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Static Program Analysis

• Predict software behavior statically and automatically

• static: analyzing program text without execution

• automatic: sw is analyzed by sw (“static analyzer”)

• Next-generation software testing technology

• finding bugs early / full automation / all bugs found

• Being widely used in sw industry
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Long-Standing Open Problem
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Soundness

Scalability Precision

• How to achieve soundness, precision, and scalability at 
the same time?
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Soundness

Scalability Precision

Consider all execution states

Report few false alarmsScale to large programs

• How to achieve soundness, precision, and scalability at 
the same time?

“bug-finders”



Long-Standing Open Problem
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Soundness

Scalability Precision

Consider all execution states

Report few false alarmsScale to large programs

• How to achieve soundness, precision, and scalability at 
the same time?

“program verifiers”



Long-Standing Open Problem
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Soundness

Scalability Precision

Consider all execution states

Report few false alarmsScale to large programs

• How to achieve soundness, precision, and scalability at 
the same time?

“optimizing compilers”



Project Goal
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• General technology for achieving soundness, precision, 
and scalability:

• Prove generality & effectiveness with three analyses:

• numeric analysis scalable to 1M in 1hour

• pointer analysis scalable to 500K in 1hour

• symbolic analysis scalable to 300K in 1hour

Project Goal

I Achieving the ideal program analysis technology

I Proving the effectiveness with three representative analyses:
I Numeric analysis scalable to 1M in 1 hour
I Points-to analysis scalable to 500K in 1 hour
I Symbolic analysis scalable to 300K in 1 hour

Soundness

Scalability Precision



Approach Overview
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Our Approach: Data-Driven, Selective Program Analysis

I Selective program analysis applies high precision and
soundness selectively:

cheap but imprecise precise but expensive cheap and precise

• Selective application of high precision (and soundness):

• Data-driven, automatic generation of selection heuristics:

machine learning
for program analysis

Heuristics for deciding when 
to apply high precision



Example: Context-Sensitivity
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holds always

int h(n) {ret n;} 

void f(a) { 
  x = h(a); 
  assert(x > 0);  // Query 
  y = h(input()); 
} 

void g() {f(8);} 

void m() { 
  f(4); 
  g(); 
  g(); 
}

c1:

c2:

c4:
c5:
c6:

c3:



Context-Insensitive Analysis
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cheap but imprecise

c5,c6

c4

c3

c1,c2

int h(n) {ret n;} 

void f(a) { 
  x = h(a); 
  assert(x > 0);   
  y = h(input()); 
} 

void g() {f(8);} 

void m() { 
  f(4); 
  g(); 
  g(); 
}

c1:

c2:

c4:
c5:
c6:

c3:

• Merge calling contexts into single abstract context



k-Context-Sensitive Analysis
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precise but expensive

• Analyze functions separately for each calling context

int h(n) {ret n;} 

void f(a) { 
  x = h(a); 
  assert(x > 0);   
  y = h(input()); 
} 

void g() {f(8);} 

void m() { 
  f(4); 
  g(); 
  g(); 
}

c1:

c2:

c4:
c5:
c6:

c3:

(k=3)



Selective Context-Sensitivity
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Apply 2-ctx-sens: {h}
Apply 1-ctx-sens: {f}
Apply 0-ctx-sens: {g, m}

cheap and precise

• Selectively differentiate contexts only when necessary
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cheap and precise

• Selectively differentiate contexts only when necessary

int h(n) {ret n;} 

void f(a) { 
  x = h(a); 
  assert(x > 0);   
  y = h(input()); 
} 

void g() {f(8);} 

void m() { 
  f(4); 
  g(); 
  g(); 
}

c1:

c2:

c4:
c5:
c6:

c3:

Challenge: how to design a 
good selection heuristic?



