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Our Research

• We research on technology for safe and reliable software.

• Research areas: programming languages, software engineering, 
software security

• software analysis and testing

• software synthesis and repair

• Publication: top-venues in PL, SE,  
and Security

• PLDI(’12,’14), ICSE’17,  
OOPSLA(’15,’17,’17), S&P’17, etc
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Our Long-term Goal
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• Achieving technologies for automatically finding, 
verifying, and fixing software errors and vulnerabilities

What is Program Analysis?

Very broad topic, but generally speaking, automated analysis
of program behavior

Program analysis is about developing algorithms and tools
that can analyze other programs

prog.c

2 / 24

What is Program Analysis?

Very broad topic, but generally speaking, automated analysis
of program behavior

Program analysis is about developing algorithms and tools
that can analyze other programs

prog.c

2 / 24

bug-finder verifier
patch 

generator

SW analysis SW testing SW synthesis & repair



Today: Concolic Testing

• Concolic testing is an effective software testing 
method based on symbolic execution
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• Key challenge: path explosion

• Our solution: mitigate the problem with good 
search heuristics



Limitation of Random Testing
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int double (int v) { 
  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

Probability of the error? (0 ≤ x,y ≤ 100)
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int double (int v) { 
  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

Probability of the error?

< 0.4%

- random testing requires 250 runs
- concolic testing finds it in 3 runs

 (0 ≤ x,y ≤ 100)
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int double (int v) { 
  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

x=22, y=7 x=α, y=β

Concrete
State

Symbolic 
State

true

1st iteration
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x=22, y=7,  
z=14
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x=22, y=7,  
z=14

x=α, y=β,z=2*β
2*β ≠ α

Concrete
State

Symbolic 
Stateint double (int v) { 

  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

1st iteration
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x=22, y=7,  
z=14

x=α, y=β,z=2*β
2*β ≠ α

Concrete
State

Symbolic 
State

Solve: 2*β = α 
Solution: α=2,β=1

int double (int v) { 
  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

1st iteration
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x=2, y=1 x=α, y=β

Concrete
State

Symbolic 
State

true

int double (int v) { 
  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

2nd iteration
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x=2, y=1,  
z=2

x=α, y=β,z=2*β

true
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Concrete
State

Symbolic 
Stateint double (int v) { 

  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

x=2, y=1,  
z=2

x=α, y=β,z=2*β

2*β = α

2nd iteration



Concolic Testing

13

Concrete
State

Symbolic 
Stateint double (int v) { 

  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

x=2, y=1,  
z=2

x=α, y=β,z=2*β

2*β = α ∧  
α ≤ β+10

2nd iteration
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Concrete
State

Symbolic 
Stateint double (int v) { 

  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

x=2, y=1,  
z=2

x=α, y=β,z=2*β

2*β = α ∧  
α ≤ β+10

Solve: 2*β = α ∧ α > β+10
Solution: α=30, β=15

2nd iteration
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int double (int v) { 
  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

x=30, y=15 x=α, y=β

Concrete
State

Symbolic 
State

true

3rd iteration
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x=30, y=15,  
z=30

x=α, y=β,z=2*β

true

Concrete
State

Symbolic 
Stateint double (int v) { 

  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

3rd iteration
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Concrete
State

Symbolic 
Stateint double (int v) { 

  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

x=30, y=15,  
z=30

x=α, y=β,z=2*β

2*β = α

3rd iteration
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Concrete
State

Symbolic 
Stateint double (int v) { 

  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

x=30, y=15,  
z=30

x=α, y=β,z=2*β

2*β = α ∧  
α > β+15

3rd iteration

error-triggering 
input
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2 PRELIMINARIES
In Section 2.1, we de�ne a generic concolic testing algorithm. Sec-
tion 2.2 discusses existing search heuristics and their limitations.

2.1 Concolic Testing
Concolic testing is a hybrid software testing technique that com-
bines symbolic [21] and concrete executions to systematically ex-
plore the program’s execution paths.

Concolic testing begins with executing the subject program P

with an initial input �0. During the concrete execution, concolic
testing maintains a symbolic memory state S and a path condition
�. The symbolic memory is a mapping from program variables
to symbolic values. It is used to evaluate the symbolic values of
expressions. For instance, when S is [x 7! � ,� 7! � + 1] (variables
x and � are mapped to symbolic expressions � and � + 1 where �
and � are symbols), the statement z := x +� transfers the symbolic
memory into [x 7! � ,� 7! � + 1, z 7! � + � + 1]. The path
condition represents the sequence of branches taken during the
current execution of the program. It is updated whenever an assume
statement assume(e ) is encountered. For instance, when S = [x 7!
�] and e = x < 1, the path condition � gets updated by �^ (� < 1).

Let � = �1 ^ �2 ^ · · · ^ �n be the path condition that results
from the initial execution. To obtain the next input value, concolic
testing chooses a branch condition �i and generates the new path
condition �0 as follows: �0 = Vj<i � j ^ ¬�i . That is, the new
condition �0 has the same pre�x as � up to the i-th branch with
�i negated, so that input values that satisfy �0 drive the program
execution to follow the opposite branch of �i . Such concrete input
values can be obtained from an SMT solver. This process is repeated
until a �xed testing budget runs out.

Algorithm 1 presents the concolic testing algorithm. The algo-
rithm takes a program P , an initial input vector �0, and a testing
budget N (i.e., the number of executions of the program). The algo-
rithm maintains the execution tree T of the program, which is the
list of previously explored path conditions. The execution tree T
and input vector � are initially empty and the initial input vector,
respectively (lines 1 and 2). At line 4, the program P is executed
with the input � , resulting in the current execution path �m ex-
plored. The path condition is appended to T (line 5). In lines 6–8,
the algorithm chooses a branch to negate. The function Choose
�rst chooses a path condition � from T , then selects a branch, i.e.,
�i , from �. Once a branch �i is chosen, the algorithm generates
the new path condition �0 = Vj<i � j ^ ¬�i . If �0 is satis�able,
the next input vector is computed (line 9), where SAT(�) returns
true i� � is satis�able and model(�) �nds an input vector � which
is a model of �, i.e., � |= �. Otherwise, if �0 is unsatis�able, the
algorithm repeatedly tries to negate another branch until a satis�-
able path condition is found. This procedure repeats for the given
budget N and the �nal number of covered branches |Branches(T ) |
is returned.

The performance of Algorithm 1 varies depending on the choice
of the function Choose, namely a search heuristic. Since the num-
ber of execution paths in a program is usually exponential in the
number of branches, exploring all possible execution paths is infea-
sible. To address this problem, concolic testing relies on the search
heuristic that steers concolic testing in a way to maximize code

Algorithm 1: Concolic Testing
Input :Program P , initial input vector �0, budget N
Output :The number of branches covered
1: T  hi
2: �  �0
3: form = 1 to N do
4: �m  RunProgram(P ,� )
5: T  T · �m
6: repeat
7: (�,�i )  Choose(T ) (� = �1 ^ · · · ^ �n )
8: until SAT(

V
j<i � j ^ ¬�i )

9: �  model(
V
j<i � j ^ ¬�i )

10: end for
11: return |Branches(T ) |

coverage in a given limited time budget [5]. The goal of this paper is
to automatically generate an e�ective heuristic for a given program.

2.2 Existing Search Heuristics
Before presenting our technique, we describe two notable search
heuristics. These heuristics are known to perform comparatively
better than other heuristics [2, 26].

Control-Flow Directed Search (CFDS) [2]. CFDS is based on
the natural intuition that uncovered branches near the current
execution path would be easier to be exercised in the next execution.
This heuristic �rst picks the last path condition �m , then selects a
branch whose opposite branch is the nearest from any of the unseen
branches. The distance between two branches is calculated by the
number of branches on the path from the source to the destination.
To calculate the distance, CFDS uses control �ow graph of the
program, which is statically constructed before the testing.

Context-Guided Search (CGS) [26]. CGS basically performs
the breath-�rst search (BFS) on the execution tree, while reducing
the search space by excluding branches whose “contexts” are al-
ready explored. Given an execution path, the context of a branch
in the path is de�ned as a sequence of preceding branches. The
search gathers candidate branches at depth d from the execution
tree, picks a branch from the candidates, and the context of the
branch is calculated. If the context has been already considered,
CGS skips that branch and continues to pick the next one. Oth-
erwise, the branch is negated and the context is recorded. When
all the candidate branches at depth d are considered, the search
proceeds to the depth d + 1 of the execution tree and repeats the
process explained above.

Limitations. Existing search heuristics have a key limitation;
they rely on a �xed heuristic and fail to consistently perform well
on a wide range of target programs. Our experience with these
heuristics is that they are unstable and their e�ectiveness signi�-
cantly varies depending on the target programs. For example, CGS
outperforms other existing heuristics for several benchmarks: e.g.,
expat-2.1.0 and grep-2.2 (Figure 1). However, we found that the
CGS heuristic is sometimes inferior even to the random heuristic
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coverage in a given limited time budget [5]. The goal of this paper is
to automatically generate an e�ective heuristic for a given program.

2.2 Existing Search Heuristics
Before presenting our technique, we describe two notable search
heuristics. These heuristics are known to perform comparatively
better than other heuristics [2, 26].

Control-Flow Directed Search (CFDS) [2]. CFDS is based on
the natural intuition that uncovered branches near the current
execution path would be easier to be exercised in the next execution.
This heuristic �rst picks the last path condition �m , then selects a
branch whose opposite branch is the nearest from any of the unseen
branches. The distance between two branches is calculated by the
number of branches on the path from the source to the destination.
To calculate the distance, CFDS uses control �ow graph of the
program, which is statically constructed before the testing.

Context-Guided Search (CGS) [26]. CGS basically performs
the breath-�rst search (BFS) on the execution tree, while reducing
the search space by excluding branches whose “contexts” are al-
ready explored. Given an execution path, the context of a branch
in the path is de�ned as a sequence of preceding branches. The
search gathers candidate branches at depth d from the execution
tree, picks a branch from the candidates, and the context of the
branch is calculated. If the context has been already considered,
CGS skips that branch and continues to pick the next one. Oth-
erwise, the branch is negated and the context is recorded. When
all the candidate branches at depth d are considered, the search
proceeds to the depth d + 1 of the execution tree and repeats the
process explained above.

Limitations. Existing search heuristics have a key limitation;
they rely on a �xed heuristic and fail to consistently perform well
on a wide range of target programs. Our experience with these
heuristics is that they are unstable and their e�ectiveness signi�-
cantly varies depending on the target programs. For example, CGS
outperforms other existing heuristics for several benchmarks: e.g.,
expat-2.1.0 and grep-2.2 (Figure 1). However, we found that the
CGS heuristic is sometimes inferior even to the random heuristic

Search 
Heuristic



Path Explosion

• Concolic testing relies on search heuristics to 
maximize code coverage in a limited budget.

23



Existing Search Heuristics

• Numerous heuristics have been proposed, e.g., 

• DFS, BFS, Random, Generational, CFDS, CGS, etc

• CFDS (Control-Flow-Directed Search) [1]

• selects a branch whose opposite branch is the 
nearest from the unseen branches

• CGS (Context-Guided Search) [2]

• basically performs BFS while excluding branches 
whose contexts are previously explored

24

[1] J. Burnim and K. Sen. Heuristics for Scalable Dynamic Test Generation. ASE 2008.
[2] Hyunmin Seo and Sunghun Kim. How we get there: A context-guided search strategy in con colic testing. FSE 2014



Limitations of Existing 
Search Heuristics

• No existing heuristics consistently perform well in 
practice
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Limitations of Existing 
Search Heuristics

• Furthermore, manually developing a search 
heuristic is nontrivial, requiring a huge amount of 
engineering effort and expertise. 

• Ordinary developers and testers cannot fully 
benefit from concolic testing technology. 

26

Our goal: automatically generating search heuristics



Effectiveness

• Considerable increase in branch coverage
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Figure 1: Average branch coverage achieved by each search heuristic on 6 large benchmarks

4.1 E�ectiveness of Generated Heuristics
For each benchmark program,we ran our algorithm (Algorithm 2) to
generate our search heuristic (ours), and compared its performance
with that of the existing heuristics. We evaluate the e�ectiveness
with two measures: branch coverage and capability of �nding bugs.

Branch Coverage. For branch coverage, we measured the av-
erage and maximum coverages: The average branch coverage is
obtained by averaging the results over the 100 trials (20 for vim).
The maximum coverage refers to the highest coverage achieved
during the 100 trials (20 for vim). The former indicates the average
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Figure 2: Average branch coverage over execution time

Table 3: Average branch coverage on 4 small benchmarks

OURS CFDS CGS Random Gen DFS

cdaudio 250 250 250 242 236 250
�oppy 205 205 205 170 168 205
replace 181 177 181 174 171 176
kb�ltr 149 149 149 149 134 149

Table 4: E�ectiveness in terms ofmaximumbranch coverage

OURS CFDS CGS Random Gen DFS

vim 8,744 8,322 6,150 7,645 5,092 2,646
expat 1,422 1,060 1,337 965 1,348 1,027
gawk 2,684 2,532 2,449 2,035 2,443 1,025
grep 1,807 1,726 1,751 1,598 1,640 1,456
sed 830 780 781 690 698 568
tree 797 702 599 704 600 360

Table 5: E�ectiveness in terms of �nding bugs

OURS CFDS CGS Random Gen DFS

gawk-3.0.3 100/100 0/100 0/100 0/100 0/100 0/100
grep-2.2 85/100 0/100 7/100 0/100 0/100 0/100

performance while the latter the best performance achievable by
each heuristic.

Figure 1 compares the average branch coverage achieved by dif-
ferent search heuristics on 6 large benchmarks. The results show
that the search heuristics generated by our approach (ours) achieve
the best coverage on all programs. In particular, ours signi�cantly
increased the branch coverage on two largest benchmarks: vim
and gawk. For vim, ours covered 8,402 branches in 4,000 executions
while the CFDS heuristic, which took the second place for vim,
covered 7,967 branches. Note that CFDS is already highly tuned and

outperforms the other heuristics for vim (for instance, CGS covered
5,860 branches only). For gawk, ours covered 2,684 branches while
the CGS heuristic, the second best one, managed to cover 2,321
branches. For expat, sed, and tree, our approach improved the ex-
isting heuristics considerably. For example, in expat, ours covered
1,327 branches, increasing the branch coverage of CGS by 50. For
grep, ours also performed the best followed by CGS and CFDS. On
small benchmarks, we obtained similar results; ours (together with
CGS) consistently achieved the highest average coverage (Table 3).
In the rest of the paper, we focus only on the 6 large benchmarks,
where existing manually-crafted heuristics fail to perform well.

In Figure 1, we compared the e�ectiveness of search heuristics
over iterations (# of executions)4, but our approach was also supe-
rior to others over execution time. For example, given the same time
budget (500 sec), ours and Random (the second best) covered 8,472
and 7,979 branches, respectively, for vim (Figure 2). The results
were averaged over 20 trials.

Table 4 compares the heuristics in terms of the maximum branch
coverage on 6 large benchmarks. The results show that our ap-
proach in this case also achieves the best performance on all pro-
grams. For instance, in vim, we considerably increased the coverage
of CFDS, the second best strategy; ours covered 8,744 branches
while CFDS managed to cover 8,322. For expat, ours and CGS (the
second best) have covered 1,422 and 1,337 branches, respectively.

Note that there is no clear winner among the existing search
heuristics. Except for ours, CFDS took the �rst place for vim and sed
in terms of average branch coverage. For gawk, expat, and grep,
the CGS heuristic was the best. For tree, the Random heuristic
achieved the highest branch coverage. In terms of the maximum
branch coverage, CFDS was better than the others in vim and gawk
while CGS was in grep and sed. The Generational and Random
surpassed CFDS and CGS in expat and tree, respectively. On the
other hand, our approach is able to consistently produce the best
search heuristics in both (average and maximum) coverage metrics.

Bug Finding. We found that the increased branch coverage by
our approach leads to more e�ective �nding of real bugs. Table 5
reports the number of test-cases generated by each search heuristic,
which trigger the known bugs in gawk and grep. During the 100
runs of concolic testing, our heuristic always found the bug in gawk

while all the other heuristics completely failed to �nd it. In grep,
ours succeeded to �nd the bug 85 times out of 100 trials, which is
much better than CGS does (7 times). Other heuristics were not
able to trigger the bug at all.

Our heuristics are good at �nding bugs because they are much
better than other heuristics in exercising diverse program paths. We
observed that other heuristics such as CGS, CFDS, and Generational
search also have covered the branches where the bugs originate.
However, the bugs are caused only by some speci�c path conditions
and the existing heuristics were not able to generate inputs that
satisfy the conditions.

