Data-Driven Static Analysis

Hakjoo Oh
Korea University

I2 September 2017 @Shonan Meeting

(co-work with Sooyoung Cha, Kwonsoo Chae, Kihong Heo, Minseok Jeon, Sehun Jeong, Hongseok Yang, Kwangkeun Yi)

KAIST

PL Research in Korea Univ.

- We research on technology for safe and reliable software.
- Research areas: programming languages, software engineering, software security
- program analysis and testing
- program synthesis and repair
- Publication: top-venues in PL, SE, and Security
- PLDI('I2,'I4), ICSE'I7,
 OOPSLA('I5,'I7,'I7), Oakland'I7, etc http://prl.korea.ac.kr

PL Resea

- We research on tech
- Research areas: progr

http://prl.korea.ac.kr

PL Resea

- We research on terh

http://prl.korea.ac.kr

Heuristics in Static Analysis

Sparrone wima Astrée DOOP TAJS SAFE

- Practical static analyzers involve many heuristics
- Which procedures should be analyzed context-sensitively?
- Which relationships between variables should be tracked?
- When to split and merge in trace partitioning?
- Which program parts to analyze unsoundly or soundly?, etc
- Designing a good heuristic is an art
- Usually done by trials and error: nontrivial and suboptimal

Automatically Generating Heuristics from Data

- Automate the process: use data to make heuristic decisions in static analysis
context-sensitivity heuristics
GitHub
flow-sensitivity heuristics unsoundness heuristics
- Automatic: little reliance on analysis designers
- Powerful: machine-tuning outperforms hand-tuning
- Stable: can be generated for target programs

Context-Sensitivity

```
class D {} class E {}
class C {
    void dummy(){}
    Object id1(Object v){ return id2(v); }
    Object id2(Object v){ return v; }
}
class B {
    void m (){
        C c = new C();
        D d = (D)c.id1(new D()); //Query 1
        E e = (E)c.id1(new E()); //Query 2
        c.dummy();
    }
}
public class A {
    public static void main(String[] args){
        B b = new B();
        b.m();
        b.m();
    }
}
```


Contet-insensitivity fails to prove the queries

2-object-sensitivity

 succeeds but not scale
Selective Context-Sensitivity

```
class D {} class E {}
class C {
    void dummy(){}
    Object id1(Object v){ return id2(v); }
    Object id2(Object v){ return v; }
}
class B {
    void m (){
        C c = new C();
        D d = (D)c.id1(new D()); //Query 1
        E e = (E)c.id1(new E()); //Query 2
        c.dummy();
    }
}
public class A {
    public static void main(String[] args){
        B b = new B();
        b.m();
        b.m();
    }
}
```

Apply 2-obj-sens: \{C.id2\} Apply I-obj-sens: \{C.idI\}
Apply insens: \{B.m, C.dummy\}

Selective Context-Sensitivity

```
class D {} class E {}
class C {
    void dummy(){}
    Object id1(Object v){ return id2(v); }
    Object id2(Object v){ return v; }
}
class B {
    void m (){
        C c = new C();
        D d = (D)c.id1(new D()); //Query 1
        E e = (E)c.id1(new E()); //Query 2
        c.dummy();
    }
}
public class A {
    public static void main(String[] args){
        B b = new B();
        b.m();
        b.m();
    }
}
```

Apply 2-obj-sens: \{C.id2\} Apply I-obj-sens: \{C.idI\} Apply insens: \{B.m, C.dummy\}

Challenge: How to decide?
=> Data-driven approach

Data-Driven Ctx-Sensitivity

Parametric static analyzer

Training data
(programs)

Our DD Framework

Atomic features
(al, a2, .., a25)
 invocation stmt, methods return strings, etc

Data-Driven Ctx-Sensitivity

Parametric static analyzer

Training data
(programs)

Atomic features
(al,a2,...,a25)
e.g., methods have invocation stmt, methods return strings, etc

Heuristic for applying (hybrid) object-sensitivity:
f2: Methods that require 2-object-sensitivity

$$
1 \wedge \neg 3 \wedge \neg 6 \wedge 8 \wedge \neg 9 \wedge \neg 16 \wedge \neg 17 \wedge \neg 18 \wedge \neg 19 \wedge \neg 20 \wedge \neg 21 \wedge \neg 22 \wedge \neg 23 \wedge \neg 24 \wedge \neg 25
$$