Hard Search Problem
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• Intractably large and sparse search space, if not infinite

• e.g., Sk choices where S = 2|Proc| for k-context-sensitivity

• Real programs are complex to reason about

• e.g., typical call-graph of real program:

A fundamental problem in selective program analysis
=> New data-driven approach



Existing Approaches
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• Selection heuristics manually crafted by analysis experts:

• pre-analysis [PLDI’14a, PLDI’14b, OOPSLA’18c]

• dynamic analysis [POPL’12]

• online refinement [PLDI’14c, POPL’17]

• Our claim: manual approaches are inherently limited:

• nontrivial, sub-optimal, and unstable

Our direction: automatically generate heuristics via learning



Direction and Achievement

• Learning algorithms for data-driven program analysis

• learning models [OOPSLA’17a]

• optimization algorithms [TOPLAS’19]

• feature engineering [OOPSLA’17b]

• State-of-the-art program analyses enabled by algorithms

• interval / pointer analysis [OOPSLA’18a, TOPLAS’18]

• symbolic analysis / execution [ICSE’18, ASE’18]

• others program analyses [FSE’18, OOPSLA’18b]
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9 papers in top-tier PL/SE conferences and journals



Learning Algorithm Overview
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Learning Algorithm

Training data
(programs w/o labels)

Parametric 
program analyzer 

Atomic features
(a1,a2,…,a25)

e.g., procedures have 
invocation stmt,

procedures return 
strings, etc

Data-Driven Context-Sensitivity for Points-to Analysis 1:27

From (12), (13), De�nition 3.3, and the assumption that fj�1 is a minimal solution of the
problem �k , we have

8P 2 P.H�00j�1
(P ) = H�j�1 (P ). (14)

From (14), (9), we conclude
8P 2 P.H�j�1 (P ) = H�0j�1

(P ).

B LEARNED BOOLEAN FORMULAS
We list the boolean formulas learned by our approach. �e numbers in the formulas represent the
atomic feature in Tables 1. �e formulas for each analysis and context depth are as follows. Table 8
presents them by and-or tables.

• Selective object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ ¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ 6 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬9 ^ 13 ^ 14 ^ 15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(1 ^ 2 ^ ¬3 ^ 4 ^ ¬5 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬10 ^ ¬13 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22
^¬23 ^ ¬24 ^ ¬25)
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(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)
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PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Learned heuristic for applying context-sensitivity:

f2: procedures to apply 2-context-sensitivity

f1: procedures to apply 1-context-sensitivity
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1:18 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh

Fig. 3. Precision and cost comparisons of among selective object-sensitive class. We purposely made an
exception in the case of S2objH+IntroB on jython benchmark, which is marked as timeout in Table 2, to
provide readers broader performance spectrum.

jython. �e results show that inclusion of speci�c features makes the analysis much more e�cient
without signi�cant trade-o� on precision.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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• Achieved state-of-the-art pointer analysis for Java

• foundational static analysis for bug-finders, verifiers, etc

• Trained with 5 small programs from the DaCapo benchmark 
and tested with 5 remaining large programs
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State-of-the-art Pointer Analysis
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• Cracked down the precision limit of pointer analysis

• Key enablers:

• keep most important k, rather than most recent k

• data-driven method determines importance

OOPS
LA

’18
a

Context Tunneling:  
Keep Most important K

: useless

: important

concrete:

abstract:

k = 3

most recent

• Instead, keep most important K

• Do not keep most recent K

!7
1200 1400 1600 1800 2000

# of may fail casts

0

500

1000

1500

2000

2500

a
n

a
ly

si
s 

ti
m

e
(s

)

bloat

500 600 700 800 900 1000 1100 1200 1300

# of may-fail casts

0

100

200

300

400

500

a
n

a
ly

si
s 

ti
m

e
(s

)

xalan

Performance Highlight

apply tunneling k=1

k=2

ours

!19

k=1

ours
apply tunneling

k=2

• Hybrid 1-object sensitivity with context tunneling is

• faster than k=1, and

• more precise than k=2



• Symbolic execution: program analysis popular for bug-finding 

• Relies on path-selection heuristics, typically hand-tuned:

• e.g., CGS [FSE’14], CarFast [FSE’12], CFDS [ASE’08], 
Generational [NDSS’08], DFS [PLDI’05], …
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Application to Symbolic Execution

Our goal: automatically generating path-selection heuristics



State-of-the-art Symbolic Execution
• Developed “data-driven symbolic execution”

• considerable increase in code coverage
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ICSE’18, May 2018, Gothenburg, Sweden Anon.

Figure 1: Average branch coverage achieved by each search heuristic on 6 large benchmarks

4.1 E�ectiveness of Generated Heuristics
For each benchmark program,we ran our algorithm (Algorithm 2) to
generate our search heuristic (ours), and compared its performance
with that of the existing heuristics. We evaluate the e�ectiveness
with two measures: branch coverage and capability of �nding bugs.

