Data-Driven Static Analysis:
Combining Machine Learning
and Program Analysis

Hakjoo Oh

Korea University

28 January 2022 @POPL22 Virtual Workshop

(co-work with Minseok Jeon, Sehun Jeong, Sooyoung Cha,
Seongjoon Hong, Junhee Lee, Kwangkeun Yi, Hongseok Yang)

Precision vs. Scalability
Tradeoff in Static Analysis

precise but
slow

analysis time
(scalability)

This talk: how to use machine learning

fast a.nd fast but
precise Imprecise

false alarms
(precision)

Example |: Flow Sensitivity

a _'0,0'_
b | [0,0]
c| [LI]
a | [IL1]
b | [0,0]
c| [LI] precise but costly
a | [IL1]
b | [0,0]
C ='2,2'=
l a | [1,1]
b | [I,I]
assert(b>0) c _-2 2-

Flow Insensitivity

a [[0,0]
b | [0,0]
c| [1,1]
a | [1,1]
2| 19,
bl 6 e cRESHItRPHHPPSERe
3 || il Aoy
b |Y,U]
c| [2,2]
a | [1,1]
b | [I,1]
assert(b>0) c| 2.2

Selective Flow Sensitivity
FS :{a,b} FI : {c}

a | [0,0]
b | [0,0]

a [[l,+oo]
b | [0,0]

C [|,+oo]

a [[l,+oo]
b | [0,0]

| S

assert(b>0)

cheap and precise

Selective Flow Sensitivity
FS :{b,c} FI : {a}

b | [0,0]
c| 1,1

b | [0,0]

c| 1,1

a [O,+oo]

b | [0,0]
c | [22]

l b | [0,+99]
c | [22]

assert(b>0)

fail to prove

Challenging Search Problem

“How to find a good program abstraction?”

® |ntractably large search space, if not infinite

o g2Vl difference abstractions for flow sensitivity

® Most of them are too imprecise or costly

® P({ab,c}) = {Sstarstbister.{a.b) tbrejtase) asb-€r)

The only nontrivial abstraction that proves assertion

A fundamental problem in static analysis
=>

Example 2: Context Sensitivity

cl:

c2:

c3:

c4:
c5:

int h(n) {ret n;}

void f(a) {

}

X = h(a);
assert(x > 0);
y = h(input());

void g() {f(8);}

void m() {

}

f(4);
g();
g();

// Query <@ holds always

cl

c2:

c3:

c4:

co:

int h(n){retn I3

+
void g() {f(8);}

void m() {

L

Context Insensitivity

f(4);
g();
g();

| v01d f(a) {
8 x = h(a -
assert(x > 0); "
y = h(input()J;

) ;

c3

c5,c6 ‘I”

cheap but imprecise

c4 ‘li.\\\gi;fz

k-Bounded Context Sensitivity

cl:

c2:
c3:

c4:

Co:

(k-CFA)

int h(n) {ret n;}

void f(a) {

}

void g() {f(8);}

X = h(a);

assert(x > 0);
y = h(input());

void m() {

}

f(4);

g();
g();

(k=3)

c4

g

precise but expensive

|0

cl:

c2:

c3:

c4:

cb:

Selective k-CFA

int h(n) {ret n;}

Apply 2-ctx-sens: {h}
void f(a) { Apply |-ctx-sens: {f}
X = h(a); Apply 0-ctx-sens: {g, m}
assert(x > 0);
y = h(input()); cl °

| o
void g() {f(8);} y \

c2
void m() { K
f(4); cl
g(); c5,co e—> @
g(); K

cheap and precise

}

Challenging Search Problem

“How to find a good program abstraction?”

