Learning a Strategy for Adapting a Program Analysis via Bayesian Optimization

<u>Hakjoo Oh</u>

Korea University

Hongseok Yang

Oxford University

Seoul National University

OOPSLA 2015 @ Pittsburgh, US

Challenge in Static Analysis

precision

Challenge in Static Analysis

precision

precise but costly

Flow-Insensitivity

Flow-Insensitivity

cheap but imprecise

Selective Flow-Sensitivity $FS: \{y\}$ FI: $\{x,z\}$

Selective Flow-Sensitivity $FS : \{y,z\}$ FI : $\{x\}$

Selective Flow-Sensitivity

FS : {y,z}

у	[0,+∞]
z	[2,2]

FI : {x}

Selective Flow-Sensitivity

FS : {y,z}

у	[0,+∞]
z	[2,2]

fail to prove

 $FI: \{x\}$

Selective Flow-Sensitivity

FS : {x,y}

Succeed

 $FI:\{z\}$

Finding a Good Program Abstraction is Challenging

- Intractably large space, if not infinite
 - 2^{Var} different abstractions for FS
- Most of them are too imprecise or costly
 - $P(\{x,y,z\}) = \{ \emptyset, \{x\}, \{y\}, \{z\}, \{x,y\}, \{y,z\}, \{x,z\}, \{x,y,z\} \}$

Our Research

- How to efficiently find a good abstraction?
- ex) Impact pre-analysis [PLDI'14]

This Vol Learning-based Approach

This Learning-based Approach

• Parameterized adaptation strategy

 $S_w: pgm \rightarrow 2^{Var}$

This Learning-based Approach

• Parameterized adaptation strategy

$$S_w: pgm \rightarrow 2^{Var}$$

• Learn a good parameter W from existing codebase

This ' Learning-based Approach

• Parameterized adaptation strategy

$$S_w: pgm \rightarrow 2^{Var}$$

• Learn a good parameter W from existing codebase

• For new program P, run static analysis with Sw(P)

Effectiveness

- Implemented in Sparrow, an interval analyzer for C
- Evaluated on open-source benchmarks

Effectiveness

- Implemented in Sparrow, an interval analyzer for C
- Evaluated on open-source benchmarks

Effectiveness

- Implemented in Sparrow, an interval analyzer for C
- Evaluated on open-source benchmarks

Our Learning-based Approach

Static Analyzer

Our Learning-based Approach

I.The abstraction is determined by a parameterized strategy:

$$S_w: pgm \rightarrow 2^{Var}$$

2. The parameter is learnt from an existing codebase:

I. Parameterized Strategy

$$S_w: pgm \rightarrow 2^{Var}$$

(I) Represent program variables as feature vectors.

(2) Compute the score of each variable.

(3) Choose the top-k variables based on the score.

(I) Features

• Predicates over variables:

$$f = \{f_1, f_2, \dots, f_5\} \quad (f_i: Var \to \{0, I\})$$

(I) Features

• Predicates over variables:

$$f = \{f_1, f_2, \dots, f_5\}$$
 $(f_i : Var \rightarrow \{0, I\})$

- 45 simple syntactic features for variables: e.g,
 - local / global variable, passed to / returned from malloc, incremented by constants, etc

(I) Features

• Represent each variable as a feature vector:

 $f(x) = \langle f_1(x), f_2(x), f_3(x), f_4(x), f_5(x) \rangle$

 $f(x) = \langle 1, 0, 1, 0, 0 \rangle$ $f(y) = \langle 1, 0, 1, 0, 1 \rangle$ $f(z) = \langle 0, 0, 1, 1, 0 \rangle$

(2) Scoring

• The parameter w is a real-valued vector: e.g.,

$$w = \langle 0.9, 0.5, -0.6, 0.7, 0.3 \rangle$$

• Compute scores of variables:

score(x) = $\langle 1,0,1,0,0 \rangle \cdot \langle 0.9, 0.5, -0.6, 0.7, 0.3 \rangle = 0.3$ score(y) = $\langle 1,0,1,0,1 \rangle \cdot \langle 0.9, 0.5, -0.6, 0.7, 0.3 \rangle = 0.6$ score(z) = $\langle 0,0,1,1,0 \rangle \cdot \langle 0.9, 0.5, -0.6, 0.7, 0.3 \rangle = 0.1$

(3) Choose Top-k Variables

Choose the top-k variables based on their scores:
e.g., when k=2,

 In experiments, we chosen 10% of variables with highest scores.

2. Learn a Good Parameter

• Solve the optimization problem:

Find w that maximizes
$$\sum_{P_i} F(P_i, S_w(P_i))$$

Learning via Random Sampling

repeat N times pick $\mathbf{w} \in \mathbb{R}^n$ randomly evaluate $\sum_{P_i} F(P_i, S_{\mathbf{w}}(P_i))$ return best \mathbf{w} found

Learning via Random Sampling

Our Approach: Learning via Bayesian Optimization

- A powerful method for solving difficult optimization problems.
- Especially powerful when the objective function is expensive to evaluate.
- Key idea: use a probabilistic model to reduce the number of objective function evaluations.

