A 7]t MEE Z2a 2

Machine Learning-Guided
Adaptive Program Analysis

Aug. 19,2016 @SIGPL Summer School

Static Program Analysis

* Predict program behavior statically and automatically

static: before execution, at compile-time

automatic: sw is analyzed by sw (“static analyzers”)
- Applications

bug-finding. e.g., find runtime failures of programs
security. e.g., is this app malicious or benign?
verification. e.g., does the program meet its specification?

compiler optimization, e.g., automatic parallelization

Principle of Program Analysis

sound unsound
error error
States States

prograim program

NEIES) states

Principle of Program Analysis

Imprecise precise

error
states

error

states

program
states

program
states

VS.

false aIarms}

Principle of Program Analysis

Challenge in Static Analysis

. @ key: “selectivity”

scalability

precision 6

Flow-Sensitivity

=

assert(y>0)

[0.0]

[0.0]

[0.0]

[, 1]

[1.1]

[0.0]

[2.2]

[, 1]

[, 1]

[2.2]

precise but costly

Flow-Insensitivity

y [[0,+00 cheap but imprecise

assert(y>0)

Selective Flow-Sensitivity

FS : {x,y} FI : {z}
x | [0,0]
y | [00]

X [[l,+00]]
y BLO]

X [[l,+00] |
y | [0,0]

X [[],+00]
y [[I,+00]

assert(y>0)

Selective Flow-Sensitivity

FS :{y,z} FI : {x}

y | [0,0]
z | [I,1]

y | [0,0]
z | [1,1]

X [O,+ OO]
y | [0,0]
z | [2,2]

y [[0,+00]

Z [2,21

fail to prove

cl:

c2:

c3:

c4:

Cco:

Context-Sensitivity

int h(n) {ret n;}

void f(a) {

X = h(a);

assert(x > 1); // Q1 <= 3lways holds

y = h(input());

assert(y > 1); // Q2 <= does not always hold

}

void g() {f(8);}

void m() {
f(4);

}

g()
gl()

n
’
n

’

cl:

c2:

c3:

c4:

co:

int h(n) {ret n;}

void f(a) {

X = h(a);

assert(x > 1); // Q1
y = h(input());
assert(y > 1); // Q2

}

void g() {f(8);}

void m() {
f(4);

}

gl()
g()

’

Context-Sensitivity

precise but costly

Context-lnsensitivity

[-OO,+OO]

5901dfka)é“‘

cl: & x = h(a); P
assert(x > 1); /7 Q1
c2: Yy = h(input()]; c4

assert(y > 1); // Q2
}
c3: void g() {f(8);} ﬂ é ﬂ @

c5,cb c3 cl,c?

void m() {
cd: f(4);
c5: g();
c6: g();

} cheap but imprecise

Selective Context-Sensitivity

int h(n) {ret n;}

void f(a) {
X = h(a);
assert(x > 1): // Q1
y = h(input());

| assert(y > 1); // Q2 ///ff;///"
+

c3:

c4:

co:

void g() {f(8);}

void m() {
f(4);
g();
g();

s

o

{c5,c6}

c3

How to select?

® Often done manually by analysis designers
® Finding a good selection strategy is an art:

® |ntractably large space, if not infinite:
ex) 2V#" different abstractions for FS

® Most of them are too imprecise or costly

ex) P(1%,y,2}) = {S:0G 0 XY HOREOSZL XY, Z)}

Our Research

® Develop techniques for automatically finding the
selection strategies

o [PLDI14, OOPSLA’I5 TOPLAS’|6,SAS |16,APLAS’ | 6]

® Use machine learning techniques to learn a good
strategy from freely available data.

GitHub % Jourte © Bitbucket

Contents

Learning via black-box optimization [OOPSLA’I 5]

Learning via white-box optimization [APLAS’ | 6]

Learning from automatically labelled data [SAS’| 6]

Learning with automatically generated features (in progress)
Learning unsoundness strategy (in progress)

Learning search strategy of concolic testing (in progress)

Learning static analyzers (in progress)

Learning via Blackbox
Optimization
(OOPSLA’IS)

Static Analyzer

number of
proved assertions

F(p,a) = n

abstraction

(e.g., a set of variables)

Overall Approach

® Parameterized adaptation strategy

Sw:pgm — 2Var

® |earn a good parameter W from existing codebase

4)

Pi, P2, ...,Pm — 4%

__ J
Codebase

® For new program P, run static analysis with Sw(P)

|. Parameterized Strategy

Sw:pgm — 2Var

(1) Represent program variables as feature vectors.
(2) Compute the score of each variable.

