
Automatically Generating Features for
Learning Program Analysis Heuristics

for C-Like Languages

OOPSLA'17 @Vancouver, Canada

Kwonsoo Chae
Korea University

Joint work with Hakjoo Oh (Korea University), Kihong Heo (Seoul
National University), Hongseok Yang (University of Oxford)

2/49

Static Analysis

● Diverse engineering decisions in static analysis:

● Context-sensitivity for which procedures?

● Relational analysis for which variables?

● Unsoundness for which part of the program?

● etc.

3/49

Static Analysis

● Diverse engineering decisions in static analysis:

● Context-sensitivity for which procedures?

● Relational analysis for which variables?

● Unsoundness for which part of the program?

● etc.

● Data-driven static analysis aims at automatically learning

 analysis heuristics from the codebase.

codebase machine
learning

✔ context-sensitivity heuristics
✔ relation tracking heuristics
✔ unsoundness heuristics
✔ etc.

Data-Driven

4/49

codebase

ML

analysis

What people expect

Main Obstacle:
Manual Feature Engineering

5/49

codebase

ML

analysis

codebase

feature
engineering

ML

analysis

Manual, time-consuming

Need for domain expertise

Not interchangeable

among different analyses

What people expect Reality

Main Obstacle:
Manual Feature Engineering

6/49

Codebase

ML

Analysis

codebase

feature
engineering

ML

analysis

Manual, time-consuming

Need for domain expertise

Not interchangeable

among different analyses

What people think Reality

Main Obstacle:
Manual Feature Engineering

flow-sensitivity
(OOPSLA'15)

7/49

Codebase

ML

Analysis

codebase

feature
engineering

ML

analysis

Manual, time-consuming

Need for domain expertise

Not interchangeable

among different analyses

What people think Reality

Main Obstacle:
Manual Feature Engineering

context-sensitivity
(OOPSLA'15)

8/49

Codebase

ML

Analysis

Codebase

Feature
engineering

ML

analysis

Manual, time-consuming

Need for domain expertise

Not interchangeable

among different analyses

What people think Reality

Main Obstacle:
Manual Feature Engineering

widening threshold
(APLAS'16)

9/49

Codebase

ML

Analysis

Codebase

Feature
engineering

ML

Analysis

Manual, time-consuming

Need for domain expertise

Not interchangeable

among different analyses

What people think Reality

Main Obstacle:
Manual Feature Engineering

relational analysis
(SAS'16)

10/49

Codebase

ML

Analysis

Codebase

Feature
engineering

ML

Analysis

Manual, time-consuming

Need for domain expertise

Not interchangeable

among different analyses

What people think Reality

Main Obstacle:
Manual Feature Engineering

unsoundness
(ICSE'17)

11/49

Codebase

ML

Analysis

Codebase

Feature
engineering

ML

Analysis

Manual, time-consuming

Need for domain expertise

Not interchangeable

among different analyses

What people think Reality

Main Obstacle:
Manual Feature Engineering

context-sensitivity
(previous talk)

12/49

CodebaseML

Analysis

Codebase
Feature

engineering

ML

Analysis

Manual, time-consuming

Need for domain expertise

Not interchangeable

among different analyses

What people think Reality

Main Obstacle:
Manual Feature Engineering

context-sensitivity
(previous talk)

Feature engineering:
major bottleneck in data-driven static analysis

13/49

codebase

ML

What people expect

analysis

Reality

codebase

ML

analysis

Our goal

codebase

automatically
generated

features

ML

analysis

feature
engineering

We Aim At Generating
Features Automatically

This talkThis talk

14/49

Example: Partially Flow-Sensitive
Interval Analysis

x = 0; y = 0

y = x

y ++

w = 0

assert (y>0); assert (z > 0); assert (w ==0)

z = input()

15/49

Example: Partially Flow-Sensitive
Interval Analysis

x = 0; y = 0

y = x

y ++

w = 0

assert (y>0); assert (z > 0); assert (w ==0)

z = input() ✔ FS-proven but FI-unproven
 (FS is beneficial)

16/49

Example: Partially Flow-Sensitive
Interval Analysis

x = 0; y = 0

y = x

y ++

w = 0

assert (y>0); assert (z > 0); assert (w ==0)

✔ Unproven even by FS
 (FS is not beneficial)

z = input()

