Machine-Learning-Guided
Adaptive Program Analysis

. Kihong Heo

Hakjoo Oh 5 . Hongseok Yang
’ Kwangkeun Yi

Korea University Seoul National University Oxford University

/ September 2016
TAPAS 2016 @ Edinburgh, Scotland

Challenge in Static Analysis

scalability

precision

Challenge in Static Analysis

@&
“D

scalability

precision

Challenge in Static Analysis

. @ key: “selectivity”

scalability

precision 2

Flow-Sensitivity

assert(y>0)

[0.0]

[0.0]

[0.0]

[, 1]

[1.1]

[0.0]

[2.2]

[, 1]

[, 1]

[2.2]

precise but costly

Flow-Insensitivity

y [[0,+00 cheap but imprecise

assert(y>0)

Selective Flow-Sensitivity

FS : {x,y} FI : {z}
x | [0,0]
y | [00]

X [[l,+00]]
y BLO]

X [[l,+00] |
y | [0,0]

X [[],+00]
y [[I,+00]

assert(y>0)

Selective Flow-Sensitivity

FS :{y,z} FI : {x}

y | [0,0]
z | [I,1]

y | [0,0]
z | [1,1]

X [O,+ OO]
y | [0,0]
z | [2,2]

y [[0,+00]

Z [2,21

fail to prove

Hard Search Problem

® |ntractably large space, if not infinite
e 2Vardifferent abstractions for FS

® Most of them are too imprecise or costly

® P(x.y.z}) = {S:0G5ty3izh U0Y hZhO6Eh X Y 21

Our Research

® How to automatically find a good abstraction!?

® pre-analysis [PLDI'|4, TOPLAS’16]

{x,y,z,...}
pre-analysis »| main analysis

® machine learning techniques [OOPSLA’l5,SAS’16,APLAS’ | 6]

source

m Y Bitbucket

GitHub %

Our Learning Approaches

® | earning via black-box optimization [OOPSLA’| 5]
® | earning via white-box optimization [APLAS’ | 6]
® | earning from automatically labelled data [SAS’16]

® | earning with automatically generated features (in progress)

Static Analyzer

number of
proved assertions

F(p,a) = n

abstraction

(e.g.,a set of variables)

KV
o<>?S ‘Our Learning Approach

® Parameterized adaptation strategy

Sw:pgm — 2Var

'\
NS

o9”Our Learning Approach

® Parameterized adaptation strategy

Sw:pgm — 2Var

® |earn a good parameter W from existing codebase

4)

Pi, P2, ...,Pm — 4%

__ J
Codebase

R\

o> Our Learning Approach

® Parameterized adaptation strategy

Sw:pgm — 2Var

® |earn a good parameter W from existing codebase

4)

Pi, P2, ...,Pm — 4%

__ J
Codebase

® For new program P, run static analysis with Sw(P)

|. Parameterized Strategy

Sw:pgm — 2Var

(1) Represent program variables as feature vectors.
(2) Compute the score of each variable.

(3) Choose the top-k variables based on the score.

(1) Features

® Predicates over variables:

f={fi,f....fs} (fi: Var = {0,1})

® 45 simple syntactic features for variables: e.g,

® |ocal / global variable, passed to / returned from
malloc, incremented by constants, etc

(1) Features

® Represent each variable as a feature vector:

f(x) = (1), (), F3(),Fa(x).fs(x))

f(x) = ¢1,0,1,0,0)

f(y) = <1,0,1,0,1)
f(z) = <0,0,1,1,0)

(2) Scoring

® The parameter w is a real-valued vector: e.g.,
w =<0.9,0.5,-0.6,0.7,0.3)
® Compute scores of variables:

,0,1,0,0,-<0.9,0.5,-0.6,0.7,0.3) = 0.3
,0,1,0,15-<0.9,0.5,-0.6,0.7,0.3) = 0.6
o, 1,1

score(x) = (|
I |
0, ,0):¢0.9,0.5,-0.6,0.7,0.3) = 0.1

=<
score(y) =
score(z) = ¢

’y '

(3) Choose Top-k Variables

® Choose the top-k variables based on their scores:
e.g., when k=2,

score(x) = 0.3

score(y) = 0.6 > {x,y}

score(z) = 0.1

® In experiments, we chosen 0% of variables with
highest scores.

