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Finding a Good Program 
Abstraction is Challenging

• Intractably large space, if not infinite

• 2Var different abstractions for FS

• Most of them are too imprecise or costly

• P({x,y,z}) = {∅,{x},{y},{z},{x,y},{y,z},{x,z},{x,y,z}}



Our Research

• How to efficiently find a good abstraction?

• ex) Impact pre-analysis [PLDI’14]

main analysisImpact pre-analysis

fully flow-sensitive but 
approximated in others

selectively flow-sensitive

{x,y,z,…}
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Learning-based Approach

• Learn a good parameter W from existing codebase

• For new program P, run static analysis with Sw(P)

P1, P2, …,Pm

Codebase

⇒ W

• Parameterized adaptation strategy

Sw : pgm → 2Var

This T
alk



Effectiveness
• Implemented in Sparrow, an interval analyzer for C

• Evaluated on open-source benchmarks
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• Implemented in Sparrow, an interval analyzer for C
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Static Analyzer

F(p, a) ⇒ n

abstraction
(e.g., a set of variables)

number of 
proved assertions



Our Learning-based Approach

1.The abstraction is determined by a parameterized 
strategy:  
 

2.The parameter is learnt from an existing codebase:

Sw : pgm → 2Var

P1, P2, …,Pm

Codebase

⇒ W



1. Parameterized Strategy

(1) Represent program variables as feature vectors.

(2) Compute the score of each variable.

(3) Choose the top-k variables based on the score. 

Sw : pgm → 2Var



(1) Features

• Predicates over variables:

f = {f1, f2,…,f5} (fi :  Var → {0,1})



(1) Features

• Predicates over variables:

f = {f1, f2,…,f5}

• 45 simple syntactic features for variables: e.g, 

• local / global variable, passed to / returned from 
malloc, incremented by constants, etc

(fi :  Var → {0,1})



(1) Features

f(x) = ⟨f1(x), f2(x), f3(x),f4(x),f5(x)⟩

• Represent each variable as a feature vector:

f(x) = ⟨1,0,1,0,0⟩
f(y) = ⟨1,0,1,0,1⟩
f(z) = ⟨0,0,1,1,0⟩



(2) Scoring

• The parameter w is a real-valued vector: e.g., 

• Compute scores of variables:

w = ⟨0.9, 0.5, -0.6, 0.7, 0.3⟩

score(x) = ⟨1,0,1,0,0⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.3
score(y) = ⟨1,0,1,0,1⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.6
score(z) = ⟨0,0,1,1,0⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.1



(3) Choose Top-k Variables

• Choose the top-k variables based on their scores:  
e.g., when k=2,

score(x) = 0.3
score(y) = 0.6
score(z) = 0.1

{x,y}

• In experiments, we chosen 10% of variables with 
highest scores.



2. Learn a Good Parameter

• Solve the optimization problem:

P1, P2, …,Pm

Codebase

⇒ W

X

Pi

F (Pi, Sw(Pi))Find w that maximizes



Learning via Random Sampling

repeat N times

    pick w ∈ Rn randomly
  

evaluate

return best w found

X

Pi

F (Pi, Sw(Pi))



Learning via Random Sampling

Training Testing
FI FS partial FS FI FS partial FS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 7,316 7,089 75.7 % 2,788 48 4,009 627 13.2 x 3,692 78 74.0 % 1.6 x
2 5,788 7,422 7,219 87.6 % 3,383 55 3,903 531 9.6 x 3,721 93 65.0 % 1.7 x
3 6,148 7,842 7,595 85.4 % 3,023 49 3,483 1,898 38.6 x 3,303 99 60.9 % 2.0 x
4 6,138 7,895 7,599 83.2 % 3,033 38 3,430 237 6.2 x 3,286 51 63.7 % 1.3 x
5 7,343 9,150 8,868 84.4 % 1,828 28 2,175 577 20.5 x 2,103 54 79.3 % 1.9 x

TOTAL 31,800 39,625 38,370 84.0 % 14,055 218 17,000 3,868 17.8 x 16,105 374 69.6 % 1.7 x

Table 4. Effectiveness of our method for flow-sensitivity. prove: the number of proved queries in each analysis (FI: flow-
insensitivity, FS: flow-sensitivity, partial FS: partial flow-sensitivity). quality: the ratio of proved queries among the queries
that require flow-sensitivity. cost: cost increase compared to the FI analysis.

