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Research Areas

• Program Analysis derives specifications from code

• Program Synthesis derives code from specifications
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int f(int n) {
  int i = 0;
  int r = 1;
  while (i < n) 
  {
    r = r * i;
    i = i + 1;
  }
  return r;
}

f(1) = 1
f(2) = 2
f(3) = 6

…
f(n) = n!

program analysis

program synthesis



Program Analysis
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• Predict program behavior automatically

• static or dynamic: before execution at compile-time / at runtime

• automatic: sw is analyzed by sw (“program analyzers”)

• Applications
• bug-finding: e.g., find runtime failures of programs

• security: e.g., is this app malicious or benign?

• verification: e.g., does the program meet its specification?

• compiler optimization: e.g.,  automatic parallelization



Program Synthesis
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• Generate program code from specifications automatically

• specification: logics, examples, implementation, etc

• automatic: sw is generated by sw (“program synthesizers”)

• Applications
• programming assistance: e.g., complete tricky parts of programs

• end-user programming: e.g., automate repetitive tasks

• algorithm discovery: find a new solution for a problem

• program optimization: find a more efficient implementation

• automatic patch generation: automatically fix software bugs



Static Program Analysis
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Static Program Analysis
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Challenge in Static Analysis

precision

scalability
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Challenge in Static Analysis

precision

scalability

? key: “selectivity”
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Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1

x [1,1]
y [0,0]
z [1,1]

x [1,1]
y [0,0]
z [2,2]

x [1,1]
y [1,1]
z [2,2]

precise but costly

x [0,0]
y [0,0]
z [1,1]
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Flow-Insensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1

x [0,+∞]

y [0,+∞]

z [1,+∞]

cheap but imprecise
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Selective Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1
FS : {x,y} FI : {z}

x [0,0]
y [0,0]

x [1,+∞]
y [0,0]

x [1,+∞]
y [0,0]

x [1,+∞]
y [1,+∞]

z [1,+∞]
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Selective Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1
FS : {y,z} FI : {x}
y [0,0]
z [1,1]

y [0,0]
z [1,1]

y [0,0]
z [2,2]

y [0,+∞]
z [2,2]

x [0,+∞]

fail to prove
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Hard Search Problem

• Intractably large space, if not infinite

• 2Var different abstractions for FS

• Most of them are too imprecise or costly

• P({x,y,z}) = {∅,{x},{y},{z},{x,y},{y,z},{x,z},{x,y,z}}



Our Research
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• How to automatically find a good abstraction?

• pre-analysis approach [PLDI’14, TOPLAS’16]  
 
 

• data-driven approaches [OOPSLA’15, SAS’16, APLAS’16]

main analysispre-analysis
{x,y,z,…}

learn a good strategy from data
via machine learning techniques



Our Learning Approaches

• Learning via black-box optimization [OOPSLA’15]

• Learning via white-box optimization [APLAS’16]

• Learning from automatically labelled data [SAS’16]

• Learning with automatically generated features (in progress)

• …
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Static Analyzer
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F(p, a) ⇒ n

abstraction
(e.g., a set of variables)

number of 
proved assertions
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Overall Approach
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Overall Approach

• Parameterized adaptation strategy

Sw : pgm → 2Var
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Overall Approach

• Learn a good parameter W from existing codebase

P1, P2, …,Pm

Codebase

⇒ W

• Parameterized adaptation strategy

Sw : pgm → 2Var
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Overall Approach

• Learn a good parameter W from existing codebase

• For new program P, run static analysis with Sw(P)

P1, P2, …,Pm

Codebase

⇒ W

• Parameterized adaptation strategy

Sw : pgm → 2Var
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1. Parameterized Strategy

(1) Represent program variables as feature vectors.

(2) Compute the score of each variable.

(3) Choose the top-k variables based on the score. 

Sw : pgm → 2Var
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(1) Features

• Predicates over variables:

f = {f1, f2,…,f5} (fi :  Var → {0,1})

• 45 simple syntactic features for variables: e.g, 

• local / global variable, passed to / returned from 
malloc, incremented by constants, etc



(1) Features
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f(x) = ⟨f1(x), f2(x), f3(x),f4(x),f5(x)⟩

• Represent each variable as a feature vector:

f(x) = ⟨1,0,1,0,0⟩
f(y) = ⟨1,0,1,0,1⟩
f(z) = ⟨0,0,1,1,0⟩



21

(2) Scoring

• The parameter w is a real-valued vector: e.g., 

• Compute scores of variables:

w = ⟨0.9, 0.5, -0.6, 0.7, 0.3⟩

score(x) = ⟨1,0,1,0,0⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.3
score(y) = ⟨1,0,1,0,1⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.6
score(z) = ⟨0,0,1,1,0⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.1
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(3) Choose Top-k Variables

• Choose the top-k variables based on their scores:  
e.g., when k=2,

score(x) = 0.3
score(y) = 0.6
score(z) = 0.1

{x,y}

• In experiments, we chosen 10% of variables with 
highest scores.
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2. Learn a Good Parameter

• Solve the optimization problem:

P1, P2, …,Pm

Codebase

⇒ W

X

Pi

F (Pi, Sw(Pi))Find w that maximizes



Learning via Random 
Sampling
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repeat N times

    pick w ∈ Rn randomly
  

evaluate

return best w found

X

Pi

F (Pi, Sw(Pi))



Learning via Random 
Sampling
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Training Testing
FI FS partial FS FI FS partial FS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 7,316 7,089 75.7 % 2,788 48 4,009 627 13.2 x 3,692 78 74.0 % 1.6 x
2 5,788 7,422 7,219 87.6 % 3,383 55 3,903 531 9.6 x 3,721 93 65.0 % 1.7 x
3 6,148 7,842 7,595 85.4 % 3,023 49 3,483 1,898 38.6 x 3,303 99 60.9 % 2.0 x
4 6,138 7,895 7,599 83.2 % 3,033 38 3,430 237 6.2 x 3,286 51 63.7 % 1.3 x
5 7,343 9,150 8,868 84.4 % 1,828 28 2,175 577 20.5 x 2,103 54 79.3 % 1.9 x

TOTAL 31,800 39,625 38,370 84.0 % 14,055 218 17,000 3,868 17.8 x 16,105 374 69.6 % 1.7 x

Table 4. Effectiveness of our method for flow-sensitivity. prove: the number of proved queries in each analysis (FI: flow-
insensitivity, FS: flow-sensitivity, partial FS: partial flow-sensitivity). quality: the ratio of proved queries among the queries
that require flow-sensitivity. cost: cost increase compared to the FI analysis.

Training Testing
FICI FSCS partial FSCS FICI FSCS partial FSCS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 9,237 8,674 80.3 % 2,788 46 4,275 5,425 118.2 x 3,907 187 75.3 % 4.1 x
2 5,788 8,287 7,598 72.4 % 3,383 57 5,225 4,495 79.4 x 4,597 194 65.9 % 3.4 x
3 6,148 8,737 8,123 76.3 % 3,023 48 4,775 5,235 108.8 x 4,419 150 79.7 % 3.1 x
4 6,138 9,883 8,899 73.7 % 3,033 38 3,629 1,609 42.0 x 3,482 82 75.3 % 2.1 x
5 7,343 10,082 10,040 98.5 % 1,828 30 2,670 7,801 258.3 x 2,513 104 81.4 % 3.4 x

TOTAL 31,800 46,226 43,334 80.0 % 14,055 219 20,574 24,565 112.1 x 18,918 717 74.6 % 3.3 x

Table 5. Effectiveness for Flow-sensitivity + Context-sensitivity.

(a) Random sampling (b) Bayesian optimisation

Figure 2. Comparison of Bayesian optimisation with random sampling

programs, which supports the full C language and has been
being developed for the past seven years [19]. This baseline
analyser tracks both numeric and pointer-related informa-
tion simultaneously in its fixpoint computation. For numeric
values, it uses the interval abstract domain, and for pointer
values, it uses an allocation-site-based heap abstraction. The
analysis is field-sensitive (i.e., separates different structure
fields) and flow-sensitive, but it is not context-sensitive. We
applied the sparse analysis technique [20] to improve the
scalability.

By modifying the baseline analyser, we implemented a
partially flow-sensitive analyser, which controls its flow-
sensitivity according to a given set of abstract locations (pro-

gram variables, structure fields and allocation sites) as de-
scribed in Section 6.1. We also implemented our learning
algorithm based on Bayesian optimisation.7 Our implemen-
tations were tested against 30 open source programs from
GNU and Linux packages (Table 6 in Appendix).

The key questions that we would like to answer in our
experiments are whether our learning algorithm produces
a good adaptation strategy and how much it gets benefited
from Bayesian optimisation. To answer the first question,
we followed a standard method in the machine learning lit-
erature, called cross validation. We randomly divide the 30

7 The implementation of our learning algorithm is available at http://
prl.korea.ac.kr/

~

hakjoo/research/oopsla15/.



Bayesian Optimization
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• A powerful method for solving difficult black-box 
optimization problems. 

• Especially powerful when the objective function is 
expensive to evaluate. 

• Key idea: use a probabilistic model to reduce the number 
of objective function evaluations. 



