function E(w) is a di↵erentiable, closed-
form expression, so we can use the standard gradient decent algorithm to find a
minimum of E. The algorithm is simply stated as follows:

1: sample w from Rn

2: repeat
3: w = w � ↵ ·rE(w)
4: until convergence
5: return w

Starting from a random parameter w (line 1), the algorithm keeps going down
toward the minimum in the direction against the gradient rE(w). The single
step size is determined by the learning rate ↵. The gradient of E is defined as
follows:

rE(w) =
� @

@w1
E(w),

@

@w2
E(w), · · · , @

@wn
E(w)

�

where the partial derivatives are

@

@wk
E(w) = 2

X

j2JP
(

nX

i=1

f i
P (j)wi �O(j))fk

P (j)

Because the optimization problem does not involve the static analyzer and code-
base, learning a parameter w is done quickly regardless of the cost of the analysis
and the size of the codebase, and in the next section, we show that a good-enough
oracle can be obtained by analyzing the codebase only once.

It is easy to extend the method to multiple programs. Let P = {P1, . . . , Pm}
be the codebase. We assume the presence of oracles OP1 , . . . ,OPm for each pro-
gram Pi 2 P. We establish the error function EP over the entire codebase as

6 Kihong Heo, Hakjoo Oh, and Hongseok Yang

a �a b �b c �c i �i

a F > F > > > F >
�a > F > F > > > >
b F > F > > > F >

�b > F > F > > > >
c > > > > F > > >

�c > > > > > F > >
i > > > > > > F >

�i > F > F > > > F

(3)

Each entry of this matrix stores the pre-analysis’s (highly precise on the positive
side) prediction on whether Octagon would put a finite upper bound at the
corresponding entry of its matrix at the same program point. F means likely,
and > unlikely. For instance, the above matrix containsF for the entries for i�b
and b�a, and this means that Octagon is likely to infer finite (thus informative)
upper bounds of i� b and b� a. In fact, this predication is correct because the
actual upper bounds inferred by Octagon are �1 and 0, as can be seen in (1).

We convert the results of the impact pre-analysis to labeled data as follows.
For every program P in the given codebase, we first collect all queries Q =
{q1, . . . , qk} that express legal array accesses or the success of assert statements
in terms of upper bounds on ±x± y for some variables x, y. Next, we filter out
queries qi 2 Q such that the upper bounds associated with qi are not predicted to
be finite by the pre-analysis. Intuitively, the remaining queries are the ones that
are likely to be proved by Octagon according to the prediction of the pre-analysis.
Then, for all remaining queries q01, . . . , q

0
l, we collect the results m

]
1, . . . ,m

]
l of the

pre-analysis at these queries, and generate the following labeled data:

DP = {(P, (x, y), L) |
L = � () at least one of the entries of some mi for ±x± y has F}.

Notice that we mark (x, y) with � if tracking the relationship between x and y

is useful for some query q

0
i. An obvious alternative is to replace some by all, but

we found that this alternative led to the worse performance in our experiments.4

This generation process is applied for all programs P1, . . . , PN in the codebase,
and results in the following labeled data: D =

S
1iN DPi . In our example

program, if the results of the pre-analysis at both queries are the same matrix in
(3), our approach picks only the first matrix because the pre-analysis predicts a
finite upper bound only for the first query, and it produces the following labeled
data from the first matrix:

{(P, t,�) | t 2 T} [{(P, t,) | t 62 T}

where T = {(a, b), (b, a), (a, i), (i, a), (b, i), (i, b), (a, a), (b, b), (c, c), (i, i)}.
4 Because the pre-analysis uses F cautiously, only a small portion of variable pairs is
marked with � (that is, 5864/258, 165, 546) in our experiments. Replacing “some”
by “all” reduces this portion by half (2230/258, 165, 546) and makes the learning
task more di�cult.

26

Manual Feature Engieering
• The success of ML heavily depends on the “features”

• Feature engineering is nontrivial and time-consuming

• Features do not generalize to other analyses
A:18 Lee et al.

