
Data-Driven Static Analysis

12 September 2017 @Shonan Meeting

Hakjoo Oh
Korea University

(co-work with Sooyoung Cha, Kwonsoo Chae, Kihong Heo,
Minseok Jeon, Sehun Jeong, Hongseok Yang, Kwangkeun Yi)

PL Research in Korea Univ.

• We research on technology for safe and reliable software.

• Research areas: programming languages, software engineering,
software security

• program analysis and testing

• program synthesis and repair

• Publication: top-venues in PL, SE,  
and Security

• PLDI(’12,’14), ICSE’17,  
OOPSLA(’15,’17,’17), Oakland’17, etc

2
http://prl.korea.ac.kr

http://prl.korea.ac.kr

PL Research in Korea Univ.

• We research on technology for safe and reliable software.

• Research areas: programming languages, software engineering,
software security

• program analysis and testing

• program synthesis and repair

• Publication: top-venues in PL, SE,  
and Security

• PLDI(’12,’14), ICSE’17,  
OOPSLA(’15,’17,’17), Oakland’17, etc

2
http://prl.korea.ac.kr

http://prl.korea.ac.kr

PL Research in Korea Univ.

• We research on technology for safe and reliable software.

• Research areas: programming languages, software engineering,
software security

• program analysis and testing

• program synthesis and repair

• Publication: top-venues in PL, SE,  
and Security

• PLDI(’12,’14), ICSE’17,  
OOPSLA(’15,’17,’17), Oakland’17, etc

2
http://prl.korea.ac.kr

KAIST

SNU
KU

http://prl.korea.ac.kr

Heuristics in Static Analysis

• Practical static analyzers involve many heuristics

• Which procedures should be analyzed context-sensitively?

• Which relationships between variables should be tracked?

• When to split and merge in trace partitioning?

• Which program parts to analyze unsoundly or soundly?, etc

• Designing a good heuristic is an art

• Usually done by trials and error: nontrivial and suboptimal
3

Astrée

our pointer analysis framework 11

• datalog-based pointer analysis framework for java

• declarative: what, not how
easier to express sophisticated analyses
correctness more clear
clear variation points
eases exploration of approximations
enables aggressive optimization

• sophisticated
subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-
sensitivity, call-site sensitive, object sensitive, thread sensitive, context-sensitive heap
abstraction, type filtering, precise exception analysis

• support for full semantic complexity of java
jvm initialization, reflection analysis, threads, reference queues, nativemethods, class
initialization, finalization, cast checking, assignment compatibility

• enables precision and performance
comparison

SAFE

Automatically Generating
Heuristics from Data

• Automate the process: use data to make heuristic
decisions in static analysis

4

Goal

machine learning

context-sensitivity heuristics
flow-sensitivity heuristics
unsoundness heuristics

…

• Automatic: little reliance on analysis designers

• Powerful: machine-tuning outperforms hand-tuning

• Stable: can be generated for target programs

Context-Sensitivity

5

A Learning Algorithm with Disjunctive Model for Data-Driven Program Analysis 1:3

1 class D {} class E {}

2 class C {

3 void dummy(){}

4 Object id1(Object v){ return id2(v); }

5 Object id2(Object v){ return v; }

6 }

7 class B {

8 void m (){

9 C c = new C();

10 D d = (D)c.id1(new D()); //Query 1

11 E e = (E)c.id1(new E()); //Query 2

12 c.dummy();

13 }

14 }

15 public class A {

16 public static void main(String[] args){

17 B b = new B();

18 b.m();

19 b.m();

20 }

21 }

Fig. 1. Example program

called twice. With the analysis, we would like to prove that the two type-casting operations at lines
10 and 11 are safe; they perform safe down-casting at runtime.

Note that context-insensitive points-to analysis cannot prove the queries. Because the analysis is
insensitive to its calling contexts, the argument v of methods id1 and id2 may point to objects of
classes D and E.�e two types of objects are propagated to the results of the method calls at lines
10 and 11, making the analysis conclude that the subsequent type-casts are potentially unsafe.

A conventional 2-call-site-sensitive points-to analysis is able to prove the safety of the queries
at lines 10 and 11. �is is because methods id1 and id2 are analyzed separately for their calling-
contexts. For example, method id2 is analyzed separately for the calling contexts 4 · 10 and 4 · 11,
where a · b denotes a sequence of call-sites a and b (a is the most recent call) and we use line
numbers as call-sites. However, 2-call-site-sensitive points-to analysis is typically too costly to
analyze large Java programs.

On the other hand, our partially context-sensitive analysis aims to balance precision and cost by
applying varying context-depths to each method. In the example program, our analysis applies
2-call-site-sensitivity to C.id2, 1-call-site-sensitivity to C.id1, and context-insensitivity to the
other methods (B.m, and C.dummy). �at is, the analysis uses the following information that maps
methods to their context-depths:

M = {C.id2 7! 2, C.id1, B.m 7! 0, C.dummy 7! 0}

Note that the analysis is precise enough to prove the two queries (lines 10 and 11) in the program.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

2-object-sensitivity
succeeds but not scale

Contet-insensitivity fails
to prove the queries

Selective Context-Sensitivity

6

A Learning Algorithm with Disjunctive Model for Data-Driven Program Analysis 1:3

1 class D {} class E {}

2 class C {

3 void dummy(){}

4 Object id1(Object v){ return id2(v); }

5 Object id2(Object v){ return v; }

6 }

7 class B {

8 void m (){

9 C c = new C();

10 D d = (D)c.id1(new D()); //Query 1

11 E e = (E)c.id1(new E()); //Query 2

12 c.dummy();

13 }

14 }

15 public class A {

16 public static void main(String[] args){

17 B b = new B();

18 b.m();

19 b.m();

20 }

21 }

Fig. 1. Example program

called twice. With the analysis, we would like to prove that the two type-casting operations at lines
10 and 11 are safe; they perform safe down-casting at runtime.

