AR 7|8 M BE 2
Machine Learning Approaches to
Selective Program Analyses

Feb. 17,2016 @SIGPL Winter workshop

Scalability and Precision
via Selectivity

@ O
@D

scalability

precision

Flow-Sensitivity

=

assert(y>0)

[0.0]

[0.0]

[0.0]

[, 1]

[1.1]

[0.0]

[2.2]

[, 1]

[, 1]

[2.2]

precise but costly

Flow-Insensitivity

y [[0,+00 cheap but imprecise

assert(y>0)

Selective Flow-Sensitivity

FS : {x,y} FI : {z}
x | [0,0]
y | [00]

X [[l,+00]]
y BLO]

X [[l,+00] |
y | [0,0]

X [[],+00]
y [[I,+00]

assert(y>0)

Selective Flow-Sensitivity

FS :{y,z} FI : {x}

y | [0,0]
z | [I,1]

y | [0,0]
z | [1,1]

X [O,+ OO]
y | [0,0]
z | [2,2]

y [[0,+00]

Z [2,21

fail to prove

Hard Search Problem

® |ntractably large space, if not infinite
e 2Vardifferent abstractions for FS

® Most of them are too imprecise or costly

® P(x.y.z}) = {S:0G5ty3izh U0Y hZhO6Eh X Y 21

Our Research

® How to efficiently find a good abstraction!?
® [wo directions:
® PL approaches [PLDI' 14, TOPLAS’| 6]

® ML approaches [OOPSLA’l5, on-going work]

sgurce

GitHub ' m Y Bitbucket

. \‘)

OQS» Learning-based Approach

® Parameterized adaptation strategy

Sw:pgm — 2Var

® |earn a good parameter W from existing codebase

4)

Pi, P2, ...,Pm — 4%

__ J
Codebase

® For new program P, run static analysis with Sw(P)

|. Parameterized Strategy

Sw:pgm — 2Var

(1) Represent program variables as feature vectors.
(2) Compute the score of each variable.

(3) Choose the top-k variables based on the score.

(1) Features

® Predicates over variables:

f={fi,f....fs} (fi: Var = {0,1})

® 45 simple syntactic features for variables: e.g,

® |ocal / global variable, passed to / returned from
malloc, incremented by constants, etc

® Represent each variable as a feature vector:

f(x) = (1), (), F3(),Fa(x),fs(x))

(2) Scoring

® The parameter w is a real-valued vector: e.g.,
w =<0.9,0.5,-0.6,0.7,0.3)
® Compute scores of variables:

,0,1,0,0,-<0.9,0.5,-0.6,0.7,0.3) = 0.3
,0,1,0,15-<0.9,0.5,-0.6,0.7,0.3) = 0.6
o, 1,1

score(x) = (|
I |
0, ,0):¢0.9,0.5,-0.6,0.7,0.3) = 0.1

=<
score(y) =
score(z) = ¢

’y '

(3) Choose Top-k Variables

® Choose the top-k variables based on their scores:
e.g., when k=2,

score(x) = 0.3

score(y) = 0.6 > {x,y}

score(z) = 0.1

® In experiments, we chosen 0% of variables with
highest scores.

2. Learn a Good Parameter

4)

PI, P2, ...,Pm i W

__ y,
Codebase

® Solve the optimization problem:

Find w that maximizes Z F(P;, Sw(F;))
P.

Solving the Opt. Problem

® How to solve the optimization problem efficiently?

Find w that maximizes F(P;, Sw(F;))
P;

® Using ideas of Bayesian optimization and ordinal optimization

Random sampling O Bayesian optimization

76 75 76
70.0 500 nntn BB,
67
)
63 ¢ 62 04

60.0 55

52.5
J

40.0
35.0

20.0
17.5

?—é 0.0

0.0 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 |5

Effectiveness

® Implemented in Sparrow, an interval analyzer for C

® Evaluated on 30 open-source benchmarks

Precision
F FS
_ -
0 100
Cost
F FS

| x | 8x

Hurdle

® The success crucially depends on the choice of features

® Feature construction is nontrivial and tedious

® |analyzers| x |parameter types| x |query typesj|

Type| # Features
A 1 used in array declarations (e.g., alc])

