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Precision vs. Scalability
Tradeoff in Static Analysis

precise but
slow

analysis time
(scalability)

This talk: how to use machine learning

fast a.nd fast but
precise Imprecise

false alarms
(precision)



Example |: Flow Sensitivity

a _'0,0'_
b | [0,0]
c| [LI]
a | [IL1]
b | [0,0]
c| [LI] precise but costly
a | [IL1]
b | [0,0]
C ='2,2'=
l a | [1,1]
b | [I,I]
assert(b>0) c _-2 2-




Flow Insensitivity

a [ [0,0]
b | [0,0]
c| [1,1]
a | [1,1]
2| 19,
bl 6 e cRESHItRPHHPPSERe
3 || il Aoy
b |Y,U]
c| [2,2]
a | [1,1]
b | [I,1]
assert(b>0) c| 2.2




Selective Flow Sensitivity
FS :{a,b} FI : {c}

a | [0,0]
b | [0,0]

a [ [l,+oo]
b | [0,0]

C [|,+oo]

a [ [l,+oo]
b | [0,0]

| S

assert(b>0)

cheap and precise



Selective Flow Sensitivity
FS :{b,c} FI : {a}

b | [0,0]
c| 1,1

b | [0,0]

c| 1,1

a [O,+oo]

b | [0,0]
c | [22]

l b | [0,+99]
c | [22]

assert(b>0)

fail to prove



Challenging Search Problem

“How to find a good program abstraction?”

® |ntractably large search space, if not infinite

o g2Vl difference abstractions for flow sensitivity

® Most of them are too imprecise or costly

® P({ab,c}) = {Sstarstbister.{a.b) tbrejtase) asb-€r)

The only nontrivial abstraction that proves assertion

A fundamental problem in static analysis
=>




Example 2: Context Sensitivity

cl:

c2:

c3:

c4:
c5:

int h(n) {ret n;}

void f(a) {

}

X = h(a);
assert(x > 0);
y = h(input());

void g() {f(8);}

void m() {

}

f(4);
g();
g();

// Query <@ holds always



cl

c2:

c3:

c4:

co:

int h(n){retn I3

+
void g() {f(8);}

void m() {

L

Context Insensitivity

f(4);
g();
g();

| v01d f(a) {
8 x = h(a -
assert(x > 0); "
y = h(input()J;

) ;

c3

c5,c6 ‘I”

cheap but imprecise

c4 ‘li.\\\gi;fz




k-Bounded Context Sensitivity

cl:

c2:
c3:

c4:

Co:

(k-CFA)

int h(n) {ret n;}

void f(a) {

}

void g() {f(8);}

X = h(a);

assert(x > 0);
y = h(input());

void m() {

}

f(4);

g();
g();

(k=3)

c4

g

precise but expensive

|0



cl:

c2:

c3:

c4:

cb:

Selective k-CFA

int h(n) {ret n;}

Apply 2-ctx-sens: {h}
void f(a) { Apply |-ctx-sens: {f}
X = h(a); Apply 0-ctx-sens: {g, m}
assert(x > 0);
y = h(input()); cl °

| o
void g() {f(8);} y \

c2
void m() { K
f(4); cl
g(); c5,co e—> @
g(); K

cheap and precise

}



Challenging Search Problem

“How to find a good program abstraction?”

® Abstraction space:
Func — {0,1,...,k}

o (k+ 1)f»el different abstractions

12



Our Data-Driven Approach

Abstraction

Abstraction JCEAEUELEY) Static
Heuristic Analyzer

Program — — Results

>

Traditionally, abstraction heuristics developed manually by human experts:

Efficient and Preci : s
Modeling the Heap by M tomata Precision-G text Sensitivity for Pointer Analysis ecision-Preserving Yet Fast Object-Sensitive Pointer cise by Unleashing the
lysis with Partial Context Sensitivity jvity
Tt YUE U,
m

PLDI’ 14 POPL 17 PLDI 17 OOPSLA’I8 FSE’18 OOPSLA’19 OOPSLA21

=> nontrivial and time-consuming



Our Data-Driven Approach

Abstraction

Abstraction JCE-ACUEREY Static
Program Heuristic @ Analyzer Results
ma machine-learning techniques
JI% specially designed for static analysis

GitHub '

® Automatic: little reliance on analysis designers

® Powerful: machine-tuning outperforms hand-tuning

|4



Our Data-Driven Approach

ML tools developed for static analysis:

Learning algorithm with linear model [OOPSLA’| 5]

Learning algorithm with disjunctive model [OOPSLA’l7a]

Learning algorithm with automated feature generation [OOPSLA’|7b]
Learning algorithm for symbolic execution [ICSE’ | 8]

Learning algorithm for non-monotone analyses [OOPSLA’| 8]

Learning algorithm with feature language [OOPSLA20]
Learning algorithm for boosting k-CFA [POPL?22]

|5



Data-Driven Static Analysis
with Linear Models

(OOPSLA’|5)



Example: Flow Sensitivity

FS :{a,b} FI : {c}

a | [0,0]
b | [0,0]

a [ [l,+oo]
b | [0,0]

