
머신러닝 기반 선별적 정적 분석 
Machine Learning Approaches to 

Selective Program Analyses 

Feb. 17, 2016 @SIGPL Winter workshop

오학주
고려대학교 프로그래밍 연구실

(with 채권수, 홍성준, 이민아, 양홍석, 이광근)



2

Scalability and Precision  
via Selectivity 

precision

scalability

?



3

Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1

x [1,1]
y [0,0]
z [1,1]

x [1,1]
y [0,0]
z [2,2]

x [1,1]
y [1,1]
z [2,2]

precise but costly

x [0,0]
y [0,0]
z [1,1]



4

Flow-Insensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1

x [0,+∞]

y [0,+∞]

z [1,+∞]

cheap but imprecise



5

Selective Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1
FS : {x,y} FI : {z}

x [0,0]
y [0,0]

x [1,+∞]
y [0,0]

x [1,+∞]
y [0,0]

x [1,+∞]
y [1,+∞]

z [1,+∞]



6

Selective Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1
FS : {y,z} FI : {x}
y [0,0]
z [1,1]

y [0,0]
z [1,1]

y [0,0]
z [2,2]

y [0,+∞]
z [2,2]

x [0,+∞]

fail to prove



7

Hard Search Problem

• Intractably large space, if not infinite

• 2Var different abstractions for FS

• Most of them are too imprecise or costly

• P({x,y,z}) = {∅,{x},{y},{z},{x,y},{y,z},{x,z},{x,y,z}}



8

Our Research

• How to efficiently find a good abstraction?

• Two directions:

• PL approaches [PLDI’14, TOPLAS’16]

• ML approaches [OOPSLA’15, on-going work]



9

Learning-based Approach

• Learn a good parameter W from existing codebase

• For new program P, run static analysis with Sw(P)

P1, P2, …,Pm

Codebase

⇒ W

• Parameterized adaptation strategy

Sw : pgm → 2Var

OOPSLA
’15



10

1. Parameterized Strategy

(1) Represent program variables as feature vectors.

(2) Compute the score of each variable.

(3) Choose the top-k variables based on the score. 

Sw : pgm → 2Var



11

(1) Features

• Predicates over variables:

f = {f1, f2,…,f5} (fi :  Var → {0,1})

• 45 simple syntactic features for variables: e.g, 

• local / global variable, passed to / returned from 
malloc, incremented by constants, etc

f(x) = ⟨f1(x), f2(x), f3(x),f4(x),f5(x)⟩
• Represent each variable as a feature vector:



12

(2) Scoring

• The parameter w is a real-valued vector: e.g., 

• Compute scores of variables:

w = ⟨0.9, 0.5, -0.6, 0.7, 0.3⟩

score(x) = ⟨1,0,1,0,0⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.3
score(y) = ⟨1,0,1,0,1⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.6
score(z) = ⟨0,0,1,1,0⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.1



13

(3) Choose Top-k Variables

• Choose the top-k variables based on their scores:  
e.g., when k=2,

score(x) = 0.3
score(y) = 0.6
score(z) = 0.1

{x,y}

• In experiments, we chosen 10% of variables with 
highest scores.



14

2. Learn a Good Parameter

• Solve the optimization problem:

P1, P2, …,Pm

Codebase

⇒ W

X

Pi

F (Pi, Sw(Pi))Find w that maximizes



15

Solving the Opt. Problem

benchmark programs into 20 training programs and 10 test
programs. An adaptation strategy is learned from the 20
training programs, and tested against the remaining 10 test
programs. We repeated this experiment for five times. The
results of each trial are shown in Table 4. In these experi-
ments, we set k = 0.1, which means that flow-sensitivity
is applied to only the 10% of total abstract locations (i.e.,
program variables, structure fields and allocation sites). We
compared the performance of a flow-insensitive analysis
(FI), a fully flow-sensitive analysis (FS) and our partially
flow-sensitive variant (partial FS). To answer the second
question, we compared the performance of the Bayesian
optimisation-based learning algorithm against the random
sampling method.

Learning Table 4 shows the results of the training and test
phases for all the five trials. In total, the flow-insensitive
analysis (FI) proved 31,800 queries in the 20 training pro-
grams, while the fully flow-sensitive analysis (FS) proved
39,625 queries. During the learning phase, our algorithm
found a parameter w. On the training programs, the anal-
ysis with w proved, on average, 84.0% of FS-only queries,
that is, queries that were handled only by the flow-sensitive
analysis (FS). Finding such a good parameter for training
programs, let alone unseen test ones, is highly nontrivial. As
shown in Table 2, the number of parameters to tune at the
same time is 45 for flow-sensitivity. Manually searching for
a good parameter w for these 45 parameter over 18 training
programs is simply impossible. In fact, we tried to do this
manual search in the early stage of this work, but most of
our manual trials failed to find any useful parameter (Fig-
ure 2).