We remark that we did not specially tune our approach towards
�nding those bugs. In fact, we were not aware of the presence of
those bugs at the early stage of this work. The bugs in gawk and

4 Evaluating the performance of search heuristics over iterations is a common prac-
tice [2, 26], as the execution time of a program may vary considerably depending on
the input.

• Dramatic increase in bug-finding capability
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2 PRELIMINARIES
In Section 2.1, we de�ne a generic concolic testing algorithm. Sec-
tion 2.2 discusses existing search heuristics and their limitations.

2.1 Concolic Testing
Concolic testing is a hybrid software testing technique that com-
bines symbolic [21] and concrete executions to systematically ex-
plore the program’s execution paths.

Concolic testing begins with executing the subject program P

with an initial input �0. During the concrete execution, concolic
testing maintains a symbolic memory state S and a path condition
�. The symbolic memory is a mapping from program variables
to symbolic values. It is used to evaluate the symbolic values of
expressions. For instance, when S is [x 7! � ,� 7! � + 1] (variables
x and � are mapped to symbolic expressions � and � + 1 where �
and � are symbols), the statement z := x +� transfers the symbolic
memory into [x 7! � ,� 7! � + 1, z 7! � + � + 1]. The path
condition represents the sequence of branches taken during the
current execution of the program. It is updated whenever an assume
statement assume(e ) is encountered. For instance, when S = [x 7!
�] and e = x < 1, the path condition � gets updated by �^ (� < 1).

Let � = �1 ^ �2 ^ · · · ^ �n be the path condition that results
from the initial execution. To obtain the next input value, concolic
testing chooses a branch condition �i and generates the new path
condition �0 as follows: �0 = Vj<i � j ^ ¬�i . That is, the new
condition �0 has the same pre�x as � up to the i-th branch with
�i negated, so that input values that satisfy �0 drive the program
execution to follow the opposite branch of �i . Such concrete input
values can be obtained from an SMT solver. This process is repeated
until a �xed testing budget runs out.

Algorithm 1 presents the concolic testing algorithm. The algo-
rithm takes a program P , an initial input vector �0, and a testing
budget N (i.e., the number of executions of the program). The algo-
rithm maintains the execution tree T of the program, which is the
list of previously explored path conditions. The execution tree T
and input vector � are initially empty and the initial input vector,
respectively (lines 1 and 2). At line 4, the program P is executed
with the input � , resulting in the current execution path �m ex-
plored. The path condition is appended to T (line 5). In lines 6–8,
the algorithm chooses a branch to negate. The function Choose
�rst chooses a path condition � from T , then selects a branch, i.e.,
�i , from �. Once a branch �i is chosen, the algorithm generates
the new path condition �0 = Vj<i � j ^ ¬�i . If �0 is satis�able,
the next input vector is computed (line 9), where SAT(�) returns
true i� � is satis�able and model(�) �nds an input vector � which
is a model of �, i.e., � |= �. Otherwise, if �0 is unsatis�able, the
algorithm repeatedly tries to negate another branch until a satis�-
able path condition is found. This procedure repeats for the given
budget N and the �nal number of covered branches |Branches(T ) |
is returned.

The performance of Algorithm 1 varies depending on the choice
of the function Choose, namely a search heuristic. Since the num-
ber of execution paths in a program is usually exponential in the
number of branches, exploring all possible execution paths is infea-
sible. To address this problem, concolic testing relies on the search
heuristic that steers concolic testing in a way to maximize code

Algorithm 1: Concolic Testing
Input :Program P , initial input vector �0, budget N
Output :The number of branches covered
1: T  hi
2: �  �0
3: form = 1 to N do
4: �m  RunProgram(P ,� )
5: T  T · �m
6: repeat
7: (�,�i )  Choose(T ) (� = �1 ^ · · · ^ �n )
8: until SAT(

V
j<i � j ^ ¬�i )

9: �  model(
V
j<i � j ^ ¬�i )

10: end for
11: return |Branches(T ) |

coverage in a given limited time budget [5]. The goal of this paper is
to automatically generate an e�ective heuristic for a given program.

2.2 Existing Search Heuristics
Before presenting our technique, we describe two notable search
heuristics. These heuristics are known to perform comparatively
better than other heuristics [2, 26].

Choose(h�1�2 · · ·�mi) = (�m ,� |�m | )

Control-Flow Directed Search (CFDS) [2]. CFDS is based on
the natural intuition that uncovered branches near the current
execution path would be easier to be exercised in the next execution.
This heuristic �rst picks the last path condition �m , then selects a
branch whose opposite branch is the nearest from any of the unseen
branches. The distance between two branches is calculated by the
number of branches on the path from the source to the destination.
To calculate the distance, CFDS uses control �ow graph of the
program, which is statically constructed before the testing.

Context-Guided Search (CGS) [26]. CGS basically performs
the breath-�rst search (BFS) on the execution tree, while reducing
the search space by excluding branches whose “contexts” are al-
ready explored. Given an execution path, the context of a branch
in the path is de�ned as a sequence of preceding branches. The
search gathers candidate branches at depth d from the execution
tree, picks a branch from the candidates, and the context of the
branch is calculated. If the context has been already considered,
CGS skips that branch and continues to pick the next one. Oth-
erwise, the branch is negated and the context is recorded. When
all the candidate branches at depth d are considered, the search
proceeds to the depth d + 1 of the execution tree and repeats the
process explained above.

Limitations. Existing search heuristics have a key limitation;
they rely on a �xed heuristic and fail to consistently perform well
on a wide range of target programs. Our experience with these
heuristics is that they are unstable and their e�ectiveness signi�-
cantly varies depending on the target programs. For example, CGS
outperforms other existing heuristics for several benchmarks: e.g.,
expat-2.1.0 and grep-2.2 (Figure 1). However, we found that the

• Parameterized heuristic defines a class of search 
heuristics:
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(e.g., tree-1.6.0). That is, the key feature, contexts, of CGS is not
appropriate for some programs.

Besides their sub-optimality, another key limitation of existing
approaches is that developing a good search heuristic requires a
huge amount of engineering e�ort and expertise. Given that the
e�ectiveness of concolic testing depends heavily on the search
heuristic, ordinary developers cannot fully bene�t from concolic
testing. These observations motivated us to develop a technique
that automatically generates search heuristics.

3 OUR TECHNIQUE
In this section, we present our technique for automatically gen-
erating search heuristics for concolic testing. We de�ne a family
of search heuristics, namely parameterized search heuristics (Sec-
tion 3.1), and present an algorithm to choose the best heuristic from
the family for a given subject program (Section 3.2).

3.1 Parameterized Search Heuristic
Let P 2 Program be a subject program under test. Recall that a
search heuristic, the Choose function in Algorithm 1, is a function
from execution trees to pairs of a path condition and a branch:

Choose 2 SearchHeuristic = ExecutionTree ! PathCond ⇥ Branch
where ExecutionTree is the set of all execution trees of the program,
PathCond the set of all path conditions in the trees, Branch the set
of all branches in P .

We de�ne a familyH ✓ SearchHeuristic of search heuristics as a
parameterized heuristic Choose� , where � is the parameter which
is a k-dimensional vector of real numbers:

H = {Choose� | � 2 Rk }
Given an execution tree T = h�1�2 · · ·�mi, our parameterized
search heuristic is de�ned as follows:

Choose� (h�1 · · ·�mi) = (�m , argmax
� j 2�m

score� (� j ))

Choose� ✓ SearchHeuristic

Intuitively, the heuristic �rst chooses the last path condition �m
from the execution tree T , then selects a branch � j from �m that
gets the highest score among all branches in that path. Except for
the CGS heuristic, all existing search heuristics choose a branch
from the last path condition. In this work, we follow this common
strategy but our method can be generalized to consider the entire
execution tree as well. We explain how we score each branch � in
�m with respect to a given parameter � :

(1) We represent the branch by a feature vector. We designed 40
boolean features describing properties of branches in con-
colic testing. A feature �i is a boolean predicate on branches:

�i : Branch! {0, 1}.
For instance, one of the features checks whether the branch is
located in the main function or not. Given a set of k features
� = {�1, . . . ,�k }, where k is the length of the parameter � ,
a branch � is represented by a boolean vector as follows:

� (�) = h�1 (�),�2 (�), . . . ,�k (�)i.

Table 1: Branch features for concolic testing. Features 1–12
are static, and Features 13–40 are dynamic.

# Description
1 branch in the main function
2 true branch of a loop
3 false branch of a loop
4 nested branch
5 branch containing external function calls
6 branch containing integer expressions
7 branch containing constant strings
8 branch containing pointer expressions
9 branch containing local variables
10 branch inside a loop body
11 true branch of a case statement
12 false branch of a case statement
13 �rst 10% branches of a path
14 last 10% branches of a path
15 branch appearing most frequently in a path
16 branch appearing least frequently in a path
17 branch newly covered in the previous execution
18 branch located right after the just-negated branch
19 branch whose context (k = 1) is already visited
20 branch whose context (k = 2) is already visited
21 branch whose context (k = 3) is already visited
22 branch whose context (k = 4) is already visited
23 branch whose context (k = 5) is already visited
24 branch negated more than 10 times
25 branch negated more than 20 times
26 branch negated more than 30 times
27 branch near the just-negated branch
28 branch failed to be negated more than 10 times
29 the opposite branch failed to be negated more than 10 times
30 the opposite branch is uncovered (depth 0)
31 the opposite branch is uncovered (depth 1)
32 branch negated in the last 10 executions
33 branch negated in the last 20 executions
34 branch negated in the last 30 executions
35 branch in the function that has the largest number of uncov-

ered branches
36 the opposite branch belongs to unreached functions (top 10%

of the largest func.)
37 the opposite branch belongs to unreached functions (top 20%

of the largest func.)
38 the opposite branch belongs to unreached functions (top 30%

of the largest func.)
39 the opposite branch belongs to unreached functions (# of

branches > 10)
40 branch inside the most recently reached function

(2) Next we compute the score of the branch by a linear combina-
tion of the feature vector and the parameter. In our method,
the dimension k of the parameter � equals to the number
of branch features. We use the simple linear combination to
calculate the branch scores:

score� (�) = � (�) · � .
(3) Finally, we choose the branch with the highest score. That is,

among the branches �1, . . . ,�n in �m , we choose the branch
� j such that score� (� j ) � score� (�k ) for all k .
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(e.g., tree-1.6.0). That is, the key feature, contexts, of CGS is not
appropriate for some programs.

Besides their sub-optimality, another key limitation of existing
approaches is that developing a good search heuristic requires a
huge amount of engineering e�ort and expertise. Given that the
e�ectiveness of concolic testing depends heavily on the search
heuristic, ordinary developers cannot fully bene�t from concolic
testing. These observations motivated us to develop a technique
that automatically generates search heuristics.

3 OUR TECHNIQUE
In this section, we present our technique for automatically gen-
erating search heuristics for concolic testing. We de�ne a family
of search heuristics, namely parameterized search heuristics (Sec-
tion 3.1), and present an algorithm to choose the best heuristic from
the family for a given subject program (Section 3.2).

3.1 Parameterized Search Heuristic
Let P 2 Program be a subject program under test. Recall that a
search heuristic, the Choose function in Algorithm 1, is a function
from execution trees to pairs of a path condition and a branch:

Choose 2 SearchHeuristic = ExecutionTree ! PathCond ⇥ Branch
where ExecutionTree is the set of all execution trees of the program,
PathCond the set of all path conditions in the trees, Branch the set
of all branches in P .

We de�ne a familyH ✓ SearchHeuristic of search heuristics as a
parameterized heuristic Choose� , where � is the parameter which
is a k-dimensional vector of real numbers:

H = {Choose� | � 2 Rk }
Given an execution tree T = h�1�2 · · ·�mi, our parameterized
search heuristic is de�ned as follows:

Choose� (h�1 · · ·�mi) = (�m , argmax
� j 2�m

score� (� j ))

Choose� ✓ SearchHeuristic

Intuitively, the heuristic �rst chooses the last path condition �m
from the execution tree T , then selects a branch � j from �m that
gets the highest score among all branches in that path. Except for
the CGS heuristic, all existing search heuristics choose a branch
from the last path condition. In this work, we follow this common
strategy but our method can be generalized to consider the entire
execution tree as well. We explain how we score each branch � in
�m with respect to a given parameter � :

(1) We represent the branch by a feature vector. We designed 40
boolean features describing properties of branches in con-
colic testing. A feature �i is a boolean predicate on branches:

�i : Branch! {0, 1}.
For instance, one of the features checks whether the branch is
located in the main function or not. Given a set of k features
� = {�1, . . . ,�k }, where k is the length of the parameter � ,
a branch � is represented by a boolean vector as follows:

� (�) = h�1 (�),�2 (�), . . . ,�k (�)i.

Table 1: Branch features for concolic testing. Features 1–12
are static, and Features 13–40 are dynamic.

# Description
1 branch in the main function
2 true branch of a loop
3 false branch of a loop
4 nested branch
5 branch containing external function calls
6 branch containing integer expressions
7 branch containing constant strings
8 branch containing pointer expressions
9 branch containing local variables
10 branch inside a loop body
11 true branch of a case statement
12 false branch of a case statement
13 �rst 10% branches of a path
14 last 10% branches of a path
15 branch appearing most frequently in a path
16 branch appearing least frequently in a path
17 branch newly covered in the previous execution
18 branch located right after the just-negated branch
19 branch whose context (k = 1) is already visited
20 branch whose context (k = 2) is already visited
21 branch whose context (k = 3) is already visited
22 branch whose context (k = 4) is already visited
23 branch whose context (k = 5) is already visited
24 branch negated more than 10 times
25 branch negated more than 20 times
26 branch negated more than 30 times
27 branch near the just-negated branch
28 branch failed to be negated more than 10 times
29 the opposite branch failed to be negated more than 10 times
30 the opposite branch is uncovered (depth 0)
31 the opposite branch is uncovered (depth 1)
32 branch negated in the last 10 executions
33 branch negated in the last 20 executions
34 branch negated in the last 30 executions
35 branch in the function that has the largest number of uncov-

ered branches
36 the opposite branch belongs to unreached functions (top 10%

of the largest func.)
37 the opposite branch belongs to unreached functions (top 20%

of the largest func.)
38 the opposite branch belongs to unreached functions (top 30%

of the largest func.)
39 the opposite branch belongs to unreached functions (# of

branches > 10)
40 branch inside the most recently reached function

(2) Next we compute the score of the branch by a linear combina-
tion of the feature vector and the parameter. In our method,
the dimension k of the parameter � equals to the number
of branch features. We use the simple linear combination to
calculate the branch scores:

score� (�) = � (�) · � .
(3) Finally, we choose the branch with the highest score. That is,

among the branches �1, . . . ,�n in �m , we choose the branch
� j such that score� (� j ) � score� (�k ) for all k .
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(e.g., tree-1.6.0). That is, the key feature, contexts, of CGS is not
appropriate for some programs.

Besides their sub-optimality, another key limitation of existing
approaches is that developing a good search heuristic requires a
huge amount of engineering e�ort and expertise. Given that the
e�ectiveness of concolic testing depends heavily on the search
heuristic, ordinary developers cannot fully bene�t from concolic
testing. These observations motivated us to develop a technique
that automatically generates search heuristics.

3 OUR TECHNIQUE
In this section, we present our technique for automatically gen-
erating search heuristics for concolic testing. We de�ne a family
of search heuristics, namely parameterized search heuristics (Sec-
tion 3.1), and present an algorithm to choose the best heuristic from
the family for a given subject program (Section 3.2).

3.1 Parameterized Search Heuristic
Let P 2 Program be a subject program under test. Recall that a
search heuristic, the Choose function in Algorithm 1, is a function
from execution trees to pairs of a path condition and a branch:

Choose 2 SearchHeuristic = ExecutionTree ! PathCond ⇥ Branch
where ExecutionTree is the set of all execution trees of the program,
PathCond the set of all path conditions in the trees, Branch the set
of all branches in P .