Learning via Bayesian Optimization
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• Probabilistic model: Gaussian processes

• Selection strategy: Expected improvement

repeat N times

   select a promising w using the model

evaluate 

return best w found

X

Pi

F (Pi, Sw(Pi))

    update the probabilistic model
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Training Testing
FI FS partial FS FI FS partial FS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 7,316 7,089 75.7 % 2,788 48 4,009 627 13.2 x 3,692 78 74.0 % 1.6 x
2 5,788 7,422 7,219 87.6 % 3,383 55 3,903 531 9.6 x 3,721 93 65.0 % 1.7 x
3 6,148 7,842 7,595 85.4 % 3,023 49 3,483 1,898 38.6 x 3,303 99 60.9 % 2.0 x
4 6,138 7,895 7,599 83.2 % 3,033 38 3,430 237 6.2 x 3,286 51 63.7 % 1.3 x
5 7,343 9,150 8,868 84.4 % 1,828 28 2,175 577 20.5 x 2,103 54 79.3 % 1.9 x

TOTAL 31,800 39,625 38,370 84.0 % 14,055 218 17,000 3,868 17.8 x 16,105 374 69.6 % 1.7 x

Table 4. Effectiveness of our method for flow-sensitivity. prove: the number of proved queries in each analysis (FI: flow-
insensitivity, FS: flow-sensitivity, partial FS: partial flow-sensitivity). quality: the ratio of proved queries among the queries
that require flow-sensitivity. cost: cost increase compared to the FI analysis.
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1 6,383 9,237 8,674 80.3 % 2,788 46 4,275 5,425 118.2 x 3,907 187 75.3 % 4.1 x
2 5,788 8,287 7,598 72.4 % 3,383 57 5,225 4,495 79.4 x 4,597 194 65.9 % 3.4 x
3 6,148 8,737 8,123 76.3 % 3,023 48 4,775 5,235 108.8 x 4,419 150 79.7 % 3.1 x
4 6,138 9,883 8,899 73.7 % 3,033 38 3,629 1,609 42.0 x 3,482 82 75.3 % 2.1 x
5 7,343 10,082 10,040 98.5 % 1,828 30 2,670 7,801 258.3 x 2,513 104 81.4 % 3.4 x

TOTAL 31,800 46,226 43,334 80.0 % 14,055 219 20,574 24,565 112.1 x 18,918 717 74.6 % 3.3 x

Table 5. Effectiveness for Flow-sensitivity + Context-sensitivity.

(a) Random sampling (b) Bayesian optimisation

Figure 2. Comparison of Bayesian optimisation with random sampling

programs, which supports the full C language and has been
being developed for the past seven years [19]. This baseline
analyser tracks both numeric and pointer-related informa-
tion simultaneously in its fixpoint computation. For numeric
values, it uses the interval abstract domain, and for pointer
values, it uses an allocation-site-based heap abstraction. The
analysis is field-sensitive (i.e., separates different structure
fields) and flow-sensitive, but it is not context-sensitive. We
applied the sparse analysis technique [20] to improve the
scalability.

By modifying the baseline analyser, we implemented a
partially flow-sensitive analyser, which controls its flow-
sensitivity according to a given set of abstract locations (pro-

gram variables, structure fields and allocation sites) as de-
scribed in Section 6.1. We also implemented our learning
algorithm based on Bayesian optimisation.7 Our implemen-
tations were tested against 30 open source programs from
GNU and Linux packages (Table 6 in Appendix).

The key questions that we would like to answer in our
experiments are whether our learning algorithm produces
a good adaptation strategy and how much it gets benefited
from Bayesian optimisation. To answer the first question,
we followed a standard method in the machine learning lit-
erature, called cross validation. We randomly divide the 30

7 The implementation of our learning algorithm is available at http://
prl.korea.ac.kr/

~

hakjoo/research/oopsla15/.

Learning via Bayesian Optimization



Random Sampling vs  
Bayesian Optimization
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benchmark programs into 20 training programs and 10 test
programs. An adaptation strategy is learned from the 20
training programs, and tested against the remaining 10 test
programs. We repeated this experiment for five times. The
results of each trial are shown in Table 4. In these experi-
ments, we set k = 0.1, which means that flow-sensitivity
is applied to only the 10% of total abstract locations (i.e.,
program variables, structure fields and allocation sites). We
compared the performance of a flow-insensitive analysis
(FI), a fully flow-sensitive analysis (FS) and our partially
flow-sensitive variant (partial FS). To answer the second
question, we compared the performance of the Bayesian
optimisation-based learning algorithm against the random
sampling method.

Learning Table 4 shows the results of the training and test
phases for all the five trials. In total, the flow-insensitive
analysis (FI) proved 31,800 queries in the 20 training pro-
grams, while the fully flow-sensitive analysis (FS) proved
39,625 queries. During the learning phase, our algorithm
found a parameter w. On the training programs, the anal-
ysis with w proved, on average, 84.0% of FS-only queries,
that is, queries that were handled only by the flow-sensitive
analysis (FS). Finding such a good parameter for training
programs, let alone unseen test ones, is highly nontrivial. As
shown in Table 2, the number of parameters to tune at the
same time is 45 for flow-sensitivity. Manually searching for
a good parameter w for these 45 parameter over 18 training
programs is simply impossible. In fact, we tried to do this
manual search in the early stage of this work, but most of
our manual trials failed to find any useful parameter (Fig-
ure 2).

Figure 2 compares our learning algorithm based on
Bayesian optimisation against the one based on random sam-
pling. It shows the two distributions of the qualities of tried
parameters w (recorded in the x axis), where the first dis-
tribution uses parameters tried by random sampling over a
fixed time budget (12h) and the second, by Bayesian optimi-
sation over the same budget. By the quality of w, we mean
the percentage of FS-only queries proved by the analysis
with w. The results for random sampling (Figure 2(a)) con-
firm that the space for adaptation parameters w for partial
flow-sensitivity is nontrivial; most of the parameters do not
prove any queries. As a result, random sampling wastes most
of its execution time by running the static analysis that does
not prove any FS-only queries. This shortcoming is absent
in Figure 2(b) for Bayesian optimisation. In fact, most pa-
rameters found by Bayesian optimisation led to adaptation
strategies that prove about 70% of FS-only queries. Figure 3
shows how the best qualities found by Bayesian optimisation
and random sampling change as the learning proceeds. The
results compare the first 30 evaluations for the first training
set of our experiments, which show that Bayesian optimisa-
tion finds a better parameter (63.5%) with fewer evaluations.

Figure 3. Comparison of Bayesian optimisation with ran-
dom sampling

The random sampling method converged to the quality of
45.2%.

Testing For each of the five trials, we tested a parameter
learnt from 20 training programs, against 10 programs in
the test set. The results of this test phase are given in Table
4, and they show that the analysis with the learnt parame-
ters has a good precision/cost balance. In total, for 10 test
programs, the flow-insensitive analysis (FI) proved 14,055
queries, while the full flow-sensitive one (FS) proved 17,000
queries. The partially flow-sensitive version with a learnt
adaptation strategy proved on average 69.6% of the FS-only
queries. To do so, our partially flow-sensitive analysis in-
creases the cost of the FI analysis only moderately (by 1.7x),
while the FS analysis increases the analysis cost by 17.8x.

However, the results show that the analyses with the
learnt parameters are generally less precise in the test set
than the training set. For the five trials, our method has
proved, on average, 84.0% of FS-queries in the training set
and 69.6% in the test set.

Top-10 features The learnt parameter identified the fea-
tures that are important for flow-sensitivity. Because our
learning method computes the score of abstract locations
based on linear combination of features and parameter w,
the learnt parameter w means the relative importance of fea-
tures.

Figure 4 shows the 10 most important features identified
by our learning algorithm from ten trials (including the five
trials in Table 4 as well as additional five ones). For in-
stance, in the first trial, we found that the most important
features were #19, 32, 1, 4, 28, 33, 29, 3, 43, 18 in Table
2. These features say that accurately analysing, for instance,
variables incremented by one (#19) or modified inside a lo-
cal loop (#32), and local variables (#1) are important for
cost-effective flow-sensitive analysis. The histogram on the
right shows the number of times each feature appears in the
top-10 features during the ten trials. In all trials, features #19
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Effectiveness
• Implemented in Sparrow, an interval analyzer for C

• Evaluated on 30 open-source programs

• 20 for training, 10 for testing
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Effectiveness
• Implemented in Sparrow, an interval analyzer for C

• Evaluated on 30 open-source programs

• 20 for training, 10 for testing

FSFI

0 100

SFS

70

Precision

FSFI

1x 18x

SFS

2x

Cost



Limitations

• While promising, the method has limitations:

• black-box optimization is inherently inefficient

• manual feature engineering is needed

• Follow-up work to overcome the limitations:

• improving the efficiency [APLAS’16, SAS’16]

• automating feature engineering [on-going]

31



Improving Efficiency

• A white-box optimization method [APLAS’16]  
 
 
 

• A supervised learning method [SAS’16]

32

6 Sooyoung Cha, Sehun Jeong, and Hakjoo Oh

3.3 Existing Approach

In [13], a learning algorithm based on Bayesian optimization has been proposed.
To simply put, this algorithm performs a random sampling guided by a proba-
bilistic model:

1: repeat
2: sample w from Rn using probabilistic model M
3: s obj (w)
4: update the model M with (w, s)
5: until timeout
6: return best w found so far

The algorithm uses a probabilistic model M that approximates the objective
function by a probabilistic distribution on function spaces (using the Gaussian
Process [14]). The purpose of the probabilistic model is to pick a next parameter
to evaluate that is predicted to work best according the approximation of the
objective function (line 2). Next, the algorithm evaluates the objective function
with the chosen parameter w (line 3). The model M gets updated with the
current parameter and its evaluation result (line 4). The algorithm repeats this
process until the cost budget is exhausted and returns the best parameter found
so far.

Although this algorithm is significantly more e�cient than the random sam-
pling [13], it still requires a number of iterations of the loop to learn a good
parameter. According to our experience, the algorithm with Bayesian optimiza-
tion typically requires more than 100 iterations to find good parameters (Section
5). Note that even a single iteration of the loop can be very expensive in practice
because it involves running the static analyzer over the entire codebase. When
the codebase is massive and the static analyzer is costly, evaluating the objective
function multiple times is prohibitively expensive.