17/49

Example: Partially Flow-Sensitive
Interval Analysis

x = 0; y = 0

y = x

y ++

w = 0

assert (y>0); assert (z > 0); assert (w ==0)

✔ Proven even by FI
 (FS is not beneficial)

z = input()

18/49

Example: Partially Flow-Sensitive
Interval Analysis

x = 0; y = 0

y = x

y ++

w = 0

assert (y>0); assert (z > 0); assert (w ==0)

z = input()

FS FI FI

19/49

Example: Partially Flow-Sensitive
Interval Analysis

x = 0; y = 0

y = x

y ++

w = 0

assert (y>0); assert (z > 0); assert (w ==0)

z = input()

● Build a “classifier” that selects the

 1st assertion only.

FS FI FI

20/49

Building a Classifier

● Usual procedure

(1) Design a good set of features manually.

21/49

Building a Classifier

● Usual procedure

(1) Design a good set of features manually.

(2) Generate labeled data.

22/49

Building a Classifier

● Usual procedure

(1) Design a good set of features manually.

(2) Generate labeled data.

(3) Run an off-the-shelf classification algorithm.

classification
algorithm

classifier

23/49

Building a Classifier

● Usual procedure

(1) Design a good set of features manually.

(2) Generate labeled data.

(3) Run an off-the-shelf classification algorithm.

classification
algorithm

classifier

automatically
Our

“automatically”

24/49

Highlight: Key Ideas

program program
reducer

1. Capture the key reason why FS is beneficial

 using a program reducer.

for (i=0; i<7; i++)
assert (i<10);

>10KLOC

“FS & FI ”

25/49

Highlight: Key Ideas

program program
reducer

1. Capture the key reason why FS is beneficial

 using a program reducer.

2. Generalize the reduced program.

for (i=0; i<7; i++)
assert (i<10);

generalize

Q

feature

>10KLOC

“FS & FI ”

26/49

Highlight: Key Ideas

program program
reducer

1. Capture the key reason why FS is beneficial

 using a program reducer.

2. Generalize the reduced program.

for (i=0; i<7; i++)
assert (i<10);

generalize

QQ

generalize

new program feature

(The program has
the feature)

>10KLOC

“FS & FI ”

27/49

Highlight: Results

 Precision

 Cost

80.2 %

FI (1x) FS (46x)2.0x

FI (0) FS(100)

● Generated 38 (interval), 45 (pointer), 44 (Octagon) features.

● Analysis heuristics built on top of automatically generated features

● Excellent balance between cost and precision, e.g.,

● Partially flow-sensitive interval analysis:

28/49

Automatic Feature Generation

Recipe

(1) Capture the key reasons from the codebase

 (using a program reducer).

(2) Properly generalize the key reasons

 (to build generic features).
The end.

29/49

(1) Capture The Key Reasons

a = 0; b = 0;
while (1) {

b = unknown();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

7

8

30/49

(1) Capture The Key Reasons

reduce

● Use a program reducer to generate a feature program.

● The reduction preserves an invariant :

a = 0; b = 0;
while (1) {

b = unknown();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

7

8

a = 0;
while (1) {

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

e.g., C-Reduce
(FS: “a<3 before assertion in the loop”)

31/49

(2) Generalize The Key Reasons

a = 0;
while (1) {

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

32/49

(2) Generalize The Key Reasons

abstract

● Properly generalize the feature program to an abstract data-flow

 graph (= feature).

x := x + c

x cx := c Q(x c)

a = 0;
while (1) {

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

33/49

(2) Generalize The Key Reasons

abstract

● Properly generalize the feature program to an abstract data-flow

 graph (= feature).

● The right level of abstraction is automatically identified by an

 iterative search and cross validation.