2 used in memory allocation (e.g., malloc(c))
3 used in the righthand-side of an assignment (e.g., x = ¢)
4 used with the less-than operator (e.g, x < ¢)
5 used with the greater-than operator (e.g., x > ¢)
6 used with < (e.g., x < ¢)
7 used with > (e.g., x > ¢)
8 used with the equality operator (e.g., x == ¢)
9 used with the not-equality operator (e.g., x ! = ¢)

used within other conditional expressions (e.g., X < c+y)
used inside loops

used in return statements (e.g., return c)

constant zero

DO b |
SOOI U WNhHO

DO DN DN
W N =

(Iv2)A3
(IV2)A(4VBEVE6VT)
(1v2)A(BVY)
(1v2)All
(1v2)Al2

1373
13A(AVEVEVT)
13N (8V9)

13A11

13N 12

Type| # Features

A 1 Tocal variable
2 global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = ¢l + ¢2)
8 compared with a constant expression (e.g., x < ¢)
9 compared with an other variable (e.g., x < y)
10 | negated in a conditional expression (e.g., if (!x))
11 | directly used in malloc (e.g., malloc(x))
12 | indirectly used in malloc (e.g., y = x; malloc(y))
13 | directly used in realloc (e.g., realloc(x))
14 | indirectly used in realloc (e.g., y = x; realloc(y))
15 | directly returned from malloc (e.g., x = malloc(e))
16 | indirectly returned from malloc
17 | directly returned from realloc (e.g., x = realloc(e))
18 | indirectly returned from realloc
19 | incremented by one (e.g., x =x + 1)
20 | incremented by a constant expr. (e.g., x = x + (1+2))
21 | incremented by a variable (e.g., x =x +y)
22 | decremented by one (e.g., x =x - 1)
23 | decremented by a constant expr (e.g., x = x - (1+2))
24 | decremented by a variable (e.g., x =x -y)
25 | multiplied by a constant (e.g., x =x * 2)
26 | multiplied by a variable (e.g., x = x ¥ y)
27 | incremented pointer (e.g., p++)
28 | used as an array index (e.g., a[x])
29 | used in an array expr. (e.g., x[e])
30 | returned from an unknown library function
31 | modified inside a recursive function
32 | modified inside a local loop
33 | read inside a local loop

B [34 | IA8A(11V12)
35 | 2A8A(11V12)
36 | 1A (11V12)A(19V20)
37 | 2A (11V12) A (19 V 20)
38 | 1A (11V12) A (15V 16)
39 | 2A (11V12) A (15V 16)
40 | (11Vv12)A29
41 | (15V 16) A29
42 | 1A (19V 20) A 33
43 | 2 (19V20) A 33
44 | 1A (19V 20) A =33
45 | 2A (19 V 20) A 33

Type| # Features
A 1 leaf function
2 function containing malloc
3 | function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 | function using a string-related library function
8 write to a global variable
9 read a global variable
10 | write to a structure field
11 | read from a structure field
12 | directly return a constant expression
13 | indirectly return a constant expression
14 | directly return an allocated memory
15 | indirectly return an allocated memory
16 | directly return a reallocated memory
17 | indirectly return a reallocated memory
18 | return expression involves field access
19 | return value depends on a structure field
20 | return void
21 | directly invoked with a constant
22 | constant is passed to an argument
23 | invoked with an unknown value
24 | functions having no arguments
25 | functions having one argument
26 | functions having more than one argument
27 | functions having an integer argument
28 | functions having a pointer argument
29 | functions having a structure as an argument
B |30 | 2A(2IV22) A (14V 15)
31 | 2A(21V 22) A (14 Vv 15)
32 | 2A23 A (14V 15)
33 | 2A23 A (14 V 15)
34 | 2A(21V22) A (16V 1T)
35 | 2A(21V22) A(16 VvV 17)
36 | 2A23A(16V 17)
37 | 2A23 A (16 V 17)
38 | (21Vv22) A—23

o\°%
o “Learning with Automatic

Feature Construction

® Fully automatic learning approach

-

_

P, Py, ...

,Pm

\

N

» Features

Training
Examples

- C

P —

Key ldeas

® Generate feature programs that capture the key
reason why FS succeeds but Fl fails.

int 3 = 0; double B[309];

malin () { malin () {
char num|[5]; for (int 1=1;1<50; 1++) {
int tmp = J++; Bl1];
num|[tmp] ; }

} J

® Apply FS to a new program, if it matches some
feature program.