3.4 Our Oracle-Guided Approach

In this paper, we present a method for learning a good parameter without ana-
lyzing the codebase multiple times. By analyzing each program in the codebase
only once, our method is able to find a parameter that is as good as the param-
eter found by the Bayesian optimization method.

We achieve this by an oracle-guided approach to learning. Our method as-
sumes the presence of an oracle OP for each program P , which maps program
parts in JP to real numbers in R = [�1, 1]:

OP : JP ! R.

For each j 2 JP , the oracle returns a real number that quantifies the relative
contribution of j in achieving the precision of F (P, JP ). That is, O(j1) < O(j2)
means that j2 more contributes than j1 to improving the precision during the
analysis of F (P, JP ). We assume that the oracle is given together with the adap-
tive static analysis. In Section 4.3, we show that such an oracle easily results
from analyzing the program for interval analysis with widening thresholds.

Learning a Strategy for Choosing Widening Thresholds 7

In the presence of the oracle, we can establish an easy-to-solve optimization
problem which serves as a proxy of the original optimization problem in (2).
For simplicity, assume that the codebase consists of a single program: P = {P}.
Shortly, we extend the method to multiple training programs. Let O be the
oracle for program P . Then, the goal of our method is to learn w such that, for
every j 2 JP , the scoring function in (1) instantiated with w produces a value
that is as close to O(j) as possible. We formalize this optimization problem as
follows:

Find w⇤ that minimizes E(w⇤)

where E(w) is defined to be the mean square error of w:

E(w) =
X

j2JP
(scorewP (j)�O(j))2

=
X

j2JP
(fP (j) ·w �O(j))2

=
X

j2JP
(

nX

i=1

f i
P (j)wi �O(j))2.

Note that the body of the objective function E(w) is a di↵erentiable, closed-
form expression, so we can use the standard gradient decent algorithm to find a
minimum of E. The algorithm is simply stated as follows:

1: sample w from Rn

2: repeat
3: w = w � ↵ ·rE(w)
4: until convergence
5: return w

Starting from a random parameter w (line 1), the algorithm keeps going down
toward the minimum in the direction against the gradient rE(w). The single
step size is determined by the learning rate ↵. The gradient of E is defined as
follows:

rE(w) =
� @

@w1
E(w),

@

@w2
E(w), · · · , @

@wn
E(w)

�

where the partial derivatives are

@

@wk
E(w) = 2

X

j2JP
(

nX

i=1

f i
P (j)wi �O(j))fk

P (j)

Because the optimization problem does not involve the static analyzer and code-
base, learning a parameter w is done quickly regardless of the cost of the analysis
and the size of the codebase, and in the next section, we show that a good-enough
oracle can be obtained by analyzing the codebase only once.

It is easy to extend the method to multiple programs. Let P = {P1, . . . , Pm}
be the codebase. We assume the presence of oracles OP1 , . . . ,OPm for each pro-
gram Pi 2 P. We establish the error function EP over the entire codebase as
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be the codebase. We assume the presence of oracles OP1 , . . . ,OPm for each pro-
gram Pi 2 P. We establish the error function EP over the entire codebase as

6 Kihong Heo, Hakjoo Oh, and Hongseok Yang

a �a b �b c �c i �i

a F > F > > > F >
�a > F > F > > > >
b F > F > > > F >

�b > F > F > > > >
c > > > > F > > >

�c > > > > > F > >
i > > > > > > F >

�i > F > F > > > F

(3)

Each entry of this matrix stores the pre-analysis’s (highly precise on the positive
side) prediction on whether Octagon would put a finite upper bound at the
corresponding entry of its matrix at the same program point. F means likely,
and > unlikely. For instance, the above matrix containsF for the entries for i�b
and b�a, and this means that Octagon is likely to infer finite (thus informative)
upper bounds of i� b and b� a. In fact, this predication is correct because the
actual upper bounds inferred by Octagon are �1 and 0, as can be seen in (1).

We convert the results of the impact pre-analysis to labeled data as follows.
For every program P in the given codebase, we first collect all queries Q =
{q1, . . . , qk} that express legal array accesses or the success of assert statements
in terms of upper bounds on ±x± y for some variables x, y. Next, we filter out
queries qi 2 Q such that the upper bounds associated with qi are not predicted to
be finite by the pre-analysis. Intuitively, the remaining queries are the ones that
are likely to be proved by Octagon according to the prediction of the pre-analysis.
Then, for all remaining queries q01, . . . , q

0
l, we collect the results m

]
1, . . . ,m

]
l of the

pre-analysis at these queries, and generate the following labeled data:

DP = {(P, (x, y), L) |
L = � () at least one of the entries of some mi for ±x± y has F}.

Notice that we mark (x, y) with � if tracking the relationship between x and y

is useful for some query q

0
i. An obvious alternative is to replace some by all, but

we found that this alternative led to the worse performance in our experiments.4

This generation process is applied for all programs P1, . . . , PN in the codebase,
and results in the following labeled data: D =

S
1iN DPi . In our example

program, if the results of the pre-analysis at both queries are the same matrix in
(3), our approach picks only the first matrix because the pre-analysis predicts a
finite upper bound only for the first query, and it produces the following labeled
data from the first matrix:

{(P, t,�) | t 2 T} [ {(P, t, ) | t 62 T}

where T = {(a, b), (b, a), (a, i), (i, a), (b, i), (i, b), (a, a), (b, b), (c, c), (i, i)}.
4 Because the pre-analysis uses F cautiously, only a small portion of variable pairs is
marked with � (that is, 5864/258, 165, 546) in our experiments. Replacing “some”
by “all” reduces this portion by half (2230/258, 165, 546) and makes the learning
task more di�cult.
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Manual Feature Engineering
• The success of ML heavily depends on the “features”

• Feature engineering is nontrivial and time-consuming

• Features do not generalize to other tasks
A:18 Lee et al.

Type # Features
A 1 local variable

2 global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = c1 + c2)
8 compared with a constant expression (e.g., x < c)
9 compared with an other variable (e.g., x < y)
10 negated in a conditional expression (e.g., if (!x))
11 directly used in malloc (e.g., malloc(x))
12 indirectly used in malloc (e.g., y = x; malloc(y))
13 directly used in realloc (e.g., realloc(x))
14 indirectly used in realloc (e.g., y = x; realloc(y))
15 directly returned from malloc (e.g., x = malloc(e))
16 indirectly returned from malloc
17 directly returned from realloc (e.g., x = realloc(e))
18 indirectly returned from realloc
19 incremented by one (e.g., x = x + 1)
20 incremented by a constant expr. (e.g., x = x + (1+2))
21 incremented by a variable (e.g., x = x + y)
22 decremented by one (e.g., x = x - 1)
23 decremented by a constant expr (e.g., x = x - (1+2))
24 decremented by a variable (e.g., x = x - y)
25 multiplied by a constant (e.g., x = x * 2)
26 multiplied by a variable (e.g., x = x * y)
27 incremented pointer (e.g., p++)
28 used as an array index (e.g., a[x])
29 used in an array expr. (e.g., x[e])
30 returned from an unknown library function
31 modified inside a recursive function
32 modified inside a local loop
33 read inside a local loop

B 34 1 ^ 8 ^ (11 _ 12)
35 2 ^ 8 ^ (11 _ 12)
36 1 ^ (11 _ 12) ^ (19 _ 20)
37 2 ^ (11 _ 12) ^ (19 _ 20)
38 1 ^ (11 _ 12) ^ (15 _ 16)
39 2 ^ (11 _ 12) ^ (15 _ 16)
40 (11 _ 12) ^ 29
41 (15 _ 16) ^ 29
42 1 ^ (19 _ 20) ^ 33
43 2 ^ (19 _ 20) ^ 33
44 1 ^ (19 _ 20) ^ ¬33
45 2 ^ (19 _ 20) ^ ¬33

Table II: Features for partially flow-sensitive analysis. Features of Type A denote simple syntactic or semantic properties
for abstract locations (that is, program variables, structure fields and allocation sites). Features of Type B are various
combinations of simple features, and express patterns that variables are used in programs.
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Adaptive Static Analysis via Learning with Bayesian Optimization A:19

Type # Features
A 1 leaf function

2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 write to a structure field
11 read from a structure field
12 directly return a constant expression
13 indirectly return a constant expression
14 directly return an allocated memory
15 indirectly return an allocated memory
16 directly return a reallocated memory
17 indirectly return a reallocated memory
18 return expression involves field access
19 return value depends on a structure field
20 return void
21 directly invoked with a constant
22 constant is passed to an argument
23 invoked with an unknown value
24 functions having no arguments
25 functions having one argument
26 functions having more than one argument
27 functions having an integer argument
28 functions having a pointer argument
29 functions having a structure as an argument

B 30 2 ^ (21 _ 22) ^ (14 _ 15)
31 2 ^ (21 _ 22) ^ ¬(14 _ 15)
32 2 ^ 23 ^ (14 _ 15)
33 2 ^ 23 ^ ¬(14 _ 15)
34 2 ^ (21 _ 22) ^ (16 _ 17)
35 2 ^ (21 _ 22) ^ ¬(16 _ 17)
36 2 ^ 23 ^ (16 _ 17)
37 2 ^ 23 ^ ¬(16 _ 17)
38 (21 _ 22) ^ ¬23

Table III: Features for partially context-sensitive analysis.

usage patterns of variables in the benchmark programs. For instance, feature 34 was
developed after we observed the following usage pattern of variables:

int x; // local variable

if (x < 10)

... = malloc (x);

It says that x is a local variable, and gets compared with a constant and passed as
an argument to a function that does memory allocation. Note that we included these
Type B features not because they are important for flow-sensitivity. We included them
to increase expressiveness, because our linear learning model with Type A features
only cannot express such usage patterns. Deciding whether they are important for
flow-sensitivity or not is the job of the learning algorithm.
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Type # Features
A 1 used in array declarations (e.g., a[c])

2 used in memory allocation (e.g., malloc(c))
3 used in the righthand-side of an assignment (e.g., x = c)
4 used with the less-than operator (e.g, x < c)
5 used with the greater-than operator (e.g., x > c)
6 used with  (e.g., x  c)
7 used with � (e.g., x � c)
8 used with the equality operator (e.g., x == c)
9 used with the not-equality operator (e.g., x ! = c)
10 used within other conditional expressions (e.g., x < c+y)
11 used inside loops
12 used in return statements (e.g., return c)
13 constant zero

B 14 (1 _ 2) ^ 3
15 (1 _ 2) ^ (4 _ 5 _ 6 _ 7)
16 (1 _ 2) ^ (8 _ 9)
17 (1 _ 2) ^ 11
18 (1 _ 2) ^ 12
19 13 ^ 3
20 13 ^ (4 _ 5 _ 6 _ 7)
21 13 ^ (8 _ 9)
22 13 ^ 11
23 13 ^ 12

Table IV: Features for widening-with-thresholds.

