Data-Driven Program Analysis

Hakjoo Oh

Programming Research Laboratory
Korea University

(co-work with Kihong Heo, Kwonsoo Chae,

Hongseok Yang, Kwangkeun Yi) KOREA

UNIVERSITY

&

1905

Nov. 9, 2016 @POSTECH

Research Areas

® Program Analysis derives specifications from code

® Program Synthesis derives code from specifications

int £f(int n) {

int 1 = 0;
int r = 1; program analysis f(l) =1
while (i < n) > f(2) = 2
{ f(3) = 6
r =r * i; D . 3
, program synthesis
l=l+1, f(n)=n’
}

return rj;

}

Program Analysis

* Predict program behavior automatically

static or dynamic: before execution at compile-time / at runtime

automatic: sw is analyzed by sw (“program analyzers™)
- Applications

bug-finding: e.g., find runtime failures of programs
security: e.g., is this app malicious or benign!?
verification: e.g., does the program meet its specification?

compiler optimization: e.g., automatic parallelization

Program Synthesis

- Generate program code from specifications automatically

- specification: logics, examples, implementation, etc

* automatic: sw is generated by sw (“program synthesizers”)
- Applications

+ programming assistance: e.g., complete tricky parts of programs
* end-user programming: e.g., automate repetitive tasks

- algorithm discovery: find a new solution for a problem

* program optimization: find a more efficient implementation

- automatic patch generation: automatically fix software bugs

Static Program Analysis

error
states

program
states

Static Program Analysis

error
states

program
states

Static Program Analysis

sound unsound
error error
States States

program program

states) states

Static Program Analysis

Imprecise

error

states

program
states

false aIarms}

Static Program Analysis

Imprecise precise

error
states

error

states

program
states

program
states

VS.

false aIarms}

Static Program Analysis

Y

RS
“}?‘"5

Sy
o T
q :

Challenge in Static Analysis

scalability

precision

Challenge in Static Analysis

. @ key: “selectivity”

scalability

precision g

Flow-Sensitivity

assert(y>0)

[0.0]

[0.0]

[0.0]

[, 1]

[1.1]

[0.0]

[2.2]

[, 1]

[, 1]

[2.2]

precise but costly

Flow-Insensitivity

y [[0,+00 cheap but imprecise

assert(y>0)

Selective Flow-Sensitivity

FS : {x,y} FI : {z}
x | [0,0]
y | [00]

X [[l,+00]]
y BLO]

X [[l,+00] |
y | [0,0]

X [[],+00]
y [[I,+00]

assert(y>0)

Selective Flow-Sensitivity

FS :{y,z} FI : {x}

y | [0,0]
z | [I,1]

y | [0,0]
z | [1,1]

X [O,+ OO]
y | [0,0]
z | [2,2]

y [[0,+00]

Z [2,21

fail to prove

Hard Search Problem

® |ntractably large space, if not infinite
e 2Vardifferent abstractions for FS

® Most of them are too imprecise or costly

® P(x.y.z}) = {S:0G5ty3izh U0Y hZhO6Eh X Y 21

Our Research

® How to automatically find a good abstraction!?

® pre-analysis approach [PLDI’ |4, TOPLAS’|6]

{x,y,z,...}
pre-analysis »| main analysis

® data-driven approaches [OOPSLA'’l5,SAS |6, APLAS’ 1 6]

GitHub Q
source

forge

learn a good strategy from data
via machine learning techniques

i

Our Learning Approaches

® | earning via black-box optimization [OOPSLA’| 5]
® | earning via white-box optimization [APLAS’ | 6]
® | earning from automatically labelled data [SAS’16]

® | earning with automatically generated features (in progress)

Static Analyzer

number of
proved assertions

F(p,a) = n

abstraction

(e.g.,a set of variables)

Overall Approach

Overall Approach

® Parameterized adaptation strategy

Sw:pgm — 2Var

Overall Approach

® Parameterized adaptation strategy

Sw:pgm — 2Var

® |earn a good parameter W from existing codebase

4)

Pi, P2, ...,Pm — 4%

__ J
Codebase

Overall Approach

® Parameterized adaptation strategy

Sw:pgm — 2Var

® |earn a good parameter W from existing codebase

4)

Pi, P2, ...,Pm — 4%

__ J
Codebase

® For new program P, run static analysis with Sw(P)

|. Parameterized Strategy

Sw:pgm — 2Var

(1) Represent program variables as feature vectors.
(2) Compute the score of each variable.