Figure 2 compares our learning algorithm based on
Bayesian optimisation against the one based on random sam-
pling. It shows the two distributions of the qualities of tried
parameters w (recorded in the x axis), where the first dis-
tribution uses parameters tried by random sampling over a
fixed time budget (12h) and the second, by Bayesian optimi-
sation over the same budget. By the quality of w, we mean
the percentage of FS-only queries proved by the analysis
with w. The results for random sampling (Figure 2(a)) con-
firm that the space for adaptation parameters w for partial
flow-sensitivity is nontrivial; most of the parameters do not
prove any queries. As a result, random sampling wastes most
of its execution time by running the static analysis that does
not prove any FS-only queries. This shortcoming is absent
in Figure 2(b) for Bayesian optimisation. In fact, most pa-
rameters found by Bayesian optimisation led to adaptation
strategies that prove about 70% of FS-only queries. Figure 3
shows how the best qualities found by Bayesian optimisation
and random sampling change as the learning proceeds. The
results compare the first 30 evaluations for the first training
set of our experiments, which show that Bayesian optimisa-
tion finds a better parameter (63.5%) with fewer evaluations.

Figure 3. Comparison of Bayesian optimisation with ran-
dom sampling

The random sampling method converged to the quality of
45.2%.

Testing For each of the five trials, we tested a parameter
learnt from 20 training programs, against 10 programs in
the test set. The results of this test phase are given in Table
4, and they show that the analysis with the learnt parame-
ters has a good precision/cost balance. In total, for 10 test
programs, the flow-insensitive analysis (FI) proved 14,055
queries, while the full flow-sensitive one (FS) proved 17,000
queries. The partially flow-sensitive version with a learnt
adaptation strategy proved on average 69.6% of the FS-only
queries. To do so, our partially flow-sensitive analysis in-
creases the cost of the FI analysis only moderately (by 1.7x),
while the FS analysis increases the analysis cost by 17.8x.

However, the results show that the analyses with the
learnt parameters are generally less precise in the test set
than the training set. For the five trials, our method has
proved, on average, 84.0% of FS-queries in the training set
and 69.6% in the test set.

Top-10 features The learnt parameter identified the fea-
tures that are important for flow-sensitivity. Because our
learning method computes the score of abstract locations
based on linear combination of features and parameter w,
the learnt parameter w means the relative importance of fea-
tures.

Figure 4 shows the 10 most important features identified
by our learning algorithm from ten trials (including the five
trials in Table 4 as well as additional five ones). For in-
stance, in the first trial, we found that the most important
features were #19, 32, 1, 4, 28, 33, 29, 3, 43, 18 in Table
2. These features say that accurately analysing, for instance,
variables incremented by one (#19) or modified inside a lo-
cal loop (#32), and local variables (#1) are important for
cost-effective flow-sensitive analysis. The histogram on the
right shows the number of times each feature appears in the
top-10 features during the ten trials. In all trials, features #19

X

Pi

F (Pi, Sw(Pi))Find w that maximizes

A:30 Lee et al.

Fig. 7: Quality of the learning algorithm with different r values

the analysis cost by 9.5x. Our selective technique proved 96.2% of queries that require
thresholds while only increasing the cost by 1.5x.

7.4. Performance of Ordinal Optimization
In Section 5.4, we incorporated ordinal optimization into our learning algorithm,
where the degree of approximation is controlled by the parameter r. The parameter
r is a real number ranging from 0 to 1. If r is 1, the cost of estimating performance
is same as that of measuring the exact performance value by analyzing all the pro-
gram components in an abstraction with high precision. If r is 0, the cost of estimating
performance is identical to that of evaluating the exact performance value by not an-
alyzing any component in the abstraction with high precision, often resulting in poor
quality. Therefore, we need to choose the proper value for r. We want r to be as small
as possible so that we can lower the overall cost of learning, while maintaining the
quality of analysis (i.e. precision of analysis) as high as possible.

Figure 7 shows the quality of the learning algorithm with ordinal optimization as
r increases. For each r, we ran our learning algorithm on a set of 20 programs and
obtained the quality of the best parameter found. We performed these experiments 10
times and averaged the results. Note that the quality drops by only 2 percent (from
76% to 74%) even when r is reduced to half of its original value (from 1 to 0.5). This
experiment provides empirical evidence of the reliability of ordinal optimization in
learning adaptation strategies of static analysis.