We de�ne a familyH ✓ SearchHeuristic of search heuristics as a
parameterized heuristic Choose� , where � is the parameter which
is a k-dimensional vector of real numbers:

H = {Choose� | � 2 Rk }
Given an execution tree T = h�1�2 · · ·�mi, our parameterized
search heuristic is de�ned as follows:

Choose� (h�1 · · ·�mi) = (�m , argmax
� j 2�m

score� (� j ))

Intuitively, the heuristic �rst chooses the last path condition �m
from the execution tree T , then selects a branch � j from �m that
gets the highest score among all branches in that path. Except for
the CGS heuristic, all existing search heuristics choose a branch
from the last path condition. In this work, we follow this common
strategy but our method can be generalized to consider the entire
execution tree as well. We explain how we score each branch � in
�m with respect to a given parameter � :

(1) We represent the branch by a feature vector. We designed 40
boolean features describing properties of branches in con-
colic testing. A feature �i is a boolean predicate on branches:

�i : Branch! {0, 1}.
For instance, one of the features checks whether the branch is
located in the main function or not. Given a set of k features
� = {�1, . . . ,�k }, where k is the length of the parameter � ,
a branch � is represented by a boolean vector as follows:

� (�) = h�1 (�),�2 (�), . . . ,�k (�)i.
(2) Next we compute the score of the branch by a linear combina-

tion of the feature vector and the parameter. In our method,
the dimension k of the parameter � equals to the number

Table 1: Branch features for concolic testing. Features 1–12
are static, and Features 13–40 are dynamic.

# Description
1 branch in the main function
2 true branch of a loop
3 false branch of a loop
4 nested branch
5 branch containing external function calls
6 branch containing integer expressions
7 branch containing constant strings
8 branch containing pointer expressions
9 branch containing local variables
10 branch inside a loop body
11 true branch of a case statement
12 false branch of a case statement
13 �rst 10% branches of a path
14 last 10% branches of a path
15 branch appearing most frequently in a path
16 branch appearing least frequently in a path
17 branch newly covered in the previous execution
18 branch located right after the just-negated branch
19 branch whose context (k = 1) is already visited
20 branch whose context (k = 2) is already visited
21 branch whose context (k = 3) is already visited
22 branch whose context (k = 4) is already visited
23 branch whose context (k = 5) is already visited
24 branch negated more than 10 times
25 branch negated more than 20 times
26 branch negated more than 30 times
27 branch near the just-negated branch
28 branch failed to be negated more than 10 times
29 the opposite branch failed to be negated more than 10 times
30 the opposite branch is uncovered (depth 0)
31 the opposite branch is uncovered (depth 1)
32 branch negated in the last 10 executions
33 branch negated in the last 20 executions
34 branch negated in the last 30 executions
35 branch in the function that has the largest number of uncov-

ered branches
36 the opposite branch belongs to unreached functions (top 10%

of the largest func.)
37 the opposite branch belongs to unreached functions (top 20%

of the largest func.)
38 the opposite branch belongs to unreached functions (top 30%

of the largest func.)
39 the opposite branch belongs to unreached functions (# of

branches > 10)
40 branch inside the most recently reached function

of branch features. We use the simple linear combination to
calculate the branch scores:

score� (�) = � (�) · � .
(3) Finally, we choose the branch with the highest score. That is,

among the branches �1, . . . ,�n in �m , we choose the branch
� j such that score� (� j ) � score� (�k ) for all k .

Branch Features. We have designed 40 features to describe
useful properties of branches in concolic testing. Table 1 shows the
features, which are classi�ed into 12 static and 28 dynamic features.

ɸ1
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b3

b4

b5

ɸ2

scoreθ(b1) = 1.3

scoreθ(b4) = 0.0

scoreθ(b5) = 0.7
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(e.g., tree-1.6.0). That is, the key feature, contexts, of CGS is not
appropriate for some programs.

Besides their sub-optimality, another key limitation of existing
approaches is that developing a good search heuristic requires a
huge amount of engineering e�ort and expertise. Given that the
e�ectiveness of concolic testing depends heavily on the search
heuristic, ordinary developers cannot fully bene�t from concolic
testing. These observations motivated us to develop a technique
that automatically generates search heuristics.

3 OUR TECHNIQUE
In this section, we present our technique for automatically gen-
erating search heuristics for concolic testing. We de�ne a family
of search heuristics, namely parameterized search heuristics (Sec-
tion 3.1), and present an algorithm to choose the best heuristic from
the family for a given subject program (Section 3.2).

3.1 Parameterized Search Heuristic
Let P 2 Program be a subject program under test. Recall that a
search heuristic, the Choose function in Algorithm 1, is a function
from execution trees to pairs of a path condition and a branch:

Choose 2 SearchHeuristic = ExecutionTree ! PathCond ⇥ Branch
where ExecutionTree is the set of all execution trees of the program,
PathCond the set of all path conditions in the trees, Branch the set
of all branches in P .

We de�ne a familyH ✓ SearchHeuristic of search heuristics as a
parameterized heuristic Choose� , where � is the parameter which
is a k-dimensional vector of real numbers:

H = {Choose� | � 2 Rk }
Given an execution tree T = h�1�2 · · ·�mi, our parameterized
search heuristic is de�ned as follows:

Choose� (h�1 · · ·�mi) = (�m , argmax
� j 2�m

score� (� j ))

Intuitively, the heuristic �rst chooses the last path condition �m
from the execution tree T , then selects a branch � j from �m that
gets the highest score among all branches in that path. Except for
the CGS heuristic, all existing search heuristics choose a branch
from the last path condition. In this work, we follow this common
strategy but our method can be generalized to consider the entire
execution tree as well. We explain how we score each branch � in
�m with respect to a given parameter � :

(1) We represent the branch by a feature vector. We designed 40
boolean features describing properties of branches in con-
colic testing. A feature �i is a boolean predicate on branches:

�i : Branch! {0, 1}.
For instance, one of the features checks whether the branch is
located in the main function or not. Given a set of k features
� = {�1, . . . ,�k }, where k is the length of the parameter � ,
a branch � is represented by a boolean vector as follows:

� (�) = h�1 (�),�2 (�), . . . ,�k (�)i.
(2) Next we compute the score of the branch by a linear combina-

tion of the feature vector and the parameter. In our method,
the dimension k of the parameter � equals to the number

Table 1: Branch features for concolic testing. Features 1–12
are static, and Features 13–40 are dynamic.

# Description
1 branch in the main function
2 true branch of a loop
3 false branch of a loop
4 nested branch
5 branch containing external function calls
6 branch containing integer expressions
7 branch containing constant strings
8 branch containing pointer expressions
9 branch containing local variables
10 branch inside a loop body
11 true branch of a case statement
12 false branch of a case statement
13 �rst 10% branches of a path
14 last 10% branches of a path
15 branch appearing most frequently in a path
16 branch appearing least frequently in a path
17 branch newly covered in the previous execution
18 branch located right after the just-negated branch
19 branch whose context (k = 1) is already visited
20 branch whose context (k = 2) is already visited
21 branch whose context (k = 3) is already visited
22 branch whose context (k = 4) is already visited
23 branch whose context (k = 5) is already visited
24 branch negated more than 10 times
25 branch negated more than 20 times
26 branch negated more than 30 times
27 branch near the just-negated branch
28 branch failed to be negated more than 10 times
29 the opposite branch failed to be negated more than 10 times
30 the opposite branch is uncovered (depth 0)
31 the opposite branch is uncovered (depth 1)
32 branch negated in the last 10 executions
33 branch negated in the last 20 executions
34 branch negated in the last 30 executions
35 branch in the function that has the largest number of uncov-

ered branches
36 the opposite branch belongs to unreached functions (top 10%

of the largest func.)
37 the opposite branch belongs to unreached functions (top 20%

of the largest func.)
38 the opposite branch belongs to unreached functions (top 30%

of the largest func.)
39 the opposite branch belongs to unreached functions (# of

branches > 10)
40 branch inside the most recently reached function

of branch features. We use the simple linear combination to
calculate the branch scores:

score� (�) = � (�) · � .
(3) Finally, we choose the branch with the highest score. That is,

among the branches �1, . . . ,�n in �m , we choose the branch
� j such that score� (� j ) � score� (�k ) for all k .

Branch Features. We have designed 40 features to describe
useful properties of branches in concolic testing. Table 1 shows the
features, which are classi�ed into 12 static and 28 dynamic features.
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(e.g., tree-1.6.0). That is, the key feature, contexts, of CGS is not
appropriate for some programs.

Besides their sub-optimality, another key limitation of existing
approaches is that developing a good search heuristic requires a
huge amount of engineering e�ort and expertise. Given that the
e�ectiveness of concolic testing depends heavily on the search
heuristic, ordinary developers cannot fully bene�t from concolic
testing. These observations motivated us to develop a technique
that automatically generates search heuristics.

3 OUR TECHNIQUE
In this section, we present our technique for automatically gen-
erating search heuristics for concolic testing. We de�ne a family
of search heuristics, namely parameterized search heuristics (Sec-
tion 3.1), and present an algorithm to choose the best heuristic from
the family for a given subject program (Section 3.2).

3.1 Parameterized Search Heuristic
Let P 2 Program be a subject program under test. Recall that a
search heuristic, the Choose function in Algorithm 1, is a function
from execution trees to pairs of a path condition and a branch:

Choose 2 SearchHeuristic = ExecutionTree ! PathCond ⇥ Branch
where ExecutionTree is the set of all execution trees of the program,
PathCond the set of all path conditions in the trees, Branch the set
of all branches in P .

We de�ne a familyH ✓ SearchHeuristic of search heuristics as a
parameterized heuristic Choose� , where � is the parameter which
is a k-dimensional vector of real numbers:

H = {Choose� | � 2 Rk }
Given an execution tree T = h�1�2 · · ·�mi, our parameterized
search heuristic is de�ned as follows:

Choose� (h�1 · · ·�mi) = (�m , argmax
� j 2�m

score� (� j ))

Intuitively, the heuristic �rst chooses the last path condition �m
from the execution tree T , then selects a branch � j from �m that
gets the highest score among all branches in that path. Except for
the CGS heuristic, all existing search heuristics choose a branch
from the last path condition. In this work, we follow this common
strategy but our method can be generalized to consider the entire
execution tree as well. We explain how we score each branch � in
�m with respect to a given parameter � :

(1) We represent the branch by a feature vector. We designed 40
boolean features describing properties of branches in con-
colic testing. A feature �i is a boolean predicate on branches:

�i : Branch! {0, 1}.
For instance, one of the features checks whether the branch is
located in the main function or not. Given a set of k features
� = {�1, . . . ,�k }, where k is the length of the parameter � ,
a branch � is represented by a boolean vector as follows:

� (�) = h�1 (�),�2 (�), . . . ,�k (�)i.
(2) Next we compute the score of the branch by a linear combina-

tion of the feature vector and the parameter. In our method,
the dimension k of the parameter � equals to the number

Table 1: Branch features for concolic testing. Features 1–12
are static, and Features 13–40 are dynamic.

# Description
1 branch in the main function
2 true branch of a loop
3 false branch of a loop
4 nested branch
5 branch containing external function calls
6 branch containing integer expressions
7 branch containing constant strings
8 branch containing pointer expressions
9 branch containing local variables
10 branch inside a loop body
11 true branch of a case statement
12 false branch of a case statement
13 �rst 10% branches of a path
14 last 10% branches of a path
15 branch appearing most frequently in a path
16 branch appearing least frequently in a path
17 branch newly covered in the previous execution
18 branch located right after the just-negated branch
19 branch whose context (k = 1) is already visited
20 branch whose context (k = 2) is already visited
21 branch whose context (k = 3) is already visited
22 branch whose context (k = 4) is already visited
23 branch whose context (k = 5) is already visited
24 branch negated more than 10 times
25 branch negated more than 20 times
26 branch negated more than 30 times
27 branch near the just-negated branch
28 branch failed to be negated more than 10 times
29 the opposite branch failed to be negated more than 10 times
30 the opposite branch is uncovered (depth 0)
31 the opposite branch is uncovered (depth 1)
32 branch negated in the last 10 executions
33 branch negated in the last 20 executions
34 branch negated in the last 30 executions
35 branch in the function that has the largest number of uncov-

ered branches
36 the opposite branch belongs to unreached functions (top 10%

of the largest func.)
37 the opposite branch belongs to unreached functions (top 20%

of the largest func.)
38 the opposite branch belongs to unreached functions (top 30%

of the largest func.)
39 the opposite branch belongs to unreached functions (# of

branches > 10)
40 branch inside the most recently reached function

of branch features. We use the simple linear combination to
calculate the branch scores:

score� (�) = � (�) · � .
(3) Finally, we choose the branch with the highest score. That is,

among the branches �1, . . . ,�n in �m , we choose the branch
� j such that score� (� j ) � score� (�k ) for all k .

Branch Features. We have designed 40 features to describe
useful properties of branches in concolic testing. Table 1 shows the
features, which are classi�ed into 12 static and 28 dynamic features.

𝜋(b1) = ⟨1,0,1,1,0⟩

𝜋(b4) = ⟨0,1,1,1,0⟩

𝜋(b5) = ⟨1,0,0,0,1⟩



Branch Features

• 12 static features

• extracted without execution

• 28 dynamic features

• extracted at runtime
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(e.g., tree-1.6.0). That is, the key feature, contexts, of CGS is not
appropriate for some programs.

Besides their sub-optimality, another key limitation of existing
approaches is that developing a good search heuristic requires a
huge amount of engineering e�ort and expertise. Given that the
e�ectiveness of concolic testing depends heavily on the search
heuristic, ordinary developers cannot fully bene�t from concolic
testing. These observations motivated us to develop a technique
that automatically generates search heuristics.

3 OUR TECHNIQUE
In this section, we present our technique for automatically gen-
erating search heuristics for concolic testing. We de�ne a family
of search heuristics, namely parameterized search heuristics (Sec-
tion 3.1), and present an algorithm to choose the best heuristic from
the family for a given subject program (Section 3.2).

3.1 Parameterized Search Heuristic
Let P 2 Program be a subject program under test. Recall that a
search heuristic, the Choose function in Algorithm 1, is a function
from execution trees to pairs of a path condition and a branch:

Choose 2 SearchHeuristic = ExecutionTree ! PathCond ⇥ Branch
where ExecutionTree is the set of all execution trees of the program,
PathCond the set of all path conditions in the trees, Branch the set
of all branches in P .

We de�ne a familyH ✓ SearchHeuristic of search heuristics as a
parameterized heuristic Choose� , where � is the parameter which
is a k-dimensional vector of real numbers:

H = {Choose� | � 2 Rk }
Given an execution tree T = h�1�2 · · ·�mi, our parameterized
search heuristic is de�ned as follows:

Choose� (h�1 · · ·�mi) = (�m , argmax
� j 2�m

score� (� j ))

Intuitively, the heuristic �rst chooses the last path condition �m
from the execution tree T , then selects a branch � j from �m that
gets the highest score among all branches in that path. Except for
the CGS heuristic, all existing search heuristics choose a branch
from the last path condition. In this work, we follow this common
strategy but our method can be generalized to consider the entire
execution tree as well. We explain how we score each branch � in
�m with respect to a given parameter � :

(1) We represent the branch by a feature vector. We designed 40
boolean features describing properties of branches in con-
colic testing. A feature �i is a boolean predicate on branches:

�i : Branch! {0, 1}.
For instance, one of the features checks whether the branch is
located in the main function or not. Given a set of k features
� = {�1, . . . ,�k }, where k is the length of the parameter � ,
a branch � is represented by a boolean vector as follows:

� (�) = h�1 (�),�2 (�), . . . ,�k (�)i.
(2) Next we compute the score of the branch by a linear combina-

tion of the feature vector and the parameter. In our method,
the dimension k of the parameter � equals to the number

Table 1: Branch features for concolic testing. Features 1–12
are static, and Features 13–40 are dynamic.

# Description
1 branch in the main function
2 true branch of a loop
3 false branch of a loop
4 nested branch
5 branch containing external function calls
6 branch containing integer expressions
7 branch containing constant strings
8 branch containing pointer expressions
9 branch containing local variables
10 branch inside a loop body
11 true branch of a case statement
12 false branch of a case statement
13 �rst 10% branches of a path
14 last 10% branches of a path
15 branch appearing most frequently in a path
16 branch appearing least frequently in a path
17 branch newly covered in the previous execution
18 branch located right after the just-negated branch
19 branch whose context (k = 1) is already visited
20 branch whose context (k = 2) is already visited
21 branch whose context (k = 3) is already visited
22 branch whose context (k = 4) is already visited
23 branch whose context (k = 5) is already visited
24 branch negated more than 10 times
25 branch negated more than 20 times
26 branch negated more than 30 times
27 branch near the just-negated branch
28 branch failed to be negated more than 10 times
29 the opposite branch failed to be negated more than 10 times
30 the opposite branch is uncovered (depth 0)
31 the opposite branch is uncovered (depth 1)
32 branch negated in the last 10 executions
33 branch negated in the last 20 executions
34 branch negated in the last 30 executions
35 branch in the function that has the largest number of uncov-

ered branches
36 the opposite branch belongs to unreached functions (top 10%

of the largest func.)
37 the opposite branch belongs to unreached functions (top 20%

of the largest func.)
38 the opposite branch belongs to unreached functions (top 30%

of the largest func.)
39 the opposite branch belongs to unreached functions (# of

branches > 10)
40 branch inside the most recently reached function

of branch features. We use the simple linear combination to
calculate the branch scores:

score� (�) = � (�) · � .
(3) Finally, we choose the branch with the highest score. That is,

among the branches �1, . . . ,�n in �m , we choose the branch
� j such that score� (� j ) � score� (�k ) for all k .

