Samsung Research Funding &
Incubation Center for Future Technology

Data-Driven and Focused
Program Analysis

Hakjoo Oh

Korea University

|5 November 2018

Static Program Analysis

Technology for “software MRI”
Code —» Eume

® Predict software behavior statically and automatically

® static:analyzing program text without execution

® automatic: sw is analyzed by sw (“static analyzer”)
® Next-generation software testing technology

® finding bugs early / full automation / all bugs found

® Being widely used in sw industry

w facebook. Google @§

Long-Standing Open Problem

® How to achieve soundness, precision, and scalability at
the same time!

Soundness

Scalability Precision

Long-Standing Open Problem

® How to achieve soundness, precision, and scalability at
the same time!

Soundness < Consider all execution states

Scalability Precision

Long-Standing Open Problem

® How to achieve soundness, precision, and scalability at
the same time!

Soundness < Consider all execution states

Scalability Precision

rli\eport few false alarms

Long-Standing Open Problem

® How to achieve soundness, precision, and scalability at
the same time!

Soundness < Consider all execution states

Scalability Precision

A

Scale to large programs rli\eport few false alarms

Long-Standing Open Problem

® How to achieve soundness, precision, and scalability at
the same time!

Soundness < Consider all execution states

Scalability “bug-finders” Precision

A

Scale to large programs rli\eport few false alarms

Long-Standing Open Problem

® How to achieve soundness, precision, and scalability at
the same time!

Soundness < Consider all execution states

“program verifiers”

Scalability Precision

A

Scale to large programs rli\eport few false alarms

Long-Standing Open Problem

® How to achieve soundness, precision, and scalability at
the same time!

Soundness < Consider all execution states

“optimizing compilers”

Scalability Precision

A

Scale to large programs rli\eport few false alarms

Project Goal

® General technology for achieving soundness, precision,

and scalability:
Soundness

N

Scalability Precision

® Prove generality & effectiveness with three analyses:

® numeric analysis scalable to IM in lhour
® pointer analysis scalable to 500K in lhour

® symbolic analysis scalable to 300K in Ihour

Approach Overview

® Selective application of high precision (and soundness):

Sio error
states SEIES

program program program

states states SEIES

cheap but imprecise precise but expensive cheap and precise

® Data-driven, automatic generation of selection heuristics:

. - ﬁ Heuristics for deciding when
GitHub to apply high precision

machine learning
for program analysis

Example: Context-Sensitivity

cl:

c2:

c3:

c4:
c5:

int h(n) {ret n;}

void f(a) {

}

x = h(a);
assert(x > 0)
y = h(input()

);

void g() {f(8);}

void m() {

}

f(4);

g();
g();

// Query <@mm holds always

Context-Insensitive Analysis

® Merge calling contexts into single abstract context

int h(n) {ret n;}

void f(a) {
x = h(a);

cl:

c2:

c3:

}

void m() {

c4:
c5:

}

assert(x > 0);
y = h(input());

void g() {f(8);}

f(4);
g();
g();

c3

c5,c6 ‘I”

cheap but imprecise

c4 ‘li.\\\££:f2

k-Context-Sensitive Analysis

® Analyze functions separately for each calling context

int h(n) {ret n;}

void f(a) {

cl:

c2:

c3:

}

X = h(a);
assert(x > 0);
y = h(input());

void g() {f(8);}

void m() {

c4:
c5:

}

f(4);
g();
g();

precise but expensive

cl S8

(k=3)
c2

c4
cl

C2

cl

>Q

g I

c3

Selective Context-Sensitivity

cl:

c2:

c3:

c4:
c5:
Cco:

® Selectively differentiate contexts only when necessary

int h(n) {ret n;}

Apply 2-ctx-sens: {h}

void f(a) { Apply |-ctx-sens: {f}

x = h(a); Apply 0-ctx-sens: {g, m}

assert(x > 0);

y = h(input()); c1 @
} o
void g() {f(8);} y }A
void m() { 6\‘

f(4);

’ cl
g(); c5,cb e—> “
g();

' cheap and precise

Selective Context-Sensitivity

cl:

c2:

c3:

c4
c5

. cl
: g(0); c5,cb6 eﬁ —
:g();

b Cc2

® Selectively differentiate contexts only when necessary

int h(n) {ret n;}

Apply 2-ctx-sens: {h}
void f(a) { Apply |-ctx-sens: {f}
x = h(a); Apply 0-ctx-sens: {g, m}
assert(x > 0);

y = h(inpu Challenge: how to design a

; good selection heuristic?