(3) Choose the top-k variables based on the score.

21

(1) Features

® Predicates over variables:

f={fi,f....fs} (fi: Var = {0,1})

® 45 simple syntactic features for variables: e.g,

® |ocal / global variable, passed to / returned from
malloc, incremented by constants, etc

® Represent each variable as a feature vector:

f(x) = (1), (), F3(),Fa(x),fs(x))

22

(2) Scoring

® The parameter w is a real-valued vector: e.g.,
w =<0.9,0.5,-0.6,0.7,0.3)
® Compute scores of variables:

,0,1,0,0,-<0.9,0.5,-0.6,0.7,0.3) = 0.3
,0,1,0,15-<0.9,0.5,-0.6,0.7,0.3) = 0.6
o, 1,1

score(x) = (|
I |
0, ,0):¢0.9,0.5,-0.6,0.7,0.3) = 0.1

=<
score(y) =
score(z) = ¢

’y '

(3) Choose Top-k Variables

® Choose the top-k variables based on their scores:
e.g., when k=2,

score(x) = 0.3

score(y) = 0.6 > {x,y}

score(z) = 0.1

® In experiments, we chosen 0% of variables with
highest scores.

24

2. Learn a Good Parameter

4)

PI, P2, ...,Pm i W

__ y,
Codebase

® Solve the optimization problem:

Find w that maximizes Z F(P;, Sw(F;))
P.

Learning via Random
Sampling

repeat N times

pick w € R" randomly

evaluate Y F(P;, Sw(P,))
P;

return best w found

26

count

300

200

100

Learning via Random
Sampling

20 40 60
quality

80

27

Bayesian Optimization

® A powerful method for solving difficult black-box
optimization problems.

® Especially powerful when the objective function is
expensive to evaluate.

® Key idea: use a probabilistic model to reduce the number
of objective function evaluations.

28

Learning via Bayesian Optimization

repeat N times

select a promising w using the model

evaluate Y F(P;, Sw(P;))
P

update the probabilistic model

return best w found

® Probabilistic model: Gaussian processes

® Selection strategy: Expected improvement

29

Learning via Bayesian Optimization

300

200

count

100

20

40
quality

60

80

30

Effectiveness

® Implemented in Sparrow, an interval analyzer for C

® Evaluated on open-source benchmarks

Precision
F FS
_ -
0 100
Cost
F FS

| x | 8x

31

Automatically Generating
Features
(In Progress)

Limitation: Feature Engineering

® The success of ML heavily depends on the “features”

® Feature engineering is nontrivial and time-consuming

® Features do not generalize to other domains

Type| # Features

A 1 used in array declarations (e.g., a[c])
2 used in memory allocation (e.g., malloc(c))
3 used in the righthand-side of an assignment (e.g., x = ¢)
4 used with the less-than operator (e.g, x < ¢)
5 used with the greater-than operator (e.g., x > ¢)
6 used with < (e.g., x < ¢)
7 used with > (e.g., x > ¢)
8 used with the equality operator (e.g., x == ¢)
9 used with the not-equality operator (e.g., x ! = ¢)
10 | used within other conditional expressions (e.g., x < c+y)
11 | used inside loops
12 | used in return statements (e.g., return c)
13 | constant zero

B [14| 1V2)A3
15 | (1V2)A(AVEVEVT)
16 | (1v2)A(8V9)
17 | 1v2)all
18 | (1v2)A12
19 | 1313
20 | 13A(4V5EV6VT)
21 | 13A(8V9)
22 | 13N 11
23 | 13A12

Type| # Features

A 1 Tocal variable
2 | global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = ¢l + ¢2)
8 compared with a constant expression (e.g., x < ¢)
9 compared with an other variable (e.g., x < y)
10 | negated in a conditional expression (e.g., if (!x))
11 | directly used in malloc (e.g., malloc(x))
12 | indirectly used in malloc (e.g., y = x; malloc(y))
13 | directly used in realloc (e.g., realloc(x))
14 | indirectly used in realloc (e.g., y = x; realloc(y))
15 | directly returned from malloc (e.g., x = malloc(e))
16 | indirectly returned from malloc
17 | directly returned from realloc (e.g., x = realloc(e))
18 | indirectly returned from realloc
19 | incremented by one (e.g., x =x + 1)
20 | incremented by a constant expr. (e.g., X = x + (1+2))
21 | incremented by a variable (e.g., x =x +y)
22 | decremented by one (e.g.,x =x-1)
23 | decremented by a constant expr (e.g., x = x - (1+2))
24 | decremented by a variable (e.g., x = x - y)
25 | multiplied by a constant (e.g., x =x * 2)
26 | multiplied by a variable (e.g., x = x *y)
27 | incremented pointer (e.g., p++)
28 | used as an array index (e.g., a[x])
29 | used in an array expr. (e.g., x[e])
30 | returned from an unknown library function
31 | modified inside a recursive function
32 | modified inside a local loop
33 | read inside a local loop