Branch Coverage. For branch coverage, we measured the av-
erage and maximum coverages: The average branch coverage is
obtained by averaging the results over the 100 trials (20 for vim).
The maximum coverage refers to the highest coverage achieved
during the 100 trials (20 for vim). The former indicates the average
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• dramatic increase in bug-finding capability
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Table 3: Average branch coverage on 4 small benchmarks

OURS CFDS CGS Random Gen DFS

cdaudio 250 250 250 242 250 236
�oppy 205 205 205 170 205 168
replace 181 177 181 174 176 171
kb�ltr 149 149 149 149 149 134

Table 4: E�ectiveness in terms ofmaximumbranch coverage

OURS CFDS CGS Random Gen DFS

vim 8,788 8,585 6,488 8,143 5,161 2,646
expat 1,422 1,060 1,337 965 1,348 1,027
gawk 2,684 2,532 2,449 2,035 2,443 1,025
grep 1,807 1,726 1,751 1,598 1,640 1,456
sed 830 780 781 690 698 568
tree 797 702 599 704 600 360

Table 5: E�ectiveness in terms of �nding bugs

OURS CFDS CGS Random Gen DFS

gawk-3.0.3 100/100 0/100 0/100 0/100 0/100 0/100
grep-2.2 47/100 0/100 5/100 0/100 0/100 0/100

in concolic testing [15], the randomness of search heuristics, and
so on. We repeated the experiments 100 times for all benchmarks
except for vim for which we averaged over 50 trials as its execution
takes much longer time. The experiments were done on a linux
machine with two Intel Xeon Processor E5-2630 and 192GB RAM.

4.1 E�ectiveness of Generated Heuristics
For each benchmark program,we ran our algorithm (Algorithm 2) to
generate our search heuristic (ours), and compared its performance
with that of the existing heuristics. We evaluate the e�ectiveness
with two measures: branch coverage and capability of �nding bugs.

Branch Coverage. For branch coverage, we measured the av-
erage and maximum coverages. The average branch coverage is
obtained by averaging the results over the 100 trials (50 for vim).
The maximum coverage refers to the highest coverage achieved
during the 100 trials (50 for vim). The former indicates the average
performance while the latter the best performance achievable by
each heuristic.

Figure 1 compares the average branch coverage achieved by
di�erent search heuristics on 6 large benchmarks. The results show
that the search heuristics generated by our approach (ours) achieve
the best coverage on all programs. In particular, ours signi�cantly
increased the branch coverage on two largest benchmarks: vim
and gawk. For vim, ours covered 8,297 branches in 4,000 executions
while the CFDS heuristic, which took the second place for vim,
covered 7,990 branches. Note that CFDS is already highly tuned
and therefore outperforms the other heuristics for vim (for instance,
CGS covered 6,166 branches only). For gawk, ours covered 2,684

branches while the CGS heuristic, the second best one, managed
to cover 2,321 branches. For expat, sed, and tree, our approach
improved the existing heuristics considerably. For example, ours
covered 1,327 branches for expat, increasing the branch coverage
of CGS by 50. For grep, ours also performed the best followed by
CGS and CFDS. On small benchmarks, we obtained similar results;
ours (together with CGS) consistently achieved the highest average
coverage (Table 3). In the rest of the paper, we focus only on the 6
large benchmarks, where existing manually-crafted heuristics fail
to perform well.

In Figure 1, we compared the e�ectiveness of search heuristics
over iterations (# of executions)4, but our approach was also su-
perior to others over execution time. For example, given the same
time budget (1,000 sec), ours and Random (the second best) cov-
ered 8,947 and 8,272 branches, respectively, for vim (Figure 2). The
results were averaged over 50 trials.

Table 4 compares the heuristics in terms of the maximum branch
coverage on 6 large benchmarks. The results show that our ap-
proach in this case also achieves the best performance on all pro-
grams. For instance, in vim, we considerably increased the coverage
of CFDS, the second best strategy; ours covered 8,788 branches
while CFDS managed to cover 8,585. For expat, ours and CGS (the
second best) have covered 1,422 and 1,337 branches, respectively.

