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Our Story

• In 2007, we commercialized 

• memory-bug-finding tool for full C, non domain-specific 

• designed in abstract interpretation framework

• sound in design, unsound yet scalable in reality

• Realistic workbench available

• “let’s try to scale-up its sound & global analysis version”

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.
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sound & global analysis version
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• < 1.4M in 10hr 
with intervals

• < 0.14M in 20hrs 
with octagons



Precision-Preserving
Sparse Analysis Framework

baseline analysis “sparse” version
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General for AI-based analyzers for C-like languages

still

sparsify



Sparse Analysis Framework

• “Right Part at Right Moment”

• “Full Exploitation”

• enabled by Abstract Interpretation theory



Program

•     :  set of program points

•                     :  control flow relation

X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple �C, �→� where C is a finite set of control points and �→⊆ C×C
is a relation that denotes control dependencies of the program; c� �→ c indicates
that c is a next control point of c�. Each control point c is associated with com-
mand cmd(c). Command c has one of the following five types:

assign(lv , e) | alloc(lv , a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined
as follows:

expression e → n | e + e | lv | &lv

l-value lv → x | *e | e[e] | e.x
allocation a → [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-
value expression (lv), or an address-of expression (&lv). An l-value may be a vari-
able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).
Expressions and l-value expressions have no side-effects. All program variables, in-
cluding formal parameters, have unique names. Command assign(lv , e) assigns the
value of e into the location of lv . Command alloc(lv , a) allocates an array [e]l or
a structure {x}l, where e is the size of the array, x is the field name, and the sub-
script l is the label for the allocation site. For simplicity, we consider structures
with one field only. Each call-site for a procedure is represented by two control
points: a call-point and its corresponding return-point. A call-point is associated
with command call(fx, e), which indicates that procedure f , whose formal param-
eter is x, is called with actual parameter e. When c is a call-point (resp., return-
point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-
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2. Sparse Analysis Framework
2.1 Notation
Given function f ∈ A → B, we write f |C for the restriction

of function f to the domain dom(f) ∩ C. We write f\C for the

restriction of f to the domain dom(f)− C. We abuse the notation

f |a and f\a for the domain restrictions on singleton set {a}. We

write f [a �→ b] for the function got from function f by changing

the value for a to b. We write f [a1 �→ b1, · · · , an �→ bn] for

f [a1 �→ b1] · · · [an �→ bn]. We write f [{a1, · · · , an} w�→ b] for

f [a1 �→ f(a1) � b, · · · , an �→ f(an) � b] (weak update).

2.2 Program
A program is a tuple �C, �→� where C is a finite set of con-

trol points and �→⊆ C × C is a relation that denotes control

flows of the program; c� �→ c indicates that c is a next control

point of c�. Each control point is associated with a command, de-

noted cmd(c). A path p = p0p1 . . . pn is a sequence of control

points such that p0 �→ p1 �→ · · · �→ pn. We write Paths =
lfpλP.{c0c1 | c0 �→ c1}∪{p0 . . . pnc | p ∈ P ∧ pn �→ c} for the

set of all paths in the program.

Collecting Semantics Collecting semantics of program P is an

invariant [[P ]] ∈ C → 2S that represents a set of reachable states

at each control point, where the concrete domain of states, S =
L → V, maps concrete locations (L) to concrete values (V).

The collecting semantics is characterized by the least fixpoint of

semantic function F ∈ (C → 2S) → (C → 2S) such that,

F (X) = λc ∈ C.fc(
�

c��→c

X(c�)). (1)

where fc ∈ 2S → 2S is a semantic function at control point c.

Because our framework is independent from target languages, we

leave out the definition of the concrete semantic function fc.

2.3 Baseline Abstraction
We abstract the collecting semantics of program P by the following

Galois connection

C → 2S −−→←−−
α

γ
C → Ŝ (2)

where α and γ are pointwise liftings of abstract and concretization

function αS and γS (such that 2S −−−→←−−−
αS

γS Ŝ), respectively.

We consider a particular, yet general, family of abstract domains

where abstract state Ŝ is map L̂ → V̂ where L̂ is a finite set of

abstract locations, and V̂ is a (potentially infinite) set of abstract

values. All non-relational abstract domains, such as intervals [9],

are members of this family. Furthermore, the family covers some

numerical, relational domains. Practical relational analyses exploit

packed relationality [4, 13, 34, 43]; the abstract domain is of form

Packs → R̂ where Packs is a set of variable groups selected to be

related together. R̂ denotes numerical constraints among variables

in those groups. In such packed relational analysis, each variable

pack is treated as an abstract location (L̂) and numerical constraints

amount to abstract values (V̂). Examples of the numerical con-

straints are domain of octagons [34] and polyhedrons [12]. In prac-

tice, relational analyses are necessarily packed relational [4, 13]

because of otherwise unacceptable costs.

Abstract semantics is characterized as a least fixpoint of abstract

semantic function F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (3)

where f̂c ∈ Ŝ → Ŝ is a monotone abstract semantic function for

control point c. We assume that F̂ is sound with respect to F , i.e.,

α◦F � F̂ ◦α, then the soundness of abstract semantics is followed

by the fixpoint transfer theorem [11].

2.4 Sparse Analysis by Eliminating Unnecessary Propagation
The abstract semantic function given in (3) propagates some ab-

stract values unnecessarily. For example, suppose that we analyze

statement x := y using a non-relational domain, like interval do-

main [9]. We know for sure that the abstract semantic function for

the statement defines a new abstract value only at variable x and

uses only the abstract value of variable y. Thus, it is unnecessary to

propagate the whole abstract states. However, the function given in

(3) blindly propagates the whole abstract states of all predecessors

c� to control point c.