B [34 [TASA(IIVIZ)
35 | 2A8A (11V 12)
36 | 1A (11V12) A (19V 20)
37 | 2A (11V12) A (19 V 20)
38 | 1A (11V12) A (15 V 16)
39 | 2 (11V 12) A (15 Vv 16)
40 | (11v12) A 29
41 | (15V 16) A 29
42 | 1A (19V20) A 33
43 | 2/ (19V 20) A 33
44 | 1A (19V20) A 33
45 | 2 A (19 V 20) A —33

Type| # Features
A 1 leaf function
2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 | write to a structure field
11 | read from a structure field
12 | directly return a constant expression
13 | indirectly return a constant expression
14 | directly return an allocated memory
15 | indirectly return an allocated memory
16 | directly return a reallocated memory
17 | indirectly return a reallocated memory
18 | return expression involves field access
19 | return value depends on a structure field
20 | return void
21 | directly invoked with a constant
22 | constant is passed to an argument
23 | invoked with an unknown value
24 | functions having no arguments
25 | functions having one argument
26 | functions having more than one argument
27 | functions having an integer argument
28 | functions having a pointer argument
29 | functions having a structure as an argument
B [30 | 2A(21V22) A (14V 15)
31 | 2A (21 VvV 22) A—(14V 15)
32 | 2A23 A (14'V 15)
33 | 2A23 A (14 V 15)
34 | 2A(21V22) A (16 V 17)
35 | 2A(21V22) A—(16V 17)
36 | 2A23A (16 V 17)
37 | 2A23A—(16V 17)
38 | (21V22) A-23

flow-sensitivity

context-sensitivity

widening thresholds

33

Automatic Feature Generation

Before
Hand-crafted Parameter Adaptation
Codebase > > >
features values Strategy
New method
Codebase s Features ,| Parameter ,| Adaptation
values Strategy

(analogous to representation learning, deep learning, etc in ML)

Example: Flow-Sensitive Analysis

® A query-based, partially flow-sensitive interval analysis

® The analysis uses a query-classifier C : Query — {l,0}

i |x=0; y=0; z=dinput(); w = 0;
2 y = X; yt+;
3 |assert (y > 0); // Query 1 provable
4 assert (z > 0); // Query 2 unprovable
s |assert (w == 0); // Query 3 unprovable
flow-sensitive result flow-1nsensitive result
line abstract state abstract state
1 {x|—>00,yl—>_0,0:}
2 | {z—[0,0],y — [1,1]}
4 {z +—[0,0],y — [1,1]}
5 {x —[0,0],y — [1,1]}

Learning a Query Classifier

Standard binary classification:

(i, 0i) pizy > {(vi, bi) iz - C:B" — B
(UZ' - Bk)

standard
learning algorithms

feature
extraction

® Feature extraction is a key to success

® Raw data should be converted to suitable representations
from which classification algorithms could find useful patterns

We aim to automatically find the right representation

36

Feature Extraction

A feature

. . describ t
® Features and matching algorithm: G)

of queries

® asetof features: 11 = {r,...,m)

e match : Query X Feature — B

® Transform the query q into the feature vector:

(match(q,71), ..., match(q, 7%))

37

Generating Features
II={m,..., 7%}
A feature is a graph that describes data flows of queries
What makes good features!?
® selective to key aspects for discrimination
® invariant to irrelevant aspects for generalization
Generating features:
® (Generate feature programs by running reducer
® Represent the feature programs by data-flow graphs

11 is the set of all data flow graphs generated from the
codebase

38

Generating Features

® Feature program P is a minimal program such that
¢(P) = FI(P) = unproven \ F'S(P) = proven

® Generic program reducer: e.g., C-Reduce [PLDI’|2]

reduce : P x (P—B) - P

® Reducing programs while preserving the condition

reduce(P, ¢)

generates feature programs.

