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Static Analysis

●  Diverse engineering decisions in static analysis:

●  Context-sensitivity for which procedures?

●  Relational analysis for which variables?

●  Unsoundness for which part of the program?

●  etc.
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Static Analysis

●  Diverse engineering decisions in static analysis:

●  Context-sensitivity for which procedures?

●  Relational analysis for which variables?

●  Unsoundness for which part of the program?

●  etc.

●  Data-driven static analysis aims at automatically learning

 analysis heuristics from the codebase.

codebase machine
learning

✔ context-sensitivity heuristics
✔ relation tracking heuristics
✔ unsoundness heuristics
✔ etc.

Data-Driven
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ML
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What people expect

Main Obstacle:
Manual Feature Engineering
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Codebase

ML

Analysis

Codebase

Feature
engineering

ML

analysis

Manual, time-consuming

Need for domain expertise 

Not interchangeable 

among different analyses

What people think Reality

Main Obstacle:
Manual Feature Engineering

widening threshold
(APLAS'16)
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Codebase

ML

Analysis

Codebase

Feature
engineering

ML

Analysis

Manual, time-consuming

Need for domain expertise 

Not interchangeable 

among different analyses

What people think Reality

Main Obstacle:
Manual Feature Engineering

relational analysis
(SAS'16)
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Codebase

ML

Analysis

Codebase

Feature
engineering

ML

Analysis

Manual, time-consuming

Need for domain expertise 

Not interchangeable 

among different analyses

What people think Reality

Main Obstacle:
Manual Feature Engineering

unsoundness
(ICSE'17)



11/49

Codebase

ML

Analysis

Codebase

Feature
engineering

ML

Analysis

Manual, time-consuming

Need for domain expertise 

Not interchangeable 

among different analyses

What people think Reality

Main Obstacle:
Manual Feature Engineering

context-sensitivity
(previous talk)
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CodebaseML

Analysis

Codebase
Feature

engineering

ML

Analysis

Manual, time-consuming

Need for domain expertise 

Not interchangeable 

among different analyses

What people think Reality

Main Obstacle:
Manual Feature Engineering

context-sensitivity
(previous talk)

Feature engineering:
major bottleneck in data-driven static analysis
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codebase

ML

What people expect

analysis

Reality

codebase

ML

analysis

Our goal

codebase

automatically
generated

features

ML

analysis

feature
engineering

We Aim At Generating
Features Automatically

This talkThis talk
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Example: Partially Flow-Sensitive 
Interval Analysis

x = 0; y = 0

y = x

y ++

w = 0

assert (y>0);   assert (z > 0);   assert (w ==0)

z = input()



15/49

Example: Partially Flow-Sensitive 
Interval Analysis

x = 0; y = 0

y = x

y ++

w = 0

assert (y>0);   assert (z > 0);   assert (w ==0)

z = input() ✔  FS-proven but FI-unproven
 (FS is beneficial)
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Example: Partially Flow-Sensitive 
Interval Analysis

x = 0; y = 0

y = x

y ++

w = 0

assert (y>0);   assert (z > 0);   assert (w ==0)

✔  Unproven even by FS
 (FS is not  beneficial)

z = input()
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Example: Partially Flow-Sensitive 
Interval Analysis

x = 0; y = 0

y = x

y ++

w = 0

assert (y>0);   assert (z > 0);   assert (w ==0)

✔  Proven even by FI
 (FS is not  beneficial)

z = input()
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Example: Partially Flow-Sensitive 
Interval Analysis

x = 0; y = 0

y = x

y ++

w = 0

assert (y>0);   assert (z > 0);   assert (w ==0)

z = input()

FS FI FI
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Example: Partially Flow-Sensitive 
Interval Analysis

x = 0; y = 0

y = x

y ++

w = 0

assert (y>0);   assert (z > 0);   assert (w ==0)

z = input()

●  Build a “classifier” that selects the

 1st assertion only.

FS FI FI
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Building a Classifier

●  Usual procedure

(1)  Design a good set of features manually.
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●  Usual procedure

(1)  Design a good set of features manually. 

(2)  Generate labeled data.

(3)  Run an off-the-shelf classification algorithm.

classification
algorithm

classifier
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Building a Classifier

●  Usual procedure

(1)  Design a good set of features manually. 

(2)  Generate labeled data.

(3)  Run an off-the-shelf classification algorithm.

classification
algorithm

classifier

automatically
Our

“automatically”
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Highlight: Key Ideas

program program
reducer

1.  Capture the key reason why FS is beneficial

  using a program reducer.

for (i=0; i<7; i++)
assert (i<10);

>10KLOC

“FS         &  FI       ”



25/49

Highlight: Key Ideas

program program
reducer

1.  Capture the key reason why FS is beneficial

  using a program reducer.

2.  Generalize the reduced program.

for (i=0; i<7; i++)
assert (i<10);

generalize

Q

feature

>10KLOC

“FS         &  FI       ”
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Highlight: Key Ideas

program program
reducer

1.  Capture the key reason why FS is beneficial

  using a program reducer.

2.  Generalize the reduced program.

for (i=0; i<7; i++)
assert (i<10);

generalize

QQ

generalize

new program feature

(The program has
the feature)

>10KLOC

“FS         &  FI       ”
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Highlight: Results

 Precision

 Cost

80.2 %

FI (1x) FS (46x)2.0x

FI (0) FS(100)

●  Generated 38 (interval), 45 (pointer), 44 (Octagon) features.

●  Analysis heuristics built on top of automatically generated features

●  Excellent balance between cost and precision, e.g.,

●  Partially flow-sensitive interval analysis:
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Automatic Feature Generation

Recipe

(1)  Capture the key reasons from the codebase

  (using a program reducer).