With a widening operator
`

, the upper bound A is computed by A = lim

i�0

X

i

, where
chain X

i

is defined as follows:
X
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= ?
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) otherwise

The abstract interpretation framework guarantees that the above chain is always fi-
nite and its limit (i.e., lim

i�0

X

i

) is an upper bound of the least fixed point of F [?]. For
instance, a simple widening operator for the interval domain works as follows: (For
brevity, we do not consider the bottom interval.)

[a, b]

`
[c, d] = [(c < a?�1 : a), (b < d? +1 : b)]

That is, the widening operator extrapolates any unstable bounds simply to infinity. For
instance, [1, 4]

`
[1, 7] = [1,+1].

Widening with Thresholds. The idea of widening-with-thresholds is to bound the ex-
trapolation of the widening using a pre-defined set of thresholds. For instance, suppose
we are given a set T = {8, 9} of thresholds. Then, applying widening [1, 4]

`
T

[1, 7] with
thresholds T = {8, 9} gives interval [1, 8], instead of [1,+1]. Here, threshold 8 is used
because it is the smallest value in T , which is greater than 7. If the result is still un-
stable in the subsequent iteration, the next smallest value in T , i.e., 9, is used to bound
the widening.

Formally, the widening-with-thresholds technique for the interval domain is defined
as follows. We assume that a set T ✓ Z [ {�1,+1} of thresholds is given. Without
loss of generality, let us assume that T = {t

1

, t

2

, . . . , t

n

}, t
1

< t

2

< · · · < t

n

, t
1

= �1,
and t

n

= +1. The widening operator parameterized by T is defined as follows:

[a, b]

`
T

[c, d] = ([a, b]

`
[c, d]) u d{[t

l

, t

u

] | t
l

, t

u

2 T ^ t
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 min(a, c) ^ t

u

� max(b, d)}
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• A query-based, partially flow-sensitive interval analysis

• The analysis uses a query-classifier C : Query → {1,0}

2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the

2 2016/8/9
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• A query-based, partially flow-sensitive interval analysis

• The analysis uses a query-classifier C : Query → {1,0}

2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the
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2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the
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2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the
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2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the
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2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the
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2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the

2 2016/8/9

match : Query ⇥ Feature ! B

2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the
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• Generate feature programs by running reducer

• small pieces of code that minimally describe when it is 
worth increasing the precision

• Represent them by abstract data-flow graphs

• generalized form of feature programs
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1. Goal

We would like to build a decision maker

C : P ! B
which, for a given program P , makes a decision whether to apply
high precision (e.g., flow-sensitivity) or not. In particular, we aim to
learn the decision maker automatically from an existing codebase
P = {P1, P2, . . . , Pn}.

2. C-Like Programs

We represent a program P 2 P by a control-flow graph (C, ,!),
where C is the set of program points and (,!) ✓ C ⇥ C denotes
the control-flow relation between program points. Each program
point is associated with a command, and we consider a simple set
of commands that capture C-like programs as follows:

c ! skip | lv := e | lv := alloc(e) | assume(e < e)
e ! n | e+ e | lv | &lv

lv ! x | ⇤e | e[e]

3. A Generic Feature Language

We define a generic feature language L that describes syntactic
program properties in general. The language is defined as the set
of abstract program paths:

L = ĉ

⇤

where ĉ denotes the following abstract version of the commands:

ĉ ! skip | l̂v := ê | l̂v := alloc(ê) | assume(ê < ê)
ê ! c | ê + ê | l̂v | &l̂v

l̂v ! idn | ⇤ê | ê[ê]
The language is expressive enough to describe all the syntactic

features used in [1]. For example, string
“assume(id1 < c), id2 := alloc(id1)” represents a program
variable that is compared with a constant expression and then used
as an argument of a memory allocation function.

We assume the two feature-manipulating functions are given:
•
extract 2 P ! }(L) takes a program and extracts the set of
features involved in the program.

•
match 2 P ⇥ L ! B takes a pair of a program and a feature,
and determines whether the program has the given feature.

4. Learning a Classifier from a Codebase

Setting

• Each program Pi in the codebase P = {P1, P2, . . . , Pn} has a
single query.

• A set of program features is given: ⇧ = {⇡1,⇡2, . . . ,⇡k} ✓ L

Training Data Generation Training data D ✓ Bk ⇥ B is gener-
ated as follows. For each Pi 2 P,

1. Represent Pi by the feature vector:

⇧(Pi) = hmatch(Pi,⇡1),match(Pi,⇡2), . . . ,match(Pi,⇡k)i

2. Analyze Pi with high precision and see if the query in P is
proved.
(a) If proved, put 1 at the end:

hmatch(Pi,⇡1),match(Pi,⇡2), . . . ,match(Pi,⇡k), 1i

(b) Otherwise:

hmatch(Pi,⇡1),match(Pi,⇡2), . . . ,match(Pi,⇡k), 0i

Learning a Classifier From the training data D ✓ Bk ⇥ B learn
a classifier C : P ! B using an off-the-shelf classification algo-
rithm (e.g., SVM).

5. Automatic Feature Construction

The success of our approach crucially depends on the choice of
the set ⇧ of program features. These golden features are usually
hand-crafted by human experts. Our goal is to automate this feature
construction process.

Setting

• A codebase P = {P1, P2, . . . , Pn}, where each program has a
single query.

• A parametric static analyzer F :

F : P⇥ B ! D
The analyzer takes a program and a precision parameter (either
1 or 0). D is the abstract domain of the analysis.

• An assertion checker proven : P ⇥ D ! B. The return value
informs whether the query in the program is proved or not.

• A program reducer:

reduce : P⇥ (P ! B) ! P
The reducer takes a program and a predicate, and removes
parts of the program as much as possible while preserving the
original result of the predicate.

Basic Idea We collect a set of tiny programs that capture the key
situations where the static analysis with high precision succeeds to
prove queries but the analysis with low precision does not.

1. Filter the set of precision-effective programs from the codebase:

P1 = {P | P 2 P ^ �(P ) = 1}
where

�(P ) = (proven(P, F (P, 0)) = 0 ^ proven(P, F (P, 1)) = 1)

2. Reduce the programs in P1 while preserving �:

P2 = {reduce(P,�) | P 2 P1}

3. Extract features from the reduced programs:

⇧ =
[

P2P2

extract(P )

Improvement However, this basic idea is likely to fail to capture
the key reason in the original program. The reducer is typically so
strong that it removes most of the reasons except for the most trivial
ones. For example, ...

To solve the problem, we apply a precision-decreasing program
transformation before reduction. Consider a program transformer
impair : P ! P such that for all P ,

F (P, 1) v F (impair(P ), 1)

We repeatedly apply impair while preserving �, i.e.,

proven(F (impair(P ), 0)) = 0 ^ proven(F (impair(p), 1)) = 1

Intuitively, this transformation removes most trivial reasons first, so
that the unique feature of the original program should survive after
the program reduction.

References
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• By running a program reducer: e.g., C-Reduce [PLDI’12]

1 a = 0; b = 0;

2 while (1) {

3 b = unknown();

4 if (a > b)

5 if (a < 3)

6 assert (a < 5);

7 a++;

8 }

1 a = 0;

2 while (1) {

3 if (a < 3)

4 assert (a < 5);

5 a++;

6 }

id := c

id < c

Q(id < c)

id := id+ c

(a) Original program (b) Reduced program (c) Feature

Figure 1. Example program and feature

program. For example, the reduced program in Figure 1(b) is con-
verted to the data flow graph in Figure 1(c). Note that the graph
captures the data flows of the program that influence the query. In
the graph, statements are abstracted to increase the invariance of
the features. For example, both conditions a < 3 and a < 5 in the
program are represented by the single abstract condition id < c,
where variables and integers are abstracted by constants id and c,
respectively.

2.3.2 The Matching Algorithm
By using the approach explained so far, we generate the abstract
data flow graph for each precision-effective query in the given
codebase. The feature set ⇧ = {⇡1, . . . ,⇡k} is the collection of
all such data flow graphs generated from the codebase.

Now, we describe match, which takes a query q and a feature
(i.e., data flow graph) ⇡i 2 ⇧, and checks if ⇡i is a feature of q or
not. Consider the query in the original program in Figure 1(a) and
the feature in Figure 1(c). We would like to check that the feature is
included in the original program. Matching the feature against the
program is done in the following two steps:

1. We represent the query in the target program (Figure 1(a)) by
an abstract data flow graph. The resulting graph is given as
follows:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the graph in Figure 1(c) but
it contains all the dependencies in the original program. For
instance, it has the dependence edge from id > id to id < c,
which is absent in the reduced program. The unknown value,
i.e., the return value of unknown(), is represented by >.

