
소프트웨어 증명 기술을 이용한  
스마트 컨트랙트 취약점 자동 검증

Dec 13, 2018 @정보보호단기강좌

오학주 

고려대학교 정보대학



소개

• 소속: 고려대학교 정보대학 컴퓨터학과

• 전공: 프로그래밍 언어, 소프트웨어 분석, 소프트웨어 보안

• 웹페이지: http://prl.korea.ac.kr

• 슬라이드: http://prl.korea.ac.kr/~pronto/home/talks/sec18.pdf

 2

http://prl.korea.ac.kr
http://prl.korea.ac.kr/~pronto/home/%5Dtalks/sec18.pdf


강의 내용

• 소프트웨어 증명 기술의 원리 및 응용

• 필요성: 소프트웨어 결함 문제

• 소프트웨어 분석 기법 개괄

• 소프트웨어 증명(Software Verification) 기법

• 응용: 스마트 컨트랙트 안전성 검증

 3



소프트웨어 결함 문제
• 2017년 소프트웨어 결함으로 인한 사회적 비용은 1.7조 달

러로 추정 (Software failure watch, 2017)

 4

å⌅∏Ë¥ ∞h 8⌧

2017D å⌅∏Ë¥ ∞h<\ x\ ¨å� D©@ 1.7p ÏÏ\ î�1

1Software fail watch (5th edition). 2017
$Y¸ (‡$�YP �Ù�Y ÙË0Y¸) 2018 Fall, Lecture 1 6 / 72



소프트웨어 결함 사례

 5

å⌅∏Ë¥ ∞h ¨@

D¨H 5 \◆ Ì⌧ (1996). ⌧⌧0⌅ 10D, ⌧⌧ D© $80µ.

NASA T1 –¨ ‰Ö (1998).

$Y¸ (‡$�YP �Ù�Y ÙË0Y¸) 2018 Fall, Lecture 1 7 / 72

å⌅∏Ë¥ ∞h ¨@

�5 pò å⌅∏Ë¥ $X (2012)

$Y¸ (‡$�YP �Ù�Y ÙË0Y¸) 2018 Fall, Lecture 1 10 / 72

å⌅∏Ë¥ ∞h ¨@

L¨| ê(¸â( å⌅∏Ë¥ ∞h (2017).

$Y¸ (‡$�YP �Ù�Y ÙË0Y¸) 2018 Fall, Lecture 1 9 / 72

å⌅∏Ë¥ ∞h ¨@

SmartMesh (2018)

$Y¸ (‡$�YP �Ù�Y ÙË0Y¸) 2018 Fall, Lecture 1 11 / 72



사회 모든 영역에서 발생

 6

¨å ®‡ �Ì–⌧ ⌧›

$Y¸ (‡$�YP �Ù�Y ÙË0Y¸) 2018 Fall, Lecture 1 12 / 72

Software fail watch (5th ed) 2017

• 금융, 가전, 공공, 교통, 헬스케어, …



소프트웨어 분석 기법
• 소프트웨어의 실행 성질을 분석하여 사전에 오류를 탐지하는 기술

• 검증 능력과 비용의 trade-off에 따라 다양한 기법이 존재

 7비용

검
증
 능
력

(랜덤) 테스팅 / 퍼징

기호실행 / 콘콜릭 테스팅

정적 분석

소프트웨어 증명



랜덤 테스팅

 8

int double (int v) { 
  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

Probability of the error? (0 ≤ x,y ≤ 100)

• 무작위로 입력을 생성하여 테스팅



랜덤 테스팅

 8

int double (int v) { 
  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

Probability of the error?

< 0.4%

 (0 ≤ x,y ≤ 100)

• 무작위로 입력을 생성하여 테스팅



기호 실행 (Symbolic Execution)

 9

int double (int v) { 
  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

x=α, y=β

true

• 프로그램을 실제값이 아닌 기호를 이용하여 실행



 10

x=α, y=β,z=2*β

true

int double (int v) { 
  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

기호 실행 (Symbolic Execution)



 11

int double (int v) { 
  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

x=α, y=β,z=2*β

2*β = α

기호 실행 (Symbolic Execution)



 12

int double (int v) { 
  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

x=30, y=15

x=α, y=β,z=2*β

2*β = α ∧  
α > β+10

error-triggering 
input

SMT solver

기호 실행 (Symbolic Execution)



정적 분석

 13

�� Ñ�X –¨

$Y¸ (‡$�YP �Ù�Y ÙË0Y¸) 2018 Fall, Lecture 1 58 / 72

• 프로그램의 실제실행을 요약(abstraction)하여 분석



정적 분석

 14

�� Ñ�X –¨

$Y¸ (‡$�YP �Ù�Y ÙË0Y¸) 2018 Fall, Lecture 1 58 / 72

�� Ñ�X –¨

$Y¸ (‡$�YP �Ù�Y ÙË0Y¸) 2018 Fall, Lecture 1 59 / 72

• 프로그램의 실제실행을 요약(abstraction)하여 분석

허위 경보(false alarm)



정적 분석

 15

�� Ñ�X –¨

$Y¸ (‡$�YP �Ù�Y ÙË0Y¸) 2018 Fall, Lecture 1 58 / 72

�� Ñ�X –¨

$Y¸ (‡$�YP �Ù�Y ÙË0Y¸) 2018 Fall, Lecture 1 60 / 72

• 프로그램의 실제실행을 요약(abstraction)하여 분석

적절한 요약을 찾는 것이 관건



소프트웨어 증명 (Software Verification)

 16

Verifier

프로그램

증명할 성질

증명성공

반례 
(counterexample)

P

�



Satisfiability (SAT) Problem

 17

• 명제(Proposition): 참 또는 거짓인 문장
• true, false

• 비가 온다 (P)

• 날이 흐리다 (Q)

• 비가 오지 않는다 (¬P)

• 비가 오고 날이 흐리다 (P⋀Q)

• 비가 오거나 날이 흐리다 (P⋁Q)

• 비가 오면 날이 흐리다 (P→Q)

• Satisfiability (SAT): 주어진 명제가 참이 될 수 있는지 여부
• true, false

• P⋀Q

• P⋀¬P

• P⋁¬P

• P→Q



Satisfiability Modulo Theory 
(SMT) Problem

 18

• SAT을 일차논리(First-order logic)로 확장: e.g., 

• Theory of Equality

• Theory of Integers

• Theory of arrays

• SMT solvers (e.g., Z3, Yices, CVC4)

• 일차 논리식의 참/거짓 여부를 주어진 theory내에서 판단

a = b ^ b = c ! a = c

9x, y. x = y + 1

8i, j. i = j ! a[i] = a[j]



소프트웨어 증명 (Software Verification)

 19

Verifier

프로그램

증명할 성질

증명성공!