Note that there is no clear winner among the existing search
heuristics. Except for ours, CFDS took the �rst place for vim and sed
in terms of average branch coverage. For gawk, expat, and grep,
the CGS heuristic was the best. For tree, the Random heuristic
was better than CFDS and CGS. In terms of the maximum branch
coverage, CFDS was better than the others for vim and gawk while
CGSwas for grep and sed. The Generational and Randomheuristics
surpassed CFDS and CGS in expat and tree, respectively. On the
other hand, our approach is able to consistently produce the best
search heuristics in terms of both coverage metrics.

Bug Finding. We found that the increased branch coverage by
our approach leads to more e�ective �nding of real bugs. Table 5
reports the number of trials that successfully generate test-cases,
which trigger the known bugs in gawk and grep [13, 18]. During
the 100 trials (where a single trial consists of 4,000 executions), our
heuristic always found the bug in gawkwhile all the other heuristics
completely failed to �nd it. In grep, ours succeeded to �nd the bug
47 times out of 100 trials, which is much better than CGS does (5
times). Other heuristics were not able to trigger the bug at all.

Our heuristics are good at �nding bugs because they are much
better than other heuristics in exercising diverse program paths. We
observed that other heuristics such as CGS, CFDS, and Generational
search also have covered the branches where the bugs originate.
However, the bugs are caused only by some speci�c path conditions
and the existing heuristics were not able to generate inputs that
satisfy the conditions.

We remark that we did not specially tune our approach towards
�nding those bugs. In fact, we were not aware of the presence of
those bugs at the early stage of this work. The bugs in gawk and
grep [13, 18] cause performance problems; for example, grep-2.2

4 Evaluating the performance of search heuristics over iterations is a common prac-
tice [3, 29], as the execution time of a program may vary considerably depending on
the input.
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Figure 4: Accumulated branch coverage achieved by conventional concolic testing and our technique on 4 benchmarks

a single trial consists of 4,000 program executions (N = 4, 000 in
Algorithm 1).

Because our approach involves additional runtime overhead (e.g.,
sequential pattern mining), it is natural for our approach to have
fewer runs of concolic testing than conventional approach within
the same time budget. Table 3 shows that the number of trials by
baseline is usually greater than the number of trials by our template-
guided concolic testing. For example, for vim, the largest program
in our benchmarks, the baseline (CGS) ran concolic testing 2,496
times for 70 hours, while our technique (T-CGS) performed it 2,054
times. One interesting point is that for grep, the number of trials
for our technique is greater than that for conventional concolic
testing. This is because the bene�t of reducing the search space
(e.g., constraint solving time) in grep is greater than the overhead
(e.g., pattern mining time) caused by our approach.

5.2.2 Bug Finding. During experiments, we have found �ve
bugs in sed, grep, and gawk, which are exploitable even in the latest
versions of the programs. Table 4 shows the bug-triggering inputs
and phenomenons when the programs are executed with the inputs.

Table 4: Bugs in benchmarks

Phenomenons Bug-Triggering Inputs Version

sed Memory Exhaustion
'H
g
;D'

4.4(latest)

sed In�nite File Write
'H
w {-
x; D'

4.4(latest)

grep Segmentation Fault '\(\)\1\+**' 3.1(latest)

grep Non-Terminating '?(^(|^+*)*\+\{8957\}' 3.1(latest)

gawk Memory Exhaustion '$6672467e2=E7' 4.21(latest)

The two error-triggering inputs for sed could consume all of our
Linux machine’s memory and hard disk, respectively. The template
used for generating the former input is as follows: { (1, ‘\n’), (3,
‘\n’), (5, ‘D’), (6, ’\0’) }. The template guides concolic testing to �nd
the bug e�ectively by concretizing 4 of the 6 characters required to



Application to Program Repair
• Program analysis for automatically finding and fixing sw errors

• Manual debugging is time-consuming and error-prone

• e.g., double-free error in Linux kernel:
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in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 

  goto err; 
} 

out = malloc(2); 
if (out == NULL) { 
  free(in); 

  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;

Example  
(Linux Kernel)

in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 
  out = NULL; 
  goto err; 
} 

out = malloc(2); 
if (out == NULL) { 
  free(in); 
  in = NULL; 
  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;

Example  
(Linux Kernel)

in = malloc(1); 
out = malloc(1); 
... // use in, out 
// removed 
free(in); 

in = malloc(2); 
if (in == NULL) { 
  out = NULL; 
  goto err; 
} 
free(out); 
out = malloc(2); 
if (out == NULL) { 
  free(in); 
  in = NULL; 
  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;