8. RELATED WORK AND DISCUSSION
Parametric Program Analysis. Parametric program analyses simply refer to a pro-

gram analysis that is equipped with a class of program abstractions and analyses a
given program by selecting abstractions from this class appropriately. Such analyses
commonly adopt counter-example-guided abstraction refinement, and selects a pro-
gram abstraction based on the feedback from a failed analysis run [?; ?; ?; ?; ?; ?; ?; ?].
Some exceptions to this common trend are to use the results of dynamic analysis [?; ?]
or pre-analysis [?; ?] for finding a good program abstraction.

However, automatically finding such a strategy is not what they are concerned with,
while it is the main goal of our work. All of the previous approaches focus on design-
ing a good fixed strategy that chooses a right abstraction for a given program and
a given query. A high-level idea of our work is to parameterise these adaptation (or
abstraction-selection) strategies, not just program abstractions, and to use an efficient
learning algorithm (such as Bayesian optimisation) to find right parameters for the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

• How to solve the optimization problem efficiently?

• Using ideas of Bayesian optimization and ordinal optimization



16

Effectiveness
• Implemented in Sparrow, an interval analyzer for C

• Evaluated on 30 open-source benchmarks

FSFI

0 100

SFS

70

Precision

FSFI

1x 18x

SFS

2x

Cost



17

Hurdle
• The success crucially depends on the choice of features

• Feature construction is nontrivial and tedious

• |analyzers| x |parameter types| x |query types|
A:18 Lee et al.

Type # Features
A 1 local variable

2 global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = c1 + c2)
8 compared with a constant expression (e.g., x < c)
9 compared with an other variable (e.g., x < y)
10 negated in a conditional expression (e.g., if (!x))
11 directly used in malloc (e.g., malloc(x))
12 indirectly used in malloc (e.g., y = x; malloc(y))
13 directly used in realloc (e.g., realloc(x))
14 indirectly used in realloc (e.g., y = x; realloc(y))
15 directly returned from malloc (e.g., x = malloc(e))
16 indirectly returned from malloc
17 directly returned from realloc (e.g., x = realloc(e))
18 indirectly returned from realloc
19 incremented by one (e.g., x = x + 1)
20 incremented by a constant expr. (e.g., x = x + (1+2))
21 incremented by a variable (e.g., x = x + y)
22 decremented by one (e.g., x = x - 1)
23 decremented by a constant expr (e.g., x = x - (1+2))
24 decremented by a variable (e.g., x = x - y)
25 multiplied by a constant (e.g., x = x * 2)
26 multiplied by a variable (e.g., x = x * y)
27 incremented pointer (e.g., p++)
28 used as an array index (e.g., a[x])
29 used in an array expr. (e.g., x[e])
30 returned from an unknown library function
31 modified inside a recursive function
32 modified inside a local loop
33 read inside a local loop

B 34 1 ^ 8 ^ (11 _ 12)
35 2 ^ 8 ^ (11 _ 12)
36 1 ^ (11 _ 12) ^ (19 _ 20)
37 2 ^ (11 _ 12) ^ (19 _ 20)
38 1 ^ (11 _ 12) ^ (15 _ 16)
39 2 ^ (11 _ 12) ^ (15 _ 16)
40 (11 _ 12) ^ 29
41 (15 _ 16) ^ 29
42 1 ^ (19 _ 20) ^ 33
43 2 ^ (19 _ 20) ^ 33
44 1 ^ (19 _ 20) ^ ¬33
45 2 ^ (19 _ 20) ^ ¬33

Table II: Features for partially flow-sensitive analysis. Features of Type A denote simple syntactic or semantic properties
for abstract locations (that is, program variables, structure fields and allocation sites). Features of Type B are various
combinations of simple features, and express patterns that variables are used in programs.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Adaptive Static Analysis via Learning with Bayesian Optimization A:19

Type # Features
A 1 leaf function

2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 write to a structure field
11 read from a structure field
12 directly return a constant expression
13 indirectly return a constant expression
14 directly return an allocated memory
15 indirectly return an allocated memory
16 directly return a reallocated memory
17 indirectly return a reallocated memory
18 return expression involves field access
19 return value depends on a structure field
20 return void
21 directly invoked with a constant
22 constant is passed to an argument
23 invoked with an unknown value
24 functions having no arguments
25 functions having one argument
26 functions having more than one argument
27 functions having an integer argument
28 functions having a pointer argument
29 functions having a structure as an argument

B 30 2 ^ (21 _ 22) ^ (14 _ 15)
31 2 ^ (21 _ 22) ^ ¬(14 _ 15)
32 2 ^ 23 ^ (14 _ 15)
33 2 ^ 23 ^ ¬(14 _ 15)
34 2 ^ (21 _ 22) ^ (16 _ 17)
35 2 ^ (21 _ 22) ^ ¬(16 _ 17)
36 2 ^ 23 ^ (16 _ 17)
37 2 ^ 23 ^ ¬(16 _ 17)
38 (21 _ 22) ^ ¬23