반례 
(counterexample)

P

� P ^ ¬�SAT(             )

UNSAT

SAT

• 프로그램과 증명할 성질을 일차 논리식으로 표현

• 논리식의 satisfiability 여부를 판별



예제

 20

int f(bool a) {
  x = 0; y = 0;
  if (a) {
    x = 1;
  }
  if (a) {
    y = 1;
  }
  assert (x == y)
}

• 증명할 성질을 assert 문으로 표현



예제

 21

((a ∧ x) ∨ (¬a ∧ ¬x)) ∧ 
((a ∧ y) ∨ (¬a ∧ ¬y)) ∧ 
¬(x == y)

• 프로그램과 증명할 성질의 반대(negation)를 논리식으로 표현

int f(bool a) {
  x = 0; y = 0;
  if (a) {
    x = 1;
  }
  if (a) {
    y = 1;
  }
  assert (x == y)
}



예제

 21

((a ∧ x) ∨ (¬a ∧ ¬x)) ∧ 
((a ∧ y) ∨ (¬a ∧ ¬y)) ∧ 
¬(x == y)

SAT/SMT solver: unsatisfiable!

• 프로그램과 증명할 성질의 반대(negation)를 논리식으로 표현

int f(bool a) {
  x = 0; y = 0;
  if (a) {
    x = 1;
  }
  if (a) {
    y = 1;
  }
  assert (x == y)
}



예제

 22

int f(a, b) {
  x = 0; y = 0;
  if (a) {
    x = 1;
  }
  if (b) {
    y = 1;
  }
  assert (x == y)
}

((a ∧ x) ∨ (¬a ∧ ¬x)) ∧ 
((b ∧ y) ∨ (¬b ∧ ¬y)) ∧ 
¬(x == y)

• 증명이 불가능한 경우에는 반례를 제공



예제

 22

int f(a, b) {
  x = 0; y = 0;
  if (a) {
    x = 1;
  }
  if (b) {
    y = 1;
  }
  assert (x == y)
}

((a ∧ x) ∨ (¬a ∧ ¬x)) ∧ 
((b ∧ y) ∨ (¬b ∧ ¬y)) ∧ 
¬(x == y)

SAT/SMT solver:
satisfiable when a=1 and b=0

• 증명이 불가능한 경우에는 반례를 제공



임의의 성질을 증명 가능

 23

Running Example 3: Bubble Sort

bool BubbleSort (int a[]) {
int[] a := a0

for (int i := |a| � 1; i > 0; i := i � 1) {
for (int j := 0; j < i; j := j + 1) {
if (a[j] > a[j + 1]) {
int t := a[j];
int a[j] := a[j + 1];
int a[j + 1] := t;

}
}

}
return a;

}

Hakjoo Oh AAA528 2018 Fall, Lecture 6 October 12, 2018 5 / 33

• 일차 논리식으로 표현가능한 모든 성질: e.g., 정렬여부



임의의 성질을 증명 가능

 23

Running Example 3: Bubble Sort

bool BubbleSort (int a[]) {
int[] a := a0

for (int i := |a| � 1; i > 0; i := i � 1) {
for (int j := 0; j < i; j := j + 1) {
if (a[j] > a[j + 1]) {
int t := a[j];
int a[j] := a[j + 1];
int a[j + 1] := t;

}
}

}
return a;

}

Hakjoo Oh AAA528 2018 Fall, Lecture 6 October 12, 2018 5 / 33

• 일차 논리식으로 표현가능한 모든 성질: e.g., 정렬여부

assert(8i, j. 0  i  j < |a| ! a[i]  a[j]);



반복문의 불변 성질 (Loop Invariant)

• 프로그램을 논리식으로 변환하려면 반복문마다 불변 성질을 기
술해 주어야 함

• 반복문의 불변성질: 반복횟수와 상관없이 항상 성립하는 성질

• 예:

 24

i = 0; 
j = 0;
while  
(i < 10)  
{
  i++;
  j++;
}



반복문의 불변 성질 (Loop Invariant)

• 프로그램을 논리식으로 변환하려면 반복문마다 불변 성질을 기
술해 주어야 함

• 반복문의 불변성질: 반복횟수와 상관없이 항상 성립하는 성질

• 예:

 24

i = 0; 
j = 0;
while  
(i < 10)  
{
  i++;
  j++;
}

i >= 0,
j >= 0,
i == j,
…



반복문의 불변 성질 (Loop Invariant)

• 프로그램을 논리식으로 변환하려면 반복문마다 불변 성질을 기
술해 주어야 함

• 반복문의 불변성질: 반복횟수와 상관없이 항상 성립하는 성질

• 예:

 24

i = 0; 
j = 0;
while  
(i < 10)  
{
  i++;
  j++;
}

i >= 0,
j >= 0,
i == j,
…

대상 성질을 증명하는데 
필요한 불변식을 선택



프로그램 증명의 핵심 문제
• 대상 성질을 증명하는데 필요한 불변식을 찾는 것이 핵심

• 일반적으로 그러한 불변식을 자동으로 알아내는 것은 불가능

 25

Example: Bubble Sort

@pre : >
@post : sorted(rv, 0, |rv| � 1)
bool BubbleSort (int a[]) {

int[] a := a0

@L1

2

4
�1  i < |a|
^ partitioned(a, 0, i, i + 1, |a| � 1)
^ sorted(a, i, |a| � 1)