C [|,+oo]

a [ [l,+oo]
b | [0,0]

1 ST

assert(b>0)




Settings

® P & P :aninput program to analyze
® of, :the set of abstractions for P
e ac o= Varp— {0,1} =2V
® (), :the set of queries (assertions) in P

® goal of static analysis is to prove as much as possible

|18



Settings

Static analyzer is modeled by blackbox function F/p :

Fp:dp— 2% xN

e (O € 29 :assertions proved by the analysis
® N :integer denoting cost (e.g., time, memory)
® cost(Fp(a)) : cost of analysis with abstraction a

e proved(Fp(a)) : precision of analysis with abstraction a



Machine Learning: Three Steps

|. Define a parameterized heuristic #Z

H () : 2V

2. Define a learning objective as optimization problem:
“Find I1 that maximizes analysis performance”

3. Solve the optimization problem via learning algorithm

20



|. Parameterized Heuristic
H(P) : 2Varr

(1) Represent program variables as feature vectors.
(2) Compute the score of each variable.

(3) Choose top-k variables with highest scores

21



(1) Features

A= 1{a,a,....,a,}
® A feature is a predicate over variables:

a;: Var - {0,1}

® E.g,syntactic features for programs variables
® |s it a local variable?! or global variable?
® |s it passed to a function as argument? (e.g., f(x))

® |s it incremented by a constant value! (e.g., x=x+1)

22



(1) Features

® Represent each variable as a feature vector:
A(X) — <a1(.X), Clz(.X), Cl3(X), a4(x)9 Cls(X)>

A(x) = (1,0,1,0,0)
A(y) = (1,0,1,0,1)
A(z) = (0,0,1,1,0)

23



(2) Scoring

® The parameter Il is a real-valued vector: e.g.,
IT =<0.9,0.5,-0.6,0.7,0.3)
® Compute scores of variables by linear combination:

score(x) = <1,0,1,0,0)-¢0.9, 0.5,-0.6,0.7,0.3) = 0.3
score(y) = (1,0,1,0,1)+¢0.9,0.5,-0.6,0.7,0.3) = 0.6
score(z) = ¢0,0,1,1,0)-¢0.9, 0.5, -0.6,0.7,0.3) = 0.1

24



(3) Choose Top-k Variables

® Choose the top-k(7%) variables based on their scores:
e.g., when k=667%,

score(x) = 0.3

score(y) = 0.6 > {xy)

score(z) = 0.1

® In practice, choosing 10% of variables strikes the
precision and cost balance well

25



2. Optimization Problem

® Goal of learning is to find good parameter 11 from data:

Codebase P = {P,P,,....P,}] = ] e R"

® Formulated as the optimization problem:

Find 11 that maximizes Z proved(Fp(# i(P)))
PepP

analysis precision over

the training data

26



3. Learning Algorithm

® Simple algorithm based on random sampling:

repeat N times

pick IT € R"” randomly

evaluate 2 proved(Fp(# 1(P)))
PeP

return best 11 found

® The algorithm can be improved with Bayesian optimization
(details in paper)

27



Effectiveness

® Implemented in Sparrow, an interval analyzer for C

® 45 syntactic features for program variables

® Evaluated on 30 open-source programs

® Training with 20 programs (12 hours) and evalation on 10

Precision
F FS
_
0 100
Cost
F FS

| x | 8x

28



Limitation of Linear Method

® Not effective enough to beat manual heuristics

® E.g., context-sensitive pointer analysis (Java bloat)

25001 ©® 2-context-sensitive

[ manual heuristic [PLDI’ | 4] ]

analysis time disjunctive
(sec) [C?/OPSLA’ 7] | )Iinear [OOPSLA’|5]

® insensitive

1200 2000
# of alarms

29



Data-Driven Static Analysis

with Disjunctive Models
(OOPSLA’l7)



Key Limitation

® |inear heuristic is not expressive to capture complex
program properties

r:{ay,as}

y:{a) Can we select {x, w}?
< . {@2}
w : ()

® We need a method that allows disjunctions

(a;1 /N\ &2) V (—lal /N\ —ICLQ)

31



cl:

c2:

c3:

c4:

cb:

Example: Context Sensitivity

int h(n) {ret n;}

Apply 2-ctx-sens: {h}
void f(a) { Apply |-ctx-sens: {f}
X = h(a); Apply 0-ctx-sens: {g, m}
assert(x > 0);
y = h(input()); cl 6

| o
void g() {f(8);} y \

c2
void m() { K
f(4); cl
g(); c5,co e—> @
g(); K

cheap and precise

}

32



Learning Algorithm Overview

Training data Atomic features

Static analyzer (a set of programs) (al,a2,...,a25)

\ l e.g., procedures have

invocation stmt,
Leal"ning AIgO r'|th m proced.ures return
strings, etc

l

Learned heuristic for applying context-sensitivity:

f2: procedures to apply 2-context-sensitivity
IAN-3A=6A8A9A=16 A—-17 A =18 AN =19 A =20 A =21 A =22 AN =23 N =24 A\ =25
fl: procedures to apply |-context-sensitivity