void g() {f(8);}

void m() {
f(4);

@ 9

cheap and precise

Hard Search Problem

® |Intractably large and sparse search space, if not infinite
® e.g,S¥choices where S = 2IProcl for k-context-sensitivity
® Real programs are complex to reason about

® e.g,typical call-graph of real program:

A fundamental problem in selective program analysis

Existing Approaches

® Selection heuristics manually crafted by analysis experts:

® pre-analysis [PLDI’ [4a, PLDI’14b, OOPSLA’[8c]

® dynamic analysis [POPL |2]
® online refinement [PLDI’ [4¢c, POPL | 7]
® Our claim: manual approaches are inherently limited:

® nontrivial, sub-optimal, and unstable

Our direction: automatically generate heuristics via learning

Direction and Achievement

® Learning algorithms for data-driven program analysis
® |earning models [OOPSLA’| /73]
® optimization algorithms [TOPLAS’| 9]
® feature engineering [OOPSLA’|/7b]
® State-of-the-art program analyses enabled by algorithms
® interval / pointer analysis [OOPSLA’18a, TOPLAS’ | 8]
® symbolic analysis / execution [ICSE’|8,ASE’ | 8]
® others program analyses [FSE’' 18, OOPSLA’18b]

9 papers in top-tier PL/SE conferences and journals

o
O

<’ Learning Algorithm Overview

Parametric Training data Atomic features
program analyzer (programs w/o labels) (al,a2,...,a25)

\ l e.g., procedures have
invocation stmt,
Leal‘ning Algo r|thm procedures return
strings, etc

l

Learned heuristic for applying context-sensitivity:

f2: procedures to apply 2-context-sensitivity
IAN=-3A-6A88AN-9A=16 17 A=18 A =19 A =20 A =21 A =22 N =23 A =24 A =25
fl: procedures to apply |-context-sensitivity

(IA-3A-4A=TA=8A6A=TIA=I5A=16 A=17 A =18 A =19 A =20 A =21 A =22 A =23 A =24 A =25)V
(-3A=4AN=TA-8A-9IAI0ANTLIALI2A13A=16 A =17 A =18 A =19 A =20 A =21 A =22 A =23 A =24 A =25)V
(-3A=9A13A14A15A =16 A =17 A =18 A =19 A =20 A =21 A =22 A =23 A =24 A =25)V
(IA2A=3AN4A-5AN=6A=TA=8A=9A-10A-13A=15A =16 A =17 A =18 A =19 A =20 A =21 A =22
A=23 A =24 A =25)

2

+“State-of-the-art Pointer Analysis

® Achieved state-of-the-art pointer analysis for |ava

® foundational static analysis for bug-finders, verifiers, etc

® Trained with 5 small programs from the DaCapo benchmark

and tested with 5 remaining large programs

Iﬂqat

2500}
S20bjH
2000}

1500}

1000

high scalability
analysis time(s)

500

S2objH+Data(Ours) S2objDH+IntroB
of | []
S2objH+IntroA

Insensitive

1200 1400 1600 1800 2000
of may-fail casts

high precision

analysis time(s)

1200

jython

1000

8001

6001

400

200}

S2objH+IntroB(12,372)
[]

S20bjH+IntroA
[]

S2o0bjH+Data(Ours)
[

Insensitive

[

0
1600

1700 1800 1900 2000 2100 2200

of may-fail casts

2300

2

+“State-of-the-art Pointer Analysis

high scalability

® Achieved state-of-the-art pointer analysis for |ava

analysis time(s)

® foundational static analysis for bug-finders, verifiers, etc

2500}

2000}

1500}

1000

500

Trained with 5 small programs from the DaCapo benchmark
and tested with 5 remaining large programs

Iﬂqat

S2objH

S2objH+Data(Ours)
|

manual approaches

(PLDI’ 1 4b)
S2objDH+IntroB Insensitive
L]

S2objH+IntroA

1200 1400

1600 1800 2000

of may-fail casts

high precision

analysis time(s)