3

5

for (int i := |a| � 1; i > 0; i := i � 1) {

@L2

2

664

1  i < |a| ^ 0  j  i
^ partitioned(a, 0, i, i + 1, |a| � 1)
^ partitioned(a, 0, j � 1, j, j)
^ sorted(a, i, |a| � 1)

3

775

for (int j := 0; j < i; j := j + 1) {
if (a[j] > a[j + 1]) {

int t := a[j];
int a[j] := a[j + 1];
int a[j + 1] := t;

}
}

}
return a;

}

partitioned(a, l1, u1, l2, u2) () 8i, j. l1  i  u1 < l2  j  u2 ! a[i]  a[j].
Hakjoo Oh AAA528 2018 Fall, Lecture 6 October 12, 2018 14 / 33



응용: 스마트 컨트랙트

 26

• 블록체인에서는 중계자 없이 P2P로 계약을 체결


• 프로그래밍 언어로 작성된 계약서. 특정 조건이 만족되면 실행

image from https://www.coindesk.com/information/ethereum-smart-contracts-work



스마트 컨트랙트 생김새

 27

VeriSmart: Precise and Sound Verification of Numerical
Properties for Ethereum Smart Contracts

Sunbeom So
Korea University

sunbeom_so@korea.ac.kr

Myungho Lee
Korea University

myungho_lee@korea.ac.kr

Jisu Park
Korea University

jisu_park@korea.ac.kr

Heejo Lee
Korea University
heejo@korea.ac.kr

Hakjoo Oh
Korea University

hakjoo_oh@korea.ac.kr

1 function transferProxy

2 (address from , address to , uint value , uint fee) public

3 returns (bool) {

4 if (balance[from] < fee + value) revert (); // vulnerable

5
6 if (balance[to] + value < balance[to]

7 || balance[msg.sender] + fee < balance[msg.sender ])

8 revert ();

9
10 balance[to] += value;

11 balance[msg.sender] += fee;

12 balance[from] -= value + fee;

13 return true;

14 }

Figure 1: A simpli�ed vulnerable function from SmartMesh
contract (CVE-2018-10376). Attackers exploited the vulnera-
bility at line 4, where fee+value may over�ow with crafted
input arguments.

ABSTRACT
TODO

CCS CONCEPTS
• Security and privacy → Use https://dl.acm.org/ccs.cfm to gen-
erate actual concepts section for your paper;

KEYWORDS
template; formatting; pickling

1 INTRODUCTION
TODO

2 OVERVIEW
2.1 Motivating Examples
In this section, we motivate the signi�cance of V���S����’s precise
and sound veri�cation. Example 1 emphasizes the importance of
sound veri�cation in safety-critical smart contracts using a real-
world accident example. Example 2 demonstrates V���S����’s
capability for precise veri�cation, which has not been achieved in
existing smart contract analyzers.

1 contract Netkoin {

2 mapping (address => uint) public balance;

3 uint public totalSupply;

4
5 constructor (uint initialSupply) {

6 totalSupply = initialSupply;

7 balance[msg.sender] = totalSupply;

8 }

9
10 function transfer (address to, uint value) public

11 returns (bool) {

12 require (balance[msg.sender] >= value);

13 require (balance[to] + value > balance[to]);

14 balance[msg.sender] -= value;

15 balance[to] += value;

16 return true;

17 }

18
19 function burn (uint value) public returns (bool) {

20 require (balance[msg.sender] >= value);

21 balance[msg.sender] -= value;

22 totalSupply -= value;

23 return true;

24 }

25 }

Figure 2: Example code adapted from Netkoin contract that
hasmore than 43,000 transactions at the time of the writing.

Example 1 (Necessity for Sound Veri�cation). In Figure 1,
we show the simpli�ed implementation of the transferProxy func-
tion from SmartMesh (SMT) token contract. In April 2018, attackers
created unauthorized tokens worth about 6⇤1042 USD by exploiting
the integer over�ow vulnerability in the function. This vulnerability,
named proxyOver�ow, was reported in CVE-2018-10376.

The function �rst checks whether the sender’s balance is greater
than or equal to fee+value tokens to be sent (line 4), and fur-
ther examines whether recipients’ balances would over�ow when
fee+value is added (line 6–7). After passing these two checks, the
function transfers the tokens to the recipients (line 10–11) and
subtracts the tokens by the amount of the sent tokens (line 12).

The attackers exploited the vulnerability at line 4; the conditional
statement does not check whether fee+value over�ows or not. Let
us investigate one possible attack scenario. 1 Suppose the sender
the recipients initially have no balances, i.e., balance[from] =
balance[to] = balance[msg.sender] = 0. With value = 1 and

1The actual input values that were used in the attack can be found in the link here.

1

생성자

트랜잭션

트랜잭션

데이터



스마트 컨트랙트의 안전성 문제
• 안전하고 정확하게 동작하는 스마트 컨트랙트 작성은 매우 어려움

• 제한없는 일반적인 소프트웨어 (Turing-complete)

• 스마트 컨트랙트는 위험에 무방비로 노출

• 누구나 온라인에서 소스코드 열람 가능하며 수정 불가

• 공격에 성공하면 막대한 금전적 피해가 발생

 28

å⌅∏Ë¥ ∞h ¨@

SmartMesh (2018)

$Y¸ (‡$�YP �Ù�Y ÙË0Y¸) 2018 Fall, Lecture 1 11 / 72

SmartMesh (2018)

천문학적 금액 인출 시도

The DAO (2016) 

750억원



현재 상황
• 사람이 수작업으로 코드 감사(auditing) 수행

• 많은 비용 소요, 놓치는 문제들이 존재

• Ex) Parity Wallet 해킹 사례 (2017)