To make the analysis sparse, we need to eliminate this un-

necessary propagation by making the semantic function propagate

abstract values along data dependency, not control flows; that is,

we make the semantic function propagate only the abstract values

newly computed at one control point to the other where they are

actually used. In the rest of this section, we explain how to make

abstract semantic function (3) sparse while preserving its precision

and soundness.

2.5 Definition and Use Set
We first need to precisely define what are “definitions” and “uses”.

They are defined in terms of abstract semantics, i.e., abstract se-

mantic function f̂c, not concrete semantics.

Definition 1 (Definition set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Definition set D(c) at control point c
is a set of abstract locations that are assigned a new abstract value
by abstract semantic function f̂c, i.e.

D(c) � {l ∈ L̂ | ∃ŝ �
�

c��→c

S(c�).f̂c(ŝ)(l) �= ŝ(l)}.

Definition 2 (Use set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Use set U(c) at control point c is a
set of abstract locations that are used by abstract semantic function
f̂c, i.e.

U(c) � {l ∈ L̂ | ∃ŝ �
�

c��→c

S(c�).f̂c(ŝ)|D(c) �= f̂c(ŝ\l)|D(c)}.

Example 1. Consider the following simple subset of C:

cmd → x := e | ∗x := e
e → x | &x | ∗x.

The meaning of each statement and each expression is fairly stan-
dard. We design a pointer analysis for this as follows:

ŝ ∈ Ŝ = Var → 2Var

f̂c(ŝ) =






ŝ[x �→ Ê(e)(ŝ)] cmd(c) = x := e
ŝ[y �→ Ê(e)(ŝ)] cmd(c) = ∗x := e

and ŝ(x) = {y}
ŝ[ŝ(x)

w�→ Ê(e)(ŝ)] cmd(c) = ∗x := e

Ê(e)(ŝ) =






ŝ(x) e = x
{x} e = &x�

y∈ŝ(x) ŝ(y) e = ∗x

Now suppose that we analyze program 10�x := &y; 11�∗p := &z;
12�y := x; (superscripts are control points). Suppose that points-
to set of pointer p is {x, y} at control point 11� according to the
fixpoint. Definition set and use set at each control point are as
follows.

D(10�) = {x} U(10�) = ∅
D(11�) = {x, y} U(11�) = {p, x, y}
D(12�) = {y} U(12�) = {x}

• analyzer computes the fixpoint
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X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple �C, �→� where C is a finite set of control points and �→⊆ C×C
is a relation that denotes control dependencies of the program; c� �→ c indicates
that c is a next control point of c�. Each control point c is associated with com-
mand cmd(c). Command c has one of the following five types:

assign(lv , e) | alloc(lv , a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined
as follows:

expression e → n | e + e | lv | &lv

l-value lv → x | *e | e[e] | e.x
allocation a → [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-
value expression (lv), or an address-of expression (&lv). An l-value may be a vari-
able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).
Expressions and l-value expressions have no side-effects. All program variables, in-
cluding formal parameters, have unique names. Command assign(lv , e) assigns the
value of e into the location of lv . Command alloc(lv , a) allocates an array [e]l or
a structure {x}l, where e is the size of the array, x is the field name, and the sub-
script l is the label for the allocation site. For simplicity, we consider structures
with one field only. Each call-site for a procedure is represented by two control
points: a call-point and its corresponding return-point. A call-point is associated
with command call(fx, e), which indicates that procedure f , whose formal param-
eter is x, is called with actual parameter e. When c is a call-point (resp., return-
point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-
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(c is the next program point to c’)
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a structure {x}l, where e is the size of the array, x is the field name, and the sub-
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with one field only. Each call-site for a procedure is represented by two control
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Baseline Analysis
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• Abstract semantic function

• One abstract state        that subsumes all reachable 
states at each program point

: abstract semantics at point c
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Direct Implementation (convention)
 Too Weak To Scale
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less-382 (23,822 LoC)



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x
“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x
“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x

y

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x

y

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x

x

y

z

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b

x

x

y

z

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b

x

x

y

y

z

v

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b

x

x

y

y

z

v

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b

x

x

y

y

z

z

v

v

a
b

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x

x

y

y

z

z

v

v

a
b

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x

x

y

y

z

z

v

v

a
b

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x

x

y

y

z

z

v

v

a
b

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x

x

y

y

z

z

v

v

a
b

“Sparsifying” 
the Analysis

“Right Part at Right Moment”



10

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x

x

y

y

z

z

v

v

a
b

“Sparsifying” 
the Analysis

where α and γ are pointwise liftings of abstract and concretization function αS and
γS (such that 2S −→←−

αS

γS Ŝ), respectively. That is, we abstract the set of reachable
states by a single abstract state. Abstract memory state

Ŝ = L̂ → V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite × FieldName

V̂ = Ẑ× 2L̂ × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location may be a program variable (Var), an allocation site (AllocSite),
or a structure field (AllocSite ×FieldName). All elements of an array allocated at
allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)

10

replace syntactic dependency
by semantic dependency

(data dependency)

“Right Part at Right Moment”



Towards Sparse Version

 Analyzer computes the fixpoint of
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allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)
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Note that U( 11�) contains D( 11�) because of the weak update (
w�→):

the semantics of weak update ŝ[l
w�→ v] = ŝ[l �→ ŝ(l) � v] is

defined to use the target location l. This implicit use information,

which does not explicitly appear in the program text, is naturally

captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we

can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of

abstract location l defined at control point c0 is used at control

point cn, there is a data dependency between c0 and cn on l. Formal

definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-

tion �⊆ C× L̂× C defined as follows:

c0
l� cn � ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D(c0) ∩ U(cn) ∧ ∀i ∈ (0, n).l �∈ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at

cn, and there is no intermediate control point ci that may change the

value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency

excludes not only a path that always kills the definition but also a

path that might, but not always, kill the definition. In the latter case,

the definition that might be killed is, by Definition 2, included in the

use set of the definition point.