$\mathrm{fl}:$ Methods that require I -object-sensitivity

$$
\begin{aligned}
& (1 \wedge \neg 3 \wedge \neg 4 \wedge \neg 7 \wedge \neg 8 \wedge 6 \wedge \neg 9 \wedge \neg 15 \wedge \neg 16 \wedge \neg 17 \wedge \neg 18 \wedge \neg 19 \wedge \neg 20 \wedge \neg 21 \wedge \neg 22 \wedge \neg 23 \wedge \neg 24 \wedge \neg 25) \vee \\
& (\neg 3 \wedge \neg 4 \wedge \neg 7 \wedge \neg 8 \wedge \neg 9 \wedge 10 \wedge 11 \wedge 12 \wedge 13 \wedge \neg 16 \wedge \neg 17 \wedge \neg 18 \wedge \neg 19 \wedge \neg 20 \wedge \neg 21 \wedge \neg 2 \wedge \wedge \neg 23 \wedge \neg 24 \wedge \neg 25) \vee \\
& (\neg 3 \wedge \neg 9 \wedge 13 \wedge 14 \wedge 15 \wedge \neg 16 \wedge \neg 17 \wedge \neg 18 \wedge \neg 19 \wedge \neg 20 \wedge \neg 21 \wedge \neg 22 \wedge \neg 23 \wedge \neg 24 \wedge \neg 25) \vee \\
& (1 \wedge 2 \wedge \neg 3 \wedge 4 \wedge \neg 5 \wedge \neg 6 \wedge \neg 7 \wedge \neg 8 \wedge \neg 9 \wedge \neg 10 \wedge \neg 13 \wedge \neg 15 \wedge \neg 16 \wedge \neg 17 \wedge \neg 18 \wedge \neg 19 \wedge \neg 20 \wedge \neg 21 \wedge \neg 22 \\
& \wedge \neg 23 \wedge \neg 24 \wedge \neg 25)
\end{aligned}
$$

Performance

- Training with 4 small programs from DaCapo, and applied to 6 large programs
- Machine-tuning outperforms hand-tuning

Other Context-Sensitivities

- Plain (not hybrid) Object-sensitivity:
- Depth-2 formula $\left(f_{2}\right)$:
$1 \wedge \neg 3 \wedge \neg 6 \wedge 8 \wedge \neg 9 \wedge \neg 16 \wedge \neg 17 \wedge \neg 18 \wedge \neg 19 \wedge \neg 20 \wedge \neg 21 \wedge \neg 22 \wedge \neg 23 \wedge \neg 24 \wedge \neg 25$
- Depth-1 formula $\left(f_{1}\right)$:
$(1 \wedge 2 \wedge \neg 3 \wedge \neg 6 \wedge \neg 7 \wedge \neg 8 \wedge \neg 9 \wedge \neg 16 \wedge \neg 17 \wedge \neg 18 \wedge \neg 19 \wedge \neg 20 \wedge \neg 21 \wedge \neg 22 \wedge \neg 23 \wedge \neg 24 \wedge \neg 25) \vee$
$(\neg 1 \wedge \neg 2 \wedge 5 \wedge 8 \wedge \neg 9 \wedge 11 \wedge 12 \wedge \neg 14 \wedge \neg 15 \wedge \neg 16 \wedge \neg 17 \wedge \neg 18 \wedge \neg 19 \wedge \neg 20 \wedge \neg 21 \wedge \neg 22 \wedge \neg 23 \wedge \neg 24 \wedge \neg 25) \vee$
$(\neg 3 \wedge \neg 4 \wedge \neg 7 \wedge \neg 8 \wedge \neg 9 \wedge 10 \wedge 11 \wedge 12 \wedge \neg 16 \wedge \neg 17 \wedge \neg 18 \wedge \neg 19 \wedge \neg 20 \wedge \neg 21 \wedge \neg 22 \wedge \neg 23 \wedge \neg 24 \wedge \neg 25)$
- Call-site-sensitivity:
- Depth-2 formula $\left(f_{2}\right)$:
$1 \wedge \neg 6 \wedge \neg 7 \wedge 11 \wedge 12 \wedge 13 \wedge \neg 16 \wedge \neg 17 \wedge \neg 18 \wedge \neg 19 \wedge \neg 20 \wedge \neg 21 \wedge \neg 22 \wedge \neg 23 \wedge \neg 24 \wedge \neg 25$
- Depth-1 formula $\left(f_{1}\right)$:

$$
(1 \wedge 2 \wedge \neg 7 \wedge \neg 16 \wedge \neg 17 \wedge \neg 18 \wedge \neg 19 \wedge \neg 20 \wedge \neg 21 \wedge \neg 22 \wedge \neg 23 \wedge \neg 24 \wedge \neg 25)
$$