39

o N N U BAWND =

Generating Features

® Reduce programs while preserving the condition

¢(P) = FI(P) = unproven A\ FS(P) = proven

a=0; b= 0;
while (1) { 1 a = 0;
b = unknown(); » while (1) {
if (a > b) reduce(P, ¢) 3 if (a < 3)
if (a < 3) —> 4 assert (a < 5);
assert (a < b); 5 a++;
at++; 6

}

40

Generating Features

® Represent the features by abstract data flow graphs

(o Y | e N \ R

id :=1d + ¢

a = 0;
while (1) {
if (a < 3))
assert (a < b); =
a++; id :

()

}

® The right level of abstraction is learned from codebase

41

Matching Algorithm

match : Query x Feature — B

id :=1d + ¢

id :

1i1d < ¢

1 a=0; b= 0;
» while (1) {
5 ; b = unknown();
C 4 if (a > b)
_ 5 if (a < 3)
6 assert (a < 5);
7 at+;
s}
&

Subgraph inclusion:

(Nl,El) C (NQ,EQ) < N1 C N2 /\E1 C E;

id:= T | [id>idF

Id :=1d + ¢

~

id:=cr—id <c

42

Performance

® Partially flow-sensitive interval analysis

® Partially relational octagon analysis

Query Selection Analysis
Prove Sec
Trial | Precision | Recall ITV IMPCT ML ITV IMPCT ML Quality Cost
1 59.8 % 71.2 % 7128 7192 7181 772 4496.8 1098.8 | 82.8 % 8.8 %
2 70.3 % 92.0 % 6792 6926 6918 376.7 8568.4 958.3 94.0 % 7.1 %
3 68.0 % 90.3 % 1014 1129 1126 324.0 972.3 453.0 974 % | 19.9 %
4 82.8 % 72.7 % 6877 6962 6940 370.5 8838 984.6 74.1 % 7.3 %
5 68.1 % 67.1 % 2585 2657 2636 418.1 1392.7 624.3 70.8 % | 21.2 %
TOTAL 70.5 % 81.5% | 24396 24866 24801 | 2261.3 | 24268.2 | 4119.0 | 86.2 % 8.4 %

43

Other PA + ML
Approaches

Learning via White-box
Optimization [APLAS’1 6]

The black-box optimization method is too slow when the
codebase is large

Replace it to an easy-to-solve white-box problem by using
oracle:

CD})ZQJP — R.

Find w* that minimizes Z (scorep(j) — O(]))2
1€lp

® Oracle is obtained from a single run of codebase

®)6x faster to learn a comparable strategy

45

Learning from Automatically
Labelled Data [SAS’1 6]

® |earning a variable clustering strategy for Octagon is too
difficult to solve with black-box optimization

® Replace it to a (much easier) supervised-learning problem:

al—a|b|—bjc|—c|i|—1
ald | T (Y| T[T T || T
—a| T (% |T|%|T|T|T|T
bl T (| T |T|T|%|T
b T %|[T|%|[T|T|[T]T
c| T T {T|T (s T|T|T
—c| T T |{T| T |T|%|T|T
AT T T T (T T [T
—3i{ T[T %[T]T[T]|%

® Who label the data?! by impact pre-analysis [PLDI’ | 4].

® The ML-guided Octagon analysis is 33x faster than
the pre-analysis-guided one with 2% decrease in precision.

46

Learning Unsoundness
Strategies (in submission)

sound
uniformly YRLE 23%
unsound FN: 85%

False Negatives a7

False
Positives

Data-Driven Concolic Testing
(in progress)

® The efficacy of concolic testing heavily depends on the
search strategy bl /

S € Strateqy = Path — Branch 0

® Search strategies are manually designed (heuristics) b3

¢ c.g. Sranda Sdf87 Scfga chsa s

® a huge amount of engineering efforts

® sub-optimal performance

® Automate the process: Sy : Path — Branch

Find 6™ that maximizes Z C(P;, Sp~)

48

Learning Static Analyzers
(in progress)

® The usage of static analyzers is limited in extreme (yet daily
in practice) situations:

® |t cannot analyze unparsable programs.
® |t does not scale to the entire linux package.
® A C analyzer cannot be used even for C++ code.

® A source code analyzer cannot be used for binary code.

AFQ‘ learn
CS/OQZY“OZI)‘ S

The Early Bird l_g.!,;j

49

Summary

® Adaptation is a key problem in static analysis
® Using ML is a promising and exciting direction
® Something is done with hand-tuning?

® Parameterize it

® | earn the best parameters from data

Thank you

50