2. We check whether the feature is a subgraph of the data flow
graph of the target program. We say a graph G1 is included in
G2 if all vertices in G1 are included in G2 and all arcs in G1 are
represented by a path in G2. In our example, the feature (Figure
1(c)) is a subgraph of the data flow graph above: for instance,
given the arc id:=id+c ! id<c in the feature, we can find a
path id:=id+c ! id>id ! id<c in the target graph.

Note that our definition of subgraph is different from the con-
ventional definition, which is essential to match features against
original programs. Note that the feature is unlikely to match to
the original program if we check the inclusion by the conventional
definition, i.e., G1 = (V1, E1) is included in G2 = (V2, E2) iff
V1 ✓ V2 and E1 ✓ E2. This is because the original program
(without reducing) may contain irrelevant dependences as well. We
cannot use the reducer to remove the independences because doing
so is typically too expensive to perform online. Instead, we take a

(less expensive) transitive closure of the data flow graph to match
in the presence of the noise in the target program.

3. Parametric Static Analysis
Let P 2 P be a program that we would like to analyze. We assume
that a set QP of queries (i.e., assertions) in P is given together
with the program. The goal of the analysis is to prove as many
queries as possible. In this paper, we consider a static analysis that
is parameterized by a set of queries. Thus, the parameter space is
defined by (AP ,v) where AP is the binary vector:

a 2 AP = {0, 1}QP
.

with the pointwise ordering a v a0 () 8j 2 QP . aj  a0
j .

We sometimes regard a parameter a 2 AP as a function from AP

to {0, 1}, or the following collection:

a = {j 2 QP | aj = 1}.

In the latter case, we write |a| for the size of the collection. We
define two constants in AP :

0 = �j 2 QP . 0, and 1 = �j 2 QP . 1,

which represent the most imprecise and precise abstractions, re-
spectively. In the rest of this paper, we omit the subscript P when
there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a set of
queries that are proved in this analysis run. Intuitively, the analysis
applies high precision only to the queries specified by the param-
eter; aj = 1 means that the query j 2 Q is analyzed with high
precision. For instance, in our partially flow-sensitive analysis, the
parameter denotes the set of queries and the analysis applies flow-
sensitivity to the program variables on which the queries depend.
In our partially relational octagon analysis, the analysis keeps the
relations between variables involved in the dependency graphs of
the selected queries.

Our goal is to learn a strategy S automatically from an existing
codebase. The resulting adaptation strategy is a function of the
following type:

S : P ! A,

and it is used to analyze new, unseen programs P :

F (P,S(P )).

If the learned strategy is good, running the analysis with S(P )
would give results close to those of the most precise abstraction
(F (P,1)), while incurring the cost at the level of or only slightly
above the least precise and hence cheapest abstraction (F (P,0)).
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1 a = 0; b = 0;

2 while (1) {

3 b = unknown();

4 if (a > b)

5 if (a < 3)

6 assert (a < 5);

7 a++;

8 }

1 a = 0;

2 while (1) {

3 if (a < 3)

4 assert (a < 5);

5 a++;

6 }

id := c

id < c

Q(id < c)

id := id+ c

(a) Original program (b) Reduced program (c) Feature

Figure 1. Example program and feature

program. For example, the reduced program in Figure 1(b) is con-
verted to the data flow graph in Figure 1(c). Note that the graph
captures the data flows of the program that influence the query. In
the graph, statements are abstracted to increase the invariance of
the features. For example, both conditions a < 3 and a < 5 in the
program are represented by the single abstract condition id < c,
where variables and integers are abstracted by constants id and c,
respectively.

2.3.2 The Matching Algorithm
By using the approach explained so far, we generate the abstract
data flow graph for each precision-effective query in the given
codebase. The feature set ⇧ = {⇡1, . . . ,⇡k} is the collection of
all such data flow graphs generated from the codebase.

Now, we describe match, which takes a query q and a feature
(i.e., data flow graph) ⇡i 2 ⇧, and checks if ⇡i is a feature of q or
not. Consider the query in the original program in Figure 1(a) and
the feature in Figure 1(c). We would like to check that the feature is
included in the original program. Matching the feature against the
program is done in the following two steps:

1. We represent the query in the target program (Figure 1(a)) by
an abstract data flow graph. The resulting graph is given as
follows:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the graph in Figure 1(c) but
it contains all the dependencies in the original program. For
instance, it has the dependence edge from id > id to id < c,
which is absent in the reduced program. The unknown value,
i.e., the return value of unknown(), is represented by >.

2. We check whether the feature is a subgraph of the data flow
graph of the target program. We say a graph G1 is included in
G2 if all vertices in G1 are included in G2 and all arcs in G1 are
represented by a path in G2. In our example, the feature (Figure
1(c)) is a subgraph of the data flow graph above: for instance,
given the arc id:=id+c ! id<c in the feature, we can find a
path id:=id+c ! id>id ! id<c in the target graph.

Note that our definition of subgraph is different from the con-
ventional definition, which is essential to match features against
original programs. Note that the feature is unlikely to match to
the original program if we check the inclusion by the conventional
definition, i.e., G1 = (V1, E1) is included in G2 = (V2, E2) iff
V1 ✓ V2 and E1 ✓ E2. This is because the original program
(without reducing) may contain irrelevant dependences as well. We
cannot use the reducer to remove the independences because doing
so is typically too expensive to perform online. Instead, we take a

(less expensive) transitive closure of the data flow graph to match
in the presence of the noise in the target program.

3. Parametric Static Analysis
Let P 2 P be a program that we would like to analyze. We assume
that a set QP of queries (i.e., assertions) in P is given together
with the program. The goal of the analysis is to prove as many
queries as possible. In this paper, we consider a static analysis that
is parameterized by a set of queries. Thus, the parameter space is
defined by (AP ,v) where AP is the binary vector:

a 2 AP = {0, 1}QP
.

with the pointwise ordering a v a0 () 8j 2 QP . aj  a0
j .

We sometimes regard a parameter a 2 AP as a function from AP

to {0, 1}, or the following collection:

a = {j 2 QP | aj = 1}.

In the latter case, we write |a| for the size of the collection. We
define two constants in AP :

0 = �j 2 QP . 0, and 1 = �j 2 QP . 1,

which represent the most imprecise and precise abstractions, re-
spectively. In the rest of this paper, we omit the subscript P when
there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a set of
queries that are proved in this analysis run. Intuitively, the analysis
applies high precision only to the queries specified by the param-
eter; aj = 1 means that the query j 2 Q is analyzed with high
precision. For instance, in our partially flow-sensitive analysis, the
parameter denotes the set of queries and the analysis applies flow-
sensitivity to the program variables on which the queries depend.
In our partially relational octagon analysis, the analysis keeps the
relations between variables involved in the dependency graphs of
the selected queries.

Our goal is to learn a strategy S automatically from an existing
codebase. The resulting adaptation strategy is a function of the
following type:

S : P ! A,

and it is used to analyze new, unseen programs P :

F (P,S(P )).

If the learned strategy is good, running the analysis with S(P )
would give results close to those of the most precise abstraction
(F (P,1)), while incurring the cost at the level of or only slightly
above the least precise and hence cheapest abstraction (F (P,0)).
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P1, P2, …,Pm

Codebase

⇒

2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the
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match : Query ⇥ Feature ! B

1 a = 0; b = 0;

2 while (1) {

3 b = unknown();

4 if (a > b)

5 if (a < 3)

6 assert (a < 5);

7 a++;

8 }

1 a = 0;

2 while (1) {

3 if (a < 3)

4 assert (a < 5);

5 a++;

6 }

id := c

id < c

Q(id < c)

id := id+ c

(a) Original program (b) Reduced program (c) Feature

Figure 1. Example program and feature

program. For example, the reduced program in Figure 1(b) is con-
verted to the data flow graph in Figure 1(c). Note that the graph
captures the data flows of the program that influence the query. In
the graph, statements are abstracted to increase the invariance of
the features. For example, both conditions a < 3 and a < 5 in the
program are represented by the single abstract condition id < c,
where variables and integers are abstracted by constants id and c,
respectively.

2.3.2 The Matching Algorithm
By using the approach explained so far, we generate the abstract
data flow graph for each precision-effective query in the given
codebase. The feature set ⇧ = {⇡1, . . . ,⇡k} is the collection of
all such data flow graphs generated from the codebase.

Now, we describe match, which takes a query q and a feature
(i.e., data flow graph) ⇡i 2 ⇧, and checks if ⇡i is a feature of q or
not. Consider the query in the original program in Figure 1(a) and
the feature in Figure 1(c). We would like to check that the feature is
included in the original program. Matching the feature against the
program is done in the following two steps:

1. We represent the query in the target program (Figure 1(a)) by
an abstract data flow graph. The resulting graph is given as
follows:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the graph in Figure 1(c) but
it contains all the dependencies in the original program. For
instance, it has the dependence edge from id > id to id < c,
which is absent in the reduced program. The unknown value,
i.e., the return value of unknown(), is represented by >.

2. We check whether the feature is a subgraph of the data flow
graph of the target program. We say a graph G1 is included in
G2 if all vertices in G1 are included in G2 and all arcs in G1 are
represented by a path in G2. In our example, the feature (Figure
1(c)) is a subgraph of the data flow graph above: for instance,
given the arc id:=id+c ! id<c in the feature, we can find a
path id:=id+c ! id>id ! id<c in the target graph.