• 다중 서명 지갑의 취약점으로 인해 350억원 피해

• 이더리움 개발자들이 코드 감사를 진행했던 코드

• 다른 소프트웨어보다 더욱 엄밀한 검증 기술이 필요

 29

왜 해킹의 대상이 되는가?
- Smart contract는 기본적으로 항상 online + open
- 공격자가 즉각적인 reward를 얻는다. 
- Immutable! 
- 개발자들에게도 생소한 execution model
- Solidity의 abstraction과 실제 EVM과의 mismatch

…

TheDAO
Hack

Parity
MultiSig
Wallet



현재 상황
• 사람이 수작업으로 코드 감사(auditing) 수행

• 많은 비용 소요, 놓치는 문제들이 존재

• Ex) Parity Wallet 해킹 사례 (2017)

• 다중 서명 지갑의 취약점으로 인해 350억원 피해

• 이더리움 개발자들이 코드 감사를 진행했던 코드

• 다른 소프트웨어보다 더욱 엄밀한 검증 기술이 필요

 29

왜 해킹의 대상이 되는가?
- Smart contract는 기본적으로 항상 online + open
- 공격자가 즉각적인 reward를 얻는다. 
- Immutable! 
- 개발자들에게도 생소한 execution model
- Solidity의 abstraction과 실제 EVM과의 mismatch

…

TheDAO
Hack

Parity
MultiSig
Wallet

VeriSmart: 스마트 컨트랙트 안전성 자동 검증기



정수 오버플로우 취약점
• Solidity에서는 정수를 유한한 비트로 표현

• 정수 연산시 표현 가능한 범위를 넘어서는 문제가 발생 가능

• 오버플로우 유무를 판단하기가 매우 까다로움

• CVE 등록된 스마트 컨트랙트 중 90% (463/493, 2018.08) 이상이 정
수 오버플로우에서 비롯됨 

 30

VeriSmart: Precise and Sound Verification of Numerical
Properties for Ethereum Smart Contracts

Sunbeom So
Korea University

sunbeom_so@korea.ac.kr

Myungho Lee
Korea University

myungho_lee@korea.ac.kr

Jisu Park
Korea University

jisu_park@korea.ac.kr

Heejo Lee
Korea University
heejo@korea.ac.kr

Hakjoo Oh
Korea University

hakjoo_oh@korea.ac.kr

1 function transferProxy

2 (address from , address to , uint value , uint fee) public

3 returns (bool) {

4 if (balance[from] < fee + value) revert (); // vulnerable

5
6 if (balance[to] + value < balance[to]

7 || balance[msg.sender] + fee < balance[msg.sender ])

8 revert ();

9
10 balance[to] += value;

11 balance[msg.sender] += fee;

12 balance[from] -= value + fee;

13 return true;

14 }

Figure 1: A simpli�ed vulnerable function from SmartMesh
contract (CVE-2018-10376). Attackers exploited the vulnera-
bility at line 4, where fee+value may over�ow with crafted
input arguments.

ABSTRACT
TODO

CCS CONCEPTS
• Security and privacy → Use https://dl.acm.org/ccs.cfm to gen-
erate actual concepts section for your paper;

KEYWORDS
template; formatting; pickling

1 INTRODUCTION
TODO

2 OVERVIEW
2.1 Motivating Examples
In this section, we motivate the signi�cance of V���S����’s precise
and sound veri�cation. Example 1 emphasizes the importance of
sound veri�cation in safety-critical smart contracts using a real-
world accident example. Example 2 demonstrates V���S����’s
capability for precise veri�cation, which has not been achieved in
existing smart contract analyzers.

1 contract Netkoin {

2 mapping (address => uint) public balance;

3 uint public totalSupply;

4
5 constructor (uint initialSupply) {

6 totalSupply = initialSupply;

7 balance[msg.sender] = totalSupply;

8 }

9
10 function transfer (address to, uint value) public

11 returns (bool) {

12 require (balance[msg.sender] >= value);

13 require (balance[to] + value > balance[to]);

14 balance[msg.sender] -= value;

15 balance[to] += value;

16 return true;

17 }

18
19 function burn (uint value) public returns (bool) {

20 require (balance[msg.sender] >= value);

21 balance[msg.sender] -= value;

22 totalSupply -= value;

23 return true;

24 }

25 }

Figure 2: Example code adapted from Netkoin contract that
hasmore than 43,000 transactions at the time of the writing.

Example 1 (Necessity for Sound Veri�cation). In Figure 1,
we show the simpli�ed implementation of the transferProxy func-
tion from SmartMesh (SMT) token contract. In April 2018, attackers
created unauthorized tokens worth about 6⇤1042 USD by exploiting
the integer over�ow vulnerability in the function. This vulnerability,
named proxyOver�ow, was reported in CVE-2018-10376.

The function �rst checks whether the sender’s balance is greater
than or equal to fee+value tokens to be sent (line 4), and fur-
ther examines whether recipients’ balances would over�ow when
fee+value is added (line 6–7). After passing these two checks, the
function transfers the tokens to the recipients (line 10–11) and
subtracts the tokens by the amount of the sent tokens (line 12).

The attackers exploited the vulnerability at line 4; the conditional
statement does not check whether fee+value over�ows or not. Let
us investigate one possible attack scenario. 1 Suppose the sender
the recipients initially have no balances, i.e., balance[from] =
balance[to] = balance[msg.sender] = 0. With value = 1 and

1The actual input values that were used in the attack can be found in the link here.