Training Testing
FICI FSCS partial FSCS FICI FSCS partial FSCS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 9,237 8,674 80.3 % 2,788 46 4,275 5,425 118.2 x 3,907 187 75.3 % 4.1 x
2 5,788 8,287 7,598 72.4 % 3,383 57 5,225 4,495 79.4 x 4,597 194 65.9 % 3.4 x
3 6,148 8,737 8,123 76.3 % 3,023 48 4,775 5,235 108.8 x 4,419 150 79.7 % 3.1 x
4 6,138 9,883 8,899 73.7 % 3,033 38 3,629 1,609 42.0 x 3,482 82 75.3 % 2.1 x
5 7,343 10,082 10,040 98.5 % 1,828 30 2,670 7,801 258.3 x 2,513 104 81.4 % 3.4 x

TOTAL 31,800 46,226 43,334 80.0 % 14,055 219 20,574 24,565 112.1 x 18,918 717 74.6 % 3.3 x

Table 5. Effectiveness for Flow-sensitivity + Context-sensitivity.

(a) Random sampling (b) Bayesian optimisation

Figure 2. Comparison of Bayesian optimisation with random sampling

programs, which supports the full C language and has been
being developed for the past seven years [19]. This baseline
analyser tracks both numeric and pointer-related informa-
tion simultaneously in its fixpoint computation. For numeric
values, it uses the interval abstract domain, and for pointer
values, it uses an allocation-site-based heap abstraction. The
analysis is field-sensitive (i.e., separates different structure
fields) and flow-sensitive, but it is not context-sensitive. We
applied the sparse analysis technique [20] to improve the
scalability.

By modifying the baseline analyser, we implemented a
partially flow-sensitive analyser, which controls its flow-
sensitivity according to a given set of abstract locations (pro-

gram variables, structure fields and allocation sites) as de-
scribed in Section 6.1. We also implemented our learning
algorithm based on Bayesian optimisation.7 Our implemen-
tations were tested against 30 open source programs from
GNU and Linux packages (Table 6 in Appendix).

The key questions that we would like to answer in our
experiments are whether our learning algorithm produces
a good adaptation strategy and how much it gets benefited
from Bayesian optimisation. To answer the first question,
we followed a standard method in the machine learning lit-
erature, called cross validation. We randomly divide the 30

7 The implementation of our learning algorithm is available at http://
prl.korea.ac.kr/

~

hakjoo/research/oopsla15/.



Our Approach: 
Learning via Bayesian Optimization

• A powerful method for solving difficult optimization 
problems. 

• Especially powerful when the objective function is 
expensive to evaluate. 

• Key idea: use a probabilistic model to reduce the number 
of objective function evaluations. 



Learning via Bayesian Optimization

• Probabilistic model: Gaussian processes

• Selection strategy: Expected improvement

repeat N times

   select a promising w using the model

evaluate 

return best w found

X

Pi

F (Pi, Sw(Pi))

    update the probabilistic model



Learning via Bayesian Optimization

Training Testing
FI FS partial FS FI FS partial FS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 7,316 7,089 75.7 % 2,788 48 4,009 627 13.2 x 3,692 78 74.0 % 1.6 x
2 5,788 7,422 7,219 87.6 % 3,383 55 3,903 531 9.6 x 3,721 93 65.0 % 1.7 x
3 6,148 7,842 7,595 85.4 % 3,023 49 3,483 1,898 38.6 x 3,303 99 60.9 % 2.0 x
4 6,138 7,895 7,599 83.2 % 3,033 38 3,430 237 6.2 x 3,286 51 63.7 % 1.3 x
5 7,343 9,150 8,868 84.4 % 1,828 28 2,175 577 20.5 x 2,103 54 79.3 % 1.9 x

TOTAL 31,800 39,625 38,370 84.0 % 14,055 218 17,000 3,868 17.8 x 16,105 374 69.6 % 1.7 x

Table 4. Effectiveness of our method for flow-sensitivity. prove: the number of proved queries in each analysis (FI: flow-
insensitivity, FS: flow-sensitivity, partial FS: partial flow-sensitivity). quality: the ratio of proved queries among the queries
that require flow-sensitivity. cost: cost increase compared to the FI analysis.