Table III: Features for partially context-sensitive analysis.

usage patterns of variables in the benchmark programs. For instance, feature 34 was
developed after we observed the following usage pattern of variables:

int x; // local variable

if (x < 10)

... = malloc (x);

It says that x is a local variable, and gets compared with a constant and passed as
an argument to a function that does memory allocation. Note that we included these
Type B features not because they are important for flow-sensitivity. We included them
to increase expressiveness, because our linear learning model with Type A features
only cannot express such usage patterns. Deciding whether they are important for
flow-sensitivity or not is the job of the learning algorithm.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Adaptive Static Analysis via Learning with Bayesian Optimization A:21

Type # Features
A 1 used in array declarations (e.g., a[c])

2 used in memory allocation (e.g., malloc(c))
3 used in the righthand-side of an assignment (e.g., x = c)
4 used with the less-than operator (e.g, x < c)
5 used with the greater-than operator (e.g., x > c)
6 used with  (e.g., x  c)
7 used with � (e.g., x � c)
8 used with the equality operator (e.g., x == c)
9 used with the not-equality operator (e.g., x ! = c)
10 used within other conditional expressions (e.g., x < c+y)
11 used inside loops
12 used in return statements (e.g., return c)
13 constant zero

B 14 (1 _ 2) ^ 3
15 (1 _ 2) ^ (4 _ 5 _ 6 _ 7)
16 (1 _ 2) ^ (8 _ 9)
17 (1 _ 2) ^ 11
18 (1 _ 2) ^ 12
19 13 ^ 3
20 13 ^ (4 _ 5 _ 6 _ 7)
21 13 ^ (8 _ 9)
22 13 ^ 11
23 13 ^ 12

Table IV: Features for widening-with-thresholds.

With a widening operator
`

, the upper bound A is computed by A = lim

i�0

X

i

, where
chain X

i

is defined as follows:
X

0

= ?
X

i+1

= X

i

F (X

i

) v X

i

= X

i

`
F (X

i

) otherwise

The abstract interpretation framework guarantees that the above chain is always fi-
nite and its limit (i.e., lim

i�0

X

i

) is an upper bound of the least fixed point of F [?]. For
instance, a simple widening operator for the interval domain works as follows: (For
brevity, we do not consider the bottom interval.)

[a, b]

`
[c, d] = [(c < a?�1 : a), (b < d? +1 : b)]

That is, the widening operator extrapolates any unstable bounds simply to infinity. For
instance, [1, 4]

`
[1, 7] = [1,+1].

Widening with Thresholds. The idea of widening-with-thresholds is to bound the ex-
trapolation of the widening using a pre-defined set of thresholds. For instance, suppose
we are given a set T = {8, 9} of thresholds. Then, applying widening [1, 4]

`
T

[1, 7] with
thresholds T = {8, 9} gives interval [1, 8], instead of [1,+1]. Here, threshold 8 is used
because it is the smallest value in T , which is greater than 7. If the result is still un-
stable in the subsequent iteration, the next smallest value in T , i.e., 9, is used to bound
the widening.

Formally, the widening-with-thresholds technique for the interval domain is defined
as follows. We assume that a set T ✓ Z [ {�1,+1} of thresholds is given. Without
loss of generality, let us assume that T = {t

1

, t

2

, . . . , t

n

}, t
1

< t

2

< · · · < t

n

, t
1

= �1,
and t

n

= +1. The widening operator parameterized by T is defined as follows:

[a, b]

`
T

[c, d] = ([a, b]

`
[c, d]) u d{[t

l

, t

u

] | t
l

, t

u

2 T ^ t

l

 min(a, c) ^ t

u

� max(b, d)}

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning with Automatic 
Feature Construction

18

On-go
ing

• Fully automatic learning approach

P1, P2, …,Pm

Features
1. Goal

We would like to build a decision maker

C : P ! B
which, for a given program P , makes a decision whether to apply
high precision (e.g., flow-sensitivity) or not. In particular, we aim to
learn the decision maker automatically from an existing codebase
P = {P1, P2, . . . , Pn}.