® Abstraction space:
Func — {0,1,...,k}

o (k+ 1)f»el different abstractions

12

Our Data-Driven Approach

Abstraction

Abstraction JCEAEUELEY) Static
Heuristic Analyzer

Program — — Results

>

Traditionally, abstraction heuristics developed manually by human experts:

Efficient and Preci : s
Modeling the Heap by M tomata Precision-G text Sensitivity for Pointer Analysis ecision-Preserving Yet Fast Object-Sensitive Pointer cise by Unleashing the
lysis with Partial Context Sensitivity jvity
Tt YUE U,
m

PLDI’ 14 POPL 17 PLDI 17 OOPSLA’I8 FSE’18 OOPSLA’19 OOPSLA21

=> nontrivial and time-consuming

Our Data-Driven Approach

Abstraction

Abstraction JCE-ACUEREY Static
Program Heuristic @ Analyzer Results
ma machine-learning techniques
JI% specially designed for static analysis

GitHub '

® Automatic: little reliance on analysis designers

® Powerful: machine-tuning outperforms hand-tuning

|4

Our Data-Driven Approach

ML tools developed for static analysis:

Learning algorithm with linear model [OOPSLA’| 5]

Learning algorithm with disjunctive model [OOPSLA’l7a]

Learning algorithm with automated feature generation [OOPSLA’|7b]
Learning algorithm for symbolic execution [ICSE’ | 8]

Learning algorithm for non-monotone analyses [OOPSLA’| 8]

Learning algorithm with feature language [OOPSLA20]
Learning algorithm for boosting k-CFA [POPL?22]

|5

Data-Driven Static Analysis
with Linear Models

(OOPSLA’|5)

Example: Flow Sensitivity

FS :{a,b} FI : {c}

a | [0,0]
b | [0,0]

a [[l,+oo]
b | [0,0]

C [|,+oo]

a [[l,+oo]
b | [0,0]

1 ST

assert(b>0)

Settings

® P & P :aninput program to analyze
® of, :the set of abstractions for P
e ac o= Varp— {0,1} =2V
® (), :the set of queries (assertions) in P

® goal of static analysis is to prove as much as possible

|18

Settings

Static analyzer is modeled by blackbox function F/p :

Fp:dp— 2% xN

e (O € 29 :assertions proved by the analysis
® N :integer denoting cost (e.g., time, memory)
® cost(Fp(a)) : cost of analysis with abstraction a

e proved(Fp(a)) : precision of analysis with abstraction a

Machine Learning: Three Steps

|. Define a parameterized heuristic #Z

H () : 2V

2. Define a learning objective as optimization problem:
“Find I1 that maximizes analysis performance”

3. Solve the optimization problem via learning algorithm

20

|. Parameterized Heuristic
H(P) : 2Varr

(1) Represent program variables as feature vectors.
(2) Compute the score of each variable.

(3) Choose top-k variables with highest scores

21

(1) Features

A= 1{a,a,....,a,}
® A feature is a predicate over variables:

a;: Var - {0,1}

® E.g,syntactic features for programs variables
® |s it a local variable?! or global variable?
® |s it passed to a function as argument? (e.g., f(x))

® |s it incremented by a constant value! (e.g., x=x+1)

22

(1) Features

® Represent each variable as a feature vector:
A(X) — <a1(.X), Clz(.X), Cl3(X), a4(x)9 Cls(X)>

A(x) = (1,0,1,0,0)
A(y) = (1,0,1,0,1)
A(z) = (0,0,1,1,0)

23

(2) Scoring

® The parameter Il is a real-valued vector: e.g.,
IT =<0.9,0.5,-0.6,0.7,0.3)
® Compute scores of variables by linear combination:

score(x) = <1,0,1,0,0)-¢0.9, 0.5,-0.6,0.7,0.3) = 0.3
score(y) = (1,0,1,0,1)+¢0.9,0.5,-0.6,0.7,0.3) = 0.6
score(z) = ¢0,0,1,1,0)-¢0.9, 0.5, -0.6,0.7,0.3) = 0.1