Example 2. In the program presented in Example 1, we can find

two data dependencies, 10� x� 11� and 11� x� 12�.

Comparison with Def-use Chains Our notion of data depen-

dency is different from the conventional notion of def-use chains. If

we want to conservatively collect all the possible def-use chains, we

should exclude only the paths from definition points to use points

when there exists a point that always kills the definition. We can

slightly modify Definition 3 to express def-use chain relation �du

as follows:

c0
l�du cn � ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D(c0) ∩ U(cn) ∧ ∀i ∈ (0, n).l �∈ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-

ways killed at control point c.

Example 3. We can find three def-use chains, 10� x�du 11�, 10� x�du

12�, and 11� x�du 12� in Example 1.

The reason why we use our notion of data dependencies instead

of def-use chains is that our data dependencies preserve the preci-

sion of the analysis even when approximations are involved. On the

other hand, sparse analysis with approximated def-use chains may

lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function

sparse, which propagates between control points only the abstract

values that participate in the fixpoint computation. Sparse abstract

function F̂s, whose definition is given below, is the same as the

original except that it propagates abstract values along to the data

dependency, not along to control flows:

F̂s(X̂) = λc ∈ C.f̂c(
�

c� l�c

X̂(c�)|l).

As this definition is only different in that it is defined over data

dependency (�), we can reuse abstract semantic function f̂c, and

its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse

abstract semantic function is the same as the one of original analy-

sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

∀c ∈ C.∀l ∈ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to

the original result only up to the entries that are defined in every

control point. This is fair since the sparse analysis result does not

contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical

since we can decide definition set D and use set U only with the

original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data

dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition

5).

Definition 4 (Approximated Data Dependency). Approximated

data dependency is ternary relation �a⊆ C × L̂ × C defined as

follows:

c0
l�a cn � ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D̂(c0) ∩ Û(cn) ∧ ∀i ∈ (0, n).l �∈ D̂(ci)

The definition is the same except that it is defined over D̂ and

Û. The derived sparse analysis is to compute the fixpoint of the

following abstract semantic function:

F̂a(X̂) = λc ∈ C.f̂c(
�

c� l�ac

X̂(c�)|l).

One thing to note is that not all D̂ and Û make the derived

sparse analysis compute the same result as the original. First,

both D̂(c) and Û(c) at each control point should be an over-

approximation of D(c) and U(c), respectively (we can easily show

that the analysis computes different result if one of them is an

under-approximation). Next, all spurious definitions that are in-

cluded in D̂ but not in D should be also included in Û. The follow-

ing example illustrates what happens when there exists an abstract

location which is a spurious definition but is not included in the

approximated use set.

Example 4. Consider the same program presented in Example 1.

except that we now suppose the points-to set of pointer p being {y}.

Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = ∅
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.

The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = ∅
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at

control point 11� is not included in approximated use set Û( 11�).
With this approximation, abstract value of x at 10� is not propagated

to 12�, while it is propagated in the original analysis ( 10� x� 12�, but

10� � x�a 12�). However, if {x} ⊆ Û( 11�), then the abstract value

Note that U( 11�) contains D( 11�) because of the weak update (
w�→):

the semantics of weak update ŝ[l
w�→ v] = ŝ[l �→ ŝ(l) � v] is

defined to use the target location l. This implicit use information,

which does not explicitly appear in the program text, is naturally

captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we

can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of

abstract location l defined at control point c0 is used at control

point cn, there is a data dependency between c0 and cn on l. Formal

definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-

tion �⊆ C× L̂× C defined as follows:

c0
l� cn � ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D(c0) ∩ U(cn) ∧ ∀i ∈ (0, n).l �∈ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at

cn, and there is no intermediate control point ci that may change the

value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency

excludes not only a path that always kills the definition but also a

path that might, but not always, kill the definition. In the latter case,

the definition that might be killed is, by Definition 2, included in the

use set of the definition point.

Example 2. In the program presented in Example 1, we can find

two data dependencies, 10� x� 11� and 11� x� 12�.

Comparison with Def-use Chains Our notion of data depen-

dency is different from the conventional notion of def-use chains. If

we want to conservatively collect all the possible def-use chains, we

should exclude only the paths from definition points to use points

when there exists a point that always kills the definition. We can

slightly modify Definition 3 to express def-use chain relation �du

as follows:

c0
l�du cn � ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D(c0) ∩ U(cn) ∧ ∀i ∈ (0, n).l �∈ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-

ways killed at control point c.

Example 3. We can find three def-use chains, 10� x�du 11�, 10� x�du

12�, and 11� x�du 12� in Example 1.

The reason why we use our notion of data dependencies instead

of def-use chains is that our data dependencies preserve the preci-

sion of the analysis even when approximations are involved. On the

other hand, sparse analysis with approximated def-use chains may

lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function

sparse, which propagates between control points only the abstract

values that participate in the fixpoint computation. Sparse abstract

function F̂s, whose definition is given below, is the same as the

original except that it propagates abstract values along to the data

dependency, not along to control flows:

F̂s(X̂) = λc ∈ C.f̂c(
�

c� l�c

X̂(c�)|l).

As this definition is only different in that it is defined over data

dependency (�), we can reuse abstract semantic function f̂c, and

its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse

abstract semantic function is the same as the one of original analy-

sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

∀c ∈ C.∀l ∈ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to

the original result only up to the entries that are defined in every

control point. This is fair since the sparse analysis result does not

contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical

since we can decide definition set D and use set U only with the

original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data

dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition

5).

Definition 4 (Approximated Data Dependency). Approximated

data dependency is ternary relation �a⊆ C × L̂ × C defined as

follows:

c0
l�a cn � ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D̂(c0) ∩ Û(cn) ∧ ∀i ∈ (0, n).l �∈ D̂(ci)

The definition is the same except that it is defined over D̂ and

Û. The derived sparse analysis is to compute the fixpoint of the

following abstract semantic function:

F̂a(X̂) = λc ∈ C.f̂c(
�

c� l�ac

X̂(c�)|l).