Branch Features. We have designed 40 features to describe
useful properties of branches in concolic testing. Table 1 shows the
features, which are classi�ed into 12 static and 28 dynamic features.



(2) Scoring

• The parameter is a k-length vector of real numbers
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θ = ⟨0.8,-0.5,0.3,0.2,-0.7⟩

• Compute score by linear combination of feature 
vector and parameter

scoreθ(b1) = ⟨1,0,1,1,0⟩∙⟨0.8,-0.5,0.3,0.2,-0.7⟩ = 1.3

scoreθ(b4) = ⟨0,1,1,1,0⟩∙⟨0.8,-0.5,0.3,0.2,-0.7⟩ = 0.0

scoreθ(b5) = ⟨1,0,0,0,1⟩∙⟨0.8,-0.5,0.3,0.2,-0.7⟩ = 0.1
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(e.g., tree-1.6.0). That is, the key feature, contexts, of CGS is not
appropriate for some programs.

Besides their sub-optimality, another key limitation of existing
approaches is that developing a good search heuristic requires a
huge amount of engineering e�ort and expertise. Given that the
e�ectiveness of concolic testing depends heavily on the search
heuristic, ordinary developers cannot fully bene�t from concolic
testing. These observations motivated us to develop a technique
that automatically generates search heuristics.

3 OUR TECHNIQUE
In this section, we present our technique for automatically gen-
erating search heuristics for concolic testing. We de�ne a family
of search heuristics, namely parameterized search heuristics (Sec-
tion 3.1), and present an algorithm to choose the best heuristic from
the family for a given subject program (Section 3.2).

3.1 Parameterized Search Heuristic
Let P 2 Program be a subject program under test. Recall that a
search heuristic, the Choose function in Algorithm 1, is a function
from execution trees to pairs of a path condition and a branch:

Choose 2 SearchHeuristic = ExecutionTree ! PathCond ⇥ Branch
where ExecutionTree is the set of all execution trees of the program,
PathCond the set of all path conditions in the trees, Branch the set
of all branches in P .

We de�ne a familyH ✓ SearchHeuristic of search heuristics as a
parameterized heuristic Choose� , where � is the parameter which
is a k-dimensional vector of real numbers:

H = {Choose� | � 2 Rk }
Given an execution tree T = h�1�2 · · ·�mi, our parameterized
search heuristic is de�ned as follows:

Choose� (h�1 · · ·�mi) = (�m , argmax
� j 2�m

score� (� j ))

Intuitively, the heuristic �rst chooses the last path condition �m
from the execution tree T , then selects a branch � j from �m that
gets the highest score among all branches in that path. Except for
the CGS heuristic, all existing search heuristics choose a branch
from the last path condition. In this work, we follow this common
strategy but our method can be generalized to consider the entire
execution tree as well. We explain how we score each branch � in
�m with respect to a given parameter � :

(1) We represent the branch by a feature vector. We designed 40
boolean features describing properties of branches in con-
colic testing. A feature �i is a boolean predicate on branches:

�i : Branch! {0, 1}.
For instance, one of the features checks whether the branch is
located in the main function or not. Given a set of k features
� = {�1, . . . ,�k }, where k is the length of the parameter � ,
a branch � is represented by a boolean vector as follows:

� (�) = h�1 (�),�2 (�), . . . ,�k (�)i.
(2) Next we compute the score of the branch by a linear combina-

tion of the feature vector and the parameter. In our method,
the dimension k of the parameter � equals to the number

Table 1: Branch features for concolic testing. Features 1–12
are static, and Features 13–40 are dynamic.

# Description
1 branch in the main function
2 true branch of a loop
3 false branch of a loop
4 nested branch
5 branch containing external function calls
6 branch containing integer expressions
7 branch containing constant strings
8 branch containing pointer expressions
9 branch containing local variables
10 branch inside a loop body
11 true branch of a case statement
12 false branch of a case statement
13 �rst 10% branches of a path
14 last 10% branches of a path
15 branch appearing most frequently in a path
16 branch appearing least frequently in a path
17 branch newly covered in the previous execution
18 branch located right after the just-negated branch
19 branch whose context (k = 1) is already visited
20 branch whose context (k = 2) is already visited
21 branch whose context (k = 3) is already visited
22 branch whose context (k = 4) is already visited
23 branch whose context (k = 5) is already visited
24 branch negated more than 10 times
25 branch negated more than 20 times
26 branch negated more than 30 times
27 branch near the just-negated branch
28 branch failed to be negated more than 10 times
29 the opposite branch failed to be negated more than 10 times
30 the opposite branch is uncovered (depth 0)
31 the opposite branch is uncovered (depth 1)
32 branch negated in the last 10 executions
33 branch negated in the last 20 executions
34 branch negated in the last 30 executions
35 branch in the function that has the largest number of uncov-

ered branches
36 the opposite branch belongs to unreached functions (top 10%

of the largest func.)
37 the opposite branch belongs to unreached functions (top 20%

of the largest func.)
38 the opposite branch belongs to unreached functions (top 30%

of the largest func.)
39 the opposite branch belongs to unreached functions (# of

branches > 10)
40 branch inside the most recently reached function

of branch features. We use the simple linear combination to
calculate the branch scores:

score� (�) = � (�) · � .
(3) Finally, we choose the branch with the highest score. That is,

among the branches �1, . . . ,�n in �m , we choose the branch
� j such that score� (� j ) � score� (�k ) for all k .

Branch Features. We have designed 40 features to describe
useful properties of branches in concolic testing. Table 1 shows the
features, which are classi�ed into 12 static and 28 dynamic features.



Optimization Algorithm

• Finding a good search heuristic reduces to solving 
the optimization problem:  
 
 
 
where 
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A static feature describes a branch property that can be extracted
without executing the program. A dynamic feature requires to
execute the program and is extracted during concolic testing.

The static features 1-12 describe the syntactic properties of each
branch in the execution path, which can be statically generated
by analyzing the program text. For instance, feature 8 indicates
whether the branch has a pointer expression in its conditional
expression. The justi�cation for individually designing feature 2
and 3 is that each feature has di�erent role; scoring high for true
branch of a loop (feature 2) explicitly leads the search into get out
the loops while scoring high on false branch of a loop (feature
3) leads to get in the loops. Because there is no existing heuristic
that extensively considers the syntactic properties of branches,
these simple and atomic features have been designed for checking
whether these contribute to improving branch coverage or not.

On the other hands, we designed dynamic features (13-40) to
capture the dynamics of concolic testing. For instance, feature 24
checks whether the branch has been negated more than 10 times
during concolic testing. That is, during the execution of the program,
the boolean value of each dynamic feature for the same branch may
change while the static feature values of the branch do not.

We also incorporated the key insights of the existing search
heuristics into the features. For example, dynamic features 19-23
were designed based on the notion of contexts used in the CGS
heuristic [26] while features 30-31 are based on the idea of the CFDS
heuristic [2] that calculates the distance to uncovered branches.

3.2 Parameter Optimization Algorithm
Now we describe our algorithm for �nding a good parameter value
of the parameterized search heuristic. We formally de�ne the opti-
mization problem, and then present our algorithm.

OptimizationProblem. In our approach, �nding a good search
heuristic corresponds to solving an optimization problem.Wemodel
the concolic testing procedure in Algorithm 1 by the function:

C : Program ⇥ SearchHeuristic ! N
which takes a program and a search heuristic, and returns the num-
ber of covered branches. Given a program P and a search heuristic
Choose, C (P ,Choose) performs concolic testing (Algorithm 1) us-
ing the heuristic for a �xed number of executions (i.e. N ). We
assume that the initial input (�0) and the number of executions (N )
are �xed for the program.

Given a program P to test, our goal is to �nd a parameter � that
maximizes the performance of the concolic testing algorithm with
respect to P . Formally, our objective is to �nd �⇤ such that

�

⇤ = argmax
� 2Rk

C (P ,Choose� ). (1)

That is, we aim to �nd a parameter �⇤ that causes the concolic
testing algorithm C with the search heuristic Choose� to maximize
the number of covered branches in P .

Optimization Algorithm. We propose an algorithm that e�-
ciently solves the optimization problem in (1). A simplistic approach
to solve the problemwould be random sampling:
1: repeat
2: �  sample from Rk

3: B  C (P ,Choose� )
4: until timeout
5: return best � found

which randomly samples parameter values and returns the best
parameter found for a given time budget. However, we found that
this naive algorithm is extremely ine�cient and leads to a failure
when it is used for �nding a good search heuristic of concolic
testing (Section 4.3). This is mainly because of two reasons. First,
the search space is intractably large and therefore blindly searching
for good parameters without any guidance is hopeless. Second, a
single evaluation of a parameter value is generally unreliable and
does not represent the average performance in concolic testing. This
performance variation arises from the inherent nondeterminism in
concolic testing (e.g. branch prediction failure) [13].

In response, we designed an optimization algorithm (Algorithm 2)
specialized to e�ciently �nding good parameter values of search
heuristics. The key idea behind this algorithm is to iteratively re-
�ne the sample space based on the feedback from previous runs of
concolic testing. The main loop of the algorithm consists of three
phases: Find, Check, and Re�ne. These three steps are repeated
until best average performance converges. That is, our algorithm
terminates when highest average coverage obtained in the current
iteration is less than one in the previous iteration.

At line 2, the algorithm initializes the sample spaces. It maintains
k sample spaces, Ri (i 2 [1,k]), where k is the dimension of the
parameters (i.e., the number of branch features in our parameterized
heuristic). In our algorithm, the i-th components of the parameters
are sampled from Ri , independently from other components. For
all i , Ri is initialized to the space [�1, 1].

In the �rst phase (Find), we randomly sample n parameter values:
�1,�2, . . . ,�n from the current sample space R1⇥R2⇥ · · ·⇥Rk (line
6), and their performance numbers (i.e., the number of branches
covered) are evaluated (lines 8–10). In experiments, we setn to 1,000
(300 for vim). Among the 1,000 parameters, we choose the top K

parameters according to their branch coverage. In our experiments,
K is set to 10 because we observed that parameters with good
qualities are usually found in the top 10 parameters. This �rst step
of executing a program 1,000 times can be run in parallel.

In the next phase (Check), we choose the top 2 parameters that
show the best average performance. At lines 15–16, the K param-
eters chosen from the �rst phase are evaluated again to obtain
the average code coverage over 10 trials, where B0i represents the
average performance of parameter � 0i . At line 18, we choose two
parameters �1 and �2 with the best average performance. This step
(Check) is needed to rule out unreliable parameters. Because of the
nondeterminism of concolic testing, the quality of a search heuristic
must be evaluated over multiple executions.

In the last step (Re�ne), we re�ne the sample spaces R1, . . . ,Rk
based on the average performance of �1 and �2. Each Ri is re-
�ned based on the values of the i-th components (� i1 and �

i
2) of

�1 and �2. When both �

i
1 and �

i
2 are positive, we modify Ri by

[min(� i1,�
i
2), 10]. When both �

i
1 and �

i
2 are negative, Ri is re�ned

by [�10,max(� i1,�
i
2)]. Otherwise, Ri remains the same. This way,

we iteratively re�ne each sample space Ri and guide the search to
continuously �nd and climb the hills toward top in the parameter
space.
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A static feature describes a branch property that can be extracted
without executing the program. A dynamic feature requires to
execute the program and is extracted during concolic testing.

The static features 1-12 describe the syntactic properties of each
branch in the execution path, which can be statically generated
by analyzing the program text. For instance, feature 8 indicates
whether the branch has a pointer expression in its conditional
expression. The justi�cation for individually designing feature 2
and 3 is that each feature has di�erent role; scoring high for true
branch of a loop (feature 2) explicitly leads the search into get out
the loops while scoring high on false branch of a loop (feature
3) leads to get in the loops. Because there is no existing heuristic
that extensively considers the syntactic properties of branches,
these simple and atomic features have been designed for checking
whether these contribute to improving branch coverage or not.

On the other hands, we designed dynamic features (13-40) to
capture the dynamics of concolic testing. For instance, feature 24
checks whether the branch has been negated more than 10 times
during concolic testing. That is, during the execution of the program,
the boolean value of each dynamic feature for the same branch may
change while the static feature values of the branch do not.

We also incorporated the key insights of the existing search
heuristics into the features. For example, dynamic features 19-23
were designed based on the notion of contexts used in the CGS
heuristic [26] while features 30-31 are based on the idea of the CFDS
heuristic [2] that calculates the distance to uncovered branches.

3.2 Parameter Optimization Algorithm
Now we describe our algorithm for �nding a good parameter value
of the parameterized search heuristic. We formally de�ne the opti-
mization problem, and then present our algorithm.

OptimizationProblem. In our approach, �nding a good search
heuristic corresponds to solving an optimization problem.Wemodel
the concolic testing procedure in Algorithm 1 by the function:

C : Program ⇥ SearchHeuristic ! N
which takes a program and a search heuristic, and returns the num-
ber of covered branches. Given a program P and a search heuristic
Choose, C (P ,Choose) performs concolic testing (Algorithm 1) us-
ing the heuristic for a �xed number of executions (i.e. N ). We
assume that the initial input (�0) and the number of executions (N )
are �xed for the program.

Given a program P to test, our goal is to �nd a parameter � that
maximizes the performance of the concolic testing algorithm with
respect to P . Formally, our objective is to �nd �⇤ such that

�

⇤ = argmax
� 2Rk

C (P ,Choose� ). (1)

That is, we aim to �nd a parameter �⇤ that causes the concolic
testing algorithm C with the search heuristic Choose� to maximize
the number of covered branches in P .

Optimization Algorithm. We propose an algorithm that e�-
ciently solves the optimization problem in (1). A simplistic approach
to solve the problemwould be random sampling:
1: repeat
2: �  sample from Rk

3: B  C (P ,Choose� )
4: until timeout
5: return best � found

which randomly samples parameter values and returns the best
parameter found for a given time budget. However, we found that
this naive algorithm is extremely ine�cient and leads to a failure
when it is used for �nding a good search heuristic of concolic
testing (Section 4.3). This is mainly because of two reasons. First,
the search space is intractably large and therefore blindly searching
for good parameters without any guidance is hopeless. Second, a
single evaluation of a parameter value is generally unreliable and
does not represent the average performance in concolic testing. This
performance variation arises from the inherent nondeterminism in
concolic testing (e.g. branch prediction failure) [13].

In response, we designed an optimization algorithm (Algorithm 2)
specialized to e�ciently �nding good parameter values of search
heuristics. The key idea behind this algorithm is to iteratively re-
�ne the sample space based on the feedback from previous runs of
concolic testing. The main loop of the algorithm consists of three
phases: Find, Check, and Re�ne. These three steps are repeated
until best average performance converges. That is, our algorithm
terminates when highest average coverage obtained in the current
iteration is less than one in the previous iteration.

At line 2, the algorithm initializes the sample spaces. It maintains
k sample spaces, Ri (i 2 [1,k]), where k is the dimension of the
parameters (i.e., the number of branch features in our parameterized
heuristic). In our algorithm, the i-th components of the parameters
are sampled from Ri , independently from other components. For
all i , Ri is initialized to the space [�1, 1].

In the �rst phase (Find), we randomly sample n parameter values:
�1,�2, . . . ,�n from the current sample space R1⇥R2⇥ · · ·⇥Rk (line
6), and their performance numbers (i.e., the number of branches
covered) are evaluated (lines 8–10). In experiments, we setn to 1,000
(300 for vim). Among the 1,000 parameters, we choose the top K

parameters according to their branch coverage. In our experiments,
K is set to 10 because we observed that parameters with good
qualities are usually found in the top 10 parameters. This �rst step
of executing a program 1,000 times can be run in parallel.

In the next phase (Check), we choose the top 2 parameters that
show the best average performance. At lines 15–16, the K param-
eters chosen from the �rst phase are evaluated again to obtain
the average code coverage over 10 trials, where B0i represents the
average performance of parameter � 0i . At line 18, we choose two
parameters �1 and �2 with the best average performance. This step
(Check) is needed to rule out unreliable parameters. Because of the
nondeterminism of concolic testing, the quality of a search heuristic
must be evaluated over multiple executions.