Note that our definition of subgraph is different from the con-
ventional definition, which is essential to match features against
original programs. Note that the feature is unlikely to match to
the original program if we check the inclusion by the conventional
definition, i.e., G1 = (V1, E1) is included in G2 = (V2, E2) iff
V1 ✓ V2 and E1 ✓ E2. This is because the original program
(without reducing) may contain irrelevant dependences as well. We
cannot use the reducer to remove the independences because doing
so is typically too expensive to perform online. Instead, we take a

(less expensive) transitive closure of the data flow graph to match
in the presence of the noise in the target program.

3. Parametric Static Analysis
Let P 2 P be a program that we would like to analyze. We assume
that a set QP of queries (i.e., assertions) in P is given together
with the program. The goal of the analysis is to prove as many
queries as possible. In this paper, we consider a static analysis that
is parameterized by a set of queries. Thus, the parameter space is
defined by (AP ,v) where AP is the binary vector:

a 2 AP = {0, 1}QP
.

with the pointwise ordering a v a0 () 8j 2 QP . aj  a0
j .

We sometimes regard a parameter a 2 AP as a function from AP

to {0, 1}, or the following collection:

a = {j 2 QP | aj = 1}.

In the latter case, we write |a| for the size of the collection. We
define two constants in AP :

0 = �j 2 QP . 0, and 1 = �j 2 QP . 1,

which represent the most imprecise and precise abstractions, re-
spectively. In the rest of this paper, we omit the subscript P when
there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a set of
queries that are proved in this analysis run. Intuitively, the analysis
applies high precision only to the queries specified by the param-
eter; aj = 1 means that the query j 2 Q is analyzed with high
precision. For instance, in our partially flow-sensitive analysis, the
parameter denotes the set of queries and the analysis applies flow-
sensitivity to the program variables on which the queries depend.
In our partially relational octagon analysis, the analysis keeps the
relations between variables involved in the dependency graphs of
the selected queries.

Our goal is to learn a strategy S automatically from an existing
codebase. The resulting adaptation strategy is a function of the
following type:

S : P ! A,

and it is used to analyze new, unseen programs P :

F (P,S(P )).

If the learned strategy is good, running the analysis with S(P )
would give results close to those of the most precise abstraction
(F (P,1)), while incurring the cost at the level of or only slightly
above the least precise and hence cheapest abstraction (F (P,0)).
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1 a = 0; b = 0;

2 while (1) {

3 b = unknown();

4 if (a > b)

5 if (a < 3)

6 assert (a < 5);

7 a++;

8 }

1 a = 0;

2 while (1) {

3 if (a < 3)

4 assert (a < 5);

5 a++;

6 }

id := c

id < c

Q(id < c)

id := id+ c

(a) Original program (b) Reduced program (c) Feature

Figure 1. Example program and feature

program. For example, the reduced program in Figure 1(b) is con-
verted to the data flow graph in Figure 1(c). Note that the graph
captures the data flows of the program that influence the query. In
the graph, statements are abstracted to increase the invariance of
the features. For example, both conditions a < 3 and a < 5 in the
program are represented by the single abstract condition id < c,
where variables and integers are abstracted by constants id and c,
respectively.

2.3.2 The Matching Algorithm
By using the approach explained so far, we generate the abstract
data flow graph for each precision-effective query in the given
codebase. The feature set ⇧ = {⇡1, . . . ,⇡k} is the collection of
all such data flow graphs generated from the codebase.

Now, we describe match, which takes a query q and a feature
(i.e., data flow graph) ⇡i 2 ⇧, and checks if ⇡i is a feature of q or
not. Consider the query in the original program in Figure 1(a) and
the feature in Figure 1(c). We would like to check that the feature is
included in the original program. Matching the feature against the
program is done in the following two steps:

1. We represent the query in the target program (Figure 1(a)) by
an abstract data flow graph. The resulting graph is given as
follows:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the graph in Figure 1(c) but
it contains all the dependencies in the original program. For
instance, it has the dependence edge from id > id to id < c,
which is absent in the reduced program. The unknown value,
i.e., the return value of unknown(), is represented by >.

2. We check whether the feature is a subgraph of the data flow
graph of the target program. We say a graph G1 is included in
G2 if all vertices in G1 are included in G2 and all arcs in G1 are
represented by a path in G2. In our example, the feature (Figure
1(c)) is a subgraph of the data flow graph above: for instance,
given the arc id:=id+c ! id<c in the feature, we can find a
path id:=id+c ! id>id ! id<c in the target graph.

Note that our definition of subgraph is different from the con-
ventional definition, which is essential to match features against
original programs. Note that the feature is unlikely to match to
the original program if we check the inclusion by the conventional
definition, i.e., G1 = (V1, E1) is included in G2 = (V2, E2) iff
V1 ✓ V2 and E1 ✓ E2. This is because the original program
(without reducing) may contain irrelevant dependences as well. We
cannot use the reducer to remove the independences because doing
so is typically too expensive to perform online. Instead, we take a

(less expensive) transitive closure of the data flow graph to match
in the presence of the noise in the target program.

3. Parametric Static Analysis
Let P 2 P be a program that we would like to analyze. We assume
that a set QP of queries (i.e., assertions) in P is given together
with the program. The goal of the analysis is to prove as many
queries as possible. In this paper, we consider a static analysis that
is parameterized by a set of queries. Thus, the parameter space is
defined by (AP ,v) where AP is the binary vector:

a 2 AP = {0, 1}QP
.

with the pointwise ordering a v a0 () 8j 2 QP . aj  a0
j .

We sometimes regard a parameter a 2 AP as a function from AP

to {0, 1}, or the following collection:

a = {j 2 QP | aj = 1}.

In the latter case, we write |a| for the size of the collection. We
define two constants in AP :

0 = �j 2 QP . 0, and 1 = �j 2 QP . 1,

which represent the most imprecise and precise abstractions, re-
spectively. In the rest of this paper, we omit the subscript P when
there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a set of
queries that are proved in this analysis run. Intuitively, the analysis
applies high precision only to the queries specified by the param-
eter; aj = 1 means that the query j 2 Q is analyzed with high
precision. For instance, in our partially flow-sensitive analysis, the
parameter denotes the set of queries and the analysis applies flow-
sensitivity to the program variables on which the queries depend.
In our partially relational octagon analysis, the analysis keeps the
relations between variables involved in the dependency graphs of
the selected queries.

Our goal is to learn a strategy S automatically from an existing
codebase. The resulting adaptation strategy is a function of the
following type:

S : P ! A,

and it is used to analyze new, unseen programs P :

F (P,S(P )).

If the learned strategy is good, running the analysis with S(P )
would give results close to those of the most precise abstraction
(F (P,1)), while incurring the cost at the level of or only slightly
above the least precise and hence cheapest abstraction (F (P,0)).
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1 a = 0; b = 0;

2 while (1) {

3 b = unknown();

4 if (a > b)

5 if (a < 3)

6 assert (a < 5);

7 a++;

8 }

1 a = 0;

2 while (1) {

3 if (a < 3)

4 assert (a < 5);

5 a++;

6 }

id := c

id < c

Q(id < c)

id := id+ c

(a) Original program (b) Feature program (c) Aabstract data-flow graph

Figure 1. Example program and feature. From the original program (a), our approach first reduces it and generates the feature
program (b), and then abstracts the feature program into the abstract data-flow graph (c).

The match procedure takes a feature (i.e., abstract data-
flow graph) ⇡i 2 ⇧, a query q0, and a program P0 containing
q0, and checks whether the slice of P0 that may affect q0
includes a piece of code described by ⇡i. Consider the query
in the original program in Figure 1(a) and the feature ⇡

in Figure 1(c). Checking whether the slice for the query
includes the feature is done in the following two steps:

1. We represent the query in Figure 1(a) itself by an abstract
data-flow graph:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the one in Figure 1(c)
but it contains all the parts of the original program. For
instance, it has the node id > id and the edge from
this node to id < c, both of which are absent in the
feature. The unknown value, such as the return value of
unknown(), is represented by >.

2. We use a variant of graph inclusion to decide whether
the query includes the feature. We check whether every
vertice of the feature is included in the graph of the
query and whether every arc of the feature is included
in the transitive closure of the graph. The answers to
both questions are yes. For instance, the path for the
arc id:=id+c ! id<c in the feature is id:=id+c !
id>id ! id<c in the graph of the query.

Note that we use a variant of graph inclusion where an
arc of one graph is allowed to be realized by a path of its
including graph, not necessarily by an arc as in the usual
definition. This variation is essential for our purpose. When
we check a feature against a query, the feature is reduced but
the query is not. Thus, even when the query here is the one
from which the feature is generated, this checking is likely
to fail if we use the usual notion of graph inclusion (i.e.,
G1 = (V1, E1) is included in G2 = (V2, E2) iff V1 ✓ V2

and E1 ✓ E2). In theory, we could invoke a reducer on the
query, but this is not a viable option because reducing is just

too expensive to perform every time we analyze a program.
Instead, we take a (less expensive) alternative based on the
transitive closure of the graph of the query.

3. Setting
Parametric Static Analysis We use the setting for para-
metric static analyses in [28]. Let P 2 P be a program to
analyze. We assume that a set QP of queries (i.e., asser-
tions) in P is given together with the program. The goal
of the analysis is to prove as many queries as possible. A
static analysis is parameterized by a set of program compo-
nents. We assume a set JP of program components that rep-
resent parts of P . For instance, in our partially flow-sensitive
analysis, JP is the set of program variables. The parameter
space is defined by (AP ,v) where AP is the binary vector
a 2 AP = BJP = {0, 1}JP with the pointwise ordering
a v a0 () 8j 2 JP . aj  a0j . We sometimes re-
gard a parameter a 2 AP as a function from AP to B, or
the set a = {j 2 JP | aj = 1}. In the latter case, we
write |a| for the size of the set. We define two constants in
AP : 0 = �j 2 JP . 0 and 1 = �j 2 JP . 1, which represent
the most imprecise and precise abstractions, respectively. We
omit the subscript P when there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a
set of queries proved in this analysis run. In static analysis
of C programs, using a more refined parameter typically
improves the precision of the analysis but increases the cost.