19

Key ldeas

® Feature programs are automatically
generated by using a general-purpose
program reducer.

reduce : P X

“C-Reduce” [PLDI'12]

Test-Case Reduction for C Compiler Bugs

John Regehr Yang Chen Pascal Cuoq
University of Utah University of Utah CEALIST

regehr@cs.utah.edu

chenyang@cs.utah.edu

pascal.cuog@cea.fr

Eric Eide Chucky Ellison Xuejun Yang
University of Utah University of linois University of Utah

eeide@cs.utah.edu

Abstract
To report a compiler bug, one must often find a small test case
that triggers the bug. The existing approach to automated test-case
reduction, delta debugging, works by removing substrings of the
original input; the result is a concatenation of substrings that delta
cannot remove. We have found this approach less than ideal for
reducing C programs because it typically yields test cases that
are too large or even invalid (relying on undefined behavior). To
obtain small and valid test cases consistently, we designed and
implemented three new, domain-specific test-case reducers.

fixpoint computation invokes modular transformations that perform
reduction operations. This reducer produces outputs that are, on
average. more than 25 times smaller than those produced by our
other reducers or by the existing reducer that is most commonly
used by compiler developers. We conclude that effective program
reduction requires more than straightforward delta debugging.

Categories and Subject Descriptors D.2.5 [Software Engincer-
ools; D32 [Programming
D34 [Programming

Languages]: Processors—compilers

words ~ compiler testing, compiler defect, automated testing,
random testing, bug reporting, test-case minimization

1. Introduction

Although many compiler bugs can be demonstrated by small test
cases, bugs in released compilers are more typically discovered
while building large projects. Before a bug can be reported, the
circumstances leading (o it must be narrowed down. The most
important part of this process i fest-case reduction: the construction
of a small input that triggers the compiler bug.

 ACM, 2012, This s the author's versionofthe work. It s posted ere by permission
of ACM for your personal use. Notfor redistibtion.

The defintive scrsion was pubished in Proceedings of the 2012 ACM SIGPLAN
Conference on Programming Language Design and Implemenation (PLDI), Beiing,
China,Jun. 2012, e tp; //do3 - acn. oxg/10. 1145, NN IOISHIC

® Keep reducing when FS succeeds but Fl fails:

— F(P,0)=0 A F(P,1

celliso2@illinois.edu

ixyang@cs.utah.edu

‘The importance of test-cas reduction is emphasized in the GCC
documentation,’ which states that

Our bug reporting instructions ask for the preprocessed
version of the file that triggers the bug. Often this file is

very large; there are several reasons for making it as small as
possible.

The instructions for submitting bug reports to the LLVM developers
also highlight the importance of test-case reduction.? Indeed, LLVM
ships with the Bugpoint tool® that automates reduction at the level of
LLVM IR. The importance that compiler developers place on small
test cases stems from the simple fact that manual test-case reduction
is both difficult and time consuming. With limited time to spend
fixing bugs, compiler writers require bug reporters to undertake the
effort of reducing large fault-causing inputs to small ones.

Like debugging, distilling a bug-causing compiler input to its
essence is often an exercise in trial and error. One must repeatedly
experiment by removing or simplifying pieces of the input program,
compiling and running the partially reduced program, and backtrack-
ing when a change to the input causes the compiler bug to no longer
be triggered. In some cases—for example, reducing a deterministic
assertion failure in the compiler—manual tes uction s te-
dious but tractable. In other cases—e.g., reducing a miscompilation
bug in a large, multi-threaded application—manual test-case reduc-
tion may be so difficult as to be infeasible. Our belief is that many
compiler bugs go unreported due to the high difficulty of isolating
them. When confronted with a compiler bug, a reasonable compiler
user might easily decide that the most economic course is to find a
workaround, and not to be “sidetracked” by the significant time and
effort required to produce a small test case and report the bug.

Our goal in this paper is to automate most or all of the work
required to reduce bug-triggering test cases for C compilers. Our
work is motivated by two problems that we have encountered
in applying state-of-the-art reducers. First, these tools get stuck
al minima that are 100 large. This necessitates subsequent
manual reduction, preventing reportable compiler bugs from being
generated in an entirely automated fashion. We have developed
new reducers that use domain-specific knowledge to overcome the
barriers that trap previous tools. Second, existing test-case reducers

n generate test cases that execute undefined behaviors. These
test cases are useless because the C language standard guarantees

Tnttp://gec. gnu. org/bugs/minimize. htnl

Betp://gec. gou.org/uiki/A_guide_to_testcase_reduction
Bttp://11vm. org/docs/HowToSubmi tABug html
Fhttp://11vm. org/docs/Bugpoint html

cf) Other Applications

® Bug-finding of static analyzers
® Alarm reduction:
a = 1nput ()

b = a; >
10 / Db;

10 / a;

a=a/ANb=aANb+#0 P a=aANa7#0

reduce a = input();

21

Summary

Key problem in static analysis: automatic adaptation
Promising approach: use ML [OOPSLA’I 5]
Major hurdle: manual feature construction

Our Solution: generate and match feature programs

Thank you

22