Type # Features
A 1 local variable

2 global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = c1 + c2)
8 compared with a constant expression (e.g., x < c)
9 compared with an other variable (e.g., x < y)
10 negated in a conditional expression (e.g., if (!x))
11 directly used in malloc (e.g., malloc(x))
12 indirectly used in malloc (e.g., y = x; malloc(y))
13 directly used in realloc (e.g., realloc(x))
14 indirectly used in realloc (e.g., y = x; realloc(y))
15 directly returned from malloc (e.g., x = malloc(e))
16 indirectly returned from malloc
17 directly returned from realloc (e.g., x = realloc(e))
18 indirectly returned from realloc
19 incremented by one (e.g., x = x + 1)
20 incremented by a constant expr. (e.g., x = x + (1+2))
21 incremented by a variable (e.g., x = x + y)
22 decremented by one (e.g., x = x - 1)
23 decremented by a constant expr (e.g., x = x - (1+2))
24 decremented by a variable (e.g., x = x - y)
25 multiplied by a constant (e.g., x = x * 2)
26 multiplied by a variable (e.g., x = x * y)
27 incremented pointer (e.g., p++)
28 used as an array index (e.g., a[x])
29 used in an array expr. (e.g., x[e])
30 returned from an unknown library function
31 modified inside a recursive function
32 modified inside a local loop
33 read inside a local loop

B 34 1 ^ 8 ^ (11 _ 12)
35 2 ^ 8 ^ (11 _ 12)
36 1 ^ (11 _ 12) ^ (19 _ 20)
37 2 ^ (11 _ 12) ^ (19 _ 20)
38 1 ^ (11 _ 12) ^ (15 _ 16)
39 2 ^ (11 _ 12) ^ (15 _ 16)
40 (11 _ 12) ^ 29
41 (15 _ 16) ^ 29
42 1 ^ (19 _ 20) ^ 33
43 2 ^ (19 _ 20) ^ 33
44 1 ^ (19 _ 20) ^ ¬33
45 2 ^ (19 _ 20) ^ ¬33

Table II: Features for partially flow-sensitive analysis. Features of Type A denote simple syntactic or semantic properties
for abstract locations (that is, program variables, structure fields and allocation sites). Features of Type B are various
combinations of simple features, and express patterns that variables are used in programs.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Adaptive Static Analysis via Learning with Bayesian Optimization A:19

Type # Features
A 1 leaf function

2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 write to a structure field
11 read from a structure field
12 directly return a constant expression
13 indirectly return a constant expression
14 directly return an allocated memory
15 indirectly return an allocated memory
16 directly return a reallocated memory
17 indirectly return a reallocated memory
18 return expression involves field access
19 return value depends on a structure field
20 return void
21 directly invoked with a constant
22 constant is passed to an argument
23 invoked with an unknown value
24 functions having no arguments
25 functions having one argument
26 functions having more than one argument
27 functions having an integer argument
28 functions having a pointer argument
29 functions having a structure as an argument

B 30 2 ^ (21 _ 22) ^ (14 _ 15)
31 2 ^ (21 _ 22) ^ ¬(14 _ 15)
32 2 ^ 23 ^ (14 _ 15)
33 2 ^ 23 ^ ¬(14 _ 15)
34 2 ^ (21 _ 22) ^ (16 _ 17)
35 2 ^ (21 _ 22) ^ ¬(16 _ 17)
36 2 ^ 23 ^ (16 _ 17)
37 2 ^ 23 ^ ¬(16 _ 17)
38 (21 _ 22) ^ ¬23

Table III: Features for partially context-sensitive analysis.

usage patterns of variables in the benchmark programs. For instance, feature 34 was
developed after we observed the following usage pattern of variables:

int x; // local variable

if (x < 10)

... = malloc (x);

It says that x is a local variable, and gets compared with a constant and passed as
an argument to a function that does memory allocation. Note that we included these
Type B features not because they are important for flow-sensitivity. We included them
to increase expressiveness, because our linear learning model with Type A features
only cannot express such usage patterns. Deciding whether they are important for
flow-sensitivity or not is the job of the learning algorithm.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Adaptive Static Analysis via Learning with Bayesian Optimization A:21

Type # Features
A 1 used in array declarations (e.g., a[c])

2 used in memory allocation (e.g., malloc(c))
3 used in the righthand-side of an assignment (e.g., x = c)
4 used with the less-than operator (e.g, x < c)
5 used with the greater-than operator (e.g., x > c)
6 used with (e.g., x c)
7 used with � (e.g., x � c)
8 used with the equality operator (e.g., x == c)
9 used with the not-equality operator (e.g., x ! = c)
10 used within other conditional expressions (e.g., x < c+y)
11 used inside loops
12 used in return statements (e.g., return c)
13 constant zero