Note that context-insensitive points-to analysis cannot prove the queries. Because the analysis is
insensitive to its calling contexts, the argument v of methods id1 and id2 may point to objects of
classes D and E.�e two types of objects are propagated to the results of the method calls at lines
10 and 11, making the analysis conclude that the subsequent type-casts are potentially unsafe.

A conventional 2-call-site-sensitive points-to analysis is able to prove the safety of the queries
at lines 10 and 11. �is is because methods id1 and id2 are analyzed separately for their calling-
contexts. For example, method id2 is analyzed separately for the calling contexts 4 · 10 and 4 · 11,
where a · b denotes a sequence of call-sites a and b (a is the most recent call) and we use line
numbers as call-sites. However, 2-call-site-sensitive points-to analysis is typically too costly to
analyze large Java programs.

On the other hand, our partially context-sensitive analysis aims to balance precision and cost by
applying varying context-depths to each method. In the example program, our analysis applies
2-call-site-sensitivity to C.id2, 1-call-site-sensitivity to C.id1, and context-insensitivity to the
other methods (B.m, and C.dummy). �at is, the analysis uses the following information that maps
methods to their context-depths:

M = {C.id2 7! 2, C.id1, B.m 7! 0, C.dummy 7! 0}

Note that the analysis is precise enough to prove the two queries (lines 10 and 11) in the program.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Apply 2-obj-sens: {C.id2}
Apply 1-obj-sens: {C.id1}
Apply insens: {B.m, C.dummy}

Selective Context-Sensitivity

6

A Learning Algorithm with Disjunctive Model for Data-Driven Program Analysis 1:3

1 class D {} class E {}

2 class C {

3 void dummy(){}

4 Object id1(Object v){ return id2(v); }

5 Object id2(Object v){ return v; }

6 }

7 class B {

8 void m (){

9 C c = new C();

10 D d = (D)c.id1(new D()); //Query 1

11 E e = (E)c.id1(new E()); //Query 2

12 c.dummy();

13 }

14 }

15 public class A {

16 public static void main(String[] args){

17 B b = new B();

18 b.m();

19 b.m();

20 }

21 }

Fig. 1. Example program

called twice. With the analysis, we would like to prove that the two type-casting operations at lines
10 and 11 are safe; they perform safe down-casting at runtime.

Note that context-insensitive points-to analysis cannot prove the queries. Because the analysis is
insensitive to its calling contexts, the argument v of methods id1 and id2 may point to objects of
classes D and E.�e two types of objects are propagated to the results of the method calls at lines
10 and 11, making the analysis conclude that the subsequent type-casts are potentially unsafe.

A conventional 2-call-site-sensitive points-to analysis is able to prove the safety of the queries
at lines 10 and 11. �is is because methods id1 and id2 are analyzed separately for their calling-
contexts. For example, method id2 is analyzed separately for the calling contexts 4 · 10 and 4 · 11,
where a · b denotes a sequence of call-sites a and b (a is the most recent call) and we use line
numbers as call-sites. However, 2-call-site-sensitive points-to analysis is typically too costly to
analyze large Java programs.

On the other hand, our partially context-sensitive analysis aims to balance precision and cost by
applying varying context-depths to each method. In the example program, our analysis applies
2-call-site-sensitivity to C.id2, 1-call-site-sensitivity to C.id1, and context-insensitivity to the
other methods (B.m, and C.dummy). �at is, the analysis uses the following information that maps
methods to their context-depths:

M = {C.id2 7! 2, C.id1, B.m 7! 0, C.dummy 7! 0}

Note that the analysis is precise enough to prove the two queries (lines 10 and 11) in the program.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Apply 2-obj-sens: {C.id2}
Apply 1-obj-sens: {C.id1}
Apply insens: {B.m, C.dummy}

Challenge: How to decide?
=> Data-driven approach

Data-Driven Ctx-Sensitivity

7

Our DD Framework

OOPSLA’17

Training data
(programs)

Parametric
static analyzer

Atomic features
(a1,a2,…,a25)

e.g., methods have
invocation stmt,
methods return

strings, etc

Data-Driven Ctx-Sensitivity

7

Our DD Framework

OOPSLA’17

Training data
(programs)

Parametric
static analyzer

Atomic features
(a1,a2,…,a25)

e.g., methods have
invocation stmt,
methods return

strings, etc

Data-Driven Context-Sensitivity for Points-to Analysis 1:27

From (12), (13), De�nition 3.3, and the assumption that fj�1 is a minimal solution of the
problem �k , we have

8P 2 P.H�00j�1 (P) = H�j�1 (P). (14)
From (14), (9), we conclude

8P 2 P.H�j�1 (P) = H�0j�1 (P).