2. C-Like Programs

We represent a program P 2 P by a control-flow graph (C, ,!),
where C is the set of program points and (,!) ✓ C ⇥ C denotes
the control-flow relation between program points. Each program
point is associated with a command, and we consider a simple set
of commands that capture C-like programs as follows:

c ! skip | lv := e | lv := alloc(e) | assume(e < e)
e ! n | e+ e | lv | &lv

lv ! x | ⇤e | e[e]

3. A Generic Feature Language

We define a generic feature language L that describes syntactic
program properties in general. The language is defined as the set
of abstract program paths:

L = ĉ

⇤

where ĉ denotes the following abstract version of the commands:

ĉ ! skip | l̂v := ê | l̂v := alloc(ê) | assume(ê < ê)
ê ! c | ê + ê | l̂v | &l̂v

l̂v ! idn | ⇤ê | ê[ê]
The language is expressive enough to describe all the syntactic

features used in [1]. For example, string “assume(id1 < c), id2 :=
alloc(id1)” represents a program variable that is compared with a
constant expression and then used as an argument of a memory
allocation function.

We assume the two feature-manipulating functions are given:
•
extract 2 P ! }(L) takes a program and extracts the set of
features involved in the program.

•
match 2 P ⇥ L ! B takes a pair of a program and a feature,
and determines whether the program has the given feature.

4. Learning a Classifier from a Codebase

Setting

• Each program Pi in the codebase P = {P1, P2, . . . , Pn} has a
single query.

• A set of program features is given: ⇧ = {⇡1,⇡2, . . . ,⇡k} ✓ L

Training Data Generation Training data D ✓ Bk ⇥ B is gener-
ated as follows. For each Pi 2 P,

1. Represent Pi by the feature vector:

⇧(Pi) = hmatch(Pi,⇡1),match(Pi,⇡2), . . . ,match(Pi,⇡k)i

2. Analyze Pi with high precision and see if the query in P is
proved.
(a) If proved, put 1 at the end:

hmatch(Pi,⇡1),match(Pi,⇡2), . . . ,match(Pi,⇡k), 1i

(b) Otherwise:

hmatch(Pi,⇡1),match(Pi,⇡2), . . . ,match(Pi,⇡k), 0i

Learning a Classifier From the training data D ✓ Bk ⇥ B learn
a classifier C : P ! B using an off-the-shelf classification algo-
rithm (e.g., SVM).

5. Automatic Feature Construction

The success of our approach crucially depends on the choice of
the set ⇧ of program features. These golden features are usually
hand-crafted by human experts. Our goal is to automate this feature
construction process.

Setting

• A codebase P = {P1, P2, . . . , Pn}, where each program has a
single query.

• A parametric static analyzer F :

F : P⇥ B ! D
The analyzer takes a program and a precision parameter (either
1 or 0). D is the abstract domain of the analysis.

• An assertion checker proven : P ⇥ D ! B. The return value
informs whether the query in the program is proved or not.

• A program reducer:

reduce : P⇥ (P ! B) ! P
The reducer takes a program and a predicate, and removes
parts of the program as much as possible while preserving the
original result of the predicate.

Basic Idea We collect a set of tiny programs that capture the key
situations where the static analysis with high precision succeeds to
prove queries but the analysis with low precision does not.

1. Filter the set of precision-effective programs from the codebase:

P1 = {P | P 2 P ^ �(P ) = 1}
where

�(P ) = (proven(P, F (P, 0)) = 0 ^ proven(P, F (P, 1)) = 1)

2. Reduce the programs in P1 while preserving �:

P2 = {reduce(P,�) | P 2 P1}

3. Extract features from the reduced programs:

⇧ =
[

P2P2

extract(P )

Improvement However, this basic idea is likely to fail to capture
the key reason in the original program. The reducer is typically so
strong that it removes most of the reasons except for the most trivial
ones. For example, ...

To solve the problem, we apply a precision-decreasing program
transformation before reduction. Consider a program transformer
impair : P ! P such that for all P ,

F (P, 1) v F (impair(P ), 1)

We repeatedly apply impair while preserving �, i.e.,

proven(F (impair(P ), 0)) = 0 ^ proven(F (impair(p), 1)) = 1

Intuitively, this transformation removes most trivial reasons first, so
that the unique feature of the original program should survive after
the program reduction.

References

[1] Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. Learning a strategy
for adapting a program analysis via bayesian optimisation. In OOPSLA,
2015.

1

Training 
Examples



• Generate feature programs that capture the key 
reason why FS succeeds but FI fails.

19

double B[309]; 
main() { 
 for (int i=1;i<50; i++) { 
    B[i]; 
  } 
}

int j = 0; 
main() { 
  char num[5]; 
  int tmp = j++; 
  num[tmp]; 
}

• Apply FS to a new program, if it matches some 
feature program.

Key Ideas



Key Ideas

• Feature programs are automatically 
generated by using a general-purpose 
program reducer. 

20

1. Goal

We would like to build a decision maker

C : P ! B
which, for a given program P , makes a decision whether to apply
high precision (e.g., flow-sensitivity) or not. In particular, we aim to
learn the decision maker automatically from an existing codebase
P = {P1, P2, . . . , Pn}.