Example  
(Linux Kernel)

in = malloc(1); 
out = malloc(1); 
... // use in, out 
// removed 
free(in); 

in = malloc(2); 
if (in == NULL) { 

  goto err; 
} 
free(out); 
out = malloc(2); 
if (out == NULL) { 
  // removed 

  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;

in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 

  goto err; 
} 

out = malloc(2); 
if (out == NULL) { 
  free(in); 

  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;

MemFix

buggy program new errors introduced correct program

double-free

memory  
leak

Our goal: data-driven static analysis for program repair



State-of-the-art Program Repair
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• Safe and sound repair technique for memory errors

• no errors introduced, generated patches are correct

• Static analysis enabled by our data-driven approach played 
a key role 

in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 

  goto err; 
} 

out = malloc(2); 
if (out == NULL) { 
  free(in); 

  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;

Example  
(Linux Kernel)

in = malloc(1); 
out = malloc(1); 
... // use in, out 
// removed 
free(in); 

in = malloc(2); 
if (in == NULL) { 

  goto err; 
} 
free(out); 
out = malloc(2); 
if (out == NULL) { 
  // removed 

  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;

in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 

  goto err; 
} 

out = malloc(2); 
if (out == NULL) { 
  free(in); 

  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;

MemFix

MemFix 알고리즘

in = malloc(2); 
if (in == NULL) { 

  goto err; 
} 
free(out); 
out = malloc(2); 
if (out == NULL) { 
  // removed 

  goto err; 
}

Fixing memory errors
(undecidable)

Exact cover problem
(NP-complete)

Boolean satisfiability
(NP-complete)
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It includes the access paths that may point-to the object, fromwhich
mustNot 0 is removed to ensure the object invariant. The sets must 0

and mustNot 0 are de�ned depending on the type of statements. For
example, when cmd (c ) = alloc(x ), must 0 and mustNot 0 are:

must 0 = mustalias(c,must \mayalias(c, {x , ⇤x }))
mustNot 0 = mustalias(c,mustNot \mayalias(c, {x , ⇤x }) [ {x })

Because x refers to a new object after the allocation, we remove all
the access paths that are reachable from x (i.e.mayalias(c, {x , ⇤x }))
from must and mustNot. In addition, mustNot 0 includes x since we
know that x de�nitely does not point-to the old object. Other cases
are de�ned similarly.

3.3 Solving an Exact Cover Problem
The second step of M��F�� is to establish and solve an exact cover
problem. The static analysis computes safe and unsafe patches
separately for each object. However, a patch that is safe for an
object may be unsafe for others. Thus, M��F�� aims to choose a
set of patches that are simultaneously safe for all allocated objects.
M��F�� does so by solving an exact cover problem derived from
the static analysis.

We �rst describe the basic method (Section 3.3.1), which captures
the key idea behind our approach but works correctly with an
assumption on the input program. We will explain the assumption
and how to discharge it in Section 3.3.2.

3.3.1 Basic Method. Let R ✓ S be the set of reachable states
available at the exit node of the program according to the static
analysis: i.e., R = (lfpF ) (cx ). Then, we de�ne safe, unsafe, and
candidate patches as follows:

SafeR =
[
{patch | h_, _, _, _, patch, _i 2 R}

UnSafeR =
[
{patchNot | h_, _, _, _, _, patchNoti 2 R}

CandR = SafeR \ UnSafeR
SafeR contains the patches that are guaranteed to safely deallocate
some object. UnSafeR is the set of patches that may be unsafe for
some object. Excluding UnSafeR from SafeR , we obtain the set of
candidate patches that we can use in repairing the program.

LetM : CandR ! P (R) be the function from candidate patches
to the reachable states that can be safely deallocated by the corre-
sponding patches:

M (c ) = {ho,may,must,mustNot, patch, patchNoti 2 R | c 2 patch}
For example,M describes the incidence matrix in Section 2.2. Then,
the problem of �nding correct patches is de�ned as follows.

De�nition 3.1 (The Correct Patch Problem). Find a subset C ✓
CandR of candidate patches such that
• C covers the reachable states R, i.e., R =

S
c 2C M (c ), and

• the chosen subsets in M (c ) (where c 2 C) are pairwise dis-
joint, i.e.,M (c1) \M (c2) = ; for all c1, c2 2 C .