B 14 (1 _ 2) ^ 3
15 (1 _ 2) ^ (4 _ 5 _ 6 _ 7)
16 (1 _ 2) ^ (8 _ 9)
17 (1 _ 2) ^ 11
18 (1 _ 2) ^ 12
19 13 ^ 3
20 13 ^ (4 _ 5 _ 6 _ 7)
21 13 ^ (8 _ 9)
22 13 ^ 11
23 13 ^ 12

Table IV: Features for widening-with-thresholds.

With a widening operator
`

, the upper bound A is computed by A = lim

i�0

X

i

, where
chain X

i

is defined as follows:
X

0

= ?
X

i+1

= X

i

F (X

i

) v X

i

= X

i

`
F (X

i

) otherwise

The abstract interpretation framework guarantees that the above chain is always fi-
nite and its limit (i.e., lim

i�0

X

i

) is an upper bound of the least fixed point of F [?]. For
instance, a simple widening operator for the interval domain works as follows: (For
brevity, we do not consider the bottom interval.)

[a, b]

`
[c, d] = [(c < a?�1 : a), (b < d? +1 : b)]

That is, the widening operator extrapolates any unstable bounds simply to infinity. For
instance, [1, 4]

`
[1, 7] = [1,+1].

Widening with Thresholds. The idea of widening-with-thresholds is to bound the ex-
trapolation of the widening using a pre-defined set of thresholds. For instance, suppose
we are given a set T = {8, 9} of thresholds. Then, applying widening [1, 4]

`
T

[1, 7] with
thresholds T = {8, 9} gives interval [1, 8], instead of [1,+1]. Here, threshold 8 is used
because it is the smallest value in T , which is greater than 7. If the result is still un-
stable in the subsequent iteration, the next smallest value in T , i.e., 9, is used to bound
the widening.

Formally, the widening-with-thresholds technique for the interval domain is defined
as follows. We assume that a set T ✓ Z [{�1,+1} of thresholds is given. Without
loss of generality, let us assume that T = {t

1

, t

2

, . . . , t

n

}, t
1

< t

2

< · · · < t

n

, t
1

= �1,
and t

n

= +1. The widening operator parameterized by T is defined as follows:

[a, b]

`
T

[c, d] = ([a, b]

`
[c, d]) u d{[t

l

, t

u

] | t
l

, t

u

2 T ^ t

l

 min(a, c) ^ t

u

� max(b, d)}

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

flow-sensitivity context-sensitivity widening thresholds

Automating Feature Engineering

27

Codebase
Hand-crafted

features
Parameter

values
Adaptation

Strategy

Codebase Features
Parameter

values
Adaptation

Strategy

Before [OOPSLA’15,SAS’16,APLAS’16]

New method

on-go
ing

Key Ideas

28

main() {
 for (int i=1;i<50; i++) {
 assert (i<100);
 }
}

int j = 0;
main() {
 j++;
 assert (j>0);
}

• Generalize the programs by abstract data flow
graphs

• Use a program reducer to generate feature
programs that capture the key reason why FS
succeeds but FI fails.

1 a = 0; b = 0;

2 while (1) {

3 b = unknown();

4 if (a > b)

5 if (a < 3)

6 assert (a < 5);

7 a++;

8 }

1 a = 0;

2 while (1) {

3 if (a < 3)

4 assert (a < 5);

5 a++;

6 }

id := c

id < c

Q(id < c)

id := id+ c

(a) Original program (b) Reduced program (c) Feature

Figure 1. Example program and feature

program. For example, the reduced program in Figure 1(b) is con-
verted to the data flow graph in Figure 1(c). Note that the graph
captures the data flows of the program that influence the query. In
the graph, statements are abstracted to increase the invariance of
the features. For example, both conditions a < 3 and a < 5 in the
program are represented by the single abstract condition id < c,
where variables and integers are abstracted by constants id and c,
respectively.

2.3.2 The Matching Algorithm
By using the approach explained so far, we generate the abstract
data flow graph for each precision-effective query in the given
codebase. The feature set ⇧ = {⇡1, . . . ,⇡k} is the collection of
all such data flow graphs generated from the codebase.