2. Learn a Good Parameter

4)

PI, P2, ...,Pm i W

__ y,
Codebase

® Solve the optimization problem:

Find w that maximizes Z F(P;, Sw(F;))
P.

Learning via Random
Sampling

repeat N times

pick w € R" randomly

evaluate Y F(P;, Sw(P,))
P;

return best w found

count

300

200

100

Learning via Random
Sampling

20 40 60
quality

80

Bayesian Optimization

® A powerful method for solving difficult black-box
optimization problems.

® Especially powerful when the objective function is
expensive to evaluate.

® Key idea: use a probabilistic model to reduce the number
of objective function evaluations.

20

Learning via Bayesian Optimization

repeat N times

select a promising w using the model

evaluate Y F(P;, Sw(P;))
P

update the probabilistic model

return best w found

® Probabilistic model: Gaussian processes

® Selection strategy: Expected improvement

21

Learning via Bayesian Optimization

300

200

count

100

20

40
quality

60

80

22

Effectiveness

® Implemented in Sparrow, an interval analyzer for C
® Evaluated on 30 open-source programs

®)0 for training, 10 for testing

23

Effectiveness

® Implemented in Sparrow, an interval analyzer for C
® Evaluated on 30 open-source programs

®)0 for training, 10 for testing

Precision
Fl

FS

100

23

Effectiveness

® Implemented in Sparrow, an interval analyzer for C
® Evaluated on 30 open-source programs

®)0 for training, 10 for testing

Precision
F FS
_ -
0 100
Cost
F FS

| % | 8x
23

Limitations

® While promising, the method has limitations:
® black-box optimization is inherently inefficient
® manual feature engineering is needed

® Follow-up work to overcome the limitations:

® improving the efficiency [APLAS |6, SAS’| 6]

® automating feature engineering [on-going]

24

Improving Efficiency

® A white-box optimization method [APLAS’16]
C?;)I;Ep — R.

Find w* that minimizes Z (scorep () — O(]))Q
1€l p

® A supervised learning method [SAS’ | 6]

al—alb|—blc|—c|i|—1
aly | T (Y| T | T[T || T
—all || T|(|T| T|T|T
bl T (| T |T|T|%|T
—blT || T|&|T|T|T|T
c|l T T|T| T T |T|T
—c|T| T |T{ T |T|%|T|T
AT T T T{T]T [T
—3i{ T[T %[T]|T[T]|%

25

Manual Feature Engieering

® The success of ML heavily depends on the “features”

® Feature engineering is nontrivial and time-consuming

® Features do not generalize to other analyses

Type| # Features

A 1 used in array declarations (e.g., a[c])
2 used in memory allocation (e.g., malloc(c))
3 used in the righthand-side of an assignment (e.g., x = ¢)
4 used with the less-than operator (e.g, x < ¢)
5 used with the greater-than operator (e.g., x > ¢)
6 used with < (e.g., x < ¢)
7 used with > (e.g., x > ¢)
8 used with the equality operator (e.g., x == ¢)
9 used with the not-equality operator (e.g., x ! = ¢)
10 | used within other conditional expressions (e.g., x < c+y)
11 | used inside loops
12 | used in return statements (e.g., return c)
13 | constant zero

B [14| 1V2)A3
15 | (1V2)A(AVEVEVT)
16 | (1v2)A(8V9)
17 | 1v2)all
18 | (1v2)A12
19 | 1313
20 | 13A(4V5EV6VT)
21 | 13A(8V9)
22 | 13N 11
23 | 13A12