In the last step (Re�ne), we re�ne the sample spaces R1, . . . ,Rk
based on the average performance of �1 and �2. Each Ri is re-
�ned based on the values of the i-th components (� i1 and �

i
2) of

�1 and �2. When both �

i
1 and �

i
2 are positive, we modify Ri by

[min(� i1,�
i
2), 10]. When both �

i
1 and �

i
2 are negative, Ri is re�ned

by [�10,max(� i1,�
i
2)]. Otherwise, Ri remains the same. This way,

we iteratively re�ne each sample space Ri and guide the search to
continuously �nd and climb the hills toward top in the parameter
space.



Naive Algorithm

• Naive algorithm based on random sampling
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A static feature describes a branch property that can be extracted
without executing the program. A dynamic feature requires to
execute the program and is extracted during concolic testing.

The static features 1-12 describe the syntactic properties of each
branch in the execution path, which can be statically generated
by analyzing the program text. For instance, feature 8 indicates
whether the branch has a pointer expression in its conditional
expression. The justi�cation for individually designing feature 2
and 3 is that each feature has di�erent role; scoring high for true
branch of a loop (feature 2) explicitly leads the search into get out
the loops while scoring high on false branch of a loop (feature
3) leads to get in the loops. Because there is no existing heuristic
that extensively considers the syntactic properties of branches,
these simple and atomic features have been designed for checking
whether these contribute to improving branch coverage or not.

On the other hands, we designed dynamic features (13-40) to
capture the dynamics of concolic testing. For instance, feature 24
checks whether the branch has been negated more than 10 times
during concolic testing. That is, during the execution of the program,
the boolean value of each dynamic feature for the same branch may
change while the static feature values of the branch do not.

We also incorporated the key insights of the existing search
heuristics into the features. For example, dynamic features 19-23
were designed based on the notion of contexts used in the CGS
heuristic [26] while features 30-31 are based on the idea of the CFDS
heuristic [2] that calculates the distance to uncovered branches.

3.2 Parameter Optimization Algorithm
Now we describe our algorithm for �nding a good parameter value
of the parameterized search heuristic. We formally de�ne the opti-
mization problem, and then present our algorithm.

OptimizationProblem. In our approach, �nding a good search
heuristic corresponds to solving an optimization problem.Wemodel
the concolic testing procedure in Algorithm 1 by the function:

C : Program ⇥ SearchHeuristic ! N
which takes a program and a search heuristic, and returns the num-
ber of covered branches. Given a program P and a search heuristic
Choose, C (P ,Choose) performs concolic testing (Algorithm 1) us-
ing the heuristic for a �xed number of executions (i.e. N ). We
assume that the initial input (�0) and the number of executions (N )
are �xed for the program.

Given a program P to test, our goal is to �nd a parameter � that
maximizes the performance of the concolic testing algorithm with
respect to P . Formally, our objective is to �nd �⇤ such that

�

⇤ = argmax
� 2Rk

C (P ,Choose� ). (1)

That is, we aim to �nd a parameter �⇤ that causes the concolic
testing algorithm C with the search heuristic Choose� to maximize
the number of covered branches in P .

Optimization Algorithm. We propose an algorithm that e�-
ciently solves the optimization problem in (1). A simplistic approach
to solve the problem would be random sampling:

1: repeat
2: �  sample from Rk
3: B  C (P ,Choose� )
4: until timeout
5: return best � found

which randomly samples parameter values and returns the best
parameter found for a given time budget. However, we found that
this naive algorithm is extremely ine�cient and leads to a failure
when it is used for �nding a good search heuristic of concolic
testing (Section 4.3). This is mainly because of two reasons. First,
the search space is intractably large and therefore blindly searching
for good parameters without any guidance is hopeless. Second, a
single evaluation of a parameter value is generally unreliable and
does not represent the average performance in concolic testing. This
performance variation arises from the inherent nondeterminism in
concolic testing (e.g. branch prediction failure) [13].

In response, we designed an optimization algorithm (Algorithm 2)
specialized to e�ciently �nding good parameter values of search
heuristics. The key idea behind this algorithm is to iteratively re-
�ne the sample space based on the feedback from previous runs of
concolic testing. The main loop of the algorithm consists of three
phases: Find, Check, and Re�ne. These three steps are repeated
until best average performance converges. That is, our algorithm
terminates when highest average coverage obtained in the current
iteration is less than one in the previous iteration.

At line 2, the algorithm initializes the sample spaces. It maintains
k sample spaces, Ri (i 2 [1,k]), where k is the dimension of the
parameters (i.e., the number of branch features in our parameterized
heuristic). In our algorithm, the i-th components of the parameters
are sampled from Ri , independently from other components. For
all i , Ri is initialized to the space [�1, 1].

In the �rst phase (Find), we randomly sample n parameter values:
�1,�2, . . . ,�n from the current sample space R1⇥R2⇥ · · ·⇥Rk (line
6), and their performance numbers (i.e., the number of branches
covered) are evaluated (lines 8–10). In experiments, we setn to 1,000
(300 for vim). Among the 1,000 parameters, we choose the top K

parameters according to their branch coverage. In our experiments,
K is set to 10 because we observed that parameters with good
qualities are usually found in the top 10 parameters. This �rst step
of executing a program 1,000 times can be run in parallel.

In the next phase (Check), we choose the top 2 parameters that
show the best average performance. At lines 15–16, the K param-
eters chosen from the �rst phase are evaluated again to obtain
the average code coverage over 10 trials, where B0i represents the
average performance of parameter � 0i . At line 18, we choose two
parameters �1 and �2 with the best average performance. This step
(Check) is needed to rule out unreliable parameters. Because of the
nondeterminism of concolic testing, the quality of a search heuristic
must be evaluated over multiple executions.

In the last step (Re�ne), we re�ne the sample spaces R1, . . . ,Rk
based on the average performance of �1 and �2. Each Ri is re-
�ned based on the values of the i-th components (� i1 and �

i
2) of

�1 and �2. When both �

i
1 and �

i
2 are positive, we modify Ri by

[min(� i1,�
i
2), 10]. When both �

i
1 and �

i
2 are negative, Ri is re�ned

by [�10,max(� i1,�
i
2)]. Otherwise, Ri remains the same. This way,

we iteratively re�ne each sample space Ri and guide the search to

• Failed to find good parameters

• Search space is intractably large

• Inherent performance variation in concolic testing
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• Iteratively refine the sample space based on the feedback 
from previous runs of concolic testing
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Concolic Testing의 탐색전략을
자동으로 만들어내기

1. 배경 및 연구 동기

1) 배경

- Concolic Testing: 주어진 시간안에 대상 소프트웨어 코드의 최대한 많은 부분을 실행해보는 것.

- Path Explosion: 소프트웨어 테스팅 기술의 KEY CHALLENGE (# of Paths : 2# 𝑜𝑓 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠)

- Search Heuristic: 모든 path를 방문해 보는 것은 현실적으로 불가능하므로, 

커버리지를 효과적으로 증가시키는 path들만 우선적으로 탐색하는 방법들이 제안됨.

2) 연구 동기

- 테스팅할 프로그램에 따라 기존 탐색전략들은 성능의 큰 차이를 보임.

- 새로운 전략의 디자인은 전문가의 고된 노력을 필요로 함.

: “주어진 프로그램”에 대해서 “자동”으로 탐색 전략을 만들 수 없을까? 2. 목표 및 방법

1) Parameterized 탐색 전략.

- 12 static + 28 dynamic features    

2) 효과적인 최적화 알고리즘.

Branch 1:  if( x == 10) in main function    → (1, 0, 0)

Branch 2:  if( y <= extern() ) in func 1    → (0, 1, 0)

Branch 3:  while( z <= 10 ) in func 1        → (0, 0, 1)

vim expat

f1 (main) 200↑ 1↑

f2 (extern) 10↑ 10↑

f3 (loop) 1↑ 200↑

(1). 피쳐 백터로
표현하기

(2). 점수 매기기

: 0.7

: 0

: -0.3

- Feature의 중요도를 빠르게 결정하도록 가이드.

M 

samples
(1) Find Top 10 

samples

(2) Check Top 2 

samples

(3) Refine

N refinements

f1: [-1, 1] f1: [0, 1]

3. 결과

1) 정말 기존 탐색전략들보다 “뛰어난” 탐색전략을 “자동”으로 만들수 있을까?

10 벤치마크 프로그램
<1> 평균 브랜치 커버리지

<2> 알려진 실제 오류 검출

2) 탐색전략들을 만드는데 걸리는 시간은??  그래도 유용한가?? 

탐색전략들을 만드는데 걸린 시간
<1> 탐색전략을 만드는 단계에서의 효과성

<2> 프로그램 진화에 대한 탐색전략의 재사용성

3) 제안된 최적화 알고리즘이 효과적인가? 4) 좋은 탐색전략을 만들기 위해선, 어떤
featur들이 중요한가?

No winning feature 
“6개의 프로그램의 상위 10개의 긍정적 / 부정적 피쳐들에

항상 속하는 피쳐는 없음”

- 긍정적인 피쳐: 1) path의 앞 부분에 위치한 branch.  

2) 근처에 아직 도달하지못한 branc가 존재.

- 부정적인 피쳐: 1) 자주 탐색해본 branch. 

2) 동일한 context를 지닌 branch.

- 긍정적일때도, 부정적일때도 있는 피쳐:

1) loop 안에 있는 branch.

2) 도달못한 branch들이 가장 많은 함수에 있는 branch.   

테스팅할 프로그램마다 탐색전략이
“적절히” 바뀌어야 됨.

- 예시: /grep ‘\(\)\+\1\+’ file

- 원인: back-reference를 이용할 때, performance 오류를 유발함.

Vs Random Sampling

- 중간 값: 좋은 탐색전략을 만들 확률은 높아짐.

- 성능의 변화폭: 커버리지의 변화폭은 줄어듬. 

1,701

(우리 알고리즘)

1,600

(Random Sampling)
>



Experiments

• Implemented in CREST

• Compared with five existing heuristics

• CGS, CFDS, Random, DFS, Generational

• 10 open-source programs
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Algorithm 2: Our Parameter Optimization algorithm
Input :Program P
Output :Optimal parameter � 2 Rk for P
1: /* k : the dimension of � */
2: initialize the sample spaces Ri = [�1, 1] for i 2 [1, k]
3: repeat
4: /* Step 1: Find */
5: /* sample n parameters: �1, . . . , �n (e.g., n=1,000) */
6: {�i }ni=1  sample from R1 ⇥ R2 ⇥ · · · ⇥ Rk
7: /* evaluate the sampled parameters */
8: for i = 1 to n do
9: /* Bi : branch coverage achieved with �i */
10: Bi  C (P, Choose�i )
11: end for
12: pick K parameters {� 0i }Ki=1 from {�i }ni=1 with highest Bi
13:
14: /* Step 2: Check */
15: for all K parameters � 0i do
16: B0i  1

10
P10
j=1 C (P, Choose� 0i )

17: end for
18: pick top 2 parameters �1, �2 with highest B0i
19:
20: /* Step 3: Re�ne */
21: for i = 1 to k do
22: if � i1 > 0 and � i2 > 0 then
23: Ri = [min(� i1 , �

i
2 ), 10]

24: else if � i1 < 0 and � i2 < 0 then
25: Ri = [-10, max(� i1 , �

i
2 )]

26: else
27: continue
28: end if
29: end for
30: until best average performance (B0i ) converges
31: return best � found

4 EXPERIMENTS
In this section, we experimentally evaluate our approach that auto-
matically generates search heuristics of concolic testing. We imple-
mented our approach in CREST [7], a well-known concolic testing
tool for C programs [2, 10, 19, 26]. We conducted experiments to
answer the following research questions:
• E�ectiveness of generatedheuristics: Does our approach
generate e�ective search heuristics? How do they perform
compared to the existing state-of-the-art heuristics?
• Time for obtaining the heuristics: How long does our
approach take to generate the search heuristics? Is our ap-
proach useful even considering the training e�ort?
• E�cacy of optimization algorithm: How does our opti-
mization algorithm perform compared to the naive algorithm
by random sampling?
• Important features: What are the important features to
generate e�ective search heuristics for concolic testing?

Benchmarks. We have compared our approach with �ve exist-
ing heuristics: CGS (Context-Guided Search) [26], CFDS (Control-
Flow Directed Search) [2], Random branch search [2], DFS (Depth-
First Search) [13], and Generational search [14]. We chose these
heuristics for comparison because they have been commonly used

Table 2: 10 benchmark programs

Program # Total branches LOC Source

vim-5.7 35,464 165K [2]
gawk-3.0.3 8,038 30K ours
expat-2.1.0 8,500 49K [26]
grep-2.2 3,836 15K [2]
sed-1.17 2,565 9K [20]
tree-1.6.0 1,438 4K ours

cdaudio 358 3K [26]
�oppy 268 2K [26]
kb�ltr 204 1K [26]
replace 196 0.5K [2]

in prior work [2, 8, 13, 14, 26]. In particular, CGS and CFDS are ar-
guably the state-of-the-art search heuristics that often perform the
best in practice [2, 26]. The implementation of CFDS, Random, and
DFS heuristics are available in CREST. The CGS and Generational
heuristics came from the authors of [26].2.

We used 10 open-source benchmark programs (Table 2).3 The
benchmarks are divided into the large and small programs. The
large benchmarks include vim, expat, grep, sed, gawk, and tree.
The �rst four are standard benchmark programs in concolic testing
for C, which have been used multiple times in prior work [1, 2, 4,
20, 26]. The last two programs (gawk and tree) were prepared by
ourselves, which are available with our tool. Our benchmark set
also includes 4 small ones: cdaudio, floppy, kbfiltr, and replace,
which were used in [2, 20, 26].

Evaluation Setting. We conducted all experiments under the
same evaluation setting; the initial input (i.e. �0 in Algorithm 1) is
�xed for each benchmark program and a single run of concolic test-
ing used the same testing budget (4000 executions, i.e., N = 4000
in Algorithm 1). Note that the performance of concolic testing
generally depends on the initial input. We found that in our bench-
mark programs, except for grep and expat, di�erent choices of
initial input did not much a�ect the �nal performance, so we gen-
erated random inputs for those programs. For grep and expat, the
performance of concolic testing varied signi�cantly depending on
the initial input. In particular, existing search heuristics such as
CFDS and Random performed very poorly with some particular
initial inputs. For instance, with some initial inputs, CFDS and Ran-
dom covered 150 less branches in grep than with other inputs. We
avoided this exceptional case when selecting the input for grep
and expat. The initial inputs we used are available with our tool.

The performance of each search heuristic was averaged over mul-
tiple trials. Even with the same initial input, the search heuristics
have coverage variations for several reasons: search initialization
in concolic testing [13], the randomness of search heuristics, and
so on. We repeated the experiments 100 times for all benchmarks
except for vim for which we averaged over 20 trials as its execution
takes much longer time. The experiments were done on a linux
machine with two Intel Xeon Processor E5-2630 and 192GB RAM.
2via personal communication
3 Henceforth, the version numbers will be omitted when there is no confusion.



Evaluation Setting

• The same initial inputs

• The same testing budget (4,000 executions)

• Performance averaged over 100 trials (20 for vim)
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Effectiveness
• Average branch coverage (on large programs)
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Figure 1: Average branch coverage achieved by each search heuristic on 6 large benchmarks

4.1 E�ectiveness of Generated Heuristics
For each benchmark program,we ran our algorithm (Algorithm 2) to
generate our search heuristic (ours), and compared its performance
with that of the existing heuristics. We evaluate the e�ectiveness
with two measures: branch coverage and capability of �nding bugs.

Branch Coverage. For branch coverage, we measured the av-
erage and maximum coverages: The average branch coverage is
obtained by averaging the results over the 100 trials (20 for vim).
The maximum coverage refers to the highest coverage achieved
during the 100 trials (20 for vim). The former indicates the average
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For each benchmark program,we ran our algorithm (Algorithm 2) to
generate our search heuristic (ours), and compared its performance
with that of the existing heuristics. We evaluate the e�ectiveness
with two measures: branch coverage and capability of �nding bugs.

Branch Coverage. For branch coverage, we measured the av-
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The maximum coverage refers to the highest coverage achieved
during the 100 trials (20 for vim). The former indicates the average



Effectiveness

• Maximum branch coverage
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Figure 2: Average branch coverage over execution time

Table 3: Average branch coverage on 4 small benchmarks

OURS CFDS CGS Random Gen DFS

cdaudio 250 250 250 242 236 250
�oppy 205 205 205 170 168 205
replace 181 177 181 174 171 176
kb�ltr 149 149 149 149 134 149

Table 4: E�ectiveness in terms ofmaximumbranch coverage

OURS CFDS CGS Random Gen DFS

vim 8,744 8,322 6,150 7,645 5,092 2,646
expat 1,422 1,060 1,337 965 1,348 1,027
gawk 2,684 2,532 2,449 2,035 2,443 1,025
grep 1,807 1,726 1,751 1,598 1,640 1,456
sed 830 780 781 690 698 568
tree 797 702 599 704 600 360

Table 5: E�ectiveness in terms of �nding bugs

OURS CFDS CGS Random Gen DFS

gawk-3.0.3 100/100 0/100 0/100 0/100 0/100 0/100
grep-2.2 85/100 0/100 7/100 0/100 0/100 0/100

performance while the latter the best performance achievable by
each heuristic.