(IA-3A-4A=TA=8A6A=TIA=I5A=16 A=17 A =18 A =19 A =20 A =21 A =22 A =23 A =24 A =25)V
(-3A=4AN=TA-8A-9IAI0ANTLIALI2A13A=16 A =17 A =18 A =19 A =20 A =21 A =22 A =23 A =24 A =25)V
(-3A=9A13A14A15A =16 A =17 A =18 A =19 A =20 A =21 A =22 A =23 A =24 A =25)V
(IA2A=3AN4A-5AN=6A=TA=8A=9A-10A-13A=15A =16 A =17 A =18 A =19 A =20 A =21 A =22
A=23 A =24 A =25)

33



Settings

P € P :a program to analyze

k : the degree of abstraction

® eg,k=2for2-CFA

® eg, k=1 for flow sensitivity

A p : the set of abstractions for P
® g€ dp=Funcp — {0,1,...,k}

Qp : the set of queries (assertions) in P

34



Input |: Static Analyzer

Static analyzer is modeled by blackbox function F/p :

Fp:dp— 2% xN

e (O € 29 :assertions proved by the analysis
® N :integer denoting cost (e.g., time, memory)
® cost(Fp(a)) : cost of analysis with abstraction a

e proved(Fp(a)) : precision of analysis with abstraction a



Input 2, 3:
Programs and Features

® Trainingdata P = {P,P,,...,P }
® Atomic features A = {a;,a,, ...,qa,}

® g :Func — {true, false}

® A feature denotes a set of functions:

lallp = {m € Func | a(m) = true}

36



Output: Abstraction Heuristic

® An abstraction heuristic # :

H(P): 9 p= Funcp — {0,1,..., k}
® The heuristic is used to analyze new program P :

Fp(# (P))

37



Machine Learning: Three Steps

|. Define a parameterized heuristic #Z

H (P - 2Fwner

2. Define a learning objective as optimization problem:
“Find I1 that maximizes analysis performance”

3. Solve the optimization problem via learning algorithm

38



|. Parameterized Heuristics

® The heuristic Z'; has k boolean formulas as
learnable parameters:

= 1S s i)

® FEach formula f; is defined over atomic features (A):

f— true | false | a; € A | =f | fi Ay | fi Vo

® A formula denotes a set of functions:

[true]]l = Func [allp = {m € Func | a(m) = true}
[ false] = & [=f 1] = Func \ [f]
[fi ALD =TATNTLA]D [fivARl =141V IA]D

39



|. Parameterized Heuristics

Hq(P):dp= Funcp = {0,1,...,k}

o WithI1=(f.f,.... .):

H(P) = Am .i such that m € [[f]

(when m € [[f.]l and m € [[]?]], max(i, j))

40



Example

int h(n) {ret n;} A = {ay,a,, as, dy, as)

vo)i(dzfr(]e();)f h:{a,as,a5y  £:{asas}
assert(x > 0); g: 141,00, 03}  m: {a, a.,a
y = h(input()); v (3, 3, G4}

}

void g() {f(8):} Heuristic %m,ﬁ) with

void m() < h="aNas, f,=(aANas)V (a, A a3)
0 (LAl = (£.8). [4]= (2]

1 9t); produces the abstraction:

ih=2, f—>1, g0 m— 0}

4]



2. Optimization Problem

Find I1 that minimizes Z cost(Fp(#Z (P)))
PeP

while ensuring a user-provided precision constraint.

E.g.,“maintain 90% precision of 2-CFA”

# of assertions proved by the
current abstraction

= D pep | Proved(Fp(Z (P))) |

> pep | Proved(Fp(Am.2)) |

# of assertions proved by the
most precise abstraction (2-CFA)




3. Learning Algorithm

We learn each formula via iterative refinement

|. Initialize f to the most general formula in DNF:
f= aq V_'al Va2V—Ia2V \/anV—lan ( — true)

2. Repeat the following (until no refinement is possible)
f: C1VC2V VCm

|. Choose the most expensive conjunct, say ¢;

2. Refine the conjunct with some feature a;:

f=qVvVeV...V(gAa) V...V,

3. Check the precision constraint: If not, revert the last change.

(details in paper)

43



Effectiveness

® Now data-driven approach beats hand-tuning

® [E.g., context-sensitive pointer analysis for Java (bloat)

25001 ©® 2-context-sensitive

[ manual heuristic [PLDI’ | 4] ]

analysis time disjunctive
(sec) [C?/OPSLA’ 7] | )Iinear [OOPSLA’|5]

® insensitive

1200 2000
# of alarms



Summary

® A general framework for generating analysis heuristics:

Static analyzer —— 4 d I&'@

Data (programs) — | IV n’

context-sensitivity heuristics
flow-sensitivity heuristics

® More recent results available at http://prl.korea.ac.kr

® Without handcrafted features [OOPSLA’20]

Non-traditional applications [OOPSLA’[8, POPL22]

Beyond static analysis [ICSE’ |8, ICSE™22]

Thank you! 45



http://prl.korea.ac.kr

