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Research Areas

® Program Analysis derives specifications from code

® Program Synthesis derives code from specifications

int £f(int n) {

int 1 = 0;
int r = 1; program analysis f(l) =1
while (i < n) > f(2) = 2
{ f(3) = 6
r =r * i; D . 3
, program synthesis
l=l+1, f(n)=n’
}

return rj;

}



Program Analysis

* Predict program behavior automatically

static or dynamic: before execution at compile-time / at runtime

automatic: sw is analyzed by sw (“program analyzers™)
- Applications

bug-finding: e.g., find runtime failures of programs
security: e.g., is this app malicious or benign!?
verification: e.g., does the program meet its specification?

compiler optimization: e.g., automatic parallelization



Program Synthesis

- Generate program code from specifications automatically

- specification: logics, examples, implementation, etc

* automatic: sw is generated by sw (“program synthesizers”)
- Applications

+ programming assistance: e.g., complete tricky parts of programs
* end-user programming: e.g., automate repetitive tasks

- algorithm discovery: find a new solution for a problem

* program optimization: find a more efficient implementation

- automatic patch generation: automatically fix software bugs
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Static Program Analysis
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Challenge in Static Analysis
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Challenge in Static Analysis

. @ key: “selectivity”
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Flow-Sensitivity
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Flow-Insensitivity

y [[0,+00 cheap but imprecise

assert(y>0)




Selective Flow-Sensitivity

FS : {x,y} FI : {z}
x | [0,0]
y | [00]

X [[l,+00] ]
y BLO]

X [[l,+00] |
y | [0,0]

X [[],+00]
y [[I,+00]

assert(y>0)




Selective Flow-Sensitivity

FS :{y,z} FI : {x}

y | [0,0]
z | [I,1]

y | [0,0]
z | [1,1]

X [O,+ OO]
y | [0,0]
z | [2,2]

y [[0,+00]

Z [2,21

fail to prove




Hard Search Problem

® |ntractably large space, if not infinite
e 2Vardifferent abstractions for FS

® Most of them are too imprecise or costly

® P(x.y.z}) = {S:0G5ty3izh U0Y hZhO6Eh X Y 21



Our Research

® How to automatically find a good abstraction!?

® pre-analysis approach [PLDI’ |4, TOPLAS’|6]

{x,y,z,...}
pre-analysis »|  main analysis

® data-driven approaches [OOPSLA'’l5,SAS |6, APLAS’ 1 6]

GitHub Q
source

forge

learn a good strategy from data
via machine learning techniques

i




Our Learning Approaches

® | earning via black-box optimization [OOPSLA’| 5]
® | earning via white-box optimization [APLAS’ | 6]
® | earning from automatically labelled data [SAS’16]

® | earning with automatically generated features (in progress)



Static Analyzer

number of
proved assertions

F(p,a) = n

abstraction

(e.g.,a set of variables)
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Overall Approach

® Parameterized adaptation strategy

Sw:pgm — 2Var
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Sw:pgm — 2Var
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Overall Approach

® Parameterized adaptation strategy

Sw:pgm — 2Var

® |earn a good parameter W from existing codebase

4 )

Pi, P2, ...,Pm — 4%

\__ J
Codebase

® For new program P, run static analysis with Sw(P)



|. Parameterized Strategy

Sw:pgm — 2Var

(1) Represent program variables as feature vectors.
(2) Compute the score of each variable.

(3) Choose the top-k variables based on the score.



(1) Features

® Predicates over variables:

f={fi,f....fs} (fi: Var = {0,1})

® 45 simple syntactic features for variables: e.g,

® |ocal / global variable, passed to / returned from
malloc, incremented by constants, etc



(1) Features

® Represent each variable as a feature vector:

f(x) = (1), (), F3(),Fa(x).fs(x))

f(x) = ¢1,0,1,0,0)

f(y) = <1,0,1,0,1)
f(z) = <0,0,1,1,0)

20



(2) Scoring

® The parameter w is a real-valued vector: e.g.,
w =<0.9,0.5,-0.6,0.7,0.3)
® Compute scores of variables:

,0,1,0,0,-<0.9,0.5,-0.6,0.7,0.3) = 0.3
,0,1,0,15-<0.9,0.5,-0.6,0.7,0.3) = 0.6
o, 1,1

score(x) = (|
I |
0, ,0):¢0.9,0.5,-0.6,0.7,0.3) = 0.1

=<
score(y) =
score(z) = ¢

’y '



(3) Choose Top-k Variables

® Choose the top-k variables based on their scores:
e.g., when k=2,

score(x) = 0.3

score(y) = 0.6 > {x,y}

score(z) = 0.1

® In experiments, we chosen 0% of variables with
highest scores.