Now, we describe match, which takes a query q and a feature
(i.e., data flow graph) ⇡i 2 ⇧, and checks if ⇡i is a feature of q or
not. Consider the query in the original program in Figure 1(a) and
the feature in Figure 1(c). We would like to check that the feature is
included in the original program. Matching the feature against the
program is done in the following two steps:

1. We represent the query in the target program (Figure 1(a)) by
an abstract data flow graph. The resulting graph is given as
follows:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the graph in Figure 1(c) but
it contains all the dependencies in the original program. For
instance, it has the dependence edge from id > id to id < c,
which is absent in the reduced program. The unknown value,
i.e., the return value of unknown(), is represented by >.

2. We check whether the feature is a subgraph of the data flow
graph of the target program. We say a graph G1 is included in
G2 if all vertices in G1 are included in G2 and all arcs in G1 are
represented by a path in G2. In our example, the feature (Figure
1(c)) is a subgraph of the data flow graph above: for instance,
given the arc id:=id+c ! id<c in the feature, we can find a
path id:=id+c ! id>id ! id<c in the target graph.

Note that our definition of subgraph is different from the con-
ventional definition, which is essential to match features against
original programs. Note that the feature is unlikely to match to
the original program if we check the inclusion by the conventional
definition, i.e., G1 = (V1, E1) is included in G2 = (V2, E2) iff
V1 ✓ V2 and E1 ✓ E2. This is because the original program
(without reducing) may contain irrelevant dependences as well. We
cannot use the reducer to remove the independences because doing
so is typically too expensive to perform online. Instead, we take a

(less expensive) transitive closure of the data flow graph to match
in the presence of the noise in the target program.

3. Parametric Static Analysis
Let P 2 P be a program that we would like to analyze. We assume
that a set QP of queries (i.e., assertions) in P is given together
with the program. The goal of the analysis is to prove as many
queries as possible. In this paper, we consider a static analysis that
is parameterized by a set of queries. Thus, the parameter space is
defined by (AP ,v) where AP is the binary vector:

a 2 AP = {0, 1}QP
.

with the pointwise ordering a v a0 () 8j 2 QP . aj a0
j .

We sometimes regard a parameter a 2 AP as a function from AP

to {0, 1}, or the following collection:

a = {j 2 QP | aj = 1}.

In the latter case, we write |a| for the size of the collection. We
define two constants in AP :

0 = �j 2 QP . 0, and 1 = �j 2 QP . 1,

which represent the most imprecise and precise abstractions, re-
spectively. In the rest of this paper, we omit the subscript P when
there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a set of
queries that are proved in this analysis run. Intuitively, the analysis
applies high precision only to the queries specified by the param-
eter; aj = 1 means that the query j 2 Q is analyzed with high
precision. For instance, in our partially flow-sensitive analysis, the
parameter denotes the set of queries and the analysis applies flow-
sensitivity to the program variables on which the queries depend.
In our partially relational octagon analysis, the analysis keeps the
relations between variables involved in the dependency graphs of
the selected queries.

Our goal is to learn a strategy S automatically from an existing
codebase. The resulting adaptation strategy is a function of the
following type:

S : P ! A,

and it is used to analyze new, unseen programs P :

F (P,S(P)).

If the learned strategy is good, running the analysis with S(P)
would give results close to those of the most precise abstraction
(F (P,1)), while incurring the cost at the level of or only slightly
above the least precise and hence cheapest abstraction (F (P,0)).

3 2016/8/9

?
✓

1 a = 0; b = 0;

2 while (1) {

3 b = unknown();

4 if (a > b)

5 if (a < 3)

6 assert (a < 5);

7 a++;

8 }

1 a = 0;

2 while (1) {

3 if (a < 3)

4 assert (a < 5);

5 a++;

6 }

id := c

id < c

Q(id < c)

id := id+ c

(a) Original program (b) Reduced program (c) Feature

Figure 1. Example program and feature

program. For example, the reduced program in Figure 1(b) is con-
verted to the data flow graph in Figure 1(c). Note that the graph
captures the data flows of the program that influence the query. In
the graph, statements are abstracted to increase the invariance of
the features. For example, both conditions a < 3 and a < 5 in the
program are represented by the single abstract condition id < c,
where variables and integers are abstracted by constants id and c,
respectively.