One thing to note is that not all D̂ and Û make the derived

sparse analysis compute the same result as the original. First,

both D̂(c) and Û(c) at each control point should be an over-

approximation of D(c) and U(c), respectively (we can easily show

that the analysis computes different result if one of them is an

under-approximation). Next, all spurious definitions that are in-

cluded in D̂ but not in D should be also included in Û. The follow-

ing example illustrates what happens when there exists an abstract

location which is a spurious definition but is not included in the

approximated use set.

Example 4. Consider the same program presented in Example 1.

except that we now suppose the points-to set of pointer p being {y}.

Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = ∅
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.

The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = ∅
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at

control point 11� is not included in approximated use set Û( 11�).
With this approximation, abstract value of x at 10� is not propagated

to 12�, while it is propagated in the original analysis ( 10� x� 12�, but

10� � x�a 12�). However, if {x} ⊆ Û( 11�), then the abstract value
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Note that U( 11�) contains D( 11�) because of the weak update (
w�→):

the semantics of weak update ŝ[l
w�→ v] = ŝ[l �→ ŝ(l) � v] is

defined to use the target location l. This implicit use information,

which does not explicitly appear in the program text, is naturally

captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we

can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of

abstract location l defined at control point c0 is used at control

point cn, there is a data dependency between c0 and cn on l. Formal

definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-

tion �⊆ C× L̂× C defined as follows:

c0
l� cn � ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D(c0) ∩ U(cn) ∧ ∀i ∈ (0, n).l �∈ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at

cn, and there is no intermediate control point ci that may change the

value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency

excludes not only a path that always kills the definition but also a

path that might, but not always, kill the definition. In the latter case,

the definition that might be killed is, by Definition 2, included in the

use set of the definition point.

Example 2. In the program presented in Example 1, we can find

two data dependencies, 10� x� 11� and 11� x� 12�.

Comparison with Def-use Chains Our notion of data depen-

dency is different from the conventional notion of def-use chains. If

we want to conservatively collect all the possible def-use chains, we

should exclude only the paths from definition points to use points

when there exists a point that always kills the definition. We can

slightly modify Definition 3 to express def-use chain relation �du

as follows:

c0
l�du cn � ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D(c0) ∩ U(cn) ∧ ∀i ∈ (0, n).l �∈ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-

ways killed at control point c.

Example 3. We can find three def-use chains, 10� x�du 11�, 10� x�du

12�, and 11� x�du 12� in Example 1.

The reason why we use our notion of data dependencies instead

of def-use chains is that our data dependencies preserve the preci-

sion of the analysis even when approximations are involved. On the

other hand, sparse analysis with approximated def-use chains may

lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function

sparse, which propagates between control points only the abstract

values that participate in the fixpoint computation. Sparse abstract

function F̂s, whose definition is given below, is the same as the

original except that it propagates abstract values along to the data

dependency, not along to control flows:

F̂s(X̂) = λc ∈ C.f̂c(
�

c� l�c

X̂(c�)|l).

As this definition is only different in that it is defined over data

dependency (�), we can reuse abstract semantic function f̂c, and

its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse

abstract semantic function is the same as the one of original analy-

sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

∀c ∈ C.∀l ∈ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to

the original result only up to the entries that are defined in every

control point. This is fair since the sparse analysis result does not

contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical

since we can decide definition set D and use set U only with the

original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data

dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition

5).

Definition 4 (Approximated Data Dependency). Approximated

data dependency is ternary relation �a⊆ C × L̂ × C defined as

follows:

c0
l�a cn � ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D̂(c0) ∩ Û(cn) ∧ ∀i ∈ (0, n).l �∈ D̂(ci)

The definition is the same except that it is defined over D̂ and

Û. The derived sparse analysis is to compute the fixpoint of the

following abstract semantic function:

F̂a(X̂) = λc ∈ C.f̂c(
�

c� l�ac

X̂(c�)|l).

One thing to note is that not all D̂ and Û make the derived

sparse analysis compute the same result as the original. First,

both D̂(c) and Û(c) at each control point should be an over-

approximation of D(c) and U(c), respectively (we can easily show

that the analysis computes different result if one of them is an

under-approximation). Next, all spurious definitions that are in-

cluded in D̂ but not in D should be also included in Û. The follow-

ing example illustrates what happens when there exists an abstract

location which is a spurious definition but is not included in the

approximated use set.

Example 4. Consider the same program presented in Example 1.

except that we now suppose the points-to set of pointer p being {y}.

Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = ∅
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.

The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = ∅
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at

control point 11� is not included in approximated use set Û( 11�).
With this approximation, abstract value of x at 10� is not propagated

to 12�, while it is propagated in the original analysis ( 10� x� 12�, but

10� � x�a 12�). However, if {x} ⊆ Û( 11�), then the abstract value

c0 cnci

l ∈ D(c0) l ∈ U(cn)l �∈ D(ci)

l
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2. Sparse Analysis Framework
2.1 Notation
Given function f ∈ A → B, we write f |C for the restriction

of function f to the domain dom(f) ∩ C. We write f\C for the

restriction of f to the domain dom(f)− C. We abuse the notation

f |a and f\a for the domain restrictions on singleton set {a}. We

write f [a �→ b] for the function got from function f by changing

the value for a to b. We write f [a1 �→ b1, · · · , an �→ bn] for

f [a1 �→ b1] · · · [an �→ bn]. We write f [{a1, · · · , an} w�→ b] for

f [a1 �→ f(a1) � b, · · · , an �→ f(an) � b] (weak update).