24

(3) Choose Top-k Variables

® Choose the top-k(7%) variables based on their scores:
e.g., when k=667%,

score(x) = 0.3

score(y) = 0.6 > {xy)

score(z) = 0.1

® In practice, choosing 10% of variables strikes the
precision and cost balance well

25

2. Optimization Problem

® Goal of learning is to find good parameter 11 from data:

Codebase P = {P,P,,....P,}] =] e R"

® Formulated as the optimization problem:

Find 11 that maximizes Z proved(Fp(# i(P)))
PepP

analysis precision over

the training data

26

3. Learning Algorithm

® Simple algorithm based on random sampling:

repeat N times

pick IT € R"” randomly

evaluate 2 proved(Fp(# 1(P)))
PeP

return best 11 found

® The algorithm can be improved with Bayesian optimization
(details in paper)

27

Effectiveness

® Implemented in Sparrow, an interval analyzer for C

® 45 syntactic features for program variables

® Evaluated on 30 open-source programs

® Training with 20 programs (12 hours) and evalation on 10

Precision
F FS
_
0 100
Cost
F FS

| x | 8x

28

Limitation of Linear Method

® Not effective enough to beat manual heuristics

® E.g., context-sensitive pointer analysis (Java bloat)

25001 ©® 2-context-sensitive

[manual heuristic [PLDI’ | 4]]

analysis time disjunctive
(sec) [C?/OPSLA’ 7] |)Iinear [OOPSLA’|5]

® insensitive

1200 2000
of alarms

29

Data-Driven Static Analysis

with Disjunctive Models
(OOPSLA’l7)

Key Limitation

® |inear heuristic is not expressive to capture complex
program properties

r:{ay,as}

y:{a) Can we select {x, w}?
< . {@2}
w : ()

® We need a method that allows disjunctions

(a;1 /N\ &2) V (—lal /N\ —ICLQ)

31

cl:

c2:

c3:

c4:

cb:

Example: Context Sensitivity

int h(n) {ret n;}

Apply 2-ctx-sens: {h}
void f(a) { Apply |-ctx-sens: {f}
X = h(a); Apply 0-ctx-sens: {g, m}
assert(x > 0);
y = h(input()); cl 6

| o
void g() {f(8);} y \

c2
void m() { K
f(4); cl
g(); c5,co e—> @
g(); K

cheap and precise

}

32

Learning Algorithm Overview

Training data Atomic features

Static analyzer (a set of programs) (al,a2,...,a25)

\ l e.g., procedures have

invocation stmt,
Leal"ning AIgO r'|th m proced.ures return
strings, etc

l

Learned heuristic for applying context-sensitivity:

f2: procedures to apply 2-context-sensitivity
IAN-3A=6A8A9A=16 A—-17 A =18 AN =19 A =20 A =21 A =22 AN =23 N =24 A\ =25
fl: procedures to apply |-context-sensitivity

(IA-3A-4A=TA=8A6A=TIA=I5A=16 A=17 A =18 A =19 A =20 A =21 A =22 A =23 A =24 A =25)V
(-3A=4AN=TA-8A-9IAI0ANTLIALI2A13A=16 A =17 A =18 A =19 A =20 A =21 A =22 A =23 A =24 A =25)V
(-3A=9A13A14A15A =16 A =17 A =18 A =19 A =20 A =21 A =22 A =23 A =24 A =25)V
(IA2A=3AN4A-5AN=6A=TA=8A=9A-10A-13A=15A =16 A =17 A =18 A =19 A =20 A =21 A =22
A=23 A =24 A =25)

33

Settings

P € P :a program to analyze

k : the degree of abstraction

® eg,k=2for2-CFA

® eg, k=1 for flow sensitivity

A p : the set of abstractions for P
® g€ dp=Funcp — {0,1,...,k}

Qp : the set of queries (assertions) in P

34

Input |: Static Analyzer

Static analyzer is modeled by blackbox function F/p :