B LEARNED BOOLEAN FORMULAS
We list the boolean formulas learned by our approach. �e numbers in the formulas represent the
atomic feature in Tables 1. �e formulas for each analysis and context depth are as follows. Table 8
presents them by and-or tables.

• Selective object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ ¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ 6 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬9 ^ 13 ^ 14 ^ 15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(1 ^ 2 ^ ¬3 ^ 4 ^ ¬5 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬10 ^ ¬13 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22
^¬23 ^ ¬24 ^ ¬25)
• Object-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬1 ^ ¬2 ^ 5 ^ 8 ^ ¬9 ^ 11 ^ 12 ^ ¬14 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)
• Type-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
• Call-site-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬6 ^ ¬7 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬7 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Heuristic for applying (hybrid) object-sensitivity:
f2: Methods that require 2-object-sensitivity

f1: Methods that require 1-object-sensitivity

Data-Driven Context-Sensitivity for Points-to Analysis 1:27

From (12), (13), De�nition 3.3, and the assumption that fj�1 is a minimal solution of the
problem �k , we have

8P 2 P.H�00j�1 (P) = H�j�1 (P). (14)
From (14), (9), we conclude

8P 2 P.H�j�1 (P) = H�0j�1 (P).

B LEARNED BOOLEAN FORMULAS
We list the boolean formulas learned by our approach. �e numbers in the formulas represent the
atomic feature in Tables 1. �e formulas for each analysis and context depth are as follows. Table 8
presents them by and-or tables.

• Selective object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ ¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ 6 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬9 ^ 13 ^ 14 ^ 15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(1 ^ 2 ^ ¬3 ^ 4 ^ ¬5 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬10 ^ ¬13 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22
^¬23 ^ ¬24 ^ ¬25)
• Object-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬1 ^ ¬2 ^ 5 ^ 8 ^ ¬9 ^ 11 ^ 12 ^ ¬14 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)
• Type-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
• Call-site-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬6 ^ ¬7 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬7 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Performance

8

1:18 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh

Fig. 3. Precision and cost comparisons of among selective object-sensitive class. We purposely made an
exception in the case of S2objH+IntroB on jython benchmark, which is marked as timeout in Table 2, to
provide readers broader performance spectrum.

jython. �e results show that inclusion of speci�c features makes the analysis much more e�cient
without signi�cant trade-o� on precision.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

• Training with 4 small programs from DaCapo, and
applied to 6 large programs

• Machine-tuning outperforms hand-tuning

Other Context-Sensitivities

• Plain (not hybrid) Object-sensitivity:

9

Data-Driven Context-Sensitivity for Points-to Analysis 1:27

From (12), (13), De�nition 3.3, and the assumption that fj�1 is a minimal solution of the
problem �k , we have

8P 2 P.H�00j�1 (P) = H�j�1 (P). (14)
From (14), (9), we conclude

8P 2 P.H�j�1 (P) = H�0j�1 (P).

B LEARNED BOOLEAN FORMULAS
We list the boolean formulas learned by our approach. �e numbers in the formulas represent the
atomic feature in Tables 1. �e formulas for each analysis and context depth are as follows. Table 8
presents them by and-or tables.

• Selective object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ ¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ 6 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬9 ^ 13 ^ 14 ^ 15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(1 ^ 2 ^ ¬3 ^ 4 ^ ¬5 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬10 ^ ¬13 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22
^¬23 ^ ¬24 ^ ¬25)
• Object-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬1 ^ ¬2 ^ 5 ^ 8 ^ ¬9 ^ 11 ^ 12 ^ ¬14 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)
• Type-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
• Call-site-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬6 ^ ¬7 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬7 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Data-Driven Context-Sensitivity for Points-to Analysis 1:27

From (12), (13), De�nition 3.3, and the assumption that fj�1 is a minimal solution of the
problem �k , we have

8P 2 P.H�00j�1 (P) = H�j�1 (P). (14)
From (14), (9), we conclude

8P 2 P.H�j�1 (P) = H�0j�1 (P).

B LEARNED BOOLEAN FORMULAS
We list the boolean formulas learned by our approach. �e numbers in the formulas represent the
atomic feature in Tables 1. �e formulas for each analysis and context depth are as follows. Table 8
presents them by and-or tables.

• Selective object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ ¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ 6 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬9 ^ 13 ^ 14 ^ 15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(1 ^ 2 ^ ¬3 ^ 4 ^ ¬5 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬10 ^ ¬13 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22
^¬23 ^ ¬24 ^ ¬25)
• Object-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬1 ^ ¬2 ^ 5 ^ 8 ^ ¬9 ^ 11 ^ 12 ^ ¬14 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)
• Type-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
• Call-site-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬6 ^ ¬7 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬7 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Data-Driven Context-Sensitivity for Points-to Analysis 1:27

From (12), (13), De�nition 3.3, and the assumption that fj�1 is a minimal solution of the
problem �k , we have

8P 2 P.H�00j�1 (P) = H�j�1 (P). (14)
From (14), (9), we conclude

8P 2 P.H�j�1 (P) = H�0j�1 (P).

B LEARNED BOOLEAN FORMULAS
We list the boolean formulas learned by our approach. �e numbers in the formulas represent the
atomic feature in Tables 1. �e formulas for each analysis and context depth are as follows. Table 8
presents them by and-or tables.