Type| # Features

A 1 Tocal variable
2 | global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = ¢l + ¢2)
8 compared with a constant expression (e.g., x < ¢)
9 compared with an other variable (e.g., x < y)
10 | negated in a conditional expression (e.g., if (!x))
11 | directly used in malloc (e.g., malloc(x))
12 | indirectly used in malloc (e.g., y = x; malloc(y))
13 | directly used in realloc (e.g., realloc(x))
14 | indirectly used in realloc (e.g., y = x; realloc(y))
15 | directly returned from malloc (e.g., x = malloc(e))
16 | indirectly returned from malloc
17 | directly returned from realloc (e.g., x = realloc(e))
18 | indirectly returned from realloc
19 | incremented by one (e.g., x =x + 1)
20 | incremented by a constant expr. (e.g., X = x + (1+2))
21 | incremented by a variable (e.g., x =x +y)
22 | decremented by one (e.g.,x =x-1)
23 | decremented by a constant expr (e.g., x = x - (1+2))
24 | decremented by a variable (e.g., x = x - y)
25 | multiplied by a constant (e.g., x =x * 2)
26 | multiplied by a variable (e.g., x = x *y)
27 | incremented pointer (e.g., p++)
28 | used as an array index (e.g., a[x])
29 | used in an array expr. (e.g., x[e])
30 | returned from an unknown library function
31 | modified inside a recursive function
32 | modified inside a local loop
33 | read inside a local loop

B [34 [TASA(IIVIZ)
35 | 2A8A (11V 12)
36 | 1A (11V12) A (19V 20)
37 | 2A (11V12) A (19 V 20)
38 | 1A (11V12) A (15 V 16)
39 | 2 (11V 12) A (15 Vv 16)
40 | (11v12) A 29
41 | (15V 16) A 29
42 | 1A (19V20) A 33
43 | 2/ (19V 20) A 33
44 | 1A (19V20) A 33
45 | 2 A (19 V 20) A —33

Type| # Features
A 1 leaf function
2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 | write to a structure field
11 | read from a structure field
12 | directly return a constant expression
13 | indirectly return a constant expression
14 | directly return an allocated memory
15 | indirectly return an allocated memory
16 | directly return a reallocated memory
17 | indirectly return a reallocated memory
18 | return expression involves field access
19 | return value depends on a structure field
20 | return void
21 | directly invoked with a constant
22 | constant is passed to an argument
23 | invoked with an unknown value
24 | functions having no arguments
25 | functions having one argument
26 | functions having more than one argument
27 | functions having an integer argument
28 | functions having a pointer argument
29 | functions having a structure as an argument
B [30 | 2A(21V22) A (14V 15)
31 | 2A (21 VvV 22) A—(14V 15)
32 | 2A23 A (14'V 15)
33 | 2A23 A (14 V 15)
34 | 2A(21V22) A (16 V 17)
35 | 2A(21V22) A—(16V 17)
36 | 2A23A (16 V 17)
37 | 2A23A—(16V 17)
38 | (21V22) A-23

flow-sensitivity

context-sensitivity

widening thresholds

26

O’\(\%
oV e _~

“Automating Feature Engineering

Before [OOPSLA’15,SAS’ | 6,APLAS’ | 6]

Codebase

New method

) Hand-crafted

features

. Parameter

values

Adaptation
>

Codebase

>

Features

Strategy

. Parameter

values

Adaptation
>

Strategy

27

O’\(\%
e~
-

Key ldeas

® Use a program reducer to generate feature
programs that capture the key reason why FS

succeeds but Fl fails.

int J = 0; main ()
main () { for (int 1=1;1<50; 1i++) {
S+ ; assert (1i<100);

assert (3>0); }
} }

® Generalize the programs by abstract data flow
graphs

id:=id+c id:=T | |[id>idid:=1d+c

7

28

Summary

® Challenges in selective static analysis
® Using machine learning is promising
o [OOPSLA’I5,SAS’ 16,APLAS’[6,...]

® flow-sensitivity, context-sensivitiy, relational
domain, widening thresholds, soudness, etc

® Generally applicable beyond static analysis

® e.g,concolic testing

29

Summary

® Challenges in selective static analysis
® Using machine learning is promising
o [OOPSLA’I5,SAS’ 16,APLAS’[6,...]

® flow-sensitivity, context-sensivitiy, relational
domain, widening thresholds, soudness, etc

® Generally applicable beyond static analysis

® e.g,concolic testing

Thank you

29