- Type-sensitivity:
- Depth-2 formula $\left(f_{2}\right)$:
$1 \wedge \neg 3 \wedge \neg 6 \wedge 8 \wedge \neg 9 \wedge \neg 16 \wedge \neg 17 \wedge \neg 18 \wedge \neg 19 \wedge \neg 20 \wedge \neg 21 \wedge \neg 22 \wedge \neg 23 \wedge \neg 24 \wedge \neg 25$
- Depth-1 formula $\left(f_{1}\right)$:
$1 \wedge 2 \wedge \neg 3 \wedge \neg 6 \wedge \neg 7 \wedge \neg 8 \wedge \neg 9 \wedge \neg 15 \wedge \neg 16 \wedge \neg 17 \wedge \neg 18 \wedge \neg 19 \wedge \neg 20 \wedge \neg 21 \wedge \neg 22 \wedge \neg 23 \wedge \neg 24 \wedge \neg 25$

Obj-Sens vs. Type-Sens

- In theory, obj-sens is more precise than type-sens
- The set of methods that benefit from obj-sens is a superset of the methods that benefit from type-sens
- Interestingly, our algorithm automatically discovered this rule from data:

	$(1 \wedge 2 \wedge \neg 3 \wedge \neg 6 \wedge \neg 7 \wedge \neg 8 \wedge \neg 9 \wedge \neg 16 \wedge \cdots \wedge \neg 22 \wedge \neg 23 \wedge \neg 24 \wedge \neg 25) \vee$
f_{1} for $20 b j H+$ Data $:$	$(\neg 1 \wedge \neg 2 \wedge 8 \wedge 5 \wedge \neg 9 \wedge 11 \wedge 12 \wedge \cdots \wedge \neg 21 \wedge \neg 22 \wedge \neg 23 \wedge \neg 24 \wedge \neg 25) \vee$
	$(\neg 3 \wedge \neg 4 \wedge \neg 7 \wedge \neg 8 \wedge \neg 9 \wedge 10 \wedge 11 \wedge \cdots \wedge \neg 21 \wedge \neg 22 \wedge \neg 23 \wedge \neg 24 \wedge \neg 25)$
f_{1} for 2 2typeH+Data $:$	$1 \wedge 2 \wedge \neg 3 \wedge \neg 6 \wedge \neg 7 \wedge \neg 8 \wedge \neg 9 \wedge \neg 15 \wedge \neg 16 \wedge \cdots \wedge \neg 22 \wedge \neg 23 \wedge \neg 24 \wedge \neg 25$

Data-Driven Static Analysis

- Techniques
- Learning via black-box optimization [OOPSLA'I5]
- Learning with disjunctive model [OOPSLA'I7]
- Learning with automatically generated features [OOPSLA'I7]
- Learning with supervison [ICSE' $\left.17, S A S^{\prime}\left|6, A P L A S^{\prime}\right| 6\right]$
- Applications
- context-sensitivity, flow-sensitivity, variable clustering, widening thresholds, unsoundness, search strategy in symbolic execution, etc

Learing via Black-Box Optimization (OOPSLA'I5)

Selective Flow-Sensitivity

FS : $\{x, y\}$

x	$[0,0]$
y	$[0,0]$
$x\|c\|$	
x	$[1,+\infty]$
y	$[0,0]$

FI: $\{z\}$

$$
\begin{array}{l|l|}
\mathrm{z} & {[1,+\infty]} \\
\hline
\end{array}
$$

x	$[1,+\infty]$
y	$[0,0]$

x	$[1,+\infty]$
y	$[1,+\infty]$

Static Analyzer

Overall Approach

- Parameterized heuristic

$$
H_{w}: p g m \rightarrow 2^{\mathrm{Var}}
$$

Overall Approach

- Parameterized heuristic

$$
H_{w}: \mathrm{pgm} \rightarrow 2^{\mathrm{Var}}
$$

- Learn a good parameter W from existing codebase

Overall Approach

- Parameterized heuristic

$$
H_{w}: p g m \rightarrow 2^{\mathrm{Var}}
$$

- Learn a good parameter W from existing codebase

- For new program P, run static analysis with $H_{w}(\mathrm{P})$

I. Parameterized Heuristic

$$
H_{w}: \text { pgm } \rightarrow 2^{\mathrm{Var}}
$$

(I) Represent program variables as feature vectors.
(2) Compute the score of each variable.
(3) Choose the top-k variables based on the score.