• Selective object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ ¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ 6 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬9 ^ 13 ^ 14 ^ 15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(1 ^ 2 ^ ¬3 ^ 4 ^ ¬5 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬10 ^ ¬13 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22
^¬23 ^ ¬24 ^ ¬25)
• Object-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬1 ^ ¬2 ^ 5 ^ 8 ^ ¬9 ^ 11 ^ 12 ^ ¬14 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)
• Type-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
• Call-site-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬6 ^ ¬7 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬7 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

• Call-site-sensitivity:

• Type-sensitivity:

Obj-Sens vs. Type-Sens

• In theory, obj-sens is more precise than type-sens

• The set of methods that benefit from obj-sens is a
superset of the methods that benefit from type-sens

• Interestingly, our algorithm automatically discovered
this rule from data:

10

Data-Driven Context-Sensitivity for Points-to Analysis 1:21

completely di�erent formula for call-site-sensitivity, which uses di�erent heap abstraction from
other object-based sensitivities.3
Another unexpected observation was that the learned formulas have orders according to the

theoretical orders of the analysis precision. For example, our learning algorithm produced depth-1
formulas (f1) for object-sensitivity and type-sensitivity as follows:

(1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬16 ^ · · · ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
f1 for 2objH+Data : (¬1 ^ ¬2 ^ 8 ^ 5 ^ ¬9 ^ 11 ^ 12 ^ · · · ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_

(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ · · · ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)
f1 for 2typeH+Data : 1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬15 ^ ¬16 ^ · · · ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

Note that the formula f1 for object-sensitivity is logically more general than that for type-sensitivity,
as boldfaced clause in f1 for 2typeH+Data is subsumed by the boldfaced clause in f1 for 2objH+Data.
�erefore, f1 for 2objH+Data describes a superset of the methods described by f1 for 2typeH+Data.
�eoretically, since object-sensitivity is more precise than type-sensitivity, the set of methods that
bene�t from object-sensitivity must be a superset of the methods that bene�t from type-sensitivity.
Interestingly, our learning algorithm automatically discovered this fact from data.
Lastly, we spo�ed that some atomic features are frequently used as negative forms. Break-

point(16), EnterMonitor(17), ExitMonitor(18), Lookup(21), Nop(22), and Ret(23) statements rarely
appear in the programs. �erefore, conjoining a formula with the negation of these features would
make li�le di�erence. Methods that return the void type deserve shallower context depths because
they are less likely to jeopardize points-to analysis than ones who return objects. We also found
that some control-�ow features also frequently appear in negated forms.

4.4 Threats to Validity
• Benchmarks: Our experimental evaluation were conducted on the DaCapo benchmark, but
the DaCapo benchmark may not be a reputable material for machine learning purposes
although it does for points-to analysis community.
• Generality: �e DaCapo benchmark may not represent general Java programs as it is a

collection of speci�c types of programs, comprising mostly compilers and interpreters. In
experiments, we also assumed that a heuristic learned from smaller programs is likely to
work well for larger programs, which may not be true in other circumstances.
• Features: We evaluated our approach with a �xed set of atomic features: signature and
statement features. Di�erent set of atomic features are likely to produce di�erent results.

5 RELATEDWORK
Context-sensitive points-to analysis has a vast amount of past literature, e.g., (Agesen 1994; Chat-
terjee et al. 1999; Grove et al. 1997; Hind 2001; Lhoták and Hendren 2006, 2008; Liang and Harrold
1999; Liang et al. 2005; Milanova et al. 2005; Ruf 1995, 2000; Wilson and Lam 1995). In this section,
we discuss prior works that are closely related to ours.

Tuning Context-Sensitivity in Points-to Analysis. Most of the existing techniques for tun-
ing context-sensitivity in points-to analysis are traditional rule-based techniques (Kastrinis and
Smaragdakis 2013a; Oh et al. 2014; Smaragdakis et al. 2014; Tripp et al. 2009). �ey selectively
apply context-sensitivity based on some manually-designed syntactic or semantic features of the
program. For instance, in the approach by Smaragdakis et al. (2014), a cheap pre-analysis is used

3Although we do not discuss the performance of our approach for call-site-sensitivity since call-site-sensitivity is less
important than others in points-to analysis for Java, we also evaluated the analysis and obtained similar performance
improvements as in others.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Data-Driven Static Analysis

• Techniques

• Learning via black-box optimization [OOPSLA’15]

• Learning with disjunctive model [OOPSLA’17]

• Learning with automatically generated features [OOPSLA’17]

• Learning with supervison [ICSE’17,SAS’16,APLAS’16]

• Applications

• context-sensitivity, flow-sensitivity, variable clustering, widening
thresholds, unsoundness, search strategy in symbolic execution,
etc

11

Learing via  
Black-Box Optimization

(OOPSLA’15)

12

13

Selective Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1
FS : {x,y} FI : {z}

x [0,0]
y [0,0]

x [1,+∞]
y [0,0]

x [1,+∞]
y [0,0]

x [1,+∞]
y [1,+∞]

z [1,+∞]

Static Analyzer

14

F(p, a) ⇒ n

abstraction
(e.g., a set of variables)

number of
proved assertions

15

Overall Approach

• Parameterized heuristic

Hw : pgm → 2Var

15

Overall Approach

• Learn a good parameter W from existing codebase

P1, P2, …,Pm

Codebase

⇒ W

• Parameterized heuristic

Hw : pgm → 2Var

15

Overall Approach

• Learn a good parameter W from existing codebase

• For new program P, run static analysis with Hw(P)

P1, P2, …,Pm

Codebase

⇒ W

• Parameterized heuristic

Hw : pgm → 2Var

16

1. Parameterized Heuristic

(1) Represent program variables as feature vectors.