Figure 1 compares the average branch coverage achieved by dif-
ferent search heuristics on 6 large benchmarks. The results show
that the search heuristics generated by our approach (ours) achieve
the best coverage on all programs. In particular, ours signi�cantly
increased the branch coverage on two largest benchmarks: vim
and gawk. For vim, ours covered 8,402 branches in 4,000 executions
while the CFDS heuristic, which took the second place for vim,
covered 7,967 branches. Note that CFDS is already highly tuned and

outperforms the other heuristics for vim (for instance, CGS covered
5,860 branches only). For gawk, ours covered 2,684 branches while
the CGS heuristic, the second best one, managed to cover 2,321
branches. For expat, sed, and tree, our approach improved the ex-
isting heuristics considerably. For example, in expat, ours covered
1,327 branches, increasing the branch coverage of CGS by 50. For
grep, ours also performed the best followed by CGS and CFDS. On
small benchmarks, we obtained similar results; ours (together with
CGS) consistently achieved the highest average coverage (Table 3).
In the rest of the paper, we focus only on the 6 large benchmarks,
where existing manually-crafted heuristics fail to perform well.

In Figure 1, we compared the e�ectiveness of search heuristics
over iterations (# of executions)4, but our approach was also supe-
rior to others over execution time. For example, given the same time
budget (500 sec), ours and Random (the second best) covered 8,472
and 7,979 branches, respectively, for vim (Figure 2). The results
were averaged over 20 trials.

Table 4 compares the heuristics in terms of the maximum branch
coverage on 6 large benchmarks. The results show that our ap-
proach in this case also achieves the best performance on all pro-
grams. For instance, in vim, we considerably increased the coverage
of CFDS, the second best strategy; ours covered 8,744 branches
while CFDS managed to cover 8,322. For expat, ours and CGS (the
second best) have covered 1,422 and 1,337 branches, respectively.

Note that there is no clear winner among the existing search
heuristics. Except for ours, CFDS took the �rst place for vim and sed
in terms of average branch coverage. For gawk, expat, and grep,
the CGS heuristic was the best. For tree, the Random heuristic
achieved the highest branch coverage. In terms of the maximum
branch coverage, CFDS was better than the others in vim and gawk
while CGS was in grep and sed. The Generational and Random
surpassed CFDS and CGS in expat and tree, respectively. On the
other hand, our approach is able to consistently produce the best
search heuristics in both (average and maximum) coverage metrics.

Bug Finding. We found that the increased branch coverage by
our approach leads to more e�ective �nding of real bugs. Table 5
reports the number of test-cases generated by each search heuristic,
which trigger the known bugs in gawk and grep. During the 100
runs of concolic testing, our heuristic always found the bug in gawk

while all the other heuristics completely failed to �nd it. In grep,
ours succeeded to �nd the bug 85 times out of 100 trials, which is
much better than CGS does (7 times). Other heuristics were not
able to trigger the bug at all.

Our heuristics are good at �nding bugs because they are much
better than other heuristics in exercising diverse program paths. We
observed that other heuristics such as CGS, CFDS, and Generational
search also have covered the branches where the bugs originate.
However, the bugs are caused only by some speci�c path conditions
and the existing heuristics were not able to generate inputs that
satisfy the conditions.

We remark that we did not specially tune our approach towards
�nding those bugs. In fact, we were not aware of the presence of
those bugs at the early stage of this work. The bugs in gawk and

4 Evaluating the performance of search heuristics over iterations is a common prac-
tice [2, 26], as the execution time of a program may vary considerably depending on
the input.
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sed 830 780 781 690 698 568
tree 797 702 599 704 600 360

Table 5: E�ectiveness in terms of �nding bugs

OURS CFDS CGS Random Gen DFS

gawk-3.0.3 100/100 0/100 0/100 0/100 0/100 0/100
grep-2.2 85/100 0/100 7/100 0/100 0/100 0/100

performance while the latter the best performance achievable by
each heuristic.

Figure 1 compares the average branch coverage achieved by dif-
ferent search heuristics on 6 large benchmarks. The results show
that the search heuristics generated by our approach (ours) achieve
the best coverage on all programs. In particular, ours signi�cantly
increased the branch coverage on two largest benchmarks: vim
and gawk. For vim, ours covered 8,402 branches in 4,000 executions
while the CFDS heuristic, which took the second place for vim,
covered 7,967 branches. Note that CFDS is already highly tuned and

outperforms the other heuristics for vim (for instance, CGS covered
5,860 branches only). For gawk, ours covered 2,684 branches while
the CGS heuristic, the second best one, managed to cover 2,321
branches. For expat, sed, and tree, our approach improved the ex-
isting heuristics considerably. For example, in expat, ours covered
1,327 branches, increasing the branch coverage of CGS by 50. For
grep, ours also performed the best followed by CGS and CFDS. On
small benchmarks, we obtained similar results; ours (together with
CGS) consistently achieved the highest average coverage (Table 3).
In the rest of the paper, we focus only on the 6 large benchmarks,
where existing manually-crafted heuristics fail to perform well.

In Figure 1, we compared the e�ectiveness of search heuristics
over iterations (# of executions)4, but our approach was also supe-
rior to others over execution time. For example, given the same time
budget (500 sec), ours and Random (the second best) covered 8,472
and 7,979 branches, respectively, for vim (Figure 2). The results
were averaged over 20 trials.

Table 4 compares the heuristics in terms of the maximum branch
coverage on 6 large benchmarks. The results show that our ap-
proach in this case also achieves the best performance on all pro-
grams. For instance, in vim, we considerably increased the coverage
of CFDS, the second best strategy; ours covered 8,744 branches
while CFDS managed to cover 8,322. For expat, ours and CGS (the
second best) have covered 1,422 and 1,337 branches, respectively.

Note that there is no clear winner among the existing search
heuristics. Except for ours, CFDS took the �rst place for vim and sed
in terms of average branch coverage. For gawk, expat, and grep,
the CGS heuristic was the best. For tree, the Random heuristic
achieved the highest branch coverage. In terms of the maximum
branch coverage, CFDS was better than the others in vim and gawk
while CGS was in grep and sed. The Generational and Random
surpassed CFDS and CGS in expat and tree, respectively. On the
other hand, our approach is able to consistently produce the best
search heuristics in both (average and maximum) coverage metrics.

Bug Finding. We found that the increased branch coverage by
our approach leads to more e�ective �nding of real bugs. Table 5
reports the number of test-cases generated by each search heuristic,
which trigger the known bugs in gawk and grep. During the 100
runs of concolic testing, our heuristic always found the bug in gawk

while all the other heuristics completely failed to �nd it. In grep,
ours succeeded to �nd the bug 85 times out of 100 trials, which is
much better than CGS does (7 times). Other heuristics were not
able to trigger the bug at all.

Our heuristics are good at �nding bugs because they are much
better than other heuristics in exercising diverse program paths. We
observed that other heuristics such as CGS, CFDS, and Generational
search also have covered the branches where the bugs originate.
However, the bugs are caused only by some speci�c path conditions
and the existing heuristics were not able to generate inputs that
satisfy the conditions.

We remark that we did not specially tune our approach towards
�nding those bugs. In fact, we were not aware of the presence of
those bugs at the early stage of this work. The bugs in gawk and

4 Evaluating the performance of search heuristics over iterations is a common prac-
tice [2, 26], as the execution time of a program may vary considerably depending on
the input.

• On small benchmarks



Effectiveness

• Higher branch coverage leads to much more 
effective finding of real bugs
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Figure 2: Average branch coverage over execution time
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performance while the latter the best performance achievable by
each heuristic.

Figure 1 compares the average branch coverage achieved by dif-
ferent search heuristics on 6 large benchmarks. The results show
that the search heuristics generated by our approach (ours) achieve
the best coverage on all programs. In particular, ours signi�cantly
increased the branch coverage on two largest benchmarks: vim
and gawk. For vim, ours covered 8,402 branches in 4,000 executions
while the CFDS heuristic, which took the second place for vim,
covered 7,967 branches. Note that CFDS is already highly tuned and

outperforms the other heuristics for vim (for instance, CGS covered
5,860 branches only). For gawk, ours covered 2,684 branches while
the CGS heuristic, the second best one, managed to cover 2,321
branches. For expat, sed, and tree, our approach improved the ex-
isting heuristics considerably. For example, in expat, ours covered
1,327 branches, increasing the branch coverage of CGS by 50. For
grep, ours also performed the best followed by CGS and CFDS. On
small benchmarks, we obtained similar results; ours (together with
CGS) consistently achieved the highest average coverage (Table 3).
In the rest of the paper, we focus only on the 6 large benchmarks,
where existing manually-crafted heuristics fail to perform well.

In Figure 1, we compared the e�ectiveness of search heuristics
over iterations (# of executions)4, but our approach was also supe-
rior to others over execution time. For example, given the same time
budget (500 sec), ours and Random (the second best) covered 8,472
and 7,979 branches, respectively, for vim (Figure 2). The results
were averaged over 20 trials.

Table 4 compares the heuristics in terms of the maximum branch
coverage on 6 large benchmarks. The results show that our ap-
proach in this case also achieves the best performance on all pro-
grams. For instance, in vim, we considerably increased the coverage
of CFDS, the second best strategy; ours covered 8,744 branches
while CFDS managed to cover 8,322. For expat, ours and CGS (the
second best) have covered 1,422 and 1,337 branches, respectively.

Note that there is no clear winner among the existing search
heuristics. Except for ours, CFDS took the �rst place for vim and sed
in terms of average branch coverage. For gawk, expat, and grep,
the CGS heuristic was the best. For tree, the Random heuristic
achieved the highest branch coverage. In terms of the maximum
branch coverage, CFDS was better than the others in vim and gawk
while CGS was in grep and sed. The Generational and Random
surpassed CFDS and CGS in expat and tree, respectively. On the
other hand, our approach is able to consistently produce the best
search heuristics in both (average and maximum) coverage metrics.

Bug Finding. We found that the increased branch coverage by
our approach leads to more e�ective �nding of real bugs. Table 5
reports the number of test-cases generated by each search heuristic,
which trigger the known bugs in gawk and grep. During the 100
runs of concolic testing, our heuristic always found the bug in gawk

while all the other heuristics completely failed to �nd it. In grep,
ours succeeded to �nd the bug 85 times out of 100 trials, which is
much better than CGS does (7 times). Other heuristics were not
able to trigger the bug at all.

Our heuristics are good at �nding bugs because they are much
better than other heuristics in exercising diverse program paths. We
observed that other heuristics such as CGS, CFDS, and Generational
search also have covered the branches where the bugs originate.
However, the bugs are caused only by some speci�c path conditions
and the existing heuristics were not able to generate inputs that
satisfy the conditions.

We remark that we did not specially tune our approach towards
�nding those bugs. In fact, we were not aware of the presence of
those bugs at the early stage of this work. The bugs in gawk and

4 Evaluating the performance of search heuristics over iterations is a common prac-
tice [2, 26], as the execution time of a program may vary considerably depending on
the input.

• Our heuristics are much better than others in 
exercising diverse program paths
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Table 6: Time for generating the heuristics

Benchmarks # Sample # Iteration Total times

vim-5.7 300 5 24h 18min
expat-2.1.0 1,000 6 10h 25min
gawk-3.0.3 1,000 4 6h 30min
grep-2.2 1,000 5 5h 24min
sed-1.17 1,000 4 8h 54min
tree-1.6.0 1,000 4 3h 18min

Table 7: E�ectiveness in the training phase

OURS CFDS CGS Random Gen DFS
vim 14,003 13,706 7,934 13,835 7,290 7,934
expat 2,455 2,339 2,157 1,325 2,116 2,036
gawk 3,473 3,382 3,261 3,367 3,302 1,905
grep 2,167 2,024 2,016 2,066 1,965 1,478
sed 1,019 1,041 1,042 1,007 979 937
tree 808 800 737 796 730 665

grep [11, 16] cause performance problems; for example, grep-2.2
requires exponential time and memory on particular input strings
that involve back-references [16]. During concolic testing, we mon-
itored the program executions and restarted the testing procedure
when the subject program runs out of memory or time. Those bugs
were detected unexpectedly by a combination of this mechanism
and our search heuristic.

4.2 Time for Obtaining the Heuristics
Table 6 reports the running time of our algorithm to generate the
search heuristics evaluated in Section 4.1. To obtain our heuristics,
we ran the optimization algorithm (Algorithm 2) in parallel using
20 cores. Speci�cally, in the �rst phase (‘Find’) of the algorithm,
we sampled 1,000 parameters, where each core is responsible for
evaluating 50 parameters. For vim, we set the sample size to 300 as
executing vim is expensive. The results show that our algorithm
converges within 4–6 iterations of the outer loop of Algorithm 2,
taking 3–24 hours depending on the size of the subject program.

We believe our approach is useful even considering the training
e�ort because 1) our approach enables e�ective concolic testing
even in the training phase; and 2) the learned heuristic can be reused
multiple times as the subject program evolves.

E�ectiveness in the training phase. Note that running Al-
gorithm 2 is essentially running concolic testing on the subject
program. We compared the number of branches covered during
this training phase with the branches covered by other search
heuristics given the same time budget reported in Table 6. Table 7
compares the results: except for sed, running Algorithm 2 achieves
greater branch coverage than others. To obtain the results for other
heuristics, we ran concolic testing on each program using the same
number of cores and amount of time. For instance, in 24 hours,
Algorithm 2 covered 14,003 branches of vim while concolic test-
ing with the CFDS and CGS heuristics covered 13,706 and 7,934
branches, respectively.

Reusability over program evolution. More interestingly, the
learned heuristic can be reused over multiple subsequent program
variations. To validate this hypothesis, we trained a search heuristic
on gawk-3.0.3 and applied the learned heuristic to the subsequent
versions until gawk-3.1.0. We also trained a heuristic on sed-1.17
and applied it to later versions. Figure 4 shows that the learned
heuristics manage to achieve the highest branch coverage over
the evolution of the programs. For example, ours covered at least
90 more branches than the second best heuristic (CFDS) in all
variations between gawk-3.0.3 and gawk-3.1.0. The e�ectiveness
lasted for a long time period: at least 4 years for gawk and 1 year
for sed.

4.3 E�cacy of Optimization Algorithm
We compared the performance of our optimization algorithm (Algo-
rithm 2) with a naive approach based on random sampling. Because
both approaches involve randomness, we statistically compare the
qualities of parameters found by our algorithm and the random
sampling method.

Figure 4 shows the distributions of �nal coverages achieved by
those two algorithms on grep-2.2 and sed-1.17. In the exper-
iments, our algorithm required 1,100 trials to complete a single
re�nement task: 100 trials for the Check phase to select top 2 pa-
rameters and the rest for the Find phase to evaluate the parameters
generated from the re�ned space. We compared the distributions
throughout each iteration (I1, I2, ..., IN ) where 1,100 trials were
given as budget for �nding parameters. The �rst re�nement task of
our algorithm begins with the initial samples in the �rst iteration
I1, which are prepared by random sampling method.

The result shows that our algorithm is superior to random sam-
pling method: the median of the samples increases while the vari-
ance decreases, as the re�nement task in our algorithm goes on.
The median value (the band inside a box) of the samples found by
our algorithm increases as the re�nement task continues, while
random sampling has no noticeable changes. The increase of me-
dian indicates that the probability to �nd a good parameter grows
as the tasks repeat. In addition, the variance (the height of the box,
in simple) in our algorithm decreases gradually, which implies that
the mix of Check and Re�ne tasks was e�ective.

We remark that use of our optimization algorithm was critical;
the heuristics generated by random sampling failed to surpass
the existing heuristics on all benchmarks. For instance, for grep,
our algorithm (Algorithm 2) succeeded in generating a heuristic
which covered 1,701 branches on average. However, the best one
by random sampling covered 1,600 branches only, lagging behind
CGS (the second best) by 83 branches.