22



2. Learn a Good Parameter

4 )

PI, P2, ...,Pm i W

\__ y,
Codebase

® Solve the optimization problem:

Find w that maximizes Z F(P;, Sw(F;))
P.



Learning via Random
Sampling

repeat N times

pick w € R" randomly

evaluate Y F(P;, Sw(P,))
P;

return best w found

24
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Bayesian Optimization

® A powerful method for solving difficult black-box
optimization problems.

® Especially powerful when the objective function is
expensive to evaluate.

® Key idea: use a probabilistic model to reduce the number
of objective function evaluations.

26



Learning via Bayesian Optimization

repeat N times

select a promising w using the model

evaluate Y F(P;, Sw(P;))
P

update the probabilistic model

return best w found

® Probabilistic model: Gaussian processes

® Selection strategy: Expected improvement

27



Learning via Bayesian Optimization
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quality of the best parameter found

Random Sampling vs
Bayesian Optimization

70.0

Random sampling O Bayesian optimization

52.5

35.0

!

/

#sampling
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Effectiveness

® Implemented in Sparrow, an interval analyzer for C
® Evaluated on 30 open-source programs

® )0 for training, 10 for testing

30
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Effectiveness

® Implemented in Sparrow, an interval analyzer for C
® Evaluated on 30 open-source programs

® )0 for training, 10 for testing

Precision
F FS
_ -
0 100
Cost
F FS

| x | 8x
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Limitations

® While promising, the method has limitations:
® black-box optimization is inherently inefficient
® manual feature engineering is needed

® Follow-up work to overcome the limitations:

® improving the efficiency [APLAS |6, SAS’| 6]

® automating feature engineering [on-going]

31



Improving Efficiency

® A white-box optimization method [APLAS’|6]
C?})Z;Ep — R.

Find w* that minimizes Z (scorep () — O(]))Q
1€l p

® A supervised learning method [SAS’ | 6]

al—alb|—blc|—c|i|—1
aly | T (Y| T | T[T || T
—all || T|(|T| T|T|T
bl T (| T |T|T|%|T
—blT || T|&|T|T|T|T
c|l T T|T| T T |T|T
—c|T| T |T{ T |T|%|T|T
AT T T T{T]T [T
—3i{ T[T %[ T]|T[T]|%

32



Manual Feature Engineering

® The success of ML heavily depends on the “features”

® Feature engineering is nontrivial and time-consuming

® Features do not generalize to other tasks

Type| # Features

A 1 used in array declarations (e.g., a[c])
2 used in memory allocation (e.g., malloc(c))
3 used in the righthand-side of an assignment (e.g., x = ¢)
4 used with the less-than operator (e.g, x < ¢)
5 used with the greater-than operator (e.g., x > ¢)
6 used with < (e.g., x < ¢)
7 used with > (e.g., x > ¢)
8 used with the equality operator (e.g., x == ¢)
9 used with the not-equality operator (e.g., x ! = ¢)
10 | used within other conditional expressions (e.g., x < c+y)
11 | used inside loops
12 | used in return statements (e.g., return c)
13 | constant zero

B [ 14| 1V2)A3
15 | (1V2)A(AVEVEVT)
16 | (1v2)A(8V9)
17 | 1v2)all
18 | (1v2)A12
19 | 1313
20 | 13A(4V5EV6VT)
21 | 13A(8V9)
22 | 13N 11
23 | 13A12

Type| # Features

A 1 Tocal variable
2 | global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = ¢l + ¢2)
8 compared with a constant expression (e.g., x < ¢)
9 compared with an other variable (e.g., x < y)
10 | negated in a conditional expression (e.g., if (!x))
11 | directly used in malloc (e.g., malloc(x))
12 | indirectly used in malloc (e.g., y = x; malloc(y))
13 | directly used in realloc (e.g., realloc(x))
14 | indirectly used in realloc (e.g., y = x; realloc(y))
15 | directly returned from malloc (e.g., x = malloc(e))
16 | indirectly returned from malloc
17 | directly returned from realloc (e.g., x = realloc(e))
18 | indirectly returned from realloc
19 | incremented by one (e.g., x =x + 1)
20 | incremented by a constant expr. (e.g., X = x + (1+2))
21 | incremented by a variable (e.g., x =x +y)
22 | decremented by one (e.g.,x =x-1)
23 | decremented by a constant expr (e.g., x = x - (1+2))
24 | decremented by a variable (e.g., x = x - y)
25 | multiplied by a constant (e.g., x =x * 2)
26 | multiplied by a variable (e.g., x = x *y)
27 | incremented pointer (e.g., p++)
28 | used as an array index (e.g., a[x])
29 | used in an array expr. (e.g., x[e])
30 | returned from an unknown library function
31 | modified inside a recursive function
32 | modified inside a local loop
33 | read inside a local loop