2.2 Program
A program is a tuple �C, �→� where C is a finite set of con-

trol points and �→⊆ C × C is a relation that denotes control

flows of the program; c� �→ c indicates that c is a next control

point of c�. Each control point is associated with a command, de-

noted cmd(c). A path p = p0p1 . . . pn is a sequence of control

points such that p0 �→ p1 �→ · · · �→ pn. We write Paths =
lfpλP.{c0c1 | c0 �→ c1}∪{p0 . . . pnc | p ∈ P ∧ pn �→ c} for the

set of all paths in the program.

Collecting Semantics Collecting semantics of program P is an

invariant [[P ]] ∈ C → 2S that represents a set of reachable states

at each control point, where the concrete domain of states, S =
L → V, maps concrete locations (L) to concrete values (V).

The collecting semantics is characterized by the least fixpoint of

semantic function F ∈ (C → 2S) → (C → 2S) such that,

F (X) = λc ∈ C.fc(
�

c��→c

X(c�)). (1)

where fc ∈ 2S → 2S is a semantic function at control point c.

Because our framework is independent from target languages, we

leave out the definition of the concrete semantic function fc.

2.3 Baseline Abstraction
We abstract the collecting semantics of program P by the following

Galois connection

C → 2S −−→←−−
α

γ
C → Ŝ (2)

where α and γ are pointwise liftings of abstract and concretization

function αS and γS (such that 2S −−−→←−−−
αS

γS Ŝ), respectively.

We consider a particular, yet general, family of abstract domains

where abstract state Ŝ is map L̂ → V̂ where L̂ is a finite set of

abstract locations, and V̂ is a (potentially infinite) set of abstract

values. All non-relational abstract domains, such as intervals [9],

are members of this family. Furthermore, the family covers some

numerical, relational domains. Practical relational analyses exploit

packed relationality [4, 13, 34, 43]; the abstract domain is of form

Packs → R̂ where Packs is a set of variable groups selected to be

related together. R̂ denotes numerical constraints among variables

in those groups. In such packed relational analysis, each variable

pack is treated as an abstract location (L̂) and numerical constraints

amount to abstract values (V̂). Examples of the numerical con-

straints are domain of octagons [34] and polyhedrons [12]. In prac-

tice, relational analyses are necessarily packed relational [4, 13]

because of otherwise unacceptable costs.

Abstract semantics is characterized as a least fixpoint of abstract

semantic function F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (3)

where f̂c ∈ Ŝ → Ŝ is a monotone abstract semantic function for

control point c. We assume that F̂ is sound with respect to F , i.e.,

α◦F � F̂ ◦α, then the soundness of abstract semantics is followed

by the fixpoint transfer theorem [11].

2.4 Sparse Analysis by Eliminating Unnecessary Propagation
The abstract semantic function given in (3) propagates some ab-

stract values unnecessarily. For example, suppose that we analyze

statement x := y using a non-relational domain, like interval do-

main [9]. We know for sure that the abstract semantic function for

the statement defines a new abstract value only at variable x and

uses only the abstract value of variable y. Thus, it is unnecessary to

propagate the whole abstract states. However, the function given in

(3) blindly propagates the whole abstract states of all predecessors

c� to control point c.

To make the analysis sparse, we need to eliminate this un-

necessary propagation by making the semantic function propagate

abstract values along data dependency, not control flows; that is,

we make the semantic function propagate only the abstract values

newly computed at one control point to the other where they are

actually used. In the rest of this section, we explain how to make

abstract semantic function (3) sparse while preserving its precision

and soundness.

2.5 Definition and Use Set
We first need to precisely define what are “definitions” and “uses”.

They are defined in terms of abstract semantics, i.e., abstract se-

mantic function f̂c, not concrete semantics.

Definition 1 (Definition set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Definition set D(c) at control point c
is a set of abstract locations that are assigned a new abstract value
by abstract semantic function f̂c, i.e.

D(c) � {l ∈ L̂ | ∃ŝ �
�

c��→c

(fixF̂ )(c�).f̂c(ŝ)(l) �= ŝ(l)}.

Definition 2 (Use set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Use set U(c) at control point c is a
set of abstract locations that are used by abstract semantic function
f̂c, i.e.

U(c) � {l ∈ L̂ | ∃ŝ �
�

c��→c

(fixF̂ )(c�).f̂c(ŝ)|D(c) �= f̂c(ŝ\l)|D(c)}.

Example 1. Consider the following simple subset of C:

cmd → x := e | ∗x := e
e → x | &x | ∗x.

The meaning of each statement and each expression is fairly stan-
dard. We design a pointer analysis for this as follows:

ŝ ∈ Ŝ = Var → 2Var

f̂c(ŝ) =






ŝ[x �→ Ê(e)(ŝ)] cmd(c) = x := e
ŝ[y �→ Ê(e)(ŝ)] cmd(c) = ∗x := e

and ŝ(x) = {y}
ŝ[ŝ(x)

w�→ Ê(e)(ŝ)] cmd(c) = ∗x := e

Ê(e)(ŝ) =






ŝ(x) e = x
{x} e = &x�

y∈ŝ(x) ŝ(y) e = ∗x

Now suppose that we analyze program 10�x := &y; 11�∗p := &z;
12�y := x; (superscripts are control points). Suppose that points-
to set of pointer p is {x, y} at control point 11� according to the
fixpoint. Definition set and use set at each control point are as
follows.

D(10�) = {x} U(10�) = ∅
D(11�) = {x, y} U(11�) = {p, x, y}
D(12�) = {y} U(12�) = {x}

2. Sparse Analysis Framework
2.1 Notation
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�

c��→c
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Because our framework is independent from target languages, we
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α

γ
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αS
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We consider a particular, yet general, family of abstract domains
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�

c��→c
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D(c) � {l ∈ L̂ | ∃ŝ �
�

c��→c
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�

c��→c

(fixF̂ )(c�).f̂c(ŝ)|D(c) �= f̂c(ŝ\l)|D(c)}.