The �rst condition means that all allocated objects must be deallo-
cated (i.e. no memory-leaks). The second one means that every allo-
cated object is deallocated no more than once (i.e. no double-frees).
We guarantee the absence of use-after-frees as well because the

patches that may cause use-after-free are all collected in UnSafeR
and already excluded from CandR .

Note that this is an instance of the exact cover problem, a well-
known NP-complete problem [9]. We solve the exact cover problem
by encoding it as boolean satis�ability and leveraging an o�-the-
shelf SAT solver. Let R = {r1, . . . , rm } be the set of reachable object
states and CandR = {c1, . . . , cn } be the set of candidate patches
for R. Let C ✓ CandR be the solution of the patch problem (De�-
nition 3.2). We introduce boolean variables Si (1  i  n) and Ti j
(1  i  n, 1  j  m) to encode the solution of the patch problem
and the functionM :

Si () ci 2 C, Ti j () r j 2 M (ci ).

That is, Si is true i� the patch candidate ci 2 Cand is included in
the solution C , and Ti j is true i� the object state r j 2 R is deallo-
cated by the patch ci . Then, we can encode the two conditions in
De�nition 3.2 by boolean constraints �1 and �2:

�1 =
m̂

j=1

n_

i=1
Ti j ^ Si

�2 =
m̂

j=1

n̂

i1=1

n̂

i2=1

⇣
(i1 , i2) =) ¬

⇣
(Ti1 j ^ Si1 ) ^ (Ti2 j ^ Si2 )

⌘⌘

The formula �1 encodes the �rst condition of De�nition 3.2: for any
reachable object r j , some patch ci in the solution must deallocate
the object. The formula �2 encodes the second condition: for any
reachable object r j , two di�erent patches ci1 and ci2 in the solution
do not deallocate the object r j at the same time. Finding a satisfying
assignment of �1 ^ �2, which assigns truth values to variables Si ,
determines the solution C . M��F�� succeeds to repair the input
program i� �1 ^ �2 is satis�able.

3.3.2 Ensuring Safety during Patch Generation. Now we explain
the assumption behind the basic method and how to address it. Con-
sider the code: p=malloc(); *p=malloc();, where two objects o1
and o2 are allocated and pointed to by p and *p, respectively. Our
method �nds out that the object o1 can be deallocated by free(p)
and o2 by free(*p) at the end of the code. Thus, the method gen-
erates one of the following two �xes:

(1) p=malloc(); *p=malloc(); free(*p); free(p);
(2) p=malloc(); *p=malloc(); free(p); free(*p);

However, the second one is not safe because the object pointed
to by p is deallocated by free(p) and then dereferenced by the
subsequent deallocation free(*p), causing a use-after-free. Note
that this type of use-after-free is caused by the inserted patches,
not by the ordinary uses present in the original code (for which the
our method guarantees the safety).

We can simply address this problem by assuming that the input
program is written in a way that a temporary variable is introduced
whenever a pointer expression is dereferenced. For example, we
assume that the code above has been transformed to the follow-
ing before we apply our algorithm: p=malloc(); *p=malloc();
tmp=*p; where variable tmp is created to store the value of the
pointer expression *p. Then we can avoid the problem of the ba-
sic method by generating patches whose pointer expressions are

approx. by 
static analysis SAT encoding

FSE
’18

Static Analysis SAT Solver

exact cover problem
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“Supremely well-written and is clearly situated within related work, 
addressing a clearly high-profile long-standing problem of 

scalability.” (from OOPSLA reviews)

“There is a novel idea, which is not only neat and elegant, but I think 
may apply to other machine learning domains in program 

analysis.” (from OOPSLA reviews)

“Overall, the paper addresses an important problem advancing the state 
of the art in the very interesting and promising area of data-driven 

program analysis.” (from OOPSLA reviews)

“I really enjoyed reading. It tackles a fundamental problem in 
program analysis -- developing heuristics to localize precision, and 

presents a very novel approach.” (from TOPLAS reviews)

“The algorithm that automatically generates search heuristics for concolic 
testing is novel and very interesting.” (from ICSE reviews)

Being recognized as a new and promising research direction



Future Research Directions

• Just started; Need to extend depth and breadth

• Foundational algorithms for data-driven program analysis

• expressiveness, efficiency, generality, automation

• unified and reusable framework

• Applications to various real problems

• heuristics ⨉ analyses ⨉ languages

• Deployment in industrial tools
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Summary
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• Goal: Achieving the ideal program analysis technology