(2) Compute the score of each variable.

(3) Choose the top-k variables based on the score.

Hw : pgm → 2Var

17

• Predicates over variables:

f = {f1, f2,…,f5} (fi : Var → {0,1})

• We used 45 simple syntactic features for variables

• e.g., local / global variable, passed to / returned
from malloc, incremented by constants, etc

(1) Features

18

f(x) = ⟨f1(x), f2(x), f3(x),f4(x),f5(x)⟩

• Represent each variable as a feature vector:

f(x) = ⟨1,0,1,0,0⟩
f(y) = ⟨1,0,1,0,1⟩
f(z) = ⟨0,0,1,1,0⟩

(1) Features

19

(2) Scoring

• The parameter w is a real-valued vector: e.g.,

• Compute scores of variables:

w = ⟨0.9, 0.5, -0.6, 0.7, 0.3⟩

score(x) = ⟨1,0,1,0,0⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.3

score(y) = ⟨1,0,1,0,1⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.6

score(z) = ⟨0,0,1,1,0⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.1

20

(3) Choose Top-k Variables

• Choose the top-k variables based on their scores:  
e.g., when k=2,

score(x) = 0.3
score(y) = 0.6
score(z) = 0.1

{x,y}

• In experiments, we choose 10% of variables with
highest scores.

21

2. Learn a Good Parameter

• Formulated as the optimization problem:

P1, P2, …,Pm

Codebase

⇒ W

X

Pi

F (Pi, Sw(Pi))Find w that maximizes

• We solve it via Bayesian optimization (details in paper)

22

Effectiveness on
• Implemented in Sparrow, an interval analyzer for C

• Evaluated on 30 open-source programs

• Training with 20 programs (12 hours)

• Evaluation with the remaining 10 programs

FSFI

0 100

Data-Driven FS

70

Precision

FSFI

1x 18x

Data-Driven FS

2x

Cost

Limitations & Follow-ups

• Limited expressiveness due to linear heuristic

• Disjunctive heuristic [OOPSLA’17]

• Semi-automatic due to manual feature engineering

• Automated feature engineering [OOPSLA’17]

• High learning cost due to black-box approach

• Supervised approaches [SAS’16,APLAS’16,ICSE’17]

23

Learning with  
Disjunctive Heuristics

• The linear heuristic cannot express disjunctive
properties:

24

OOPSLA’17

x : {a1, a2}
y : {a1}
z : {a2}
w : ;

(a1 ^ a2) _ (¬a1 ^ ¬a2)

• Disjunctive heuristic + algorithm for learning boolean
formulas

Goal: {x,w}

Performance

25

Motivation

• Applied to context-sensitive points-to analysis for Java

• Without disjunction, the learned heuristic lags behind
hand-tuning becaused of limited expressiveness

Manual Feature Engineering

26

• The success of ML heavily depends on the “features”

• Feature engineering is nontrivial and time-consuming

• Features do not generalize to other analyses
A:18 Lee et al.

Type # Features
A 1 local variable

2 global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = c1 + c2)
8 compared with a constant expression (e.g., x < c)
9 compared with an other variable (e.g., x < y)
10 negated in a conditional expression (e.g., if (!x))
11 directly used in malloc (e.g., malloc(x))
12 indirectly used in malloc (e.g., y = x; malloc(y))
13 directly used in realloc (e.g., realloc(x))
14 indirectly used in realloc (e.g., y = x; realloc(y))
15 directly returned from malloc (e.g., x = malloc(e))
16 indirectly returned from malloc
17 directly returned from realloc (e.g., x = realloc(e))
18 indirectly returned from realloc
19 incremented by one (e.g., x = x + 1)
20 incremented by a constant expr. (e.g., x = x + (1+2))
21 incremented by a variable (e.g., x = x + y)
22 decremented by one (e.g., x = x - 1)
23 decremented by a constant expr (e.g., x = x - (1+2))
24 decremented by a variable (e.g., x = x - y)
25 multiplied by a constant (e.g., x = x * 2)
26 multiplied by a variable (e.g., x = x * y)
27 incremented pointer (e.g., p++)
28 used as an array index (e.g., a[x])
29 used in an array expr. (e.g., x[e])
30 returned from an unknown library function
31 modified inside a recursive function
32 modified inside a local loop
33 read inside a local loop

B 34 1 ^ 8 ^ (11 _ 12)
35 2 ^ 8 ^ (11 _ 12)
36 1 ^ (11 _ 12) ^ (19 _ 20)
37 2 ^ (11 _ 12) ^ (19 _ 20)
38 1 ^ (11 _ 12) ^ (15 _ 16)
39 2 ^ (11 _ 12) ^ (15 _ 16)
40 (11 _ 12) ^ 29
41 (15 _ 16) ^ 29
42 1 ^ (19 _ 20) ^ 33
43 2 ^ (19 _ 20) ^ 33
44 1 ^ (19 _ 20) ^ ¬33
45 2 ^ (19 _ 20) ^ ¬33