(3) Choose the top-k variables based on the score.

(1) Features

® Predicates over variables:

f={fi,f....fs} (fi: Var = {0,1})

® 45 simple syntactic features for variables: e.g,

® |ocal / global variable, passed to / returned from
malloc, incremented by constants, etc

(1) Features

® Represent each variable as a feature vector:

f(x) = (1), (), F3(),Fa(x).fs(x))

f(x) = ¢1,0,1,0,0)

f(y) = <1,0,1,0,1)
f(z) = <0,0,1,1,0)

20

(2) Scoring

® The parameter w is a real-valued vector: e.g.,
w =<0.9,0.5,-0.6,0.7,0.3)
® Compute scores of variables:

,0,1,0,0,-<0.9,0.5,-0.6,0.7,0.3) = 0.3
,0,1,0,15-<0.9,0.5,-0.6,0.7,0.3) = 0.6
o, 1,1

score(x) = (|
I |
0, ,0):¢0.9,0.5,-0.6,0.7,0.3) = 0.1

=<
score(y) =
score(z) = ¢

’y '

(3) Choose Top-k Variables

® Choose the top-k variables based on their scores:
e.g., when k=2,

score(x) = 0.3

score(y) = 0.6 > {x,y}

score(z) = 0.1

® In experiments, we chosen 0% of variables with
highest scores.

22

2. Learn a Good Parameter

4)

PI, P2, ...,Pm i W

__ y,
Codebase

® Solve the optimization problem:

Find w that maximizes Z F(P;, Sw(F;))
P.

Learning via Random
Sampling

repeat N times

pick w € R" randomly

evaluate Y F(P;, Sw(P,))
P;

return best w found

24

count

300

200

100

Learning via Random
Sampling

20 40 60
quality

80

25

Bayesian Optimization

® A powerful method for solving difficult black-box
optimization problems.

® Especially powerful when the objective function is
expensive to evaluate.

® Key idea: use a probabilistic model to reduce the number
of objective function evaluations.

26

Learning via Bayesian Optimization

repeat N times

select a promising w using the model

evaluate Y F(P;, Sw(P;))
P

update the probabilistic model

return best w found

® Probabilistic model: Gaussian processes

® Selection strategy: Expected improvement

27

Learning via Bayesian Optimization

300

200

count

100

20

40
quality

60

80

28

quality of the best parameter found

Random Sampling vs
Bayesian Optimization

70.0

Random sampling O Bayesian optimization

52.5

35.0

!

/

#sampling

29

Effectiveness

® Implemented in Sparrow, an interval analyzer for C
® Evaluated on 30 open-source programs

®)0 for training, 10 for testing

30

Effectiveness

® Implemented in Sparrow, an interval analyzer for C
® Evaluated on 30 open-source programs

®)0 for training, 10 for testing

Precision
Fl

FS

100

30

Effectiveness

® Implemented in Sparrow, an interval analyzer for C
® Evaluated on 30 open-source programs

®)0 for training, 10 for testing

Precision
F FS
_ -
0 100
Cost
F FS

| x | 8x

30

Limitations

® While promising, the method has limitations:
® black-box optimization is inherently inefficient
® manual feature engineering is needed

® Follow-up work to overcome the limitations:

® improving the efficiency [APLAS |6, SAS’| 6]

® automating feature engineering [on-going]

31

Improving Efficiency

® A white-box optimization method [APLAS’|6]
C?})Z;Ep — R.