Training Testing
FICI FSCS partial FSCS FICI FSCS partial FSCS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 9,237 8,674 80.3 % 2,788 46 4,275 5,425 118.2 x 3,907 187 75.3 % 4.1 x
2 5,788 8,287 7,598 72.4 % 3,383 57 5,225 4,495 79.4 x 4,597 194 65.9 % 3.4 x
3 6,148 8,737 8,123 76.3 % 3,023 48 4,775 5,235 108.8 x 4,419 150 79.7 % 3.1 x
4 6,138 9,883 8,899 73.7 % 3,033 38 3,629 1,609 42.0 x 3,482 82 75.3 % 2.1 x
5 7,343 10,082 10,040 98.5 % 1,828 30 2,670 7,801 258.3 x 2,513 104 81.4 % 3.4 x

TOTAL 31,800 46,226 43,334 80.0 % 14,055 219 20,574 24,565 112.1 x 18,918 717 74.6 % 3.3 x

Table 5. Effectiveness for Flow-sensitivity + Context-sensitivity.

(a) Random sampling (b) Bayesian optimisation

Figure 2. Comparison of Bayesian optimisation with random sampling

programs, which supports the full C language and has been
being developed for the past seven years [19]. This baseline
analyser tracks both numeric and pointer-related informa-
tion simultaneously in its fixpoint computation. For numeric
values, it uses the interval abstract domain, and for pointer
values, it uses an allocation-site-based heap abstraction. The
analysis is field-sensitive (i.e., separates different structure
fields) and flow-sensitive, but it is not context-sensitive. We
applied the sparse analysis technique [20] to improve the
scalability.

By modifying the baseline analyser, we implemented a
partially flow-sensitive analyser, which controls its flow-
sensitivity according to a given set of abstract locations (pro-

gram variables, structure fields and allocation sites) as de-
scribed in Section 6.1. We also implemented our learning
algorithm based on Bayesian optimisation.7 Our implemen-
tations were tested against 30 open source programs from
GNU and Linux packages (Table 6 in Appendix).

The key questions that we would like to answer in our
experiments are whether our learning algorithm produces
a good adaptation strategy and how much it gets benefited
from Bayesian optimisation. To answer the first question,
we followed a standard method in the machine learning lit-
erature, called cross validation. We randomly divide the 30

7 The implementation of our learning algorithm is available at http://
prl.korea.ac.kr/

~

hakjoo/research/oopsla15/.



Random Sampling vs 
Bayesian Optimization

benchmark programs into 20 training programs and 10 test
programs. An adaptation strategy is learned from the 20
training programs, and tested against the remaining 10 test
programs. We repeated this experiment for five times. The
results of each trial are shown in Table 4. In these experi-
ments, we set k = 0.1, which means that flow-sensitivity
is applied to only the 10% of total abstract locations (i.e.,
program variables, structure fields and allocation sites). We
compared the performance of a flow-insensitive analysis
(FI), a fully flow-sensitive analysis (FS) and our partially
flow-sensitive variant (partial FS). To answer the second
question, we compared the performance of the Bayesian
optimisation-based learning algorithm against the random
sampling method.

Learning Table 4 shows the results of the training and test
phases for all the five trials. In total, the flow-insensitive
analysis (FI) proved 31,800 queries in the 20 training pro-
grams, while the fully flow-sensitive analysis (FS) proved
39,625 queries. During the learning phase, our algorithm
found a parameter w. On the training programs, the anal-
ysis with w proved, on average, 84.0% of FS-only queries,
that is, queries that were handled only by the flow-sensitive
analysis (FS). Finding such a good parameter for training
programs, let alone unseen test ones, is highly nontrivial. As
shown in Table 2, the number of parameters to tune at the
same time is 45 for flow-sensitivity. Manually searching for
a good parameter w for these 45 parameter over 18 training
programs is simply impossible. In fact, we tried to do this
manual search in the early stage of this work, but most of
our manual trials failed to find any useful parameter (Fig-
ure 2).

Figure 2 compares our learning algorithm based on
Bayesian optimisation against the one based on random sam-
pling. It shows the two distributions of the qualities of tried
parameters w (recorded in the x axis), where the first dis-
tribution uses parameters tried by random sampling over a
fixed time budget (12h) and the second, by Bayesian optimi-
sation over the same budget. By the quality of w, we mean
the percentage of FS-only queries proved by the analysis
with w. The results for random sampling (Figure 2(a)) con-
firm that the space for adaptation parameters w for partial
flow-sensitivity is nontrivial; most of the parameters do not
prove any queries. As a result, random sampling wastes most
of its execution time by running the static analysis that does
not prove any FS-only queries. This shortcoming is absent
in Figure 2(b) for Bayesian optimisation. In fact, most pa-
rameters found by Bayesian optimisation led to adaptation
strategies that prove about 70% of FS-only queries. Figure 3
shows how the best qualities found by Bayesian optimisation
and random sampling change as the learning proceeds. The
results compare the first 30 evaluations for the first training
set of our experiments, which show that Bayesian optimisa-
tion finds a better parameter (63.5%) with fewer evaluations.