Table II: Features for partially flow-sensitive analysis. Features of Type A denote simple syntactic or semantic properties
for abstract locations (that is, program variables, structure fields and allocation sites). Features of Type B are various
combinations of simple features, and express patterns that variables are used in programs.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Adaptive Static Analysis via Learning with Bayesian Optimization A:19

Type # Features
A 1 leaf function

2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 write to a structure field
11 read from a structure field
12 directly return a constant expression
13 indirectly return a constant expression
14 directly return an allocated memory
15 indirectly return an allocated memory
16 directly return a reallocated memory
17 indirectly return a reallocated memory
18 return expression involves field access
19 return value depends on a structure field
20 return void
21 directly invoked with a constant
22 constant is passed to an argument
23 invoked with an unknown value
24 functions having no arguments
25 functions having one argument
26 functions having more than one argument
27 functions having an integer argument
28 functions having a pointer argument
29 functions having a structure as an argument

B 30 2 ^ (21 _ 22) ^ (14 _ 15)
31 2 ^ (21 _ 22) ^ ¬(14 _ 15)
32 2 ^ 23 ^ (14 _ 15)
33 2 ^ 23 ^ ¬(14 _ 15)
34 2 ^ (21 _ 22) ^ (16 _ 17)
35 2 ^ (21 _ 22) ^ ¬(16 _ 17)
36 2 ^ 23 ^ (16 _ 17)
37 2 ^ 23 ^ ¬(16 _ 17)
38 (21 _ 22) ^ ¬23

Table III: Features for partially context-sensitive analysis.

usage patterns of variables in the benchmark programs. For instance, feature 34 was
developed after we observed the following usage pattern of variables:

int x; // local variable

if (x < 10)

... = malloc (x);

It says that x is a local variable, and gets compared with a constant and passed as
an argument to a function that does memory allocation. Note that we included these
Type B features not because they are important for flow-sensitivity. We included them
to increase expressiveness, because our linear learning model with Type A features
only cannot express such usage patterns. Deciding whether they are important for
flow-sensitivity or not is the job of the learning algorithm.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Adaptive Static Analysis via Learning with Bayesian Optimization A:21

Type # Features
A 1 used in array declarations (e.g., a[c])

2 used in memory allocation (e.g., malloc(c))
3 used in the righthand-side of an assignment (e.g., x = c)
4 used with the less-than operator (e.g, x < c)
5 used with the greater-than operator (e.g., x > c)
6 used with  (e.g., x  c)
7 used with � (e.g., x � c)
8 used with the equality operator (e.g., x == c)
9 used with the not-equality operator (e.g., x ! = c)
10 used within other conditional expressions (e.g., x < c+y)
11 used inside loops
12 used in return statements (e.g., return c)
13 constant zero

B 14 (1 _ 2) ^ 3
15 (1 _ 2) ^ (4 _ 5 _ 6 _ 7)
16 (1 _ 2) ^ (8 _ 9)
17 (1 _ 2) ^ 11
18 (1 _ 2) ^ 12
19 13 ^ 3
20 13 ^ (4 _ 5 _ 6 _ 7)
21 13 ^ (8 _ 9)
22 13 ^ 11
23 13 ^ 12

Table IV: Features for widening-with-thresholds.

With a widening operator
`

, the upper bound A is computed by A = lim

i�0

X

i

, where
chain X

i

is defined as follows:
X

0

= ?
X

i+1

= X

i

F (X

i

) v X

i

= X

i

`
F (X

i

) otherwise

The abstract interpretation framework guarantees that the above chain is always fi-
nite and its limit (i.e., lim

i�0

X

i

) is an upper bound of the least fixed point of F [?]. For
instance, a simple widening operator for the interval domain works as follows: (For
brevity, we do not consider the bottom interval.)

[a, b]

`
[c, d] = [(c < a?�1 : a), (b < d? +1 : b)]

That is, the widening operator extrapolates any unstable bounds simply to infinity. For
instance, [1, 4]

`
[1, 7] = [1,+1].

Widening with Thresholds. The idea of widening-with-thresholds is to bound the ex-
trapolation of the widening using a pre-defined set of thresholds. For instance, suppose
we are given a set T = {8, 9} of thresholds. Then, applying widening [1, 4]

`
T

[1, 7] with
thresholds T = {8, 9} gives interval [1, 8], instead of [1,+1]. Here, threshold 8 is used
because it is the smallest value in T , which is greater than 7. If the result is still un-
stable in the subsequent iteration, the next smallest value in T , i.e., 9, is used to bound
the widening.

Formally, the widening-with-thresholds technique for the interval domain is defined
as follows. We assume that a set T ✓ Z [{�1,+1} of thresholds is given. Without
loss of generality, let us assume that T = {t

1

, t

2

, . . . , t

n

}, t
1

< t

2

< · · · < t

n

, t
1

= �1,
and t

n

= +1. The widening operator parameterized by T is defined as follows:

[a, b]

`
T

[c, d] = ([a, b]

`
[c, d]) u d{[t

l

, t

u

] | t
l

, t

u

2 T ^ t

l

 min(a, c) ^ t

u

� max(b, d)}

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

flow-sensitivity context-sensitivity widening thresholds

Automating Feature Engineering

27

Codebase
Hand-crafted

features
Parameter

values
Analysis
Heuristic

Codebase
Auto-crafted

Features
Parameter

values
Analysis
Heuristic

Before (OOPSLA’15)

New method (OOPSLA’17)

OOPSLA’17

Key Ideas

28

for (i=1;i<50;i++)
 assert (i<100);

• Use program reducer to capture the key reason
why FS succeeds but FI fails.