(2)  Properly generalize the key reasons

  (to build generic features).
The end.
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(1) Capture The Key Reasons

a = 0; b = 0;
while (1) {

b = unknown();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

7

8
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(1) Capture The Key Reasons

reduce

●  Use a program reducer to generate a feature program.

●  The reduction preserves an invariant       :

a = 0; b = 0;
while (1) {

b = unknown();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

7

8

a = 0;
while (1) {

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

e.g., C-Reduce
(FS: “a<3 before assertion in the loop”)
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(2) Generalize The Key Reasons

a = 0;
while (1) {

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6
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(2) Generalize The Key Reasons

abstract

●  Properly generalize the feature program to an abstract data-flow 

 graph (= feature).

x := x + c

x     cx := c Q(x     c)

a = 0;
while (1) {

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6
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(2) Generalize The Key Reasons

abstract

●  Properly generalize the feature program to an abstract data-flow 

 graph (= feature).

●  The right level of abstraction is automatically identified by an 

 iterative search and cross validation.

Generalization  vs.  Preservation

x := x + c

x     cx := c Q(x     c)

a = 0;
while (1) {

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6
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Feature Check = Graph Inclusion Check

feature:

original program:
a = 0; b = 0;
while (1) {

b = unknown();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

7

8

x := x + c

x     cx := c Q(x     c)
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Feature Check = Graph Inclusion Check

x := x + c

x     cx := c Q(x     c)
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x := x + c

x     cx := c Q(x     c)
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Feature Check = Graph Inclusion Check

x := x + c

x     cx := c Q(x     c)

x :=   x     x

feature:
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x := x + c

x     cx := c Q(x     c)
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x     x

Feature Check = Graph Inclusion Check

x := x + c

x     cx := c Q(x     c)

x :=   

feature:

original program:

abstract data-flow graph:

a = 0; b = 0;
while (1) {

b = unknown();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

7

8

x := x + c

x     cx := c Q(x     c)

“noise”
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x     x

Feature Check = Graph Inclusion Check

x := x + c

x     cx := c Q(x     c)
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a = 0; b = 0;
while (1) {
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x := x + c

x     cx := c Q(x     c)

transitive
closure
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x     x

Feature Check = Graph Inclusion Check

x := x + c

x     cx := c Q(x     c)

x :=   

feature:

original program:

abstract data-flow graph:

a = 0; b = 0;
while (1) {

b = unknown();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

7

8

x := x + c

x     cx := c Q(x     c)

transitive
closure

✔  reducer (offline, feature)

✔  transitive closure (online, new pgm)

Removing noise:
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x     x

Feature Check = Graph Inclusion Check

x := x + c

x     cx := c Q(x     c)

x :=   

feature:

original program:

abstract data-flow graph:

a = 0; b = 0;
while (1) {

b = unknown();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}

1

2

3

4

5

6

7

8

x := x + c

x     cx := c Q(x     c)
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Evaluation

●  Static analyzer:                                 (https://github.com/ropas/sparrow)

●  Reducer: C-Reduce [PLDI'12]   (https://embed.cs.utah.edu/creduce)

●  Three instance analyses for C

●  Partially flow-sensitive interval analysis

●  Partially flow-sensitive pointer analysis

●  Partial Octagon analysis

●  60 benchmark programs from Linux and GNU packages

https://github.com/ropas/sparrow
https://embed.cs.utah.edu/creduce
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Results: Effectiveness (Classifier)
●  Partially flow-sensitive interval analysis

●  Partially flow-sensitive pointer analysis

●  Partial Octagon analysis
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Results: Effectiveness (Analysis)
●  Partially flow-sensitive interval analysis

●  Partially flow-sensitive pointer analysis

●  Partial Octagon analysis
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Results: Comparison
●  Partially flow-sensitive interval analysis

●  Partial Octagon analysis

●  Consistently perform well on a wide range of programs. (↔ wide variation)

●  No clear conclusion (different approaches and learning algorithms)

automatic manual
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Results: Generated Features (Top 2)

●  Partially flow-sensitive interval analysis

int buf [10];
for (i = 0; i < 7; i++) {

buf[i] = 0;  // Query
}

k = 255; p = malloc (k);
while (k > 0) {

*(p + k) = 0; // Query
k­­ ;

}

feature program 1: feature program 2:

●  Access to a consecutive memory region in a loop

●  Bounded indice by a constant
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Results: Generated Features (Top 2)

●  Partially flow-sensitive pointer analysis

int j = 16; q = malloc(j)
if (q == 0)

return;
else *q = 0;  // Query

r = malloc(v);
r = &a;
*r = 0;  // Query

feature program 1: feature program 2:

●  Null-check before buffer access

●  Strong update by the address of another variable
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Results: Generated Features (Top 2)

●  Partial Octagon analysis

size = POS_NUM;
arr = malloc(size);
arr[size–1] = 0; // Query

idx = POS_NUM;
buf = malloc(idx);
for (n = 0; n < idx; n++) {

buf[n] = 0;  // Query
}

feature program 1: feature program 2:

●  Array of a positive size

●  e.g., when POS_NUM = [1,+oo] in the flow-sensitive interval analysis

●  Index related to the size in a simple linear way
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●  Our feature representation is expressive enough, but not 

 perfect, e.g.,

✔  “x and y results in finite intervals after analysis.”

✔  “2k type of integers are important constants.”

Caveats:
Expressiveness of Features
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Summary

●  “Features” in data-driven static analysis

●  By reducing programs

●  As generalized graphs (↔ program text)

codebase
automatically

generated
features

ML analysis