Find w* that minimizes Z (scorep () — O(]))Q
1€l p

® A supervised learning method [SAS’ | 6]

al—alb|—blc|—c|i|—1
aly | T (Y| T | T[T || T
—all || T|(|T| T|T|T
bl T (| T |T|T|%|T
—blT || T|&|T|T|T|T
c|l T T|T| T T |T|T
—c|T| T |T{ T |T|%|T|T
AT T T T{T]T [T
—3i{ T[T %[T]|T[T]|%

32

Manual Feature Engineering

® The success of ML heavily depends on the “features”

® Feature engineering is nontrivial and time-consuming

® Features do not generalize to other tasks

Type| # Features

A 1 used in array declarations (e.g., a[c])
2 used in memory allocation (e.g., malloc(c))
3 used in the righthand-side of an assignment (e.g., x = ¢)
4 used with the less-than operator (e.g, x < ¢)
5 used with the greater-than operator (e.g., x > ¢)
6 used with < (e.g., x < ¢)
7 used with > (e.g., x > ¢)
8 used with the equality operator (e.g., x == ¢)
9 used with the not-equality operator (e.g., x ! = ¢)
10 | used within other conditional expressions (e.g., x < c+y)
11 | used inside loops
12 | used in return statements (e.g., return c)
13 | constant zero

B [14| 1V2)A3
15 | (1V2)A(AVEVEVT)
16 | (1v2)A(8V9)
17 | 1v2)all
18 | (1v2)A12
19 | 1313
20 | 13A(4V5EV6VT)
21 | 13A(8V9)
22 | 13N 11
23 | 13A12

Type| # Features

A 1 Tocal variable
2 | global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = ¢l + ¢2)
8 compared with a constant expression (e.g., x < ¢)
9 compared with an other variable (e.g., x < y)
10 | negated in a conditional expression (e.g., if (!x))
11 | directly used in malloc (e.g., malloc(x))
12 | indirectly used in malloc (e.g., y = x; malloc(y))
13 | directly used in realloc (e.g., realloc(x))
14 | indirectly used in realloc (e.g., y = x; realloc(y))
15 | directly returned from malloc (e.g., x = malloc(e))
16 | indirectly returned from malloc
17 | directly returned from realloc (e.g., x = realloc(e))
18 | indirectly returned from realloc
19 | incremented by one (e.g., x =x + 1)
20 | incremented by a constant expr. (e.g., X = x + (1+2))
21 | incremented by a variable (e.g., x =x +y)
22 | decremented by one (e.g.,x =x-1)
23 | decremented by a constant expr (e.g., x = x - (1+2))
24 | decremented by a variable (e.g., x = x - y)
25 | multiplied by a constant (e.g., x =x * 2)
26 | multiplied by a variable (e.g., x = x *y)
27 | incremented pointer (e.g., p++)
28 | used as an array index (e.g., a[x])
29 | used in an array expr. (e.g., x[e])
30 | returned from an unknown library function
31 | modified inside a recursive function
32 | modified inside a local loop
33 | read inside a local loop

B [34 [TASA(IIVIZ)
35 | 2A8A (11V 12)
36 | 1A (11V12) A (19V 20)
37 | 2A (11V12) A (19 V 20)
38 | 1A (11V12) A (15 V 16)
39 | 2 (11V 12) A (15 Vv 16)
40 | (11v12) A 29
41 | (15V 16) A 29
42 | 1A (19V20) A 33
43 | 2/ (19V 20) A 33
44 | 1A (19V20) A 33
45 | 2 A (19 V 20) A —33

Type| # Features
A 1 leaf function
2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 | write to a structure field
11 | read from a structure field
12 | directly return a constant expression
13 | indirectly return a constant expression
14 | directly return an allocated memory
15 | indirectly return an allocated memory
16 | directly return a reallocated memory
17 | indirectly return a reallocated memory
18 | return expression involves field access
19 | return value depends on a structure field
20 | return void
21 | directly invoked with a constant
22 | constant is passed to an argument
23 | invoked with an unknown value
24 | functions having no arguments
25 | functions having one argument
26 | functions having more than one argument
27 | functions having an integer argument
28 | functions having a pointer argument
29 | functions having a structure as an argument
B [30 | 2A(21V22) A (14V 15)
31 | 2A (21 VvV 22) A—(14V 15)
32 | 2A23 A (14'V 15)
33 | 2A23 A (14 V 15)
34 | 2A(21V22) A (16 V 17)
35 | 2A(21V22) A—(16V 17)
36 | 2A23A (16 V 17)
37 | 2A23A—(16V 17)
38 | (21V22) A-23

flow-sensitivity

context-sensitivity

widening thresholds

33

Automatic Feature Generation

Before [OOPSLA’15,SAS’ | 6,APLAS’ | 6]