C-Reduce
program (>10KLoC)

FS proves but FI fails

Key Ideas

28

for (i=1;i<50;i++)
 assert (i<100);

• Use program reducer to capture the key reason
why FS succeeds but FI fails.

C-Reduce
program (>10KLoC)

FS proves but FI fails

• Generalize the programs by abstract data flow graphs
and check graph-inclusion

1 a = 0; b = 0;

2 while (1) {

3 b = unknown();

4 if (a > b)

5 if (a < 3)

6 assert (a < 5);

7 a++;

8 }

1 a = 0;

2 while (1) {

3 if (a < 3)

4 assert (a < 5);

5 a++;

6 }

id := c

id < c

Q(id < c)

id := id+ c

(a) Original program (b) Reduced program (c) Feature

Figure 1. Example program and feature

program. For example, the reduced program in Figure 1(b) is con-
verted to the data flow graph in Figure 1(c). Note that the graph
captures the data flows of the program that influence the query. In
the graph, statements are abstracted to increase the invariance of
the features. For example, both conditions a < 3 and a < 5 in the
program are represented by the single abstract condition id < c,
where variables and integers are abstracted by constants id and c,
respectively.

2.3.2 The Matching Algorithm
By using the approach explained so far, we generate the abstract
data flow graph for each precision-effective query in the given
codebase. The feature set ⇧ = {⇡1, . . . ,⇡k} is the collection of
all such data flow graphs generated from the codebase.

Now, we describe match, which takes a query q and a feature
(i.e., data flow graph) ⇡i 2 ⇧, and checks if ⇡i is a feature of q or
not. Consider the query in the original program in Figure 1(a) and
the feature in Figure 1(c). We would like to check that the feature is
included in the original program. Matching the feature against the
program is done in the following two steps:

1. We represent the query in the target program (Figure 1(a)) by
an abstract data flow graph. The resulting graph is given as
follows:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the graph in Figure 1(c) but
it contains all the dependencies in the original program. For
instance, it has the dependence edge from id > id to id < c,
which is absent in the reduced program. The unknown value,
i.e., the return value of unknown(), is represented by >.

2. We check whether the feature is a subgraph of the data flow
graph of the target program. We say a graph G1 is included in
G2 if all vertices in G1 are included in G2 and all arcs in G1 are
represented by a path in G2. In our example, the feature (Figure
1(c)) is a subgraph of the data flow graph above: for instance,
given the arc id:=id+c ! id<c in the feature, we can find a
path id:=id+c ! id>id ! id<c in the target graph.

Note that our definition of subgraph is different from the con-
ventional definition, which is essential to match features against
original programs. Note that the feature is unlikely to match to
the original program if we check the inclusion by the conventional
definition, i.e., G1 = (V1, E1) is included in G2 = (V2, E2) iff
V1 ✓ V2 and E1 ✓ E2. This is because the original program
(without reducing) may contain irrelevant dependences as well. We
cannot use the reducer to remove the independences because doing
so is typically too expensive to perform online. Instead, we take a

(less expensive) transitive closure of the data flow graph to match
in the presence of the noise in the target program.

3. Parametric Static Analysis
Let P 2 P be a program that we would like to analyze. We assume
that a set QP of queries (i.e., assertions) in P is given together
with the program. The goal of the analysis is to prove as many
queries as possible. In this paper, we consider a static analysis that
is parameterized by a set of queries. Thus, the parameter space is
defined by (AP ,v) where AP is the binary vector:

a 2 AP = {0, 1}QP
.

with the pointwise ordering a v a0 () 8j 2 QP . aj  a0
j .

We sometimes regard a parameter a 2 AP as a function from AP

to {0, 1}, or the following collection:

a = {j 2 QP | aj = 1}.

In the latter case, we write |a| for the size of the collection. We
define two constants in AP :

0 = �j 2 QP . 0, and 1 = �j 2 QP . 1,

which represent the most imprecise and precise abstractions, re-
spectively. In the rest of this paper, we omit the subscript P when
there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a set of
queries that are proved in this analysis run. Intuitively, the analysis
applies high precision only to the queries specified by the param-
eter; aj = 1 means that the query j 2 Q is analyzed with high
precision. For instance, in our partially flow-sensitive analysis, the
parameter denotes the set of queries and the analysis applies flow-
sensitivity to the program variables on which the queries depend.
In our partially relational octagon analysis, the analysis keeps the
relations between variables involved in the dependency graphs of
the selected queries.

Our goal is to learn a strategy S automatically from an existing
codebase. The resulting adaptation strategy is a function of the
following type:

S : P ! A,

and it is used to analyze new, unseen programs P :

F (P,S(P)).

If the learned strategy is good, running the analysis with S(P)
would give results close to those of the most precise abstraction
(F (P,1)), while incurring the cost at the level of or only slightly
above the least precise and hence cheapest abstraction (F (P,0)).