1200

jython

1000

8001

6001

400

200}

S2objH+IntroB(12,372)
[

S2o0bjH+Data(Ours)
|

S20bjH+IntroA
[]

Insensitive

]

0
1600

1700 1800 1900

2000

2100 2200 2300

of may-fail casts

<~ State-of-the-art Pointer Analysis

® Cracked down the precision limit of pointer analysis

® Key enablers:

® keep most important k, rather than most recent k

® data-driven method determines importance

| . bloat
most recent 2500] k:§=2

concrete: . . . O
‘ 2000} 5
. élSOO
\ | . : Iimportant e E

A, A, {_%10007 © tunneling k=1

5 apply un -
abstract: . . . : useless ° ours :, P , o O
500} . 4‘!“""‘: i
k=3 .
(0] 8

1200 1400 1600 1800 2000
of may fail casts

Application to Symbolic Execution

® Symbolic execution: program analysis popular for bug-finding

® Relies on path-selection heuristics, typically hand-tuned:

® e.g,CGS [FSE'I4], CarFast [FSE’|2], CFDS [ASE’08],
Generational [NDSS’08], DFS [PLDI'05], ...

1300 | expaF-Z.l.O | 8000 V|m‘—5.7 | _
1200} P 1 7000}
..... A *
AT L
1100} ok R 6000} .
“A""‘ * A oA A A
A * Ve AA
K A 9 . Ak A SR S
o = , Ak
> 1000 A g > 5000F LA e ke ke ko k= k]
5 ST 5 R *
n - - -— I
[e - (0]] N
< fem e —e T < :
2 900 i PR g g4000—ll :
E C g e a E -
Q se” : o ” T
/: :
800 : f e K KT E . 3000 :
I el f b il
700l — < CFDS * * Gen | 2000 " — =+ CFDS * + Gen
CGS Random f CGS Random
i --- DFS == DFS
600 I I I I I I I 1000 I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
iterations iterations

Our goal: automatically generating path-selection heuristics

\c§>§
State-of-the-art Symbolic Execution
® Developed “data-driven symbolic execution”

® considerable increase in code coverage

1400 . expatl-2.1.0 .

9000

=
=
o
o
o)}
o
o
(=)

branches covered
[
o
o
o
branches covered
(6]
o
o
o

900}

H
o
o
o

800},

3000
(> e e e a] ’ ; -
— - FD Y- T, -
7007} CFDS Gen | 000k CFDS = = Gen
A-A CGS ¢ OURS A-Ao CGS ¢ OURS
600. - DFS Random --- DFS Random
0 500 1000 1500 2000 2500 3000 3500 4000 1000o 500 1000 1500 2000 2500 3000 _ 3500 4000
iterations iterations

® dramatic increase in bug-finding capability

Phenomenons Bug-Triggering Inputs Version
sed Memory Exhaustion 4.4(latest)
OURS CFDS CGS Random Gen DFS
gawk-3.0.3 100/100 0/100 0/100 0/100 0/100 ©0/100 "™ G e
grep-2.2 47/100 0/100 5/100 0/100 0/100 0/100 o

gawk Memory Exhaustion '$6672467e2=E7' 4.21(latest)

double-free

Application to Program Repair

® Program analysis for automatically finding and fixing sw errors

® Manual debugging is time-consuming and error-prone

® e.g., double-free error in Linux kernel:

in = malloc(1);
out = malloc(1);

. // use 1in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

goto err;

by

out = malloc(2);
if (out == NULL) {
free(in);

goto err;
b

. // use in, out
err:
free(in);
free(out);
return;

buggy program

—

in = malloc(1);
out = malloc(1l);

. // use in, out
free(out);
free(in);

in = malloc(2);

if (in == NULL) {
out = NULL;
goto err;

by

out = malloc(2);
if (out == NULL) {
free(in);
in = NULL;
goto err;
}
. // use 1in, out
err:
free(in);
free(out);
return;

memory

—

in = malloc(1);
out = malloc(1);

. // use in, out
// removed
free(in);

in = malloc(2);
if (in == NULL) {
out = NULL;
goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
free(in);
in = NULL;
goto err;
}
. // use in, out
err:
free(in);
free(out);
return;

new errors introduced

in = malloc(1);
out = malloc(1);