1

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value; // Safe , Needs global reasoning
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply += value; // Safe , Needs global reasoning
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance ) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [? ] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance ) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance ) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance ) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender ] + R
^ balance[ms�.sender ] + R � balance[ms�.sender ]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance )).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender ] � �alue) yields:

totalSuppl� � balance[ms�.sender ] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2



SmartMesh 사례 (2018)

 31

• SmartMesh 토큰 스마트 컨트랙트의 정수 오버플로우 취약점
(CVE-2018-10376)을 이용하여 천문학적 금액의 토큰을 생성

https://etherscan.io/tx/0x1abab4c8db9a30e703114528e31dee129a3a758f7f8abc3b6494aad3d304e43f



SmartMesh 사례 (2018)

 32

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender ])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

• 정수 오버플로우 (integer overflow) 취약점


• 방어적으로 코드를 작성했음에도 문제가 된 경우



SmartMesh 사례 (2018)

 32

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender ])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

• 정수 오버플로우 (integer overflow) 취약점


• 방어적으로 코드를 작성했음에도 문제가 된 경우

송금



SmartMesh 사례 (2018)

 32

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender ])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

• 정수 오버플로우 (integer overflow) 취약점


• 방어적으로 코드를 작성했음에도 문제가 된 경우

보내는 사람의 잔고
가 충분한지 체크

송금



SmartMesh 사례 (2018)

 32

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender ])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

• 정수 오버플로우 (integer overflow) 취약점


• 방어적으로 코드를 작성했음에도 문제가 된 경우

보내는 사람의 잔고
가 충분한지 체크

송금 오버플로우
체크



SmartMesh 사례 (2018)

 32

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender ])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

• 정수 오버플로우 (integer overflow) 취약점


• 방어적으로 코드를 작성했음에도 문제가 된 경우

보내는 사람의 잔고
가 충분한지 체크

송금 오버플로우
체크

오버플로우/언더플로우 
발생하지 않음 



SmartMesh 사례 (2018)

 33

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender ])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3



SmartMesh 사례 (2018)

 33

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender ])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

balance[from] = balance[to] = balance[msg.sender] = 0 



SmartMesh 사례 (2018)

 33

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender ])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

balance[from] = balance[to] = balance[msg.sender] = 0 
value: 8fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 
fee  : 7000000000000000000000000000000000000000000000000000000000000001



SmartMesh 사례 (2018)

 33

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender ])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

balance[from] = balance[to] = balance[msg.sender] = 0 
value: 8fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 
fee  : 7000000000000000000000000000000000000000000000000000000000000001

0!



SmartMesh 사례 (2018)

 33

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender ])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

balance[from] = balance[to] = balance[msg.sender] = 0 
value: 8fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 
fee  : 7000000000000000000000000000000000000000000000000000000000000001

0!false



SmartMesh 사례 (2018)

 33

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender ])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

balance[from] = balance[to] = balance[msg.sender] = 0 
value: 8fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 
fee  : 7000000000000000000000000000000000000000000000000000000000000001

0!false

false



SmartMesh 사례 (2018)

 33

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender ])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

balance[from] = balance[to] = balance[msg.sender] = 0 
value: 8fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 
fee  : 7000000000000000000000000000000000000000000000000000000000000001

0!false

false

8fffff…ff



SmartMesh 사례 (2018)

 33

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender ])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

balance[from] = balance[to] = balance[msg.sender] = 0 
value: 8fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 
fee  : 7000000000000000000000000000000000000000000000000000000000000001

0!false

false

8fffff…ff
700…00



SmartMesh 사례 (2018)

 33

1 function transferProxy (address from , address to , uint

value , uint fee) public returns (bool) {

2 if (balance[from] < fee + value)

3 revert ();

4 if (balance[to] + value < balance[to] ||

5 balance[msg.sender] + fee < balance[msg.sender ])

6 revert ();

7 balance[to] += value;

8 balance[msg.sender] += fee;

9 balance[from] -= value + fee;

10 return true;

11 }

3 ALGORITHM
TODO

4 EVALUATION
TODO

5 RELATEDWORK
[[Sunbeom:QuiteOld]].O����� [3] is an open-sourced symbolic
execution engine that analyzes EVM bytecode. While O����� sup-
ports a range of security properties, it does not consider all pos-
sible program paths, which may lead to false negatives. Similarly,
M���� [4] is an symbolic executor that sacri�ces soundness for
practical vulnerability detection. Z��� [2] is a sound static analyzer
that leverages existing LLVM-based symbolic model checkers such
as S��H��� [1], after translating source code into LLVM bitcode.
Z��� considers only intra-transactional reasoning and does not
reason about inter-transactional information, which would make
the analysis imprecise. We were not able to directly compare with
Z��� in our experiments, as Z��� is not publicly available. S����
���� [5] is a static analyzer that detects security vulnerabilities
using a set of predetermined compliance/violation patterns. Es-
sentially, this pattern-based approach is not suitable for analyzing
numerical properties which are our main focuses in this work.

6 CONCLUSION
TODO

REFERENCES
[1] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Veri�cation Framework. In Computer Aided Veri�cation -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[2] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_09-1_Kalra_paper.pdf

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[4] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/abs/1802.06038

[5] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018). arXiv:1806.01143 http://arxiv.
org/abs/1806.01143

3

balance[from] = balance[to] = balance[msg.sender] = 0 
value: 8fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 
fee  : 7000000000000000000000000000000000000000000000000000000000000001

0!false

false

8fffff…ff
700…00

0!



스마트 컨트랙트 분석 기술의 한계
• 취약점 검출기 (e.g., Mythril, Osiris [ACSAC’18], Oyente [CCS’16])

• 분석의 정확도를 위하여 안전성을 희생 (“bug-finders”)

• 취약점이 발견되지 않더라도 안심할 수 없음

• 취약점 검증기 (e.g., Zeus [NDSS’18])

• 모든 취약점을 탐지 가능 (“verifiers”)

• 안전성을 위해서 정확도를 희생 (허위 경보 문제)

 34



스마트 컨트랙트 분석 기술의 한계
• 취약점 검출기 (e.g., Mythril, Osiris [ACSAC’18], Oyente [CCS’16])

• 분석의 정확도를 위하여 안전성을 희생 (“bug-finders”)

• 취약점이 발견되지 않더라도 안심할 수 없음

• 취약점 검증기 (e.g., Zeus [NDSS’18])

• 모든 취약점을 탐지 가능 (“verifiers”)

• 안전성을 위해서 정확도를 희생 (허위 경보 문제)

 34

VeriSmart: 안전하면서 정확한 스마트 컨트랙트 검증기



정확한 검증의 핵심

 35

• 트랜잭션의 불변 성질 (Transaction invariant)을 유추하고 이를 검증에 
활용하는 것이 필요

• 트랜잭션 불변 성질의 조건: 