3 2016/8/9

?
✓

1 a = 0; b = 0;

2 while (1) {

3 b = unknown();

4 if (a > b)

5 if (a < 3)

6 assert (a < 5);

7 a++;

8 }

1 a = 0;

2 while (1) {

3 if (a < 3)

4 assert (a < 5);

5 a++;

6 }

id := c

id < c

Q(id < c)

id := id+ c

(a) Original program (b) Reduced program (c) Feature

Figure 1. Example program and feature

program. For example, the reduced program in Figure 1(b) is con-
verted to the data flow graph in Figure 1(c). Note that the graph
captures the data flows of the program that influence the query. In
the graph, statements are abstracted to increase the invariance of
the features. For example, both conditions a < 3 and a < 5 in the
program are represented by the single abstract condition id < c,
where variables and integers are abstracted by constants id and c,
respectively.

2.3.2 The Matching Algorithm
By using the approach explained so far, we generate the abstract
data flow graph for each precision-effective query in the given
codebase. The feature set ⇧ = {⇡1, . . . ,⇡k} is the collection of
all such data flow graphs generated from the codebase.

Now, we describe match, which takes a query q and a feature
(i.e., data flow graph) ⇡i 2 ⇧, and checks if ⇡i is a feature of q or
not. Consider the query in the original program in Figure 1(a) and
the feature in Figure 1(c). We would like to check that the feature is
included in the original program. Matching the feature against the
program is done in the following two steps:

1. We represent the query in the target program (Figure 1(a)) by
an abstract data flow graph. The resulting graph is given as
follows:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the graph in Figure 1(c) but
it contains all the dependencies in the original program. For
instance, it has the dependence edge from id > id to id < c,
which is absent in the reduced program. The unknown value,
i.e., the return value of unknown(), is represented by >.

2. We check whether the feature is a subgraph of the data flow
graph of the target program. We say a graph G1 is included in
G2 if all vertices in G1 are included in G2 and all arcs in G1 are
represented by a path in G2. In our example, the feature (Figure
1(c)) is a subgraph of the data flow graph above: for instance,
given the arc id:=id+c ! id<c in the feature, we can find a
path id:=id+c ! id>id ! id<c in the target graph.

Note that our definition of subgraph is different from the con-
ventional definition, which is essential to match features against
original programs. Note that the feature is unlikely to match to
the original program if we check the inclusion by the conventional
definition, i.e., G1 = (V1, E1) is included in G2 = (V2, E2) iff
V1 ✓ V2 and E1 ✓ E2. This is because the original program
(without reducing) may contain irrelevant dependences as well. We
cannot use the reducer to remove the independences because doing
so is typically too expensive to perform online. Instead, we take a

(less expensive) transitive closure of the data flow graph to match
in the presence of the noise in the target program.

3. Parametric Static Analysis
Let P 2 P be a program that we would like to analyze. We assume
that a set QP of queries (i.e., assertions) in P is given together
with the program. The goal of the analysis is to prove as many
queries as possible. In this paper, we consider a static analysis that
is parameterized by a set of queries. Thus, the parameter space is
defined by (AP ,v) where AP is the binary vector:

a 2 AP = {0, 1}QP
.

with the pointwise ordering a v a0 () 8j 2 QP . aj  a0
j .

We sometimes regard a parameter a 2 AP as a function from AP

to {0, 1}, or the following collection:

a = {j 2 QP | aj = 1}.

In the latter case, we write |a| for the size of the collection. We
define two constants in AP :

0 = �j 2 QP . 0, and 1 = �j 2 QP . 1,

which represent the most imprecise and precise abstractions, re-
spectively. In the rest of this paper, we omit the subscript P when
there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a set of
queries that are proved in this analysis run. Intuitively, the analysis
applies high precision only to the queries specified by the param-
eter; aj = 1 means that the query j 2 Q is analyzed with high
precision. For instance, in our partially flow-sensitive analysis, the
parameter denotes the set of queries and the analysis applies flow-
sensitivity to the program variables on which the queries depend.
In our partially relational octagon analysis, the analysis keeps the
relations between variables involved in the dependency graphs of
the selected queries.

Our goal is to learn a strategy S automatically from an existing
codebase. The resulting adaptation strategy is a function of the
following type:

S : P ! A,

and it is used to analyze new, unseen programs P :

F (P,S(P)).

If the learned strategy is good, running the analysis with S(P)
would give results close to those of the most precise abstraction
(F (P,1)), while incurring the cost at the level of or only slightly
above the least precise and hence cheapest abstraction (F (P,0)).

3 2016/8/9

feature program target program

Summary: Long-Term Vision

29

• Static analyzers are designed by analysis designers
based on their limited insights on target programs

• Not tuned for programs that are actually analyzed

• Our vision: “Synthesize” static analyzers from data

• Every design decisions is parameterized and learned from
actual data

fully parameterized
static analysis

static analyzer
tuned for “real-world”

Summary: Long-Term Vision

29

Thank you

• Static analyzers are designed by analysis designers
based on their limited insights on target programs

• Not tuned for programs that are actually analyzed

• Our vision: “Synthesize” static analyzers from data

• Every design decisions is parameterized and learned from
actual data

fully parameterized
static analysis

static analyzer
tuned for “real-world”