Example 1. Consider the following simple subset of C:

cmd → x := e | ∗x := e
e → x | &x | ∗x.

The meaning of each statement and each expression is fairly stan-
dard. We design a pointer analysis for this as follows:

ŝ ∈ Ŝ = Var → 2Var

f̂c(ŝ) =






ŝ[x �→ Ê(e)(ŝ)] cmd(c) = x := e
ŝ[y �→ Ê(e)(ŝ)] cmd(c) = ∗x := e

and ŝ(x) = {y}
ŝ[ŝ(x)

w�→ Ê(e)(ŝ)] cmd(c) = ∗x := e

Ê(e)(ŝ) =






ŝ(x) e = x
{x} e = &x�

y∈ŝ(x) ŝ(y) e = ∗x

Now suppose that we analyze program 10�x := &y; 11�∗p := &z;
12�y := x; (superscripts are control points). Suppose that points-
to set of pointer p is {x, y} at control point 11� according to the
fixpoint. Definition set and use set at each control point are as
follows.

D(10�) = {x} U(10�) = ∅
D(11�) = {x, y} U(11�) = {p, x, y}
D(12�) = {y} U(12�) = {x}

Note that U( 11�) contains D( 11�) because of the weak update (
w�→):

the semantics of weak update ŝ[l
w�→ v] = ŝ[l �→ ŝ(l) � v] is

defined to use the target location l. This implicit use information,

which does not explicitly appear in the program text, is naturally

captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we

can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of

abstract location l defined at control point c0 is used at control

point cn, there is a data dependency between c0 and cn on l. Formal

definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-

tion �⊆ C× L̂× C defined as follows:

c0
l� cn � ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D(c0) ∩ U(cn) ∧ ∀i ∈ (0, n).l �∈ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at

cn, and there is no intermediate control point ci that may change the

value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency

excludes not only a path that always kills the definition but also a

path that might, but not always, kill the definition. In the latter case,

the definition that might be killed is, by Definition 2, included in the

use set of the definition point.

Example 2. In the program presented in Example 1, we can find

two data dependencies, 10� x� 11� and 11� x� 12�.

Comparison with Def-use Chains Our notion of data depen-

dency is different from the conventional notion of def-use chains. If

we want to conservatively collect all the possible def-use chains, we

should exclude only the paths from definition points to use points

when there exists a point that always kills the definition. We can

slightly modify Definition 3 to express def-use chain relation �du

as follows:

c0
l�du cn � ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D(c0) ∩ U(cn) ∧ ∀i ∈ (0, n).l �∈ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-

ways killed at control point c.

Example 3. We can find three def-use chains, 10� x�du 11�, 10� x�du

12�, and 11� x�du 12� in Example 1.

The reason why we use our notion of data dependencies instead

of def-use chains is that our data dependencies preserve the preci-

sion of the analysis even when approximations are involved. On the

other hand, sparse analysis with approximated def-use chains may

lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function

sparse, which propagates between control points only the abstract

values that participate in the fixpoint computation. Sparse abstract

function F̂s, whose definition is given below, is the same as the

original except that it propagates abstract values along to the data

dependency, not along to control flows:

F̂s(X̂) = λc ∈ C.f̂c(
�

c� l�c

X̂(c�)|l).

As this definition is only different in that it is defined over data

dependency (�), we can reuse abstract semantic function f̂c, and

its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse

abstract semantic function is the same as the one of original analy-

sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

∀c ∈ C.∀l ∈ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to

the original result only up to the entries that are defined in every

control point. This is fair since the sparse analysis result does not

contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical

since we can decide definition set D and use set U only with the

original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data

dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition

5).

Definition 4 (Approximated Data Dependency). Approximated

data dependency is ternary relation �a⊆ C × L̂ × C defined as

follows:

c0
l�a cn � ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D̂(c0) ∩ Û(cn) ∧ ∀i ∈ (0, n).l �∈ D̂(ci)

The definition is the same except that it is defined over D̂ and

Û. The derived sparse analysis is to compute the fixpoint of the

following abstract semantic function:

F̂a(X̂) = λc ∈ C.f̂c(
�

c� l�ac

X̂(c�)|l).

One thing to note is that not all D̂ and Û make the derived

sparse analysis compute the same result as the original. First,

both D̂(c) and Û(c) at each control point should be an over-

approximation of D(c) and U(c), respectively (we can easily show

that the analysis computes different result if one of them is an

under-approximation). Next, all spurious definitions that are in-

cluded in D̂ but not in D should be also included in Û. The follow-

ing example illustrates what happens when there exists an abstract

location which is a spurious definition but is not included in the

approximated use set.

Example 4. Consider the same program presented in Example 1.

except that we now suppose the points-to set of pointer p being {y}.

Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = ∅
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.

The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = ∅
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at

control point 11� is not included in approximated use set Û( 11�).
With this approximation, abstract value of x at 10� is not propagated

to 12�, while it is propagated in the original analysis ( 10� x� 12�, but

10� � x�a 12�). However, if {x} ⊆ Û( 11�), then the abstract value
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Note that U( 11�) contains D( 11�) because of the weak update (
w�→):

the semantics of weak update ŝ[l
w�→ v] = ŝ[l �→ ŝ(l) � v] is

defined to use the target location l. This implicit use information,

which does not explicitly appear in the program text, is naturally

captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we

can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of

abstract location l defined at control point c0 is used at control

point cn, there is a data dependency between c0 and cn on l. Formal

definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-

tion �⊆ C× L̂× C defined as follows:

c0
l� cn � ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D(c0) ∩ U(cn) ∧ ∀i ∈ (0, n).l �∈ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at

cn, and there is no intermediate control point ci that may change the

value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency

excludes not only a path that always kills the definition but also a

path that might, but not always, kill the definition. In the latter case,

the definition that might be killed is, by Definition 2, included in the

use set of the definition point.