4.4 Important Features
Winning Features. We discuss the relative importance of fea-

tures by analyzing the learned parameters � for each benchmark
program. Intuitively, when the i-th component � i has a negative
number in � , it indicates that the branch having i-th component
should not be selected to be negated. Thus, both strong negative
and positive features are equally important for our approach to
improve the branch coverage. Table 8 and Table 9 show the top 10
positive and negative features for each benchmark, respectively.
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Table 7: E�ectiveness in the training phase
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gawk 3,473 3,382 3,261 3,367 3,302 1,905
grep 2,167 2,024 2,016 2,066 1,965 1,478
sed 1,019 1,041 1,042 1,007 979 937
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grep [11, 16] cause performance problems; for example, grep-2.2
requires exponential time and memory on particular input strings
that involve back-references [16]. During concolic testing, we mon-
itored the program executions and restarted the testing procedure
when the subject program runs out of memory or time. Those bugs
were detected unexpectedly by a combination of this mechanism
and our search heuristic.

4.2 Time for Obtaining the Heuristics
Table 6 reports the running time of our algorithm to generate the
search heuristics evaluated in Section 4.1. To obtain our heuristics,
we ran the optimization algorithm (Algorithm 2) in parallel using
20 cores. Speci�cally, in the �rst phase (‘Find’) of the algorithm,
we sampled 1,000 parameters, where each core is responsible for
evaluating 50 parameters. For vim, we set the sample size to 300 as
executing vim is expensive. The results show that our algorithm
converges within 4–6 iterations of the outer loop of Algorithm 2,
taking 3–24 hours depending on the size of the subject program.

We believe our approach is useful even considering the training
e�ort because 1) our approach enables e�ective concolic testing
even in the training phase; and 2) the learned heuristic can be reused
multiple times as the subject program evolves.

E�ectiveness in the training phase. Note that running Al-
gorithm 2 is essentially running concolic testing on the subject
program. We compared the number of branches covered during
this training phase with the branches covered by other search
heuristics given the same time budget reported in Table 6. Table 7
compares the results: except for sed, running Algorithm 2 achieves
greater branch coverage than others. To obtain the results for other
heuristics, we ran concolic testing on each program using the same
number of cores and amount of time. For instance, in 24 hours,
Algorithm 2 covered 14,003 branches of vim while concolic test-
ing with the CFDS and CGS heuristics covered 13,706 and 7,934
branches, respectively.

Reusability over program evolution. More interestingly, the
learned heuristic can be reused over multiple subsequent program
variations. To validate this hypothesis, we trained a search heuristic
on gawk-3.0.3 and applied the learned heuristic to the subsequent
versions until gawk-3.1.0. We also trained a heuristic on sed-1.17
and applied it to later versions. Figure 4 shows that the learned
heuristics manage to achieve the highest branch coverage over
the evolution of the programs. For example, ours covered at least
90 more branches than the second best heuristic (CFDS) in all
variations between gawk-3.0.3 and gawk-3.1.0. The e�ectiveness
lasted for a long time period: at least 4 years for gawk and 1 year
for sed.

4.3 E�cacy of Optimization Algorithm
We compared the performance of our optimization algorithm (Algo-
rithm 2) with a naive approach based on random sampling. Because
both approaches involve randomness, we statistically compare the
qualities of parameters found by our algorithm and the random
sampling method.

Figure 4 shows the distributions of �nal coverages achieved by
those two algorithms on grep-2.2 and sed-1.17. In the exper-
iments, our algorithm required 1,100 trials to complete a single
re�nement task: 100 trials for the Check phase to select top 2 pa-
rameters and the rest for the Find phase to evaluate the parameters
generated from the re�ned space. We compared the distributions
throughout each iteration (I1, I2, ..., IN ) where 1,100 trials were
given as budget for �nding parameters. The �rst re�nement task of
our algorithm begins with the initial samples in the �rst iteration
I1, which are prepared by random sampling method.

The result shows that our algorithm is superior to random sam-
pling method: the median of the samples increases while the vari-
ance decreases, as the re�nement task in our algorithm goes on.
The median value (the band inside a box) of the samples found by
our algorithm increases as the re�nement task continues, while
random sampling has no noticeable changes. The increase of me-
dian indicates that the probability to �nd a good parameter grows
as the tasks repeat. In addition, the variance (the height of the box,
in simple) in our algorithm decreases gradually, which implies that
the mix of Check and Re�ne tasks was e�ective.

We remark that use of our optimization algorithm was critical;
the heuristics generated by random sampling failed to surpass
the existing heuristics on all benchmarks. For instance, for grep,
our algorithm (Algorithm 2) succeeded in generating a heuristic
which covered 1,701 branches on average. However, the best one
by random sampling covered 1,600 branches only, lagging behind
CGS (the second best) by 83 branches.

4.4 Important Features
Winning Features. We discuss the relative importance of fea-

tures by analyzing the learned parameters � for each benchmark
program. Intuitively, when the i-th component � i has a negative
number in � , it indicates that the branch having i-th component
should not be selected to be negated. Thus, both strong negative
and positive features are equally important for our approach to
improve the branch coverage. Table 8 and Table 9 show the top 10
positive and negative features for each benchmark, respectively.
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expat-2.1.0 1,000 6 10h 25min
gawk-3.0.3 1,000 4 6h 30min
grep-2.2 1,000 5 5h 24min
sed-1.17 1,000 4 8h 54min
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Table 7: E�ectiveness in the training phase

OURS CFDS CGS Random Gen DFS
vim 14,003 13,706 7,934 13,835 7,290 7,934
expat 2,455 2,339 2,157 1,325 2,116 2,036
gawk 3,473 3,382 3,261 3,367 3,302 1,905
grep 2,167 2,024 2,016 2,066 1,965 1,478
sed 1,019 1,041 1,042 1,007 979 937
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grep [11, 16] cause performance problems; for example, grep-2.2
requires exponential time and memory on particular input strings
that involve back-references [16]. During concolic testing, we mon-
itored the program executions and restarted the testing procedure
when the subject program runs out of memory or time. Those bugs
were detected unexpectedly by a combination of this mechanism
and our search heuristic.

4.2 Time for Obtaining the Heuristics
Table 6 reports the running time of our algorithm to generate the
search heuristics evaluated in Section 4.1. To obtain our heuristics,
we ran the optimization algorithm (Algorithm 2) in parallel using
20 cores. Speci�cally, in the �rst phase (‘Find’) of the algorithm,
we sampled 1,000 parameters, where each core is responsible for
evaluating 50 parameters. For vim, we set the sample size to 300 as
executing vim is expensive. The results show that our algorithm
converges within 4–6 iterations of the outer loop of Algorithm 2,
taking 3–24 hours depending on the size of the subject program.

We believe our approach is useful even considering the training
e�ort because 1) our approach enables e�ective concolic testing
even in the training phase; and 2) the learned heuristic can be reused
multiple times as the subject program evolves.

E�ectiveness in the training phase. Note that running Al-
gorithm 2 is essentially running concolic testing on the subject
program. We compared the number of branches covered during
this training phase with the branches covered by other search
heuristics given the same time budget reported in Table 6. Table 7
compares the results: except for sed, running Algorithm 2 achieves
greater branch coverage than others. To obtain the results for other
heuristics, we ran concolic testing on each program using the same
number of cores and amount of time. For instance, in 24 hours,
Algorithm 2 covered 14,003 branches of vim while concolic test-
ing with the CFDS and CGS heuristics covered 13,706 and 7,934
branches, respectively.

Reusability over program evolution. More interestingly, the
learned heuristic can be reused over multiple subsequent program
variations. To validate this hypothesis, we trained a search heuristic
on gawk-3.0.3 and applied the learned heuristic to the subsequent
versions until gawk-3.1.0. We also trained a heuristic on sed-1.17
and applied it to later versions. Figure 4 shows that the learned
heuristics manage to achieve the highest branch coverage over
the evolution of the programs. For example, ours covered at least
90 more branches than the second best heuristic (CFDS) in all
variations between gawk-3.0.3 and gawk-3.1.0. The e�ectiveness
lasted for a long time period: at least 4 years for gawk and 1 year
for sed.

4.3 E�cacy of Optimization Algorithm
We compared the performance of our optimization algorithm (Algo-
rithm 2) with a naive approach based on random sampling. Because
both approaches involve randomness, we statistically compare the
qualities of parameters found by our algorithm and the random
sampling method.

Figure 4 shows the distributions of �nal coverages achieved by
those two algorithms on grep-2.2 and sed-1.17. In the exper-
iments, our algorithm required 1,100 trials to complete a single
re�nement task: 100 trials for the Check phase to select top 2 pa-
rameters and the rest for the Find phase to evaluate the parameters
generated from the re�ned space. We compared the distributions
throughout each iteration (I1, I2, ..., IN ) where 1,100 trials were
given as budget for �nding parameters. The �rst re�nement task of
our algorithm begins with the initial samples in the �rst iteration
I1, which are prepared by random sampling method.

The result shows that our algorithm is superior to random sam-
pling method: the median of the samples increases while the vari-
ance decreases, as the re�nement task in our algorithm goes on.
The median value (the band inside a box) of the samples found by
our algorithm increases as the re�nement task continues, while
random sampling has no noticeable changes. The increase of me-
dian indicates that the probability to �nd a good parameter grows
as the tasks repeat. In addition, the variance (the height of the box,
in simple) in our algorithm decreases gradually, which implies that
the mix of Check and Re�ne tasks was e�ective.

We remark that use of our optimization algorithm was critical;
the heuristics generated by random sampling failed to surpass
the existing heuristics on all benchmarks. For instance, for grep,
our algorithm (Algorithm 2) succeeded in generating a heuristic
which covered 1,701 branches on average. However, the best one
by random sampling covered 1,600 branches only, lagging behind
CGS (the second best) by 83 branches.

4.4 Important Features
Winning Features. We discuss the relative importance of fea-

tures by analyzing the learned parameters � for each benchmark
program. Intuitively, when the i-th component � i has a negative
number in � , it indicates that the branch having i-th component
should not be selected to be negated. Thus, both strong negative
and positive features are equally important for our approach to
improve the branch coverage. Table 8 and Table 9 show the top 10
positive and negative features for each benchmark, respectively.
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Figure 3: Average coverage of each search heuristic on multiple subsequent program variants

Figure 4: Comparison between our algorithm and random sampling method

Table 8: Top 10 positive features

Rank Benchmarks

vim gawk expat grep sed tree

1 # 15 # 10(*) # 27 # 14 # 13(+) # 36
2 # 18 # 13(+) # 30(+) # 40 # 2 # 15
3 # 35(*) # 12 # 23 # 24 # 29 # 5
4 # 40 # 38(*) # 31(+) # 1 # 3 # 25(*)
5 # 31(+) # 14 # 4 # 30(+) # 8 # 40
6 # 7 # 9 # 9 # 38(*) # 30(+) # 9
7 # 13(+) # 35(*) # 8 # 32 # 35(*) # 13(+)
8 # 3 # 31(+) # 15 # 17 # 6 # 39
9 # 12 # 4 # 25(*) # 31(+) # 21 # 30(+)
10 # 10(*) # 33 # 7 # 29 # 16 # 22

Table 9: Top 10 negative features

Rank Benchmarks

vim gawk expat grep sed tree

1 # 17 # 26(-) # 39 # 20 # 11(-) # 10(*)
2 # 11(-) # 8 # 35(*) # 39 # 32 # 35(*)
3 # 34 # 16 # 33 # 22(-) # 19 # 6
4 # 33 # 29 # 37 # 25(*) # 40 # 24
5 # 22(-) # 3 # 38(*) # 26(-) # 38(*) # 7
6 # 21 # 6 # 2 # 19 # 18 # 12
7 # 26(-) # 22(-) # 24 # 27 # 5 # 23
8 # 25(*) # 11(-) # 22(-) # 21 # 20 # 2
9 # 37 # 19 # 10(*) # 33 # 34 # 27
10 # 20 # 28 # 32 # 37 # 26(-) # 11(-)
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Static Program Analysis

• Detect software defects statically and automatically

• Being widely used in sw industry
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Technology for “Software MRI”

I Detect software bugs statically and automatically
I static: by analyzing program text, before run/ship/embed
I automatic: sw is analyzed by sw (“static analyzer”)

I Next-generation software testing technology
I finding bugs early / full automation / all bugs found

I Being widely used in sw industry

Static Program Analysis

Technology for “Software MRI”

I Detect software bugs statically and automatically
I static: by analyzing program text, before run/ship/embed
I automatic: sw is analyzed by sw (“static analyzer”)

I Next-generation software testing technology
I finding bugs early / full automation / all bugs found

I Being widely used in sw industry



Towards More Sound, Precise, 
and Scalable Static Analysis
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A Key Challenge in Program Analysis

I An ideal program analysis: sound, precise, yet scalable

soundness precision scalability

I No technology for achieving the three at the same time

“bug-finders” “verifiers”

• No existing technologies achieve the three
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• Our direction: selective program analysis

cheap but imprecise precise but expensive cheap yet precise



Selectively Unsound Analysis

• Selectively apply unsoundness only when harmless
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IC
SE

’17

BASELINE SELECTIVE UNIFORM
Program LOC Bug T F T F T F
mp3rename-0.6 0.6K 1 1 0 1 0 1 0
ghostscript-8.71 1.5K 2 2 0 2 0 2 0
uni2ascii-4.14 5.7K 7 7 0 7 0 7 0
pal-0.4.3 7.4K 3 3 0 0 0 0 0
shntool-3.0.1 16.3K 1 1 10 1 1 1 0
sdop-0.61 23.9K 65 65 78 65 0 0 0
latex2rtf-2.3.8 28.7K 2 2 9 2 8 0 1
rrdtool-1.4.8 34.8K 1 1 12 1 1 1 0
daemon-0.6.4 58.4K 1 1 7 1 1 1 0
rplay-3.3.2 61.0K 3 3 7 2 4 1 2
urjtag-0.10 64.2K 12 12 78 6 0 0 0
a2ps-4.14 64.6K 6 6 26 3 12 1 0
dico-2.0 84.3K 2 2 46 1 1 1 2
Total 106 106 273 92 28 16 5

TABLE II
THE NUMBER OF ALARMS IN TAINT ANALYSIS

T F
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Fig. 6. Performance with different training and test data

tects 100 bugs (FNR: 27.5%). Meanwhile, BASELINE reports
677 false alarms (FPR: 85.2%).1 UNIFORM, on the other
hand, reports 104 false alarms (FPR : 75.9%), which indicates
573 alarms can be potentially removable by being unsound
for loops and library calls. Among the 573 alarms, SELEC-
TIVE can remove 72.1% (413/573) of them (FPR:72.5%).

Table II shows the results for the taint analysis. In total,
BASELINE detects all of the 106 real format-string bugs in
the programs, while UNIFORM detects only 16 bugs (FNR:
84.9%). On the contrary, SELECTIVE effectively detects 92
bugs (FNR: 13.2%). Meanwhile, BASELINE, UNIFORM, and
SELECTIVE report 273, 5, and 28 false alarms, respectively.
That is, among 273 false alarms, which can be potentially
removable by being unsound for library calls, SELECTIVE can
remove 89.7% (245/273) of them.

The result implies that selectively applying unsoundness is
also crucial for reducing FPR of the analysis. For the interval
analysis, the FPR is 85.2% for BASELINE and 75.9% for
UNIFORM, whereas 72.5% for SELECTIVE on average. For
the taint analysis, the FPR is 72.0% for BASELINE, 23.3% for
SELECTIVE, 23.8% for UNIFORM on average.

2) Two- and Three-fold Cross-validation: Next, we evaluate
the performance of the interval analysis with 2-fold and 3-fold
cross-validation. The benchmark is randomly divided into 2 or
3 subsets that are equal size. Then, one of them is used as the
validation set and the others as the training sets. We repeated
this process ten times and reported the number of alarms for

1In practice, eliminating these false alarms is extremely challenging in
domain-unaware static analysis, because they arise from a variety of reasons:
e.g., large recursive call cycles, unknown library calls, complex loops, heap
abstractions, etc.

each trial.
Figure 6 shows the number of true and false alarms for

each trial of 2-fold and 3-fold cross-validation. The numbers
are normalized with respect to the number of alarms produced
by BASELINE. In total, BASELINE reported 486 true alarms
and 3,696 false alarms. SELECTIVE detected 427 (87.9%) true
alarms, whereas UNIFORM detected only 129 (26.5%) true
alarms in the 2-fold cross-validation. Compared to BASE-
LINE, SELECTIVE reduced 1,812 (49.0%) false alarms, while
UNIFORM reduced 3,216 (87.0%). During the 3-fold cross-
validation, BASELINE reported 399 true alarms and 2,119 false
alarms. In terms of true alarms, SELECTIVE detected 352
(88.2%) true alarms, whereas UNIFORM managed to detect
only 119 (29.8%) true alarms. As for false alarms, among
1,769 (83.5%) false alarms that are reduced by UNIFORM,
SELECTIVE was able to reduce 1,150 (54.3%).