Figure 3. Comparison of Bayesian optimisation with ran-
dom sampling

The random sampling method converged to the quality of
45.2%.

Testing For each of the five trials, we tested a parameter
learnt from 20 training programs, against 10 programs in
the test set. The results of this test phase are given in Table
4, and they show that the analysis with the learnt parame-
ters has a good precision/cost balance. In total, for 10 test
programs, the flow-insensitive analysis (FI) proved 14,055
queries, while the full flow-sensitive one (FS) proved 17,000
queries. The partially flow-sensitive version with a learnt
adaptation strategy proved on average 69.6% of the FS-only
queries. To do so, our partially flow-sensitive analysis in-
creases the cost of the FI analysis only moderately (by 1.7x),
while the FS analysis increases the analysis cost by 17.8x.

However, the results show that the analyses with the
learnt parameters are generally less precise in the test set
than the training set. For the five trials, our method has
proved, on average, 84.0% of FS-queries in the training set
and 69.6% in the test set.

Top-10 features The learnt parameter identified the fea-
tures that are important for flow-sensitivity. Because our
learning method computes the score of abstract locations
based on linear combination of features and parameter w,
the learnt parameter w means the relative importance of fea-
tures.

Figure 4 shows the 10 most important features identified
by our learning algorithm from ten trials (including the five
trials in Table 4 as well as additional five ones). For in-
stance, in the first trial, we found that the most important
features were #19, 32, 1, 4, 28, 33, 29, 3, 43, 18 in Table
2. These features say that accurately analysing, for instance,
variables incremented by one (#19) or modified inside a lo-
cal loop (#32), and local variables (#1) are important for
cost-effective flow-sensitive analysis. The histogram on the
right shows the number of times each feature appears in the
top-10 features during the ten trials. In all trials, features #19

#sampling
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Experiments
• Sparrow: a C static analyzer for buffer-overrun checking

• Tune partial flow- and context-sensitivity of Sparrow

• 10% of program variables for flow-sensitivity

• 10% of procedures for context-sensitivity 

• 30 open-source C programs (1K ~ 100KLoC)

• 20 programs for training

• 10 programs for testing



Performance

Training Testing
FI FS partial FS FI FS partial FS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 7,316 7,089 75.7 % 2,788 48 4,009 627 13.2 x 3,692 78 74.0 % 1.6 x
2 5,788 7,422 7,219 87.6 % 3,383 55 3,903 531 9.6 x 3,721 93 65.0 % 1.7 x
3 6,148 7,842 7,595 85.4 % 3,023 49 3,483 1,898 38.6 x 3,303 99 60.9 % 2.0 x
4 6,138 7,895 7,599 83.2 % 3,033 38 3,430 237 6.2 x 3,286 51 63.7 % 1.3 x
5 7,343 9,150 8,868 84.4 % 1,828 28 2,175 577 20.5 x 2,103 54 79.3 % 1.9 x

TOTAL 31,800 39,625 38,370 84.0 % 14,055 218 17,000 3,868 17.8 x 16,105 374 69.6 % 1.7 x

Table 4. Effectiveness of our method for flow-sensitivity. prove: the number of proved queries in each analysis (FI: flow-
insensitivity, FS: flow-sensitivity, partial FS: partial flow-sensitivity). quality: the ratio of proved queries among the queries
that require flow-sensitivity. cost: cost increase compared to the FI analysis.