Learning via Bayesian Optimization

repeat N times select a promising w using the model evaluate $\sum_{P_i} F(P_i, S_w(P_i))$ update the probabilistic model return best w found

- Probabilistic model: Gaussian processes
- Selection strategy: Expected improvement

Learning via Bayesian Optimization

Random Sampling vs Bayesian Optimization

Random sampling • Bayesian optimization

#sampling

Experiments

- Sparrow: a C static analyzer for buffer-overrun checking
- Tune partial flow- and context-sensitivity of Sparrow
 - 10% of program variables for flow-sensitivity
 - 10% of procedures for context-sensitivity
- 30 open-source C programs (IK ~ 100KLoC)
 - 20 programs for training
 - 10 programs for testing

Performance

Flow-Sensitivity (12 hour time budget)

		Testing											
	FI	FS	part	ial FS	FI		FS			partial FS			
Trial	prove	prove	prove	quality	prove	sec	prove	sec	cost	prove	sec	quality	cost
1	6,383	7,316	7,089	75.7 %	2,788	48	4,009	627	13.2 x	3,692	78	74.0 %	1.6 x
2	5,788	7,422	7,219	87.6 %	3,383	55	3,903	531	9.6 x	3,721	93	65.0 %	1.7 x
3	6,148	7,842	7,595	85.4 %	3,023	49	3,483	1,898	38.6 x	3,303	99	60.9 %	2.0 x
4	6,138	7,895	7,599	83.2 %	3,033	38	3,430	237	6.2 x	3,286	51	63.7 %	1.3 x
5	7,343	9,150	8,868	84.4 %	1,828	28	2,175	577	20.5 x	2,103	54	79.3 %	1.9 x
TOTAL	31,800	39,625	38,370	84.0 %	14,055	218	17,000	3,868	17.8 x	16,105	374	69.6 %	1.7 x

Performance

Flow-Sensitivity (12 hour time budget)

		Testing											
	FI	FS	part	ial FS	FI		FS			partial FS			
Trial	prove	prove	prove	quality	prove	sec	prove	sec	cost	prove	sec	quality	cost
1	6,383	7,316	7,089	75.7 %	2,788	48	4,009	627	13.2 x	3,692	78	74.0 %	1.6 x
2	5,788	7,422	7,219	87.6 %	3,383	55	3,903	531	9.6 x	3,721	93	65.0 %	1.7 x
3	6,148	7,842	7,595	85.4 %	3,023	49	3,483	1,898	38.6 x	3,303	99	60.9 %	2.0 x
4	6,138	7,895	7,599	83.2 %	3,033	38	3,430	237	6.2 x	3,286	51	63.7 %	1.3 x
5	7,343	9,150	8,868	84.4 %	1,828	28	2,175	577	20.5 x	2,103	54	79.3 %	1.9 x
TOTAL	31,800	39,625	38,370	84.0 %	14,055	218	17,000	3,868	17.8 x	16,105	374	69.6 %	1.7 x

Flow-Sensitivity + Context-Sensitivity (12hrs)

		Testing											
	FICI	FSCS	partia	I FSCS	FICI		FSCS			partial FSCS			
Trial	prove	prove	prove	quality	prove	sec	prove	sec	cost	prove	sec	quality	cost
1	6,383	9,237	8,674	80.3 %	2,788	46	4,275	5,425	118.2 x	3,907	187	75.3 %	4.1 x
2	5,788	8,287	7,598	72.4 %	3,383	57	5,225	4,495	79.4 x	4,597	194	65.9 %	3.4 x
3	6,148	8,737	8,123	76.3 %	3,023	48	4,775	5,235	108.8 x	4,419	150	79.7 %	3.1 x
4	6,138	9,883	8,899	73.7 %	3,033	38	3,629	1,609	42.0 x	3,482	82	75.3 %	2.1 x
5	7,343	10,082	10,040	98.5 %	1,828	30	2,670	7,801	258.3 x	2,513	104	81.4 %	3.4 x
TOTAL	31,800	46,226	43,334	80.0 %	14,055	219	20,574	24,565	112.1 x	18,918	717	74.6 %	3.3 x

- int mirror[7];
- 1 int i = unknown;
- 3 for (i=1;i<7;i++)</pre>
- 4 if (mirror[i-1] == '1') ...

local variable	<pre>int mirror[7];</pre>
2	int i = unknown;
3	for (i=1;i<7;i++)
4	if (mirror[i-1] == '1')

• Also provide insights difficult to find manually:

$$_3 \quad path[pos] = 0;$$

• Over the entire codebase, the feature is a strong indicator for flow-"insensitivity"

• Also provide insights difficult to find manually:

• Over the entire codebase, the feature is a strong indicator for flow-"insensitivity"

Summary Our Learning-based Approach

- First machine learning-based approach
 - formulated as an optimization problem
 - solved by Bayesian optimization
- Effective: 70% precision with 2x cost
- Generally applicable to any static analysis

Summary Our Learning-based Approach

Thank you

- First machine learning-based approach
 - formulated as an optimization problem
 - solved by Bayesian optimization
- Effective: 70% precision with 2x cost
- Generally applicable to any static analysis