• 생성자 실행후 성립

• 각 트랜잭션의 실행전/후에 변함없이 성립

컨트랙트 트랜잭션1

T

T

트랜잭션2

T

T



Netkoin 예제

 36

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance ) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [? ] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance ) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance ) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance ) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender ] + R
^ balance[ms�.sender ] + R � balance[ms�.sender ]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance )).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender ] � �alue) yields:

totalSuppl� � balance[ms�.sender ] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2



Netkoin 예제

 36

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance ) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [? ] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance ) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance ) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance ) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender ] + R
^ balance[ms�.sender ] + R � balance[ms�.sender ]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance )).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender ] � �alue) yields:

totalSuppl� � balance[ms�.sender ] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

오버플로우로 착각하기 쉬움



Netkoin 예제

 36

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance ) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [? ] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance ) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance ) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance ) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender ] + R
^ balance[ms�.sender ] + R � balance[ms�.sender ]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance )).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender ] � �alue) yields:

totalSuppl� � balance[ms�.sender ] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

오버플로우로 착각하기 쉬움

언더플로우로 착각하기 쉬움



Netkoin 예제

 36

트랜잭션 불변 성질: 
totalSupply = Σbalance

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance ) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [? ] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance ) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance ) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance ) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender ] + R
^ balance[ms�.sender ] + R � balance[ms�.sender ]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance )).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender ] � �alue) yields:

totalSuppl� � balance[ms�.sender ] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

오버플로우로 착각하기 쉬움

언더플로우로 착각하기 쉬움



Netkoin 예제

 36

totalSupply = Σbalance

트랜잭션 불변 성질: 
totalSupply = Σbalance

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance ) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [? ] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance ) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance ) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance ) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender ] + R
^ balance[ms�.sender ] + R � balance[ms�.sender ]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance )).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender ] � �alue) yields:

totalSuppl� � balance[ms�.sender ] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

오버플로우로 착각하기 쉬움

언더플로우로 착각하기 쉬움



Netkoin 예제

 36

totalSupply = Σbalance

totalSupply = Σbalance

트랜잭션 불변 성질: 
totalSupply = Σbalance

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance ) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [? ] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance ) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance ) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance ) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender ] + R
^ balance[ms�.sender ] + R � balance[ms�.sender ]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance )).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender ] � �alue) yields:

totalSuppl� � balance[ms�.sender ] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

오버플로우로 착각하기 쉬움

언더플로우로 착각하기 쉬움



Netkoin 예제

 36

totalSupply = Σbalance

totalSupply = Σbalance

totalSupply = Σbalance

트랜잭션 불변 성질: 
totalSupply = Σbalance

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance ) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [? ] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance ) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance ) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance ) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender ] + R
^ balance[ms�.sender ] + R � balance[ms�.sender ]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance )).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender ] � �alue) yields:

totalSuppl� � balance[ms�.sender ] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

오버플로우로 착각하기 쉬움

언더플로우로 착각하기 쉬움



Netkoin 예제

 36

totalSupply = Σbalance

totalSupply = Σbalance

totalSupply = Σbalance

totalSupply = Σbalance

트랜잭션 불변 성질: 
totalSupply = Σbalance

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance ) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [? ] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance ) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance ) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance ) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender ] + R
^ balance[ms�.sender ] + R � balance[ms�.sender ]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance )).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender ] � �alue) yields:

totalSuppl� � balance[ms�.sender ] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

오버플로우로 착각하기 쉬움

언더플로우로 착각하기 쉬움



Netkoin 예제

 36

totalSupply = Σbalance

totalSupply = Σbalance

totalSupply = Σbalance

totalSupply = Σbalance

totalSupply = Σbalance

트랜잭션 불변 성질: 
totalSupply = Σbalance

1 contract Netkoin {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor (uint initialSupply) {
6 totalSupply = initialSupply;
7 balance[msg.sender] = totalSupply;
8 }
9
10 function transfer (address to , uint value) public

11 returns (bool) {
12 require (balance[msg.sender] >= value);
13 balance[msg.sender] -= value;
14 balance[to] += value;
15 return true;
16 }
17
18 function burn (uint value) public returns (bool) {
19 require (balance[msg.sender] >= value);
20 balance[msg.sender] -= value;
21 totalSupply -= value;
22 return true;
23 }
24 }

Figure 2: Example code adapted from Netkoin contract that
has more than 43,000 transactions. The safety proof of the
queries at line 14 and 21 requires global reasoning, which
can be achieved by V���S���� but cannot be achieved by
existing tools.

true

NoOverFlow(�balance ) ^ totalSuppl� = �balance

constructor

transfer, burn

Figure 3: Possible transaction �ows for the contract in Fig-
ure 2. The state (true) that has the outgoing edge constructor
means that nothing is assumed before deploying the con-
tract. The other state represents the transaction invariant.

incur the under�ow in the message sender’s balance (line 12). The
function burn subtracts value tokens from the message sender’s
balance (line 20) if the message sender has enough tokens (line 19),
and updates totalSupply accordingly (line 21).

There are four arithmetic operations in the program (line 13, 14,
20, 21). We �rst remark that all four queries are safe from integer
over/under�ow vulnerabilities. The safety of the the queries at
line 13 and 20 can be checked intra-procedurally without much
di�culty, as ensured by the safety checking statements at line
12 and 19, respectively. In contrast, we need global information to
check the safety at line 14 and 21, where sanity checking statements
do not exist within each function.

Existing Analyzers for Smart Contracts. Unfortunately, all
existing tools that support analyses for numerical properties in
smart contracts cannot prove the safety at line 14 and 21, because

their analyses are imprecise or unsound. For example, a sound
static analyzer Z��� [2] fails, because Z��� only performs intra-
transactional analysis while completely giving up global inter-
transactional reasoning. O����� [? ] and M������, unsound bug
�nders, also inaccurately report that the query at line 21 has the
under�ow vulnerability. As a result, the existing security analyz-
ers often burden developers with error-prone and time-consuming
manual veri�cation process for incorrectly reported alarms.