C. Efficacy of OC-SVM

In this section, we justify the use of OC-SVM for learning
common properties of harmless program components. We
compare the performance of SELECTIVE whose classifier is
learned by OC-SVM to that of three other analyzers with a
binary classifier and two random classifiers, respectively.

Let BINARY be the analyzer with a binary classifier. We
use C-SVM for the binary classifier, which is a support vector
machine-based binary classification algorithm [15]. It learns
two classes of training data (i.e. a set of harmless components
and the complement set), and then decides whether a new input
is harmless or not. In these experiments, we used the interval
analyzer with leave-one-out cross validation.

RANDA and RANDB are the analyzers with random clas-
sifiers that are built and used for the comparison. RANDA
randomly classifies components as harmless with the proba-
bility of 0.5. Stochastically, a half of loops and library calls are
selected as harmless. RANDB randomly classifies components
as harmless with the same probability of the OC-SVM. We ran
each analyzer 10 times and measured the number of alarms
for each trial.

Figure 7 compares the number of true and false alarms
produced by SELECTIVE, BINARY, RANDA, and RANDB for
10 trials. BINARY reports more true alarms than SELECTIVE;
BINARY reports 103 true alarms, whereas SELECTIVE re-
ports 96 true alarms. However, using BINARY considerably
sacrifices the precision; it reports 573 false alarms, whereas
SELECTIVE reports only 266. The results from RANDA and
RANDB are also inferior to SELECTIVE; RANDA reports
387.5 false alarms and 70.5 true alarms, and RANDB reports
267.2 false alarms with 79.4 true alarms on average.

The result shows SELECTIVE clearly outperforms the other
classifiers. SELECTIVE is more precise than BINARY, indicat-
ing that the anomaly detection by OC-SVM is more suitable
to find harmless components than the binary classification.
Also, SELECTIVE always detects more bugs and reports less
false alarms than other analyzers with the random classifiers.
Despite the fact that RANDB detects more bugs than RANDA,



Our Approaches to  
Selective Program Analysis
• Pre-analysis approach

• Selective context-sensitivity [PLDI’14]

• Data-driven approach

• Selective flow-sensitivity [OOPSLA’15]

• Selective relational analysis [SAS’16]

• Selective unsoundness [ICSE’17]

• Disjunctive model and algorithm [OOPSLA’17a]

• Automatic feature construction [OOPSLA’17b] 
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Program Analysis vs. Synthesis
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• Program Analysis derives specifications from code

• Program Synthesis derives code from specifications

int f(int n) {
  int i = 0;
  int r = 1;
  while (i < n) 
  {
    r = r * i;
    i = i + 1;
  }
  return r;
}

f(1) = 1
f(2) = 2
f(3) = 6

…
f(n) = n!

program analysis

program synthesis



Program Synthesis
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• Generate program code from specifications automatically

• specification: logics, examples, implementation, etc

• Applications
• programming assistance: e.g., complete tricky parts of programs

• end-user programming: e.g., automate repetitive tasks

• algorithm discovery: find a new solution for a problem

• automatic patch generation: automatically fix software bugs



Example
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• Specification is given as test cases

cf) A General View of Compilers

Compilers can be seen as a code synthesizer that transforms specification
into implementation.

I specification: high-level impl, logics, examples, natural languages, etc
I implementation: low-level impl, high-level impl, algorithm design, etc

e.g., specification: reverse(12) = 21, reverse(123) = 321

See our recent paper:
Synthesizing Imperative Programs for Introductory Programming
Assignments. https://arxiv.org/abs/1702.06334
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Domain No Description Vars Ints Exs Time (sec)
IVars AVars Base Base+Opt Ours

Integer

1 Given n, return n!. 2 0 2 4 0.0 0.0 0.0
2 Given n, return n!! (i.e., double factorial). 3 0 3 4 0.0 0.0 0.0
3 Given n, return P

n

i=1 i. 3 0 2 4 0.1 0.0 0.0
4 Given n, return P

n

i=1 i

2. 4 0 2 3 122.4 18.1 0.3
5 Given n, return Q

n

i=1 i

2. 4 0 2 3 102.9 13.6 0.2
6 Given a and n, return a

n. 4 0 2 4 0.7 0.1 0.1
7 Given n and m, return P

m

i=n

i. 3 0 2 3 0.2 0.0 0.0
8 Given n and m, return Q

m

i=n

i. 3 0 2 3 0.2 0.0 0.1
9 Count the number of digit for an integer. 3 0 3 3 0.0 0.0 0.0

10 Sum the digits of an integer. 3 0 3 4 5.2 2.2 1.3
11 Calculate product of digits of an intger. 3 0 3 3 0.7 2.3 0.3
12 Count the number of binary digit of an integer. 2 0 3 3 0.0 0.0 0.0
13 Find the nth Fibonacci number. 3 0 3 4 98.7 13.9 2.6
14 Given n, return P

n

i=1(
P

i

m=1 m)). 3 0 2 4 ? 324.9 37.6
15 Given n, return Q

n

i=1(
Q

i

m=1 m)). 3 0 2 4 ? 316.6 86.9
16 Reverse a given integer. 3 0 3 3 ? 367.3 2.5

Array

17 Find the sum of all elements of an array. 3 1 2 2 8.1 3.6 0.9
18 Find the product of all elements of an array. 3 1 2 2 7.6 3.9 0.9
19 Sum two arrays of same length into one array. 3 2 2 2 44.6 29.9 0.2
20 Multiply two arrays of same length into one array. 3 2 2 2 47.4 26.4 0.3
21 Cube each element of an array. 3 1 1 2 1283.3 716.1 13.0
22 Manipulate each element into 4th power. 3 1 1 2 1265.8 715.5 13.0
23 Find a maximum element. 3 1 2 2 0.9 0.7 0.4
24 Find a minimum element. 3 1 2 2 0.8 0.3 0.1
25 Add 1 to each element. 2 1 1 3 0.3 0.0 0.0
26 Find the sum of square of each element. 3 1 2 2 2700.0 186.2 11.5
27 Find the multiplication of square of each element. 3 1 1 2 1709.8 1040.3 12.6
28 Sum the products of matching elements of two arrays. 3 2 1 3 20.5 38.7 1.5
29 Sum the absolute values of each element. 2 1 1 2 45.0 50.5 12.1
30 Count the number of each element. 3 1 3 2 238.9 1094.1 0.2

Average > 616.8 165.5 6.6

Table 1: Performance of SIMPL. ? denotes timeout (> 1 hour). Assume ? as 3,600 seconds for the average of “Base”.

on students’ programming submissions. Our system, SIMPL,
has the following advantages over prior works:

• Feedback on incomplete programs: Existing systems
produce feedback only for complete programs; they can-
not help students who do not know how to proceed fur-
ther. In this case, SIMPL can help by automatically gen-
erating solutions starting from incomplete solutions.

• No burden on instructor: Existing systems require
instructor’s manual effort. For example, the system
in [Singh et al., 2013] needs a correct implementation
and a set of correction rules manually designed by the
instructor. On the other hand, SIMPL does not require
anything from the instructor.
An exception is [Farrell et al., 1984], where an auto-
matic LISP feedback system is presented. However, the
system produces feedback by relying on ad-hoc rules.

Programming by example Our work differs from prior
programming-by-example (PBE) techniques in two ways.
First, to our knowledge, our work is the first to synthe-
size imperative programs with loops. Most of the PBE ap-
proaches focus on domain-specific languages for string trans-
formation [Gulwani, 2011; Kini and Gulwani, 2015; Raza et

al., 2015; Manshadi et al., 2013; Wu and Knoblock, 2015],
number transformation [Singh and Gulwani, 2012], XML
transformation [Raza et al., 2014], and extracting relational
data [Le and Gulwani, 2014], etc. Several others have studied
synthesis of functional programs ([Albarghouthi et al., 2013;
Osera and Zdancewic, 2015; Frankle et al., 2016]. Second,
our algorithm differs from prior work in that we combine
semantic-based static analysis technology with enumerative
program synthesis. Existing enumerative synthesis technol-
ogy used pruning techniques such as type systems [Osera and
Zdancewic, 2015; Frankle et al., 2016] and deductions [Feser
et al., 2015], which are not applicable to our setting.

7 Conclusion
In this paper, we have shown that combining enumerative
synthesis and static analysis is a promising way of synthe-
sizing introductory imperative programs. The enumerative
search allows us to find the smallest possible, therefore gen-
eral, program while the semantics-based static analysis dra-
matically accelerates the process in a safe way. We demon-
strated the effectiveness for 30 real programming problems
gathered from online forums.

• Better than humans for introductory programming 
tasks



Automatic Program Repair

• Memory management errors (memory leak, use-
after-free, double free) are common:
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Automatic Program Repair

• Manual repair is error-prone, requiring multiple 
iterations of review process
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Automatic Program Repair

• Automatically patching memory management errors

• Patched programs are guaranteed to be error-free
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Automatic Program Repair

• Combination of program analysis and synthesis
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Automatic Feedback 
Generation

• In typical programming courses (e.g., MOOC):

• students receive no personalized feedback 

• solutions are not much helpful
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Automatic Error Correction for 
Functional Programming Assignment

JunHo Lee, Dowon Song and Hakjoo Oh
Korea University

‘17.06.11

5. Conclusion
✓ 코드의의미상오류를자동으로찾는

새로운알고리즘제안
-오류위치추정 : MAX-SAT기법이용
-오류자동수정: Program Synthesis기법이용

✓ 기존의연구와다르게실제언어에
대해효율적으로코드생성

2. Research Goal 프로그래밍과제피드백자동화

1. Motivation
과제를 어려워하는 친구들을 보면서:
프로그래밍 과제 피드백을 자동화 할 수 없을까?

• 학생 :점수는받지만,피드백이없다.
• 교수자:일일이피드백을주기어렵다 (2~3명 vs 80 명이상).

3. Algorithm
3.1 잘못된부분자동으로찾기 Maximum Satisfiability(MAX-SAT) 문제로해결

4. Evaluation

✓ 프로그래밍언어수업에서사용된문제들
✓ 탐색기법을적용하지않은알고리즘과비교
✓ 평균적으로 380배정도의향상

Test Basic (sec) Component 
(sec)

Type + 
Component 

(sec)
속도향상

List zipper 133 0.488 0.176 760x
Prime 0.1 0.016 0.02 5x

List map Time out 10.96 2.06 n/a
Factorial 380.064 6.764 0.936 400x

-미분문제 (정답률 : 47%)

… 
| Sum plus -> 
(match plus with
[]     -> Const 0
| [hd]   -> diff( hd, var)
| hd::tl -> Sum [diff(hd, var); diff(Times tl, var)]

) …

Sum

let rec map f (l,var) =
match l with
| [] -> []
| hd::tl -> (f (hd,var))::(map f (tl,var))

… 
| Sum lst -> Sum (map diff (lst,var))
…

오답코드

모범답안

오답코드가모범답안과차이가많이남

3.2 잘못된부분자동교정 타입과프로그램구성요소를이용한프로그램합성문제로해결

let rec f n = 
if(n=1) then 1 
else ?

let rec f n = 
if(n=1) then 1 
else n * (f (n-1))

-합성을진행할위치에사용가능한변수를추출

Free Variable set
={f, n}

-정답코드에서사용된구성요소 추출

Expression set
={ ?=?, (? ?), ? * ?, 1, ?-?,

if ? then ? else ?}

(2) 타입시스템을활용

-옳지않은타입을가진프로그램의경우가지치기

(1) 구성요소추출

실행환경 OS Kali-linux 2016.1/ Intel Core i7-7700/2 Core/16GB DDR4

Test case: 3 -> 4 { input ≔ 3 ⋀ output≔ 4 }

let rec func n = 
if (n=1) then 1 
else n

{ n ≔ input ⋀
output ≔ if (guard,1,r) ⋀
guard≔ (n=1) ⋀ r ≔ n }

-프로그램과테스트케이스를논리식으로표현

(1) 오류탐색을 SAT Problem으로변환
-모순을만들지않는최대의논리식

(2) MAX-SAT을이용해최소한의오류를탐색

-논리식에모순이생기면오류가존재

{ input ≔ 3 ⋀
output≔ 4 ⋀
n ≔ input ⋀
output ≔ if (guard,1,r) ⋀
guard≔ (n=1) ⋀ r ≔ n }

모순발생
(Error Program)

Weighted Partial 
MAX-SAT Solver

필수조건을충족시키며모순을만들지않는최대의논리식

{n ≔ input ⋀
output ≔ if (guard,1,r) ⋀
guard≔ (n=1) ⋀ r ≔ n }

{ input ≔ 3 ⋀
output≔ 4 } {n ≔ input ⋀

output ≔ if (guard,1,r) ⋀
guard≔ (n=1)}

-논리식의Weight를부여해가장큰논리식계산

output ≔ If (guard, 1, r) -> 5

Guard ≔ (n=1) -> 2 1 -> 1

n ≔ input -> 1

r ≔ n -> 1

1 -> 1

r ≔ n -> 1
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1. Motivation
과제를 어려워하는 친구들을 보면서:
프로그래밍 과제 피드백을 자동화 할 수 없을까?

• 학생 :점수는받지만,피드백이없다.
• 교수자:일일이피드백을주기어렵다 (2~3명 vs 80 명이상).

3. Algorithm
3.1 잘못된부분자동으로찾기 Maximum Satisfiability(MAX-SAT) 문제로해결

4. Evaluation

✓ 프로그래밍언어수업에서사용된문제들
✓ 탐색기법을적용하지않은알고리즘과비교
✓ 평균적으로 380배정도의향상

Test Basic (sec) Component 
(sec)

Type + 
Component 

(sec)
속도향상

List zipper 133 0.488 0.176 760x
Prime 0.1 0.016 0.02 5x

List map Time out 10.96 2.06 n/a
Factorial 380.064 6.764 0.936 400x

-미분문제 (정답률 : 47%)

… 
| Sum plus -> 
(match plus with
[]     -> Const 0
| [hd]   -> diff( hd, var)
| hd::tl -> Sum [diff(hd, var); diff(Times tl, var)]

) …

Sum

let rec map f (l,var) =
match l with
| [] -> []
| hd::tl -> (f (hd,var))::(map f (tl,var))

… 
| Sum lst -> Sum (map diff (lst,var))
…

오답코드

모범답안

오답코드가모범답안과차이가많이남

3.2 잘못된부분자동교정 타입과프로그램구성요소를이용한프로그램합성문제로해결

let rec f n = 
if(n=1) then 1 
else ?

let rec f n = 
if(n=1) then 1 
else n * (f (n-1))

-합성을진행할위치에사용가능한변수를추출

Free Variable set
={f, n}

-정답코드에서사용된구성요소 추출

Expression set
={ ?=?, (? ?), ? * ?, 1, ?-?,

if ? then ? else ?}

(2) 타입시스템을활용

-옳지않은타입을가진프로그램의경우가지치기

(1) 구성요소추출

실행환경 OS Kali-linux 2016.1/ Intel Core i7-7700/2 Core/16GB DDR4

Test case: 3 -> 4 { input ≔ 3 ⋀ output≔ 4 }

let rec func n = 
if (n=1) then 1 
else n

{ n ≔ input ⋀
output ≔ if (guard,1,r) ⋀
guard≔ (n=1) ⋀ r ≔ n }

-프로그램과테스트케이스를논리식으로표현

(1) 오류탐색을 SAT Problem으로변환
-모순을만들지않는최대의논리식

(2) MAX-SAT을이용해최소한의오류를탐색

-논리식에모순이생기면오류가존재

{ input ≔ 3 ⋀
output≔ 4 ⋀
n ≔ input ⋀
output ≔ if (guard,1,r) ⋀
guard≔ (n=1) ⋀ r ≔ n }

모순발생
(Error Program)

Weighted Partial 
MAX-SAT Solver

필수조건을충족시키며모순을만들지않는최대의논리식

{n ≔ input ⋀
output ≔ if (guard,1,r) ⋀
guard≔ (n=1) ⋀ r ≔ n }

{ input ≔ 3 ⋀
output≔ 4 } {n ≔ input ⋀

output ≔ if (guard,1,r) ⋀
guard≔ (n=1)}

-논리식의Weight를부여해가장큰논리식계산

output ≔ If (guard, 1, r) -> 5

Guard ≔ (n=1) -> 2 1 -> 1

n ≔ input -> 1

r ≔ n -> 1

1 -> 1

r ≔ n -> 1

• Error localization by MAX-SAT solving

• Correction by program synthesis
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What is Program Analysis?

Very broad topic, but generally speaking, automated analysis
of program behavior

Program analysis is about developing algorithms and tools
that can analyze other programs
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bug-finder verifier
patch 

generator

SW analysis SW testing SW synthesis & repair

• Technologies for automatically finding, verifying, and 
fixing software errors and vulnerabilities
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