B [34 [ TASA(IIVIZ)
35 | 2A8A (11V 12)
36 | 1A (11V12) A (19V 20)
37 | 2A (11V12) A (19 V 20)
38 | 1A (11V12) A (15 V 16)
39 | 2 (11V 12) A (15 Vv 16)
40 | (11v12) A 29
41 | (15V 16) A 29
42 | 1A (19V20) A 33
43 | 2/ (19V 20) A 33
44 | 1A (19V20) A 33
45 | 2 A (19 V 20) A —33

Type| # Features
A 1 leaf function
2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 | write to a structure field
11 | read from a structure field
12 | directly return a constant expression
13 | indirectly return a constant expression
14 | directly return an allocated memory
15 | indirectly return an allocated memory
16 | directly return a reallocated memory
17 | indirectly return a reallocated memory
18 | return expression involves field access
19 | return value depends on a structure field
20 | return void
21 | directly invoked with a constant
22 | constant is passed to an argument
23 | invoked with an unknown value
24 | functions having no arguments
25 | functions having one argument
26 | functions having more than one argument
27 | functions having an integer argument
28 | functions having a pointer argument
29 | functions having a structure as an argument
B [ 30 | 2A(21V22) A (14V 15)
31 | 2A (21 VvV 22) A—(14V 15)
32 | 2A23 A (14'V 15)
33 | 2A23 A (14 V 15)
34 | 2A(21V22) A (16 V 17)
35 | 2A(21V22) A—(16V 17)
36 | 2A23A (16 V 17)
37 | 2A23A—(16V 17)
38 | (21V22) A-23

flow-sensitivity

context-sensitivity

widening thresholds

33



Automatic Feature Generation

Before [OOPSLA’15,SAS’ | 6,APLAS’ | 6]

Codebase

New method

) Hand-crafted

features

. Parameter

values

Adaptation
>

Codebase

>

Features

Strategy

. Parameter

values

Adaptation
>

Strategy
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Partial Flow-Sensitive Analysis

® A query-based, partially flow-sensitive interval analysis

® The analysis uses a query-classifier C : Query — {l,0}

x =0; y=0; z=input(Q); w = 0;
y = X; yt+;

assert (y > 0); // Query 1
assert (z > 0); // Query 2
assert (w == 0); // Query 3

) B Y

35



Partial Flow-Sensitive Analysis

® A query-based, partially flow-sensitive interval analysis

® The analysis uses a query-classifier C : Query — {l,0}

x =0; y=0; z=input(Q); w = 0;

1

2 y X, y++;

3 assert (y > 0); // Query 1 provable

4 assert (z > 0); // Query 2 unprovable
5

assert (w == 0); // Query 3 unprovable

35



Partial Flow-Sensitive Analysis

® A query-based, partially flow-sensitive interval analysis

® The analysis uses a query-classifier C : Query — {l,0}

i |x=0; y=0; z=dinput(); w = 0;
2 y = X; yt+;
3 |assert (y > 0); // Query 1 provable
4 assert (z > 0); // Query 2 unprovable
s |assert (w == 0); // Query 3 unprovable
flow-sensitive result flow-1nsensitive result
line abstract state abstract state
1 {x|—>00,yl—>_0,0:}
2 | {z—[0,0],y — [1,1]}
4 {z +—[0,0],y — [1,1]}
5 {x —[0,0],y — [1,1]}




Learning a Query Classifier

Standard binary classification:

(g, b:) by

36



Learning a Query Classifier

Standard binary classification:

{(qi;bi) }iq » (v, b)) iy
(UZ' - Bk)

transform to
feature vectors
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Learning a Query Classifier

Standard binary classification:

{(qiabi) ?:1 > {(Uiabz’) ?’:1 » C:B" = B
(U@' - Bk)

transform to apply

standard learning

feature vectors :
algorithms

36



Learning a Query Classifier

Standard binary classification:

(i, 0i) pizy > {(vi, bi) iz - C:B" — B
(UZ' - Bk)

apply
standard learning
algorithms

transform to
feature vectors

® Success relies on how we convert queries to feature vectors

® This feature engineering has been done manually

36



Conversion from Queries to
Feature Vectors

® A set of feature features I = {my,..., 7%}
® a feature encodes a property about queries

® A procedure to check whether a query satisfies a
feature

match : Query x Feature — B

® The feature vector of a query q:

(match(q,71),...,match(q, %))

37



Automatic Feature Generation

® Generate feature programs by running reducer

® small pieces of code that minimally describe when it is
worth increasing the precision

® Represent them by abstract data-flow graphs

® generalized form of feature programs

38



e I e )Y B - L S T O

Generating Feature Programs

a=0; b= 0;
while (1) { 1 a = 0;

b = unknown() ; »  while (1) {

if (a > b) reduce(P, ¢) 3 if (a < 3)

if (a < 3) = 4 assert (a < 5);
assert (a < 5); 5 a++;

a++; 6 F
+

® By running a program reducer: e.g., C-Reduce [PLDI’|2]
reduce :Px (P—B) - P

® Feature-preserving condition:

¢(P) = FI(P) = unproven \ F'S(P) = proven

39



AN »n kWD =

Generalize to Abstract
Data-Flow Graphs

a = 0;
while (1) { id :=id + ¢
if (a < 3) o
assert (a < b); = ( >
a++; Id :=c >id<cm
+

® The right level of abstraction depends on an analysis

® We choose the best abstraction using a combination of
searching and cross-validation

40



Feature Generation

® Apply the method on codebases:

r

\_

P1, P2, ...,Pm

N

J

Codebase

= H:{ﬂ'l,...,ﬂ'k}

4]



Matching Algorithm

match : Query x Feature — B

id

=T ~id > id

(Jid:=id +c id :=id + ¢

o NI N kA WD

— |l —

U
R
N

i< i< R 5

|
o

a=0; b=0;
while (1) {
b = unknown() ;
if (a > b)
if (a < 3)
assert (a < 5);
at++:

} )

42



Matching Algorithm

match : Query x Feature — B

id ;= T

id > id

id :=i1d+c

s
\

o NI N kA WD

— |l —

Id := ¢

a=0; b=0;
while (1) A
b = unknown() ;
if (a > b)

if (a < 3)

+

at++;

)

assert (a < 5);

Id :=1d + ¢

U
R
N

id :

|
o

Subgraph inclusion:
(N1, E1) C (Na, Ey) <= Ny C N, ANFE; CFE;

42



Learning a Query Classifier

r

\_

P1, P2, ...,Pm

N

J

Codebase

— H:{ﬂ'l,...,ﬂ'k}

U
{(vi, bi) }iq

AN

C: B - B
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Experiments

Effectiveness of partially flow-sensitive analysis

Query Prediction Analysis Comparison
Prove Sec Oh et al. [38]
Trial | Precision | Recall Fli FSi Ours Fli FSi Ours | Quality | Cost Self Quality | Cost
1 926 % | 77.9 % 5,340 6,053 5,973 38.2 564.0 553 | 88.7% | 1.4x | 88.7 % 85.2% | 1.5x
2 78.8 % | 73.3 % 2,972 3,373 3,262 16.3 460.5 257 | 723 % | 1.5x | 72.0 % 41.6% | 1.9x
3 66.7 % | 73.3 % 3,984 4,668 4,559 273 | 1,635.6 | 176.2 | 84.0% | 6.4x | 82.7 % 89.9% | 3.2x
4 88.7% | 68.8 % 4,600 5,450 5,307 38.1 688.2 596 | 83.1% | 1.5x | 83.5% 60.7% | 1.9x
5 899 % | 79.4 % 2,517 2,971 2,945 10.9 325.9 189 | 942% | 1.7x | 94.0 % 47.8% | 2.1x
TOTAL 81.5% | 739 % | 19,413 | 22,515 | 22,046 | 131.1 | 3,674.4 | 336.0 | 848 % | 2.5x | 84.6 % 68.4% | 2.1x
Effectiveness of partially relational analysis
Query Prediction Analysis Comparison
Prove Sec Heo et al. [21]
Trial | Precision | Recall FSi IMPCT Ours FSi IMPCT Ours Quality | Cost Self Quality | Cost
1 74.8 % | 81.3 % 3,678 3,806 3,789 140.7 389.8 189.5 | 86.7% | 1.3x | 54.2% | 100.0% | 3.0x
2 84.1 % | 82.6 % 5,845 6,004 5,977 613.5 | 18,022.9 7755 | 83.0% | 1.3x | 65.5% 302% | 09x
3 82.8% | 73.0 % 1,926 2,079 2,036 315.2 2,396.9 460.2 | 719% | 1.5x | 95.7 % 922 % | 1.1x
4 77.6 % | 85.2 % 2,221 2,335 2,313 72.7 495.1 1412 | 80.7% | 19x | 67.2% | 100.0% | 2.0x
5 71.6 % | 78.4 % 2,886 2,962 2,946 148.9 557.2 2102 | 789 % | 1.4x | 599 % 96.1 % | 2.3x
TOTAL 79.0% | 799 % | 16,556 17,186 | 17,061 | 1,291.0 | 21,8619 | 1,776.6 | 80.2% | 1.4x | 67.7 % 80.0% | 1.4x
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Summary

Choosing a good abstraction is a key challenge in
static program analysis

New data-driven approach is promising

Further information:

http://prl.korea.ac.kr
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Summary

Choosing a good abstraction is a key challenge in
static program analysis

New data-driven approach is promising

Further information:

http://prl.korea.ac.kr

Thank you
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