2. C-Like Programs

We represent a program P 2 P by a control-flow graph (C, ,!),
where C is the set of program points and (,!) ✓ C ⇥ C denotes
the control-flow relation between program points. Each program
point is associated with a command, and we consider a simple set
of commands that capture C-like programs as follows:

c ! skip | lv := e | lv := alloc(e) | assume(e < e)
e ! n | e+ e | lv | &lv

lv ! x | ⇤e | e[e]

3. A Generic Feature Language

We define a generic feature language L that describes syntactic
program properties in general. The language is defined as the set
of abstract program paths:

L = ĉ

⇤

where ĉ denotes the following abstract version of the commands:

ĉ ! skip | l̂v := ê | l̂v := alloc(ê) | assume(ê < ê)
ê ! c | ê + ê | l̂v | &l̂v

l̂v ! idn | ⇤ê | ê[ê]
The language is expressive enough to describe all the syntactic

features used in [1]. For example, string
“assume(id1 < c), id2 := alloc(id1)” represents a program
variable that is compared with a constant expression and then used
as an argument of a memory allocation function.

We assume the two feature-manipulating functions are given:
•
extract 2 P ! }(L) takes a program and extracts the set of
features involved in the program.

•
match 2 P ⇥ L ! B takes a pair of a program and a feature,
and determines whether the program has the given feature.

4. Learning a Classifier from a Codebase

Setting

• Each program Pi in the codebase P = {P1, P2, . . . , Pn} has a
single query.

• A set of program features is given: ⇧ = {⇡1,⇡2, . . . ,⇡k} ✓ L

Training Data Generation Training data D ✓ Bk ⇥ B is gener-
ated as follows. For each Pi 2 P,

1. Represent Pi by the feature vector:

⇧(Pi) = hmatch(Pi,⇡1),match(Pi,⇡2), . . . ,match(Pi,⇡k)i

2. Analyze Pi with high precision and see if the query in P is
proved.
(a) If proved, put 1 at the end:

hmatch(Pi,⇡1),match(Pi,⇡2), . . . ,match(Pi,⇡k), 1i

(b) Otherwise:

hmatch(Pi,⇡1),match(Pi,⇡2), . . . ,match(Pi,⇡k), 0i

Learning a Classifier From the training data D ✓ Bk ⇥ B learn
a classifier C : P ! B using an off-the-shelf classification algo-
rithm (e.g., SVM).

5. Automatic Feature Construction

The success of our approach crucially depends on the choice of
the set ⇧ of program features. These golden features are usually
hand-crafted by human experts. Our goal is to automate this feature
construction process.

Setting

• A codebase P = {P1, P2, . . . , Pn}, where each program has a
single query.

• A parametric static analyzer F :

F : P⇥ B ! D
The analyzer takes a program and a precision parameter (either
1 or 0). D is the abstract domain of the analysis.

• An assertion checker proven : P ⇥ D ! B. The return value
informs whether the query in the program is proved or not.

• A program reducer:

reduce : P⇥ (P ! B) ! P
The reducer takes a program and a predicate, and removes
parts of the program as much as possible while preserving the
original result of the predicate.

Basic Idea We collect a set of tiny programs that capture the key
situations where the static analysis with high precision succeeds to
prove queries but the analysis with low precision does not.

1. Filter the set of precision-effective programs from the codebase:

P1 = {P | P 2 P ^ �(P ) = 1}
where

�(P ) = (proven(P, F (P, 0)) = 0 ^ proven(P, F (P, 1)) = 1)

2. Reduce the programs in P1 while preserving �:

P2 = {reduce(P,�) | P 2 P1}

3. Extract features from the reduced programs:

⇧ =
[

P2P2

extract(P )

Improvement However, this basic idea is likely to fail to capture
the key reason in the original program. The reducer is typically so
strong that it removes most of the reasons except for the most trivial
ones. For example, ...

To solve the problem, we apply a precision-decreasing program
transformation before reduction. Consider a program transformer
impair : P ! P such that for all P ,

F (P, 1) v F (impair(P ), 1)

We repeatedly apply impair while preserving �, i.e.,

proven(F (impair(P ), 0)) = 0 ^ proven(F (impair(p), 1)) = 1

Intuitively, this transformation removes most trivial reasons first, so
that the unique feature of the original program should survive after
the program reduction.

References

[1] Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. Learning a strategy
for adapting a program analysis via bayesian optimisation. In OOPSLA,
2015.