Codebase

New method

) Hand-crafted

features

. Parameter

values

Adaptation
>

Codebase

>

Features

Strategy

. Parameter

values

Adaptation
>

Strategy

34

Partial Flow-Sensitive Analysis

® A query-based, partially flow-sensitive interval analysis

® The analysis uses a query-classifier C : Query — {l,0}

x =0; y=0; z=input(Q); w = 0;
y = X; yt+;

assert (y > 0); // Query 1
assert (z > 0); // Query 2
assert (w == 0); // Query 3

) B Y

35

Partial Flow-Sensitive Analysis

® A query-based, partially flow-sensitive interval analysis

® The analysis uses a query-classifier C : Query — {l,0}

x =0; y=0; z=input(Q); w = 0;

1

2 y X, y++;

3 assert (y > 0); // Query 1 provable

4 assert (z > 0); // Query 2 unprovable
5

assert (w == 0); // Query 3 unprovable

35

Partial Flow-Sensitive Analysis

® A query-based, partially flow-sensitive interval analysis

® The analysis uses a query-classifier C : Query — {l,0}

i |x=0; y=0; z=dinput(); w = 0;
2 y = X; yt+;
3 |assert (y > 0); // Query 1 provable
4 assert (z > 0); // Query 2 unprovable
s |assert (w == 0); // Query 3 unprovable
flow-sensitive result flow-1nsensitive result
line abstract state abstract state
1 {x|—>00,yl—>_0,0:}
2 | {z—[0,0],y — [1,1]}
4 {z +—[0,0],y — [1,1]}
5 {x —[0,0],y — [1,1]}

Learning a Query Classifier

Standard binary classification:

(g, b:) by

36

Learning a Query Classifier

Standard binary classification:

{(qi;bi) }iq » (v, b)) iy
(UZ' - Bk)

transform to
feature vectors

36

Learning a Query Classifier

Standard binary classification:

{(qiabi) ?:1 > {(Uiabz’) ?’:1 » C:B" = B
(U@' - Bk)

transform to apply

standard learning

feature vectors :
algorithms

36

Learning a Query Classifier

Standard binary classification:

(i, 0i) pizy > {(vi, bi) iz - C:B" — B
(UZ' - Bk)

apply
standard learning
algorithms

transform to
feature vectors

® Success relies on how we convert queries to feature vectors

® This feature engineering has been done manually

36

Conversion from Queries to
Feature Vectors

® A set of feature features I = {my,..., 7%}
® a feature encodes a property about queries

® A procedure to check whether a query satisfies a
feature

match : Query x Feature — B

® The feature vector of a query q:

(match(q,71),...,match(q, %))

37

Automatic Feature Generation

® Generate feature programs by running reducer

® small pieces of code that minimally describe when it is
worth increasing the precision

® Represent them by abstract data-flow graphs

® generalized form of feature programs

38

e I e)Y B - L S T O

Generating Feature Programs

a=0; b= 0;
while (1) { 1 a = 0;

b = unknown() ; » while (1) {

if (a > b) reduce(P, ¢) 3 if (a < 3)

if (a < 3) = 4 assert (a < 5);
assert (a < 5); 5 a++;

a++; 6 F
+

® By running a program reducer: e.g., C-Reduce [PLDI’|2]
reduce :Px (P—B) - P

® Feature-preserving condition:

¢(P) = FI(P) = unproven \ F'S(P) = proven

39

AN »n kWD =

Generalize to Abstract
Data-Flow Graphs

a = 0;
while (1) { id :=id + ¢
if (a < 3) o
assert (a < b); = (>
a++; Id :=c >id<cm
+

® The right level of abstraction depends on an analysis

® We choose the best abstraction using a combination of
searching and cross-validation

40

Feature Generation

® Apply the method on codebases:

r

_

P1, P2, ...,Pm

N

J

Codebase

= H:{ﬂ'l,...,ﬂ'k}

4]