Training Testing
FICI FSCS partial FSCS FICI FSCS partial FSCS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 9,237 8,674 80.3 % 2,788 46 4,275 5,425 118.2 x 3,907 187 75.3 % 4.1 x
2 5,788 8,287 7,598 72.4 % 3,383 57 5,225 4,495 79.4 x 4,597 194 65.9 % 3.4 x
3 6,148 8,737 8,123 76.3 % 3,023 48 4,775 5,235 108.8 x 4,419 150 79.7 % 3.1 x
4 6,138 9,883 8,899 73.7 % 3,033 38 3,629 1,609 42.0 x 3,482 82 75.3 % 2.1 x
5 7,343 10,082 10,040 98.5 % 1,828 30 2,670 7,801 258.3 x 2,513 104 81.4 % 3.4 x

TOTAL 31,800 46,226 43,334 80.0 % 14,055 219 20,574 24,565 112.1 x 18,918 717 74.6 % 3.3 x

Table 5. Effectiveness for Flow-sensitivity + Context-sensitivity.

(a) Random sampling (b) Bayesian optimisation

Figure 2. Comparison of Bayesian optimisation with random sampling

programs, which supports the full C language and has been
being developed for the past seven years [19]. This baseline
analyser tracks both numeric and pointer-related informa-
tion simultaneously in its fixpoint computation. For numeric
values, it uses the interval abstract domain, and for pointer
values, it uses an allocation-site-based heap abstraction. The
analysis is field-sensitive (i.e., separates different structure
fields) and flow-sensitive, but it is not context-sensitive. We
applied the sparse analysis technique [20] to improve the
scalability.

By modifying the baseline analyser, we implemented a
partially flow-sensitive analyser, which controls its flow-
sensitivity according to a given set of abstract locations (pro-

gram variables, structure fields and allocation sites) as de-
scribed in Section 6.1. We also implemented our learning
algorithm based on Bayesian optimisation.7 Our implemen-
tations were tested against 30 open source programs from
GNU and Linux packages (Table 6 in Appendix).

The key questions that we would like to answer in our
experiments are whether our learning algorithm produces
a good adaptation strategy and how much it gets benefited
from Bayesian optimisation. To answer the first question,
we followed a standard method in the machine learning lit-
erature, called cross validation. We randomly divide the 30

7 The implementation of our learning algorithm is available at http://
prl.korea.ac.kr/

~

hakjoo/research/oopsla15/.

Flow-Sensitivity (12 hour time budget)



Performance

Training Testing
FI FS partial FS FI FS partial FS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 7,316 7,089 75.7 % 2,788 48 4,009 627 13.2 x 3,692 78 74.0 % 1.6 x
2 5,788 7,422 7,219 87.6 % 3,383 55 3,903 531 9.6 x 3,721 93 65.0 % 1.7 x
3 6,148 7,842 7,595 85.4 % 3,023 49 3,483 1,898 38.6 x 3,303 99 60.9 % 2.0 x
4 6,138 7,895 7,599 83.2 % 3,033 38 3,430 237 6.2 x 3,286 51 63.7 % 1.3 x
5 7,343 9,150 8,868 84.4 % 1,828 28 2,175 577 20.5 x 2,103 54 79.3 % 1.9 x

TOTAL 31,800 39,625 38,370 84.0 % 14,055 218 17,000 3,868 17.8 x 16,105 374 69.6 % 1.7 x

Table 4. Effectiveness of our method for flow-sensitivity. prove: the number of proved queries in each analysis (FI: flow-
insensitivity, FS: flow-sensitivity, partial FS: partial flow-sensitivity). quality: the ratio of proved queries among the queries
that require flow-sensitivity. cost: cost increase compared to the FI analysis.

Training Testing
FICI FSCS partial FSCS FICI FSCS partial FSCS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 9,237 8,674 80.3 % 2,788 46 4,275 5,425 118.2 x 3,907 187 75.3 % 4.1 x
2 5,788 8,287 7,598 72.4 % 3,383 57 5,225 4,495 79.4 x 4,597 194 65.9 % 3.4 x
3 6,148 8,737 8,123 76.3 % 3,023 48 4,775 5,235 108.8 x 4,419 150 79.7 % 3.1 x
4 6,138 9,883 8,899 73.7 % 3,033 38 3,629 1,609 42.0 x 3,482 82 75.3 % 2.1 x
5 7,343 10,082 10,040 98.5 % 1,828 30 2,670 7,801 258.3 x 2,513 104 81.4 % 3.4 x

TOTAL 31,800 46,226 43,334 80.0 % 14,055 219 20,574 24,565 112.1 x 18,918 717 74.6 % 3.3 x

Table 5. Effectiveness for Flow-sensitivity + Context-sensitivity.