Generalization vs. Preservation

x := x + c

x cx := c Q(x c)

a = 0;
while (1) {

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

34/49

Feature Check = Graph Inclusion Check

feature:

original program:
a = 0; b = 0;
while (1) {

b = unknown();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

7

8

x := x + c

x cx := c Q(x c)

35/49

Feature Check = Graph Inclusion Check

x := x + c

x cx := c Q(x c)

x := x x

feature:

original program:

abstract data-flow graph:

a = 0; b = 0;
while (1) {

b = unknown();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

7

8

x := x + c

x cx := c Q(x c)

36/49

Feature Check = Graph Inclusion Check

x := x + c

x cx := c Q(x c)

x := x x

feature:

original program:

abstract data-flow graph:

a = 0; b = 0;
while (1) {

b = unknown();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

7

8

x := x + c

x cx := c Q(x c)

37/49

x x

Feature Check = Graph Inclusion Check

x := x + c

x cx := c Q(x c)

x :=

feature:

original program:

abstract data-flow graph:

a = 0; b = 0;
while (1) {

b = unknown();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

7

8

x := x + c

x cx := c Q(x c)

“noise”

38/49

x x

Feature Check = Graph Inclusion Check

x := x + c

x cx := c Q(x c)

x :=

feature:

original program:

abstract data-flow graph:

a = 0; b = 0;
while (1) {

b = unknown();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

7

8

x := x + c

x cx := c Q(x c)

transitive
closure

39/49

x x

Feature Check = Graph Inclusion Check

x := x + c

x cx := c Q(x c)

x :=

feature:

original program:

abstract data-flow graph:

a = 0; b = 0;
while (1) {

b = unknown();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

7

8

x := x + c

x cx := c Q(x c)

transitive
closure

✔ reducer (offline, feature)

✔ transitive closure (online, new pgm)

Removing noise:

40/49

x x

Feature Check = Graph Inclusion Check

x := x + c

x cx := c Q(x c)

x :=

feature:

original program:

abstract data-flow graph:

a = 0; b = 0;
while (1) {

b = unknown();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

7

8

x := x + c

x cx := c Q(x c)

41/49

Evaluation

● Static analyzer: (https://github.com/ropas/sparrow)

● Reducer: C-Reduce [PLDI'12] (https://embed.cs.utah.edu/creduce)

● Three instance analyses for C

● Partially flow-sensitive interval analysis

● Partially flow-sensitive pointer analysis

● Partial Octagon analysis

● 60 benchmark programs from Linux and GNU packages

https://github.com/ropas/sparrow
https://embed.cs.utah.edu/creduce

42/49

Results: Effectiveness (Classifier)
● Partially flow-sensitive interval analysis

● Partially flow-sensitive pointer analysis

● Partial Octagon analysis

43/49

Results: Effectiveness (Analysis)
● Partially flow-sensitive interval analysis

● Partially flow-sensitive pointer analysis

● Partial Octagon analysis

44/49

Results: Comparison
● Partially flow-sensitive interval analysis

● Partial Octagon analysis

● Consistently perform well on a wide range of programs. (↔ wide variation)

● No clear conclusion (different approaches and learning algorithms)

automatic manual

45/49

Results: Generated Features (Top 2)

● Partially flow-sensitive interval analysis

int buf [10];
for (i = 0; i < 7; i++) {

buf[i] = 0; // Query
}

k = 255; p = malloc (k);
while (k > 0) {

*(p + k) = 0; // Query
k­­ ;

}

feature program 1: feature program 2:

● Access to a consecutive memory region in a loop

● Bounded indice by a constant

46/49

Results: Generated Features (Top 2)

● Partially flow-sensitive pointer analysis

int j = 16; q = malloc(j)
if (q == 0)

return;
else *q = 0; // Query

r = malloc(v);
r = &a;
*r = 0; // Query

feature program 1: feature program 2:

● Null-check before buffer access

● Strong update by the address of another variable

47/49

Results: Generated Features (Top 2)

● Partial Octagon analysis

size = POS_NUM;
arr = malloc(size);
arr[size–1] = 0; // Query

idx = POS_NUM;
buf = malloc(idx);
for (n = 0; n < idx; n++) {

buf[n] = 0; // Query
}

feature program 1: feature program 2:

● Array of a positive size

● e.g., when POS_NUM = [1,+oo] in the flow-sensitive interval analysis

● Index related to the size in a simple linear way

48/49

● Our feature representation is expressive enough, but not

 perfect, e.g.,

✔ “x and y results in finite intervals after analysis.”

✔ “2k type of integers are important constants.”

Caveats:
Expressiveness of Features

49/49

Summary

● “Features” in data-driven static analysis

● By reducing programs

● As generalized graphs (↔ program text)

codebase
automatically

generated
features

ML analysis