Matching Algorithm

match : Query x Feature — B

id

=T ~id > id

(Jid:=id +c id :=id + ¢

o NI N kA WD

— |l —

U
R
N

i< i< R 5

|
o

a=0; b=0;
while (1) {
b = unknown() ;
if (a > b)
if (a < 3)
assert (a < 5);
at++:

})

42

Matching Algorithm

match : Query x Feature — B

id ;= T

id > id

id :=i1d+c

s
\

o NI N kA WD

— |l —

Id := ¢

a=0; b=0;
while (1) A
b = unknown() ;
if (a > b)

if (a < 3)

+

at++;

)

assert (a < 5);

Id :=1d + ¢

U
R
N

id :

|
o

Subgraph inclusion:
(N1, E1) C (Na, Ey) <= Ny C N, ANFE; CFE;

42

Learning a Query Classifier

r

_

P1, P2, ...,Pm

N

J

Codebase

— H:{ﬂ'l,...,ﬂ'k}

U
{(vi, bi) }iq

AN

C: B - B

43

Experiments

Effectiveness of partially flow-sensitive analysis

Query Prediction Analysis Comparison
Prove Sec Oh et al. [38]
Trial | Precision | Recall Fli FSi Ours Fli FSi Ours | Quality | Cost Self Quality | Cost
1 926 % | 77.9 % 5,340 6,053 5,973 38.2 564.0 553 | 88.7% | 1.4x | 88.7 % 85.2% | 1.5x
2 78.8 % | 73.3 % 2,972 3,373 3,262 16.3 460.5 257 | 723 % | 1.5x | 72.0 % 41.6% | 1.9x
3 66.7 % | 73.3 % 3,984 4,668 4,559 273 | 1,635.6 | 176.2 | 84.0% | 6.4x | 82.7 % 89.9% | 3.2x
4 88.7% | 68.8 % 4,600 5,450 5,307 38.1 688.2 596 | 83.1% | 1.5x | 83.5% 60.7% | 1.9x
5 899 % | 79.4 % 2,517 2,971 2,945 10.9 325.9 189 | 942% | 1.7x | 94.0 % 47.8% | 2.1x
TOTAL 81.5% | 739 % | 19,413 | 22,515 | 22,046 | 131.1 | 3,674.4 | 336.0 | 848 % | 2.5x | 84.6 % 68.4% | 2.1x
Effectiveness of partially relational analysis
Query Prediction Analysis Comparison
Prove Sec Heo et al. [21]
Trial | Precision | Recall FSi IMPCT Ours FSi IMPCT Ours Quality | Cost Self Quality | Cost
1 74.8 % | 81.3 % 3,678 3,806 3,789 140.7 389.8 189.5 | 86.7% | 1.3x | 54.2% | 100.0% | 3.0x
2 84.1 % | 82.6 % 5,845 6,004 5,977 613.5 | 18,022.9 7755 | 83.0% | 1.3x | 65.5% 302% | 09x
3 82.8% | 73.0 % 1,926 2,079 2,036 315.2 2,396.9 460.2 | 719% | 1.5x | 95.7 % 922 % | 1.1x
4 77.6 % | 85.2 % 2,221 2,335 2,313 72.7 495.1 1412 | 80.7% | 19x | 67.2% | 100.0% | 2.0x
5 71.6 % | 78.4 % 2,886 2,962 2,946 148.9 557.2 2102 | 789 % | 1.4x | 599 % 96.1 % | 2.3x
TOTAL 79.0% | 799 % | 16,556 17,186 | 17,061 | 1,291.0 | 21,8619 | 1,776.6 | 80.2% | 1.4x | 67.7 % 80.0% | 1.4x

44

Summary

Choosing a good abstraction is a key challenge in
static program analysis

New data-driven approach is promising

Further information:

http://prl.korea.ac.kr

45

http://prl.korea.ac.kr

Summary

Choosing a good abstraction is a key challenge in
static program analysis

New data-driven approach is promising

Further information:

http://prl.korea.ac.kr

Thank you

45

http://prl.korea.ac.kr