. // use 1in, out
// removed
free(in);

in = malloc(2);
if (in == NULL) {

goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
// removed

goto err;
b
. // use 1in, out
err:
free(in);
free(out);
return;

correct program

Our goal: data-driven static analysis for program repair

<<‘>€> .
State-of-the-art Program Repair

® Safe and sound repair technique for memory errors
® no errors introduced, generated patches are correct

® Static analysis enabled by our data-driven approach played
a key role

[Static Analysis] [SAT Solver]

in = malloc(1);
out = malloc(1);
.. // use 1in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

goto err;

}

out = malloc(2);
if (out == NULL) {
free(in);

goto err;
}
.« // use 1in, out
err:
free(in);
free(out);
return;

|
—

exact cover problem

in = malloc(1);
out = malloc(1);
.. // use in, out
// removed
free(in);

in = malloc(2);
if (in == NULL) {

goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
// removed

goto err;
}
.« // use in, out
err:
free(in);
free(out);
return;

Being recognized as a new and promising research direction

“Overall, the paper addresses an important problem advancing the state
of the art in the very interesting and promising area of data-driven
program analysis.” (from OOPSLA reviews)

“Supremely well-written and is clearly situated within related work,
addressing a clearly high-profile long-standing problem of
scalability.”” (from OOPSLA reviews)

“I really enjoyed reading. It tackles a fundamental problem in
brogram analysis — developing heuristics to localize precision, and
presents a very novel approach.” (from TOPLAS reviews)

“There is a novel idea, which is not only neat and elegant, but | think

may apply to other machine learning domains in program
analysis.” (from OOPSLA reviews)

“The algorithm that automatically generates search heuristics for concolic
testing is novel and very interesting.” (from ICSE reviews)

20

Future Research Directions

® Just started; Need to extend depth and breadth

® Foundational algorithms for data-driven program analysis
® expressiveness, efficiency, generality, automation
® unified and reusable framework

® Applications to various real problems

® heuristics X analyses X languages

® Deployment in industrial tools

S [@ waca

The EarlyBird §]12] DeepScan

’T
P

r_.

21

Summary

Goal:Achieving the ideal program analysis technology

Approach: Data-driven program analysis

Soundness

Research Directions:

® new and foundational algorithms

® practical and diverse applications /\

Scalability Precision

Impacts:
® solving the longstanding open problem

® paradigm-shift in program analysis research

22

Summary

Goal:Achieving the ideal program analysis technology

Approach: Data-driven program analysis

Soundness

Research Directions:

® new and foundational algorithms

® practical and diverse applications /\

Scalability Precision

Impacts:
® solving the longstanding open problem

® paradigm-shift in program analysis research

Thank you

22

Ours

Others

References

[PLDI’14a] Selective context-sensitivity guided by impact pre-analysis

[OOPSLA'15] Learning a Strategy for Adapting a Program Analysis via Bayesian Optimisation
[OOPSLA’ 73]
[OOPSLA’[7b]
[OOPSLA’18a]
[OOPSLA’18b]

Data-driven context-sensitivity for points-to analysis
Automatically generating features for learning program anlaysis heuristics
Precise and scalable points-to analysis via data-driven context tunneling

Automatic diagnosis and correction of logical errors for functional programming assignments

[ICSE’ 18] Automatically generating search heuristics for concolic testing

'FSE’ 18] MemFix: Static-analysis-based repair of memory deallocation errors for C
ASE’ | 8] Template-guided concolic testing via online learning

[TOPLAS’ 18] Adaptive static analysis via learning with bayesian optimization

[TOPLAS’19] A machine-learning algorithm with disjunctive model for data-driven program analysis

[PLDI’ [4b] Introspective analysis: context-sensitivity, across the board
[PLDI’ [4c] On abstraction refinement for program analyses in Datalog
[POPL’12] Abstractions from tests

[POPL, 7] Semantic-directed clumping of disjunctive abstract states

[OOPSLA'|8c] Precision-guided context-sensitivity for pointer analysis

23

Learning Algorithm Detail

Each sub-heuristic fi is a boolean combination of features
f o true| false|a; e A =f | iAfa| AV fo

The learning problem:

Find f1, 12, ..., f« that maximizes the performance of program
analysis over codebase

Our algorithm reduces the search space from SK to k-S
while formally guaranteeing to preserve global maxima

Efficient algorithm for searching the subspace S via
iterative and greedy refinement

24