(a) Random sampling (b) Bayesian optimisation

Figure 2. Comparison of Bayesian optimisation with random sampling

programs, which supports the full C language and has been
being developed for the past seven years [19]. This baseline
analyser tracks both numeric and pointer-related informa-
tion simultaneously in its fixpoint computation. For numeric
values, it uses the interval abstract domain, and for pointer
values, it uses an allocation-site-based heap abstraction. The
analysis is field-sensitive (i.e., separates different structure
fields) and flow-sensitive, but it is not context-sensitive. We
applied the sparse analysis technique [20] to improve the
scalability.

By modifying the baseline analyser, we implemented a
partially flow-sensitive analyser, which controls its flow-
sensitivity according to a given set of abstract locations (pro-

gram variables, structure fields and allocation sites) as de-
scribed in Section 6.1. We also implemented our learning
algorithm based on Bayesian optimisation.7 Our implemen-
tations were tested against 30 open source programs from
GNU and Linux packages (Table 6 in Appendix).

The key questions that we would like to answer in our
experiments are whether our learning algorithm produces
a good adaptation strategy and how much it gets benefited
from Bayesian optimisation. To answer the first question,
we followed a standard method in the machine learning lit-
erature, called cross validation. We randomly divide the 30

7 The implementation of our learning algorithm is available at http://
prl.korea.ac.kr/

~

hakjoo/research/oopsla15/.
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insensitivity, FS: flow-sensitivity, partial FS: partial flow-sensitivity). quality: the ratio of proved queries among the queries
that require flow-sensitivity. cost: cost increase compared to the FI analysis.
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Table 5. Effectiveness for Flow-sensitivity + Context-sensitivity.
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Figure 2. Comparison of Bayesian optimisation with random sampling

programs, which supports the full C language and has been
being developed for the past seven years [19]. This baseline
analyser tracks both numeric and pointer-related informa-
tion simultaneously in its fixpoint computation. For numeric
values, it uses the interval abstract domain, and for pointer
values, it uses an allocation-site-based heap abstraction. The
analysis is field-sensitive (i.e., separates different structure
fields) and flow-sensitive, but it is not context-sensitive. We
applied the sparse analysis technique [20] to improve the
scalability.

By modifying the baseline analyser, we implemented a
partially flow-sensitive analyser, which controls its flow-
sensitivity according to a given set of abstract locations (pro-

gram variables, structure fields and allocation sites) as de-
scribed in Section 6.1. We also implemented our learning
algorithm based on Bayesian optimisation.7 Our implemen-
tations were tested against 30 open source programs from
GNU and Linux packages (Table 6 in Appendix).

The key questions that we would like to answer in our
experiments are whether our learning algorithm produces
a good adaptation strategy and how much it gets benefited
from Bayesian optimisation. To answer the first question,
we followed a standard method in the machine learning lit-
erature, called cross validation. We randomly divide the 30

7 The implementation of our learning algorithm is available at http://
prl.korea.ac.kr/

~

hakjoo/research/oopsla15/.
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Insights on Flow-Sensitivity
• Relative importance between program features:

Trials
rank 1 2 3 4 5 6 7 8 9 10

1 # 19 # 19 # 19 # 19 # 19 # 11 # 11 # 11 # 13 # 19
2 # 32 # 32 # 32 # 32 # 32 # 19 # 19 # 19 # 19 # 28
3 # 1 # 28 # 37 # 1 # 1 # 28 # 24 # 28 # 28 # 32
4 # 4 # 33 # 40 # 27 # 4 # 12 # 26 # 12 # 32 # 7
5 # 28 # 29 # 31 # 4 # 28 # 1 # 28 # 1 # 26 # 3
6 # 33 # 18 # 1 # 28 # 7 # 32 # 32 # 4 # 7 # 33
7 # 29 # 8 # 39 # 7 # 15 # 26 # 18 # 42 # 45 # 24
8 # 3 # 14 # 27 # 9 # 33 # 21 # 43 # 23 # 3 # 20
9 # 43 # 37 # 20 # 6 # 29 # 7 # 36 # 32 # 33 # 40

10 # 18 # 9 # 4 # 15 # 3 # 45 # 7 # 6 # 35 # 8

Figure 4. (Left) Top-10 features (for flow-sensitivity) identified by our learning algorithm for ten trials. Each entry denotes
the feature numbers shown in Table 2. (Right) Counts of each feature (x-axis) that appears in the top-10 features during the ten
trials. Features #19 and #32 are in top-10 for all trials. The results have been obtained with 20 training programs.