(I) Features

- Predicates over variables:

$$
f=\left\{f_{1}, f_{2}, \ldots, f_{5}\right\} \quad\left(f_{i}: \operatorname{Var} \rightarrow\{0, l\}\right)
$$

- We used 45 simple syntactic features for variables
- e.g., local / global variable, passed to / returned from malloc, incremented by constants, etc

(I) Features

- Represent each variable as a feature vector:

$$
\begin{aligned}
f(x)=\left\langle f_{1}(x),\right. & \left.f_{2}(x), f_{3}(x), f_{4}(x), f_{5}(x)\right\rangle \\
f(x) & =\langle I, 0, I, 0,0\rangle \\
f(y) & =\langle I, 0, I, 0, I\rangle \\
f(z) & =\langle 0,0, I, I, 0\rangle
\end{aligned}
$$

(2) Scoring

- The parameter \mathbf{w} is a real-valued vector: e.g.,

$$
w=\langle 0.9,0.5,-0.6,0.7,0.3\rangle
$$

- Compute scores of variables:

$$
\begin{aligned}
& \operatorname{score}(x)=\langle I, 0, I, 0,0\rangle \cdot\langle 0.9,0.5,-0.6,0.7,0.3\rangle=0.3 \\
& \operatorname{score}(y)=\langle I, 0, I, 0, I\rangle \cdot\langle 0.9,0.5,-0.6,0.7,0.3\rangle=0.6 \\
& \operatorname{score}(z)=\langle 0,0, I, I, 0\rangle \cdot\langle 0.9,0.5,-0.6,0.7,0.3\rangle=0 . I
\end{aligned}
$$

(3) Choose Top-k Variables

- Choose the top-k variables based on their scores: e.g., when $k=2$,

$$
\begin{aligned}
& \operatorname{score}(x)=0.3 \\
& \operatorname{score}(y)=0.6 \\
& \operatorname{score}(z)=0.1
\end{aligned}
$$

- In experiments, we choose I0\% of variables with highest scores.

2. Learn a Good Parameter

- Formulated as the optimization problem:

Find \mathbf{w} that maximizes $\sum_{P_{i}} F\left(P_{i}, S_{\mathbf{w}}\left(P_{i}\right)\right)$

- We solve it via Bayesian optimization (details in paper)

Effectiveness on

- Implemented in Sparrow, an interval analyzer for C
- Evaluated on 30 open-source programs
- Training with 20 programs (I2 hours)
- Evaluation with the remaining 10 programs

Precision

FI
Data-Driven FS
FS

Cost

FI Data-Driven FS

Limitations \& Follow-ups

- Limited expressiveness due to linear heuristic
- Disjunctive heuristic [OOPSLA'I7]
- Semi-automatic due to manual feature engineering
- Automated feature engineering [OOPSLA'I7]
- High learning cost due to black-box approach
- Supervised approaches [SAS'I6,APLAS'I6,ICSE'I7]

Learning with Disjunctive Heuristics

- The linear heuristic cannot express disjunctive properties:

$$
\begin{array}{ll}
x:\left\{a_{1}, a_{2}\right\} & \\
y:\left\{a_{1}\right\} & \text { Goal: }\{x, w\} \\
z:\left\{a_{2}\right\} & \\
w: \emptyset & \left(a_{1} \wedge a_{2}\right) \vee\left(\neg a_{1} \wedge \neg a_{2}\right)
\end{array}
$$

- Disjunctive heuristic + algorithm for learning boolean formulas

Performance

- Applied to context-sensitive points-to analysis for Java
- Without disjunction, the learned heuristic lags behind hand-tuning becaused of limited expressiveness

Manual Feature Engineering

- The success of ML heavily depends on the "features"
- Feature engineering is nontrivial and time-consuming
- Features do not generalize to other analyses

flow-sensitivity

context-sensitivity

widening thresholds

Automating Feature Engineering

Before (OOPSLA'I5)

New method (OOPSLA'I7)

Key Ideas

- Use program reducer to capture the key reason why FS succeeds but FI fails.

Key Ideas

- Use program reducer to capture the key reason why FS succeeds but FI fails.

- Generalize the programs by abstract data flow graphs and check graph-inclusion

Summary: Long-Term Vision

- Static analyzers are designed by analysis designers based on their limited insights on target programs
- Not tuned for programs that are actually analyzed
- Our vision:"Synthesize" static analyzers from data
- Every design decisions is parameterized and learned from actual data

GitHub $\longrightarrow \begin{gathered}\text { fully parameterized } \\ \text { static analysis }\end{gathered} \longrightarrow \begin{gathered}\text { static analyzer } \\ \text { tuned for "real-world" }\end{gathered}$

Summary: Long-Term Vision

- Static analyzers are designed by analysis designers based on their limited insights on target programs
- Not tuned for programs that are actually analyzed
- Our vision:"Synthesize" static analyzers from data
- Every design decisions is parameterized and learned from actual data

GitHub"ell $\rightarrow \begin{gathered}\text { fully parameterized } \\ \text { static analysis }\end{gathered} \longrightarrow \begin{gathered}\text { static analyzer } \\ \text { tuned for "real-world" }\end{gathered}$

Thank you