Example 2. In the program presented in Example 1, we can find

two data dependencies, 10� x� 11� and 11� x� 12�.

Comparison with Def-use Chains Our notion of data depen-

dency is different from the conventional notion of def-use chains. If

we want to conservatively collect all the possible def-use chains, we

should exclude only the paths from definition points to use points

when there exists a point that always kills the definition. We can

slightly modify Definition 3 to express def-use chain relation �du

as follows:

c0
l�du cn � ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D(c0) ∩ U(cn) ∧ ∀i ∈ (0, n).l �∈ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-

ways killed at control point c.

Example 3. We can find three def-use chains, 10� x�du 11�, 10� x�du

12�, and 11� x�du 12� in Example 1.

The reason why we use our notion of data dependencies instead

of def-use chains is that our data dependencies preserve the preci-

sion of the analysis even when approximations are involved. On the

other hand, sparse analysis with approximated def-use chains may

lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function

sparse, which propagates between control points only the abstract

values that participate in the fixpoint computation. Sparse abstract

function F̂s, whose definition is given below, is the same as the

original except that it propagates abstract values along to the data

dependency, not along to control flows:

F̂s(X̂) = λc ∈ C.f̂c(
�

c� l�c

X̂(c�)|l).

As this definition is only different in that it is defined over data

dependency (�), we can reuse abstract semantic function f̂c, and

its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse

abstract semantic function is the same as the one of original analy-

sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

∀c ∈ C.∀l ∈ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to

the original result only up to the entries that are defined in every

control point. This is fair since the sparse analysis result does not

contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical

since we can decide definition set D and use set U only with the

original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data

dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition

5).

Definition 4 (Approximated Data Dependency). Approximated

data dependency is ternary relation �a⊆ C × L̂ × C defined as

follows:

c0
l�a cn � ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D̂(c0) ∩ Û(cn) ∧ ∀i ∈ (0, n).l �∈ D̂(ci)

The definition is the same except that it is defined over D̂ and

Û. The derived sparse analysis is to compute the fixpoint of the

following abstract semantic function:

F̂a(X̂) = λc ∈ C.f̂c(
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X̂(c�)|l).

One thing to note is that not all D̂ and Û make the derived

sparse analysis compute the same result as the original. First,

both D̂(c) and Û(c) at each control point should be an over-

approximation of D(c) and U(c), respectively (we can easily show

that the analysis computes different result if one of them is an

under-approximation). Next, all spurious definitions that are in-

cluded in D̂ but not in D should be also included in Û. The follow-

ing example illustrates what happens when there exists an abstract

location which is a spurious definition but is not included in the

approximated use set.

Example 4. Consider the same program presented in Example 1.

except that we now suppose the points-to set of pointer p being {y}.

Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = ∅
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.

The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = ∅
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at

control point 11� is not included in approximated use set Û( 11�).
With this approximation, abstract value of x at 10� is not propagated

to 12�, while it is propagated in the original analysis ( 10� x� 12�, but

10� � x�a 12�). However, if {x} ⊆ Û( 11�), then the abstract value
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Note that U( 11�) contains D( 11�) because of the weak update (
w�→):

the semantics of weak update ŝ[l
w�→ v] = ŝ[l �→ ŝ(l) � v] is

defined to use the target location l. This implicit use information,

which does not explicitly appear in the program text, is naturally

captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we

can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of

abstract location l defined at control point c0 is used at control

point cn, there is a data dependency between c0 and cn on l. Formal
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cn, and there is no intermediate control point ci that may change the
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path that might, but not always, kill the definition. In the latter case,

the definition that might be killed is, by Definition 2, included in the

use set of the definition point.
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Comparison with Def-use Chains Our notion of data depen-

dency is different from the conventional notion of def-use chains. If

we want to conservatively collect all the possible def-use chains, we

should exclude only the paths from definition points to use points

when there exists a point that always kills the definition. We can

slightly modify Definition 3 to express def-use chain relation �du

as follows:
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The reason why we use our notion of data dependencies instead

of def-use chains is that our data dependencies preserve the preci-

sion of the analysis even when approximations are involved. On the

other hand, sparse analysis with approximated def-use chains may

lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function

sparse, which propagates between control points only the abstract

values that participate in the fixpoint computation. Sparse abstract

function F̂s, whose definition is given below, is the same as the

original except that it propagates abstract values along to the data

dependency, not along to control flows:

F̂s(X̂) = λc ∈ C.f̂c(
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As this definition is only different in that it is defined over data

dependency (�), we can reuse abstract semantic function f̂c, and

its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse

abstract semantic function is the same as the one of original analy-

sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

∀c ∈ C.∀l ∈ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to

the original result only up to the entries that are defined in every

control point. This is fair since the sparse analysis result does not

contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical

since we can decide definition set D and use set U only with the

original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data

dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition

5).

Definition 4 (Approximated Data Dependency). Approximated

data dependency is ternary relation �a⊆ C × L̂ × C defined as

follows:
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The definition is the same except that it is defined over D̂ and

Û. The derived sparse analysis is to compute the fixpoint of the
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One thing to note is that not all D̂ and Û make the derived
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both D̂(c) and Û(c) at each control point should be an over-

approximation of D(c) and U(c), respectively (we can easily show

that the analysis computes different result if one of them is an
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cluded in D̂ but not in D should be also included in Û. The follow-

ing example illustrates what happens when there exists an abstract

location which is a spurious definition but is not included in the

approximated use set.

Example 4. Consider the same program presented in Example 1.

except that we now suppose the points-to set of pointer p being {y}.

Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = ∅
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.