Analysis Heuristic that Selects a Parameter The parame-
ter of the analysis is selected by an analysis heuristic, a func-
tion of the following type:

H : P ! A.

Given a program P , the analysis first applies the heuristic to
P , and then uses the resulting parameter H(P ) to analyze
the program. That is, it computes F (P,H(P )). If the heuris-
tic is good, running the analysis with H(P ) would give re-
sults close to those of the most precise abstraction (F (P,1)),
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match : Query ⇥ Feature ! B

1 a = 0; b = 0;

2 while (1) {

3 b = unknown();

4 if (a > b)

5 if (a < 3)

6 assert (a < 5);

7 a++;

8 }

1 a = 0;

2 while (1) {

3 if (a < 3)

4 assert (a < 5);

5 a++;

6 }

id := c

id < c

Q(id < c)

id := id+ c

(a) Original program (b) Reduced program (c) Feature

Figure 1. Example program and feature

program. For example, the reduced program in Figure 1(b) is con-
verted to the data flow graph in Figure 1(c). Note that the graph
captures the data flows of the program that influence the query. In
the graph, statements are abstracted to increase the invariance of
the features. For example, both conditions a < 3 and a < 5 in the
program are represented by the single abstract condition id < c,
where variables and integers are abstracted by constants id and c,
respectively.

2.3.2 The Matching Algorithm
By using the approach explained so far, we generate the abstract
data flow graph for each precision-effective query in the given
codebase. The feature set ⇧ = {⇡1, . . . ,⇡k} is the collection of
all such data flow graphs generated from the codebase.

Now, we describe match, which takes a query q and a feature
(i.e., data flow graph) ⇡i 2 ⇧, and checks if ⇡i is a feature of q or
not. Consider the query in the original program in Figure 1(a) and
the feature in Figure 1(c). We would like to check that the feature is
included in the original program. Matching the feature against the
program is done in the following two steps:

1. We represent the query in the target program (Figure 1(a)) by
an abstract data flow graph. The resulting graph is given as
follows:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the graph in Figure 1(c) but
it contains all the dependencies in the original program. For
instance, it has the dependence edge from id > id to id < c,
which is absent in the reduced program. The unknown value,
i.e., the return value of unknown(), is represented by >.

2. We check whether the feature is a subgraph of the data flow
graph of the target program. We say a graph G1 is included in
G2 if all vertices in G1 are included in G2 and all arcs in G1 are
represented by a path in G2. In our example, the feature (Figure
1(c)) is a subgraph of the data flow graph above: for instance,
given the arc id:=id+c ! id<c in the feature, we can find a
path id:=id+c ! id>id ! id<c in the target graph.

Note that our definition of subgraph is different from the con-
ventional definition, which is essential to match features against
original programs. Note that the feature is unlikely to match to
the original program if we check the inclusion by the conventional
definition, i.e., G1 = (V1, E1) is included in G2 = (V2, E2) iff
V1 ✓ V2 and E1 ✓ E2. This is because the original program
(without reducing) may contain irrelevant dependences as well. We
cannot use the reducer to remove the independences because doing
so is typically too expensive to perform online. Instead, we take a

(less expensive) transitive closure of the data flow graph to match
in the presence of the noise in the target program.

3. Parametric Static Analysis
Let P 2 P be a program that we would like to analyze. We assume
that a set QP of queries (i.e., assertions) in P is given together
with the program. The goal of the analysis is to prove as many
queries as possible. In this paper, we consider a static analysis that
is parameterized by a set of queries. Thus, the parameter space is
defined by (AP ,v) where AP is the binary vector:

a 2 AP = {0, 1}QP
.

with the pointwise ordering a v a0 () 8j 2 QP . aj  a0
j .

We sometimes regard a parameter a 2 AP as a function from AP

to {0, 1}, or the following collection:

a = {j 2 QP | aj = 1}.

In the latter case, we write |a| for the size of the collection. We
define two constants in AP :

0 = �j 2 QP . 0, and 1 = �j 2 QP . 1,

which represent the most imprecise and precise abstractions, re-
spectively. In the rest of this paper, we omit the subscript P when
there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a set of
queries that are proved in this analysis run. Intuitively, the analysis
applies high precision only to the queries specified by the param-
eter; aj = 1 means that the query j 2 Q is analyzed with high
precision. For instance, in our partially flow-sensitive analysis, the
parameter denotes the set of queries and the analysis applies flow-
sensitivity to the program variables on which the queries depend.
In our partially relational octagon analysis, the analysis keeps the
relations between variables involved in the dependency graphs of
the selected queries.

Our goal is to learn a strategy S automatically from an existing
codebase. The resulting adaptation strategy is a function of the
following type:

S : P ! A,

and it is used to analyze new, unseen programs P :

F (P,S(P )).

If the learned strategy is good, running the analysis with S(P )
would give results close to those of the most precise abstraction
(F (P,1)), while incurring the cost at the level of or only slightly
above the least precise and hence cheapest abstraction (F (P,0)).
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2 while (1) {
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program. For example, the reduced program in Figure 1(b) is con-
verted to the data flow graph in Figure 1(c). Note that the graph
captures the data flows of the program that influence the query. In
the graph, statements are abstracted to increase the invariance of
the features. For example, both conditions a < 3 and a < 5 in the
program are represented by the single abstract condition id < c,
where variables and integers are abstracted by constants id and c,
respectively.

2.3.2 The Matching Algorithm
By using the approach explained so far, we generate the abstract
data flow graph for each precision-effective query in the given
codebase. The feature set ⇧ = {⇡1, . . . ,⇡k} is the collection of
all such data flow graphs generated from the codebase.

Now, we describe match, which takes a query q and a feature
(i.e., data flow graph) ⇡i 2 ⇧, and checks if ⇡i is a feature of q or
not. Consider the query in the original program in Figure 1(a) and
the feature in Figure 1(c). We would like to check that the feature is
included in the original program. Matching the feature against the
program is done in the following two steps:

1. We represent the query in the target program (Figure 1(a)) by
an abstract data flow graph. The resulting graph is given as
follows:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the graph in Figure 1(c) but
it contains all the dependencies in the original program. For
instance, it has the dependence edge from id > id to id < c,
which is absent in the reduced program. The unknown value,
i.e., the return value of unknown(), is represented by >.

2. We check whether the feature is a subgraph of the data flow
graph of the target program. We say a graph G1 is included in
G2 if all vertices in G1 are included in G2 and all arcs in G1 are
represented by a path in G2. In our example, the feature (Figure
1(c)) is a subgraph of the data flow graph above: for instance,
given the arc id:=id+c ! id<c in the feature, we can find a
path id:=id+c ! id>id ! id<c in the target graph.

Note that our definition of subgraph is different from the con-
ventional definition, which is essential to match features against
original programs. Note that the feature is unlikely to match to
the original program if we check the inclusion by the conventional
definition, i.e., G1 = (V1, E1) is included in G2 = (V2, E2) iff
V1 ✓ V2 and E1 ✓ E2. This is because the original program
(without reducing) may contain irrelevant dependences as well. We
cannot use the reducer to remove the independences because doing
so is typically too expensive to perform online. Instead, we take a

(less expensive) transitive closure of the data flow graph to match
in the presence of the noise in the target program.

3. Parametric Static Analysis
Let P 2 P be a program that we would like to analyze. We assume
that a set QP of queries (i.e., assertions) in P is given together
with the program. The goal of the analysis is to prove as many
queries as possible. In this paper, we consider a static analysis that
is parameterized by a set of queries. Thus, the parameter space is
defined by (AP ,v) where AP is the binary vector:

a 2 AP = {0, 1}QP
.

with the pointwise ordering a v a0 () 8j 2 QP . aj  a0
j .

We sometimes regard a parameter a 2 AP as a function from AP

to {0, 1}, or the following collection:

a = {j 2 QP | aj = 1}.

In the latter case, we write |a| for the size of the collection. We
define two constants in AP :

0 = �j 2 QP . 0, and 1 = �j 2 QP . 1,

which represent the most imprecise and precise abstractions, re-
spectively. In the rest of this paper, we omit the subscript P when
there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a set of
queries that are proved in this analysis run. Intuitively, the analysis
applies high precision only to the queries specified by the param-
eter; aj = 1 means that the query j 2 Q is analyzed with high
precision. For instance, in our partially flow-sensitive analysis, the
parameter denotes the set of queries and the analysis applies flow-
sensitivity to the program variables on which the queries depend.
In our partially relational octagon analysis, the analysis keeps the
relations between variables involved in the dependency graphs of
the selected queries.

Our goal is to learn a strategy S automatically from an existing
codebase. The resulting adaptation strategy is a function of the
following type:

S : P ! A,

and it is used to analyze new, unseen programs P :

F (P,S(P )).

If the learned strategy is good, running the analysis with S(P )
would give results close to those of the most precise abstraction
(F (P,1)), while incurring the cost at the level of or only slightly
above the least precise and hence cheapest abstraction (F (P,0)).
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Subgraph inclusion:

1 a = 0; b = 0;

2 while (1) {

3 b = unknown();

4 if (a > b)

5 if (a < 3)

6 assert (a < 5);

7 a++;

8 }

1 a = 0;

2 while (1) {

3 if (a < 3)

4 assert (a < 5);

5 a++;

6 }

id := c

id < c

Q(id < c)

id := id+ c

(a) Original program (b) Feature program (c) Aabstract data-flow graph

Figure 1. Example program and feature. From the original program (a), our approach first reduces it and generates the feature
program (b), and then abstracts the feature program into the abstract data-flow graph (c).