Fp:dp— 2% xN

e (O € 29 :assertions proved by the analysis
® N :integer denoting cost (e.g., time, memory)
® cost(Fp(a)) : cost of analysis with abstraction a

e proved(Fp(a)) : precision of analysis with abstraction a

Input 2, 3:
Programs and Features

® Trainingdata P = {P,P,,...,P }
® Atomic features A = {a;,a,, ...,qa,}

® g :Func — {true, false}

® A feature denotes a set of functions:

lallp = {m € Func | a(m) = true}

36

Output: Abstraction Heuristic

® An abstraction heuristic # :

H(P): 9 p= Funcp — {0,1,..., k}
® The heuristic is used to analyze new program P :

Fp(# (P))

37

Machine Learning: Three Steps

|. Define a parameterized heuristic #Z

H (P - 2Fwner

2. Define a learning objective as optimization problem:
“Find I1 that maximizes analysis performance”

3. Solve the optimization problem via learning algorithm

38

|. Parameterized Heuristics

® The heuristic Z'; has k boolean formulas as
learnable parameters:

= 1S s i)

® FEach formula f; is defined over atomic features (A):

f— true | false | a; € A | =f | fi Ay | fi Vo

® A formula denotes a set of functions:

[true]]l = Func [allp = {m € Func | a(m) = true}
[false] = & [=f 1] = Func \ [f]
[fi ALD =TATNTLA]D [fivARl =141V IA]D

39

|. Parameterized Heuristics

Hq(P):dp= Funcp = {0,1,...,k}

o WithI1=(f.f,.... .):

H(P) = Am .i such that m € [[f]

(when m € [[f.]l and m € [[]?]], max(i, j))

40

Example

int h(n) {ret n;} A = {ay,a,, as, dy, as)

vo)i(dzfr(]e();)f h:{a,as,a5y £:{asas}
assert(x > 0); g: 141,00, 03} m: {a, a.,a
y = h(input()); v (3, 3, G4}

}

void g() {f(8):} Heuristic %m,ﬁ) with

void m() < h="aNas, f,=(aANas)V (a, A a3)
0 (LAl = (£.8). [4]= (2]

1 9t); produces the abstraction:

ih=2, f—>1, g0 m— 0}

4]

2. Optimization Problem

Find I1 that minimizes Z cost(Fp(#Z (P)))
PeP

while ensuring a user-provided precision constraint.

E.g.,“maintain 90% precision of 2-CFA”

of assertions proved by the
current abstraction

= D pep | Proved(Fp(Z (P))) |

> pep | Proved(Fp(Am.2)) |

of assertions proved by the
most precise abstraction (2-CFA)

3. Learning Algorithm

We learn each formula via iterative refinement

|. Initialize f to the most general formula in DNF:
f= aq V_'al Va2V—Ia2V \/anV—lan (— true)

2. Repeat the following (until no refinement is possible)
f: C1VC2V VCm

|. Choose the most expensive conjunct, say ¢;

2. Refine the conjunct with some feature a;:

f=qVvVeV...V(gAa) V...V,

3. Check the precision constraint: If not, revert the last change.

(details in paper)

43

Effectiveness

® Now data-driven approach beats hand-tuning

® [E.g., context-sensitive pointer analysis for Java (bloat)

25001 ©® 2-context-sensitive

[manual heuristic [PLDI’ | 4]]

analysis time disjunctive
(sec) [C?/OPSLA’ 7] |)Iinear [OOPSLA’|5]

® insensitive

1200 2000
of alarms

Summary

® A general framework for generating analysis heuristics:

Static analyzer —— 4 d I&'@

Data (programs) — | IV n’

context-sensitivity heuristics
flow-sensitivity heuristics

® More recent results available at http://prl.korea.ac.kr

® Without handcrafted features [OOPSLA’20]

Non-traditional applications [OOPSLA’[8, POPL22]

Beyond static analysis [ICSE’ |8, ICSE™22]

Thank you! 45

http://prl.korea.ac.kr