2.3.2 The Matching Algorithm
By using the approach explained so far, we generate the abstract
data flow graph for each precision-effective query in the given
codebase. The feature set ⇧ = {⇡1, . . . ,⇡k} is the collection of
all such data flow graphs generated from the codebase.

Now, we describe match, which takes a query q and a feature
(i.e., data flow graph) ⇡i 2 ⇧, and checks if ⇡i is a feature of q or
not. Consider the query in the original program in Figure 1(a) and
the feature in Figure 1(c). We would like to check that the feature is
included in the original program. Matching the feature against the
program is done in the following two steps:

1. We represent the query in the target program (Figure 1(a)) by
an abstract data flow graph. The resulting graph is given as
follows:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the graph in Figure 1(c) but
it contains all the dependencies in the original program. For
instance, it has the dependence edge from id > id to id < c,
which is absent in the reduced program. The unknown value,
i.e., the return value of unknown(), is represented by >.

2. We check whether the feature is a subgraph of the data flow
graph of the target program. We say a graph G1 is included in
G2 if all vertices in G1 are included in G2 and all arcs in G1 are
represented by a path in G2. In our example, the feature (Figure
1(c)) is a subgraph of the data flow graph above: for instance,
given the arc id:=id+c ! id<c in the feature, we can find a
path id:=id+c ! id>id ! id<c in the target graph.

Note that our definition of subgraph is different from the con-
ventional definition, which is essential to match features against
original programs. Note that the feature is unlikely to match to
the original program if we check the inclusion by the conventional
definition, i.e., G1 = (V1, E1) is included in G2 = (V2, E2) iff
V1 ✓ V2 and E1 ✓ E2. This is because the original program
(without reducing) may contain irrelevant dependences as well. We
cannot use the reducer to remove the independences because doing
so is typically too expensive to perform online. Instead, we take a

(less expensive) transitive closure of the data flow graph to match
in the presence of the noise in the target program.

3. Parametric Static Analysis
Let P 2 P be a program that we would like to analyze. We assume
that a set QP of queries (i.e., assertions) in P is given together
with the program. The goal of the analysis is to prove as many
queries as possible. In this paper, we consider a static analysis that
is parameterized by a set of queries. Thus, the parameter space is
defined by (AP ,v) where AP is the binary vector:

a 2 AP = {0, 1}QP
.

with the pointwise ordering a v a0 () 8j 2 QP . aj a0
j .

We sometimes regard a parameter a 2 AP as a function from AP

to {0, 1}, or the following collection:

a = {j 2 QP | aj = 1}.

In the latter case, we write |a| for the size of the collection. We
define two constants in AP :

0 = �j 2 QP . 0, and 1 = �j 2 QP . 1,

which represent the most imprecise and precise abstractions, re-
spectively. In the rest of this paper, we omit the subscript P when
there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a set of
queries that are proved in this analysis run. Intuitively, the analysis
applies high precision only to the queries specified by the param-
eter; aj = 1 means that the query j 2 Q is analyzed with high
precision. For instance, in our partially flow-sensitive analysis, the
parameter denotes the set of queries and the analysis applies flow-
sensitivity to the program variables on which the queries depend.
In our partially relational octagon analysis, the analysis keeps the
relations between variables involved in the dependency graphs of
the selected queries.

Our goal is to learn a strategy S automatically from an existing
codebase. The resulting adaptation strategy is a function of the
following type:

S : P ! A,

and it is used to analyze new, unseen programs P :

F (P,S(P)).

If the learned strategy is good, running the analysis with S(P)
would give results close to those of the most precise abstraction
(F (P,1)), while incurring the cost at the level of or only slightly
above the least precise and hence cheapest abstraction (F (P,0)).

3 2016/8/9

on-go
ing

Summary

29

• Challenges in selective static analysis

• Using machine learning is promising

• [OOPSLA’15, SAS’16, APLAS’16,…]

• flow-sensitivity, context-sensivitiy, relational
domain, widening thresholds, soudness, etc

• Generally applicable beyond static analysis

• e.g., concolic testing

Summary

29

Thank you

• Challenges in selective static analysis

• Using machine learning is promising

• [OOPSLA’15, SAS’16, APLAS’16,…]

• flow-sensitivity, context-sensivitiy, relational
domain, widening thresholds, soudness, etc

• Generally applicable beyond static analysis

• e.g., concolic testing