The match procedure takes a feature (i.e., abstract data-
flow graph) ⇡i 2 ⇧, a query q0, and a program P0 containing
q0, and checks whether the slice of P0 that may affect q0
includes a piece of code described by ⇡i. Consider the query
in the original program in Figure 1(a) and the feature ⇡

in Figure 1(c). Checking whether the slice for the query
includes the feature is done in the following two steps:

1. We represent the query in Figure 1(a) itself by an abstract
data-flow graph:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the one in Figure 1(c)
but it contains all the parts of the original program. For
instance, it has the node id > id and the edge from
this node to id < c, both of which are absent in the
feature. The unknown value, such as the return value of
unknown(), is represented by >.

2. We use a variant of graph inclusion to decide whether
the query includes the feature. We check whether every
vertice of the feature is included in the graph of the
query and whether every arc of the feature is included
in the transitive closure of the graph. The answers to
both questions are yes. For instance, the path for the
arc id:=id+c ! id<c in the feature is id:=id+c !
id>id ! id<c in the graph of the query.

Note that we use a variant of graph inclusion where an
arc of one graph is allowed to be realized by a path of its
including graph, not necessarily by an arc as in the usual
definition. This variation is essential for our purpose. When
we check a feature against a query, the feature is reduced but
the query is not. Thus, even when the query here is the one
from which the feature is generated, this checking is likely
to fail if we use the usual notion of graph inclusion (i.e.,
G1 = (V1, E1) is included in G2 = (V2, E2) iff V1 ✓ V2

and E1 ✓ E2). In theory, we could invoke a reducer on the
query, but this is not a viable option because reducing is just

too expensive to perform every time we analyze a program.
Instead, we take a (less expensive) alternative based on the
transitive closure of the graph of the query.

3. Setting
Parametric Static Analysis We use the setting for para-
metric static analyses in [28]. Let P 2 P be a program to
analyze. We assume that a set QP of queries (i.e., asser-
tions) in P is given together with the program. The goal
of the analysis is to prove as many queries as possible. A
static analysis is parameterized by a set of program compo-
nents. We assume a set JP of program components that rep-
resent parts of P . For instance, in our partially flow-sensitive
analysis, JP is the set of program variables. The parameter
space is defined by (AP ,v) where AP is the binary vector
a 2 AP = BJP = {0, 1}JP with the pointwise ordering
a v a0 () 8j 2 JP . aj  a0j . We sometimes re-
gard a parameter a 2 AP as a function from AP to B, or
the set a = {j 2 JP | aj = 1}. In the latter case, we
write |a| for the size of the set. We define two constants in
AP : 0 = �j 2 JP . 0 and 1 = �j 2 JP . 1, which represent
the most imprecise and precise abstractions, respectively. We
omit the subscript P when there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a
set of queries proved in this analysis run. In static analysis
of C programs, using a more refined parameter typically
improves the precision of the analysis but increases the cost.

Analysis Heuristic that Selects a Parameter The parame-
ter of the analysis is selected by an analysis heuristic, a func-
tion of the following type:

H : P ! A.

Given a program P , the analysis first applies the heuristic to
P , and then uses the resulting parameter H(P ) to analyze
the program. That is, it computes F (P,H(P )). If the heuris-
tic is good, running the analysis with H(P ) would give re-
sults close to those of the most precise abstraction (F (P,1)),
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Codebase
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2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the
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the program will be proved with flow-sensitivity. If the prediction is
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variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
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The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the

2 2016/8/9



Experiments

44

Query Prediction Analysis Comparison
Prove Sec Oh et al. [38]

Trial Precision Recall FIi FSi Ours FIi FSi Ours Quality Cost Self Quality Cost
1 92.6 % 77.9 % 5,340 6,053 5,973 38.2 564.0 55.3 88.7 % 1.4x 88.7 % 85.2% 1.5x
2 78.8 % 73.3 % 2,972 3,373 3,262 16.3 460.5 25.7 72.3 % 1.5x 72.0 % 41.6% 1.9x
3 66.7 % 73.3 % 3,984 4,668 4,559 27.3 1,635.6 176.2 84.0 % 6.4x 82.7 % 89.9% 3.2x
4 88.7 % 68.8 % 4,600 5,450 5,307 38.1 688.2 59.6 83.1 % 1.5x 83.5 % 60.7% 1.9x
5 89.9 % 79.4 % 2,517 2,971 2,945 10.9 325.9 18.9 94.2 % 1.7x 94.0 % 47.8% 2.1x

TOTAL 81.5 % 73.9 % 19,413 22,515 22,046 131.1 3,674.4 336.0 84.8 % 2.5x 84.6 % 68.4% 2.1x

Table 1. Effectiveness of partially flow-sensitive interval analysis

Query Prediction Analysis Comparison
Prove Sec

Trial Precision Recall FIp FSp Ours FIp FSp Ours Quality Cost Self
1 79.1 % 76.6 % 4,399 6,346 6,031 48.3 3,705.0 155.6 83.8 % 3.2x 92.3 %
2 78.3 % 77.1 % 7,029 8,650 8,436 48.9 651.4 73.1 86.7 % 1.4x 89.4 %
3 77.9 % 77.8 % 6,524 7,867 7,589 36.2 610.3 51.6 79.3 % 1.4x 74.8 %
4 75.8 % 77.7 % 8,302 10,429 9,917 45.9 4,010.3 166.5 75.9 % 3.6x 80.3 %
5 78.0 % 83.0 % 4,205 5,705 5,482 23.0 847.2 59.5 85.1 % 2.5x 84.2 %

TOTAL 77.7 % 78.3 % 30,459 38,997 37,455 202.5 9,824.4 506.5 81.9 % 2.5x 84.6 %

Table 2. Effectiveness of partially flow-sensitive pointer analysis [[Kwonsoo: Overall, ”Self” proved more queries, but it
also increased the cost slightly more (not shown here).]]

Query Prediction Analysis Comparison
Prove Sec Heo et al. [21]

Trial Precision Recall FSi IMPCT Ours FSi IMPCT Ours Quality Cost Self Quality Cost
1 74.8 % 81.3 % 3,678 3,806 3,789 140.7 389.8 189.5 86.7 % 1.3 x 54.2 % 100.0 % 3.0 x
2 84.1 % 82.6 % 5,845 6,004 5,977 613.5 18,022.9 775.5 83.0 % 1.3 x 65.5 % 30.2 % 0.9 x
3 82.8 % 73.0 % 1,926 2,079 2,036 315.2 2,396.9 460.2 71.9 % 1.5 x 95.7 % 92.2 % 1.1 x
4 77.6 % 85.2 % 2,221 2,335 2,313 72.7 495.1 141.2 80.7 % 1.9 x 67.2 % 100.0 % 2.0 x
5 71.6 % 78.4 % 2,886 2,962 2,946 148.9 557.2 210.2 78.9 % 1.4 x 59.9 % 96.1 % 2.3 x

TOTAL 79.0 % 79.9 % 16,556 17,186 17,061 1,291.0 21,861.9 1,776.6 80.2 % 1.4 x 67.7 % 80.0 % 1.4 x

Table 3. Effectiveness of partial Octagon analysis

proved more queries than ours (81.2% vs 97.7%) but in-
creased the cost on average. We warn a reader that these
are just end-to-end comparisons and it is difficult to draw
a clear conclusion, as the learning algorithms of the three
approaches are different. However, the overall results show
that using automatically generated features is as competitive
as using those crafted manually by analysis designers.

7.3 Impact of Reducing and Learning
In order to see the role of a reducer in our approach, we
generated feature programs without calling the reducer in
our experiment with the interval analysis. These unreduced
feature programs were then converted to abstract data-flow
graphs or features, which enabled the learning of a classi-
fier for queries. The generated features were too specific to
training programs, and the learned classifier did not gener-
alize well to unseen test programs. Specifically, removing a
reducer dropped the recall of the learned classifier from X%
to X% for test programs.

[[HY: Think about being more specific on our claim
here. We want to give enough information for a reader to
reproduce our results.]]

In our approach, a feature is a reduced and abstracted pro-
gram slice that illustrates when high precision of an analysis
is useful for proving a query. Thus, one natural approach is to
use the disjunction of all features as a classifer for queries.
Intuitively, this classifier attempts to pattern-match each of
these features against a given program and a query, and it re-
turns true if some attempt succeeds. We ran our experiment
on the interval analysis again with this disjunctive classifier,
instead of the original decision tree learned from training
programs. This change of the classifier increased the recall
slightly from X% to 79.0%, but dropped the precision sig-
nificantly from X% to 8.0%. The result shows the benefit
of going beyond the simple disjunction of features and us-
ing a more sophisticated boolean combination of them (as
encoded by a decision tree). One possible explanation is that
the matching of multiple features suggests the high complex-
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programs. This change of the classifier increased the recall
slightly from X% to 79.0%, but dropped the precision sig-
nificantly from X% to 8.0%. The result shows the benefit
of going beyond the simple disjunction of features and us-
ing a more sophisticated boolean combination of them (as
encoded by a decision tree). One possible explanation is that
the matching of multiple features suggests the high complex-

12 2016/11/9

Effectiveness of partially flow-sensitive analysis

Effectiveness of partially relational analysis



Summary

• Choosing a good abstraction is a key challenge in 
static program analysis

• New data-driven approach is promising
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