Global Invariant. V���S���� , however, is able to prove that
the queries at line 14 and 21 are safe (also the queries at line 13 and
20) by automatically inferring global inter-transactional informa-
tion, where we call transaction invariant. A transaction invariant is
a condition that is true (1) after the initial transaction (i.e., a con-
structor invocation for deploying the contract) and (2) before and
after transactions other than the initial transaction (e.g., two public
function invocations: transfer and burn in our example). For the
contract in Figure 2, V���S���� infers the following transaction
invariant, which is also depicted in Figure 3:

NoOverFlow(�balance ) ^ totalSuppl� = �balance .

The predicate NoOverFlow(�balance ) means that over�ows do not
occur in the process of computing �balance . For example, assuming
there only exists three account address x ,�, and z,NoOverFlow(�b)
() b[x]+b[�] � b[x]^b[x]+b[�]+b[z] � b[z]. �balance means
that the sum of all balances, e.g., �b = b[x] + b[�] + b[z].

We can intuitively observe that the transaction invariant above
is indeed an invariant, i.e., satis�es the above conditions (1) and
(2). For the condition (1), we can easily see that the transaction
invariant holds after the constructor invoation, where uninitial-
ized balances are initially 0s. For the condition (2), consider the
function transfer. Suppose the transaction invariant holds be-
fore entering the transfer. Then, the invariant still holds after
exiting the transfer; the sum of the balances remains the same
(i.e., totalSuppl� = �balance still holds) without under�owing
on balance[msg.sender] (i.e.,NoOverFlow(�balance ) still holds).
We can check the burn case similarly.

Proving SafetywithGlobal Invariant. Using the global trans-
action invariant, V���S���� is able to prove the safety of the two
queries. For example, to prove the safety of the query at line 21,
V���S���� deduces that the following condition holds upon enter-
ing the function burn by concretizing the transaction invariant in
the context of burn:

totalSuppl� = balance[ms�.sender ] + R
^ balance[ms�.sender ] + R � balance[ms�.sender ]

whereR is a sum of the all unspeci�ed accounts’ balances other than
thems�.sender ’s balance, and the �rst (resp., second) conjunct corre-
sponds to totalSuppl� = �balance (resp.,NoOverFlow(�balance )).
Then, combining the transaction invariant with the condition at
line 19 (balance[ms�.sender ] � �alue) yields:

totalSuppl� � balance[ms�.sender ] � �alue

which guarantees the safety at line 21. We will provide more formal
descriptions in Section 3, including the safety proof for the query
at line 14.

2

오버플로우로 착각하기 쉬움

언더플로우로 착각하기 쉬움



Netkoin 예제

 37

VeriSmart: Precise and Sound Verification of Numerical
Properties for Ethereum Smart Contracts

Sunbeom So
Korea University

sunbeom_so@korea.ac.kr

Myungho Lee
Korea University

myungho_lee@korea.ac.kr

Jisu Park
Korea University

jisu_park@korea.ac.kr

Heejo Lee
Korea University
heejo@korea.ac.kr

Hakjoo Oh
Korea University

hakjoo_oh@korea.ac.kr

1 function transferProxy

2 (address from , address to , uint value , uint fee) public

3 returns (bool) {

4 if (balance[from] < fee + value) revert (); // vulnerable

5
6 if (balance[to] + value < balance[to]

7 || balance[msg.sender] + fee < balance[msg.sender ])

8 revert ();

9
10 balance[to] += value;

11 balance[msg.sender] += fee;

12 balance[from] -= value + fee;

13 return true;

14 }

Figure 1: A simpli�ed vulnerable function from SmartMesh
contract (CVE-2018-10376). Attackers exploited the vulnera-
bility at line 4, where fee+value may over�ow with crafted
input arguments.

ABSTRACT
TODO

CCS CONCEPTS
• Security and privacy → Use https://dl.acm.org/ccs.cfm to gen-
erate actual concepts section for your paper;

KEYWORDS
template; formatting; pickling

1 INTRODUCTION
TODO

2 OVERVIEW
2.1 Motivating Examples
In this section, we motivate the signi�cance of V���S����’s precise
and sound veri�cation. Example 1 emphasizes the importance of
sound veri�cation in safety-critical smart contracts using a real-
world accident example. Example 2 demonstrates V���S����’s
capability for precise veri�cation, which has not been achieved in
existing smart contract analyzers.

1 contract Netkoin {

2 mapping (address => uint) public balance;

3 uint public totalSupply;

4
5 constructor (uint initialSupply) {

6 totalSupply = initialSupply;

7 balance[msg.sender] = totalSupply;

8 }

9
10 function transfer (address to , uint value) public

11 returns (bool) {

12 require (balance[msg.sender] >= value);

13 require (balance[to] + value > balance[to]);

14 balance[msg.sender] -= value;

15 balance[to] += value;

16 return true;

17 }

18
19 function burn (uint value) public returns (bool) {

20 require (balance[msg.sender] >= value);

21 balance[msg.sender] -= value;

22 totalSupply -= value;

23 return true;

24 }

25 }

Figure 2: Example code adapted from Netkoin contract that
hasmore than 43,000 transactions at the time of the writing.

Example 1 (Necessity for Sound Veri�cation). In Figure 1,
we show the simpli�ed implementation of the transferProxy func-
tion from SmartMesh (SMT) token contract. In April 2018, attackers
created unauthorized tokens worth about 6⇤1042 USD by exploiting
the integer over�ow vulnerability in the function. This vulnerability,
named proxyOver�ow, was reported in CVE-2018-10376.

The function �rst checks whether the sender’s balance is greater
than or equal to fee+value tokens to be sent (line 4), and fur-
ther examines whether recipients’ balances would over�ow when
fee+value is added (line 6–7). After passing these two checks, the
function transfers the tokens to the recipients (line 10–11) and
subtracts the tokens by the amount of the sent tokens (line 12).