The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = ∅
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at

control point 11� is not included in approximated use set Û( 11�).
With this approximation, abstract value of x at 10� is not propagated

to 12�, while it is propagated in the original analysis ( 10� x� 12�, but

10� � x�a 12�). However, if {x} ⊆ Û( 11�), then the abstract value

Preserving

If the following two conditions hold

still
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Conditions of     &    

• over-approximation

• spurious definitions should be also included in uses

spurious definitions



Why the Conditions of      &    

Def

Use

{x}

ɸ

{y}{a, b}

{p, a, b} {x}

x
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x = &y *p = &z y = x
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Approx. Def

Approx. Use

{x}

ɸ

{y}{a, b, x}

{p, a, b} {x}
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x = &y *p = &z y = x

D̂(c)− D(c) �⊆ Û(c)

{x}

x



Why the Conditions of      &    

{x}

ɸ

{y}

{x}

x

{a, b, x}

{p, a, b}
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Approx. Def

Approx. Use

x = &y *p = &z y = x

D̂(c)− D(c) �⊆ Û(c)

{x}



Why the Conditions of      &    

{x}

ɸ

{y}

{x}

x

{a, b, x}

{p, a, b, x}
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Approx. Def

Approx. Use

x = &y *p = &z y = x

{x}



Why the Conditions of      &    

{x}

ɸ

{y}

{x}

xx

{a, b, x}

{p, a, b, x}
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Approx. Def

Approx. Use

x = &y *p = &z y = x

{x}
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Hurdle:     &     Before 
Analysis?

• Yes, by yet another analysis with further abstraction

• e.g., flow-insensitive abstraction

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c��→c X̂(c�) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂ )),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more efficient way. We

do this by computing X̂ �
that is more approximate than X̂, i.e., X̂ � X̂ �

.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ �(� X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C → Ŝ and semantic function F̂ ∈ (C → Ŝ) → (C → Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C → Ŝ −→←−
α

γ
Ŝ

such that,

α = λX̂.
�

c∈C X̂(c)

γ = λŝ.λc ∈ C.ŝ

The semantic function F̂p : Ŝ → Ŝ is defined as follows:

F̂p = λŝ.(
�

c∈C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂ ) � γ(lfp(F̂p))

27

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
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for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C → Ŝ −→←−
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• In implementation,  U includes D
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Existing Sparse Techniques
(developed mostly in dfa community)

• Different notion of data dependency

x ∈ D x ∈ Dmay x ∈ U

def-use chains fail to preserve original precision
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Existing Sparse Techniques
(developed mostly in dfa community)

• Different notion of data dependency

x ∈ D x ∈ Dmay x ∈ D

our data dependency preserves original precision
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Existing Sparse Techniques
(developed mostly in dfa community)

• Different notion of data dependency

• Existing sparse analyses are not general

• tightly coupled with particular analysis, or

• limited to a particular target language

x ∈ D x ∈ Dmay x ∈ D



Performance



Experiments

• On top of

• Sparse non-relational analysis with interval domain

• Sparse relational analysis with octagon domain

27

Ŝ = Packs → Octagon

Ŝ = AbsLoc → Interval
Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.



Performance
Sparse Interval Analysis
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Program LOC Non-sparse Sparse Spd↑ Mem↓
Time Mem Time Mem

gzip-1.2.4a 7 K 772 240 3 63 257 x 74 %

bc-1.06 13 K 1,270 276 7 75 181 x 73 %

less-382 23 K 9,561 1,113 33 127 289 x 86 %

make-3.76.1 27 K 24,240 1,391 21 114 1,154 x 92 %

wget-1.9 35 K 44,092 2,546 11 85 4,008 x 97 %

a2ps-4.14 64 K ∞ N/A 40 353 N/A N/A

sendmail-8.13.6 130 K ∞ N/A 744 678 N/A N/A

nethack-3.3.0 211 K ∞ N/A 16,373 5,298 N/A N/A

emacs-22.1 399 K ∞ N/A 37,830 7,795 N/A N/A

python-2.5.1 435 K ∞ N/A 11,039 5,535 N/A N/A

linux-3.0 710 K ∞ N/A 33,618 20,529 N/A N/A

gimp-2.6 959 K ∞ N/A 3,874 3,602 N/A N/A

ghostscript-9.00 1,363 K ∞ N/A 14,814 6,384 N/A N/A

Table 1.1: Effectiveness of the proposed techniques on various open-source bench-

marks: time (in seconds) and peak memory consumption (in megabytes) of the

baseline analyzer (AiracBase) and its localized version (AiracLocal). ∞ means the

analysis ran out of time (exceeded 24 hour time limit). Spd↑ is the speed-up

of AiracLocal over AiracBase. Mem↓ shows the memory savings of AiracLocal over

AiracBase. All experiments were done on a Linux 2.6 system running on a single

core of Intel 3.07 GHz box with 24 GB of main memory.

4
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AiracBase. All experiments were done on a Linux 2.6 system running on a single

core of Intel 3.07 GHz box with 24 GB of main memory.
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Program LOC Non-sparse Sparse Spd↑ Mem↓
Time Mem Time Mem

gzip-1.2.4a 7 K 2,078 2,832 21 269 98 x 91 %
bc-1.06 13 K 9,536 6,987 55 358 173 x 95 %
tar-1.13 20 K ∞ N/A 188 526 N/A N/A
less-382 23 K ∞ N/A 432 458 N/A N/A
make-3.76.1 27 K ∞ N/A 331 666 N/A N/A
wget-1.9 35 K ∞ N/A 288 646 N/A N/A
screen-4.0.2 45 K ∞ N/A 16,433 9,199 N/A N/A
a2ps-4.14 64 K ∞ N/A 8,546 1,996 N/A N/A
sendmail-8.13.6 130 K ∞ N/A 64,808 29,658 N/A N/A

7



Summary
Our Sparse Framework
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• Define a global safe abstract interpreter

• Make it sparse with our data dependencies

• Resulting sparse one scales with the same precision

For precise, sound, and scalable static analysis

Thank you