1

• Keep reducing when FS succeeds but FI fails:

Test-Case Reduction for C Compiler Bugs

John Regehr
University of Utah

regehr@cs.utah.edu

Yang Chen
University of Utah

chenyang@cs.utah.edu

Pascal Cuoq
CEA LIST

pascal.cuoq@cea.fr

Eric Eide
University of Utah

eeide@cs.utah.edu

Chucky Ellison
University of Illinois

celliso2@illinois.edu

Xuejun Yang
University of Utah

jxyang@cs.utah.edu

Abstract
To report a compiler bug, one must often find a small test case
that triggers the bug. The existing approach to automated test-case
reduction, delta debugging, works by removing substrings of the
original input; the result is a concatenation of substrings that delta
cannot remove. We have found this approach less than ideal for
reducing C programs because it typically yields test cases that
are too large or even invalid (relying on undefined behavior). To
obtain small and valid test cases consistently, we designed and
implemented three new, domain-specific test-case reducers. The
best of these is based on a novel framework in which a generic
fixpoint computation invokes modular transformations that perform
reduction operations. This reducer produces outputs that are, on
average, more than 25 times smaller than those produced by our
other reducers or by the existing reducer that is most commonly
used by compiler developers. We conclude that effective program
reduction requires more than straightforward delta debugging.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; D.3.2 [Programming
Languages]: Language Classifications—C; D.3.4 [Programming
Languages]: Processors—compilers

Keywords compiler testing, compiler defect, automated testing,
random testing, bug reporting, test-case minimization

1. Introduction
Although many compiler bugs can be demonstrated by small test
cases, bugs in released compilers are more typically discovered
while building large projects. Before a bug can be reported, the
circumstances leading to it must be narrowed down. The most
important part of this process is test-case reduction: the construction
of a small input that triggers the compiler bug.

c� ACM, 2012. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2012 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Beijing,
China, Jun. 2012, http://doi.acm.org/10.1145/NNNNNNN.NNNNNNN

The importance of test-case reduction is emphasized in the GCC
documentation,1 which states that:

Our bug reporting instructions ask for the preprocessed
version of the file that triggers the bug. Often this file is
very large; there are several reasons for making it as small as
possible. . .

The instructions for submitting bug reports to the LLVM developers
also highlight the importance of test-case reduction.2 Indeed, LLVM
ships with the Bugpoint tool3 that automates reduction at the level of
LLVM IR. The importance that compiler developers place on small
test cases stems from the simple fact that manual test-case reduction
is both difficult and time consuming. With limited time to spend
fixing bugs, compiler writers require bug reporters to undertake the
effort of reducing large fault-causing inputs to small ones.

Like debugging, distilling a bug-causing compiler input to its
essence is often an exercise in trial and error. One must repeatedly
experiment by removing or simplifying pieces of the input program,
compiling and running the partially reduced program, and backtrack-
ing when a change to the input causes the compiler bug to no longer
be triggered. In some cases—for example, reducing a deterministic
assertion failure in the compiler—manual test-case reduction is te-
dious but tractable. In other cases—e.g., reducing a miscompilation
bug in a large, multi-threaded application—manual test-case reduc-
tion may be so difficult as to be infeasible. Our belief is that many
compiler bugs go unreported due to the high difficulty of isolating
them. When confronted with a compiler bug, a reasonable compiler
user might easily decide that the most economic course is to find a
workaround, and not to be “sidetracked” by the significant time and
effort required to produce a small test case and report the bug.

Our goal in this paper is to automate most or all of the work
required to reduce bug-triggering test cases for C compilers. Our
work is motivated by two problems that we have encountered
in applying state-of-the-art reducers. First, these tools get stuck
at local minima that are too large. This necessitates subsequent
manual reduction, preventing reportable compiler bugs from being
generated in an entirely automated fashion. We have developed
new reducers that use domain-specific knowledge to overcome the
barriers that trap previous tools. Second, existing test-case reducers
often generate test cases that execute undefined behaviors. These
test cases are useless because the C language standard guarantees

1 http://gcc.gnu.org/bugs/minimize.html
http://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
2 http://llvm.org/docs/HowToSubmitABug.html
3 http://llvm.org/docs/Bugpoint.html

1

“C-Reduce” [PLDI’12]

1. Goal

We would like to build a decision maker

C : P ! B
which, for a given program P , makes a decision whether to apply
high precision (e.g., flow-sensitivity) or not. In particular, we aim to
learn the decision maker automatically from an existing codebase
P = {P1, P2, . . . , Pn}.