• Approach: Data-driven program analysis

• Research Directions: 

• new and foundational algorithms 

• practical and diverse applications

• Impacts:

• solving the longstanding open problem

• paradigm-shift in program analysis research

Our Data-Driven Program Analysis
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• Goal: Achieving the ideal program analysis technology

• Approach: Data-driven program analysis

• Research Directions: 

• new and foundational algorithms 

• practical and diverse applications

• Impacts:

• solving the longstanding open problem

• paradigm-shift in program analysis research

Our Data-Driven Program Analysis

Thank you
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Learning Algorithm Detail

• Each sub-heuristic fi is a boolean combination of features 

• The learning problem:  
 
Find f1, f2, …, fk that maximizes the performance of program 
analysis over codebase

• Our algorithm reduces the search space from Sk to k·S 
while formally guaranteeing to preserve global maxima

• Efficient algorithm for searching the subspace S via 
iterative and greedy refinement 
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3.3 Modeling of Context-Selection Heuristics

To enable learning, we first need to define a hypothesis space of the selection heuristics, which is
called model or inductive bias in the machine learning community. That is, we need to choose and
represent a model which is a restricted subset of the entire selection heuristics. We use a nonlinear,
disjunctive model that combines atomic features with boolean formulas. Use of the nonlinear model
is a key to success in our approach; the linear model used in prior work [Oh et al. 2015] is not
expressive enough to capture useful context-selection heuristics required for points-to analysis for
Java (Section 4).
We assume that a set of atomic features is given: A = {a1,a2, . . . ,an}. An atomic feature ai

describes a property of methods; it is a function from programs to predicates on methods:

ai (P) : MP → {true, false}.

The atomic features we used in experiments are described in Section 3.6. We define the following
set of boolean formulas over the atomic features:

f → true | false | ai ∈ A | ¬f | f1 ∧ f2 | f1 ∨ f2

Given a program P , a boolean formula f means a set of methods:

[[true]]P =MP [[¬f ]]P =MP \ [[f ]]P
[[false]]P = ∅ [[f1 ∧ f2]]P = [[f1]]P ∩ [[f2]]P

[[ai ]]P = {m ∈ MP | ai (P)(m) = true} [[f1 ∨ f2]]P = [[f1]]P ∪ [[f2]]P

Suppose we are given a vector Π of k boolean formulas:

Π = ⟨f1, . . . , fk ⟩.

This vector will become the parameter of our model. Given a parameter Π = ⟨f1, . . . , fk ⟩, we define
the model (i.e., parameterized heuristic), denoted HΠ , as follows:

HΠ(P) = λm ∈ MP .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

k ifm ∈ [[fk ]]P
k − 1 ifm ∈ [[fk−1]]P ∧m ! [[fk ]]P

· · ·
k − i ifm ∈ [[fk−i ]]P ∧m !

⋃
k≥j>k−i [[fj ]]P

· · ·
1 ifm ∈ [[f1]]P ∧m !

⋃
k≥j>1[[fj ]]P

0 otherwise

Given P , the parameterized heuristic assigns a context depth j to each method, where the depth j is
determined according to the model parameter Π. A methodm is assigned the depth j if the j-th
boolean formula fj of Π includes the methodm, i.e.,m ∈ [[fj ]]P , andm is not implied by any other
formulas fj+1, fj+2, . . . , fk at higher levels. That is, whenm belongs to both fi and fj (i > j), we
favor assigning the greater context-depth i tom.

3.4 The Learning Problem

Once we define a model HΠ , learning a good context-selection heuristic corresponds to finding
a good model parameter Π. Given a codebase P = {P1, . . . , Pm} and the modelHΠ , we define the
learning problem as the following optimization problem:

Find Π that minimizes
∑

P ∈P

cost(FP (HΠ(P))) while satisfying

∑
P ∈P |proved(FP (HΠ(P)))|∑

P ∈P |proved(FP (k))|
≥ γ . (1)

That is, we aim to find a parameter Π that minimizes the cost of the analysis over the codebase

while satisfying the precision constraint,
∑
P∈P |proved(FP (HΠ(P ))) |∑

P∈P |proved(FP (k)) |
≥ γ , which asserts that the ratio of
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