The attackers exploited the vulnerability at line 4; the conditional
statement does not check whether fee+value over�ows or not. Let
us investigate one possible attack scenario. 1 Suppose the sender
the recipients initially have no balances, i.e., balance[from] =
balance[to] = balance[msg.sender] = 0. With value = 1 and

1The actual input values that were used in the attack can be found in the link here.

1

totalSupply >= value at line 22?

Supply = Σbalance             … transaction invariant  
>= balance[msg.sender]    … def. of Σbalance 
>= value                            … assumption

• 트랜잭션의 불변 성질을 이용한 안전성 증명



Netkoin 예제

 37

VeriSmart: Precise and Sound Verification of Numerical
Properties for Ethereum Smart Contracts

Sunbeom So
Korea University

sunbeom_so@korea.ac.kr

Myungho Lee
Korea University

myungho_lee@korea.ac.kr

Jisu Park
Korea University

jisu_park@korea.ac.kr

Heejo Lee
Korea University
heejo@korea.ac.kr

Hakjoo Oh
Korea University

hakjoo_oh@korea.ac.kr

1 function transferProxy

2 (address from , address to , uint value , uint fee) public

3 returns (bool) {

4 if (balance[from] < fee + value) revert (); // vulnerable

5
6 if (balance[to] + value < balance[to]

7 || balance[msg.sender] + fee < balance[msg.sender ])

8 revert ();

9
10 balance[to] += value;

11 balance[msg.sender] += fee;

12 balance[from] -= value + fee;

13 return true;

14 }

Figure 1: A simpli�ed vulnerable function from SmartMesh
contract (CVE-2018-10376). Attackers exploited the vulnera-
bility at line 4, where fee+value may over�ow with crafted
input arguments.

ABSTRACT
TODO

CCS CONCEPTS
• Security and privacy → Use https://dl.acm.org/ccs.cfm to gen-
erate actual concepts section for your paper;

KEYWORDS
template; formatting; pickling

1 INTRODUCTION
TODO

2 OVERVIEW
2.1 Motivating Examples
In this section, we motivate the signi�cance of V���S����’s precise
and sound veri�cation. Example 1 emphasizes the importance of
sound veri�cation in safety-critical smart contracts using a real-
world accident example. Example 2 demonstrates V���S����’s
capability for precise veri�cation, which has not been achieved in
existing smart contract analyzers.

1 contract Netkoin {

2 mapping (address => uint) public balance;

3 uint public totalSupply;

4
5 constructor (uint initialSupply) {

6 totalSupply = initialSupply;

7 balance[msg.sender] = totalSupply;

8 }

9
10 function transfer (address to , uint value) public

11 returns (bool) {

12 require (balance[msg.sender] >= value);

13 require (balance[to] + value > balance[to]);

14 balance[msg.sender] -= value;

15 balance[to] += value;

16 return true;

17 }

18
19 function burn (uint value) public returns (bool) {

20 require (balance[msg.sender] >= value);

21 balance[msg.sender] -= value;

22 totalSupply -= value;

23 return true;

24 }

25 }

Figure 2: Example code adapted from Netkoin contract that
hasmore than 43,000 transactions at the time of the writing.

Example 1 (Necessity for Sound Veri�cation). In Figure 1,
we show the simpli�ed implementation of the transferProxy func-
tion from SmartMesh (SMT) token contract. In April 2018, attackers
created unauthorized tokens worth about 6⇤1042 USD by exploiting
the integer over�ow vulnerability in the function. This vulnerability,
named proxyOver�ow, was reported in CVE-2018-10376.

The function �rst checks whether the sender’s balance is greater
than or equal to fee+value tokens to be sent (line 4), and fur-
ther examines whether recipients’ balances would over�ow when
fee+value is added (line 6–7). After passing these two checks, the
function transfers the tokens to the recipients (line 10–11) and
subtracts the tokens by the amount of the sent tokens (line 12).

The attackers exploited the vulnerability at line 4; the conditional
statement does not check whether fee+value over�ows or not. Let
us investigate one possible attack scenario. 1 Suppose the sender
the recipients initially have no balances, i.e., balance[from] =
balance[to] = balance[msg.sender] = 0. With value = 1 and

1The actual input values that were used in the attack can be found in the link here.

1

totalSupply >= value at line 22?

Supply = Σbalance             … transaction invariant  
>= balance[msg.sender]    … def. of Σbalance 
>= value                            … assumption

• 트랜잭션의 불변 성질을 이용한 안전성 증명

VeriSmart: 트랜잭션 불변성질을 자동 유추하여 정확하게 검증



VeriSmart 검증 알고리즘

 38

트랜잭션 불변 
성질 합성기

증명이 불가능함을 보이는 반례

(counterexample)

트랜잭션 불변 성질

(transaction invariant)

증명기프로그램 증명성공

• 프로그램 증명과 불변 성질 합성을 동시에 진행



VeriSmart 검증 성능

 39

• ZEUS 가 검증에 실패했던 13개 프로그램에 대해 예비 실험

프로그램 증명 대상 개수 
(#queries)

Zeus 증명 쿼리 갯수 
(트랜잭션 불변식 O)

zeus1 3 2 3
zeus2 3 2 3
zeus3 7 5 7
zeus4 6 3 6
zeus5 7 5 7
zeus6 7 5 7
zeus7 7 5 7
zeus8 7 5 7
zeus9 7 5 7

zeus10 5 2 5
zeus11 7 5 7
zeus12 3 2 3
zeus13 3 2 3
전체 72 48 72

Zeus가 증명에 실패한 13개 프로그램에 대해 모두 증명 성공



마무리
• VeriSmart: 스마트 컨트랙트 안전성 증명기

• IoTCube의 취약점 검증 엔진에 탑재 예정

• 스마트 컨트랙트 취약점 자동 분석 플랫폼 상용화 예정

 40

http://iotcube.net http://sooho.io

http://iotcube.net
http://sooho.io