2. C-Like Programs

We represent a program P 2 P by a control-flow graph (C, ,!),
where C is the set of program points and (,!) ✓ C ⇥ C denotes
the control-flow relation between program points. Each program
point is associated with a command, and we consider a simple set
of commands that capture C-like programs as follows:

c ! skip | lv := e | lv := alloc(e) | assume(e < e)
e ! n | e+ e | lv | &lv

lv ! x | ⇤e | e[e]

3. A Generic Feature Language

We define a generic feature language L that describes syntactic
program properties in general. The language is defined as the set
of abstract program paths:

L = ĉ

k

where ĉ denotes the following abstract version of the commands:

ĉ ! skip | l̂v := ê | l̂v := alloc(ê) | assume(ê < ê)
ê ! c | ê + ê | l̂v | &l̂v

l̂v ! idn | ⇤ê | ê[ê]
The language is expressive enough to describe all the syntactic

features used in [1]. For example, string
“assume(id1 < c), id2 := alloc(id1)” represents a program
variable that is compared with a constant expression and then used
as an argument of a memory allocation function.

We assume the two feature-manipulating functions are given:
•
extract 2 P ! }(L) takes a program and extracts the set of
features involved in the program.

•
match 2 P ⇥ L ! B takes a pair of a program and a feature,
and determines whether the program has the given feature.

4. Learning a Classifier from a Codebase

Setting

• Each program Pi in the codebase P = {P1, P2, . . . , Pn} has a
single query.

• A set of program features is given: ⇧ = {⇡1,⇡2, . . . ,⇡k} ✓ L

Training Data Generation Training data D ✓ Bk ⇥ B is gener-
ated as follows.
For each Pi 2 P,

1. Represent Pi by the feature vector:

⇧(Pi) = hmatch(Pi,⇡1),match(Pi,⇡2), . . . ,match(Pi,⇡k)i

2. Analyze Pi with high precision and see if the query in P is
proved.
(a) hmatch(Pi,⇡1),match(Pi,⇡2), . . . ,match(Pi,⇡k), 1i
(b) hmatch(Pi,⇡1),match(Pi,⇡2), . . . ,match(Pi,⇡k), 0i

Each program Pi 2 P is transformed into

D = {hmatch(Pi,⇡1), · · · ,match(Pi,⇡k), F (Pi, 1)i | Pi 2 P}

Learning a Classifier From the training data D ✓ Bk ⇥ B learn
a classifier C : P ! B using an off-the-shelf classification algo-
rithm (e.g., SVM).

5. Automatic Feature Construction

The success of our approach crucially depends on the choice of
the set ⇧ of program features. These golden features are usually
hand-crafted by human experts. Our goal is to automate this feature
construction process.

Setting

• A codebase P = {P1, P2, . . . , Pn}, where each program has a
single query.

• A parametric static analyzer F :

F : P⇥ B ! B
The analyzer takes a program and a precision parameter (either
1 or 0). D is the abstract domain of the analysis.

• An assertion checker proven : P ⇥ D ! B. The return value
informs whether the query in the program is proved or not.

• A program reducer:

reduce : P⇥ (P ! B) ! P
The reducer takes a program and a predicate, and removes
parts of the program as much as possible while preserving the
original result of the predicate.

Basic Idea We collect a set of tiny programs that capture the key
situations where the static analysis with high precision succeeds to
prove queries but the analysis with low precision does not.

1. Filter the set of precision-effective programs from the codebase:

P1 = {P | P 2 P ^ �(P ) = 1}
where

�(P ) = F (P, 0) = 0 ^ F (P, 1) = 1

2. Reduce the programs in P1 while preserving �:

P2 = {reduce(P,�) | P 2 P1}

3. Extract features from the reduced programs:

⇧ =
[

P2P2

extract(P )

Improvement However, this basic idea is likely to fail to capture
the key reason in the original program. The reducer is typically so
strong that it removes most of the reasons except for the most trivial
ones. For example, ...

To solve the problem, we apply a precision-decreasing program
transformation before reduction. Consider a program transformer
impair : P ! P such that for all P ,

F (P, 1) v F (impair(P ), 1)

We repeatedly apply impair while preserving �, i.e.,

proven(F (impair(P ), 0)) = 0 ^ proven(F (impair(p), 1)) = 1

Intuitively, this transformation removes most trivial reasons first, so
that the unique feature of the original program should survive after
the program reduction.

References

[1] Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. Learning a strategy
for adapting a program analysis via bayesian optimisation. In OOPSLA,
2015.

1



cf) Other Applications

• Bug-finding of static analyzers

• Alarm reduction:

21

a = input(); 
b = a; 
10 / b;

reduce a = input(); 
10 / a;

a = ↵ ^ b = a ^ b 6= 0 a = ↵ ^ a 6= 0=)



Summary

• Key problem in static analysis: automatic adaptation

• Promising approach: use ML [OOPSLA’15]

• Major hurdle: manual feature construction

• Our Solution: generate and match feature programs

22

Thank you