(variables incremented by one) and #32 (variables modified
inside a local loop) are included in the top-10 features. Fea-
tures #1 (local variables), #4 (locations created by dynamic
memory allocation), #7 (location generated in library code),
and #28 (used as an array index) appear more than five times
across the ten trials. We also identified top-10 features when
trained with a smaller set of programs. Figure 5 shows the re-
sults with 10 training programs. In this case, features #1 (lo-
cal variables), #7 (assigned a constant expression), #9 (com-
pared with another variable), #19 (incremented by one), #28
(used as an array index), and #32 (modified inside a local
loop) appeared more than five times across ten trials.

The automatically selected features generally coincided
with our intuition on when and where flow-sensitivity helps.
For instance, the following code (taken from barcode-0.96)
shows a typical situation where flow-sensitivity is required:

1 int mirror[7];

2 int i = unknown;

3 for (i=1;i<7;i++)

4 if (mirror[i-1] == ’1’) ...

Because variable i is initially unknown and is incremented
in the loop, a flow-insensitive interval analysis cannot prove
the safety of buffer access at line 3. On the other hand, if we
analyze variable i flow-sensitively, we can prove that i-1 at
line 3 always has a value less than 7 (the size of mirror).
Note that, according to the top-10 features, variable i has a
high score in our method because it is a local variable (#1),
modified inside a local loop (#32), and incremented by one
(# 19).

The selected features also provided novel insights that
contradicted our conjecture. When we manually identified
important features in the early stage of this work, we con-
jectured that feature #10 (variables negated in a conditional
expression) would be a good indicator for flow-sensitivity,
because we found the following pattern in the program un-
der investigation (spell-1.0):

Figure 5. Top-10 feature frequencies with 10 training pro-
grams.

1 int pos = unknown;

2 if (!pos)

3 path[pos] = 0;

Although pos is unknown at line 1, its value at line 3 must
be 0 because pos is negated in the condition at line 2. How-
ever, after running our algorithm over the entire codebase,
we found that this pattern happens only rarely in practice,
and that feature #10 is actually a strong indicator for flow-
“insensitivity”.

Comparison with the impact pre-analysis approach [18]

Recently Oh et al. proposed to run a cheap pre-analysis,
called impact pre-analysis, and to use its results for deciding
which parts of a given program should be analysed precisely
by the main analysis [18]. We compared our approach with
Oh et al.’s proposal on partial flow sensitivity. Following Oh
et al.’s recipe [18], we implemented a impact pre-analysis
that is fully flow-sensitive but uses a cheap abstract domain,
in fact, the same one as in [18], which mainly tracks whether
integer variables store non-negative values or not. Then, we
built an analysis that uses the results of this pre-analysis for
achieving partially flow-sensitivity.
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Insights on Flow-Sensitivity
• Relative importance between program features:
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Figure 4. (Left) Top-10 features (for flow-sensitivity) identified by our learning algorithm for ten trials. Each entry denotes
the feature numbers shown in Table 2. (Right) Counts of each feature (x-axis) that appears in the top-10 features during the ten
trials. Features #19 and #32 are in top-10 for all trials. The results have been obtained with 20 training programs.

(variables incremented by one) and #32 (variables modified
inside a local loop) are included in the top-10 features. Fea-
tures #1 (local variables), #4 (locations created by dynamic
memory allocation), #7 (location generated in library code),
and #28 (used as an array index) appear more than five times
across the ten trials. We also identified top-10 features when
trained with a smaller set of programs. Figure 5 shows the re-
sults with 10 training programs. In this case, features #1 (lo-
cal variables), #7 (assigned a constant expression), #9 (com-
pared with another variable), #19 (incremented by one), #28
(used as an array index), and #32 (modified inside a local
loop) appeared more than five times across ten trials.

The automatically selected features generally coincided
with our intuition on when and where flow-sensitivity helps.
For instance, the following code (taken from barcode-0.96)
shows a typical situation where flow-sensitivity is required:

1 int mirror[7];

2 int i = unknown;

3 for (i=1;i<7;i++)

4 if (mirror[i-1] == ’1’) ...

Because variable i is initially unknown and is incremented
in the loop, a flow-insensitive interval analysis cannot prove
the safety of buffer access at line 3. On the other hand, if we
analyze variable i flow-sensitively, we can prove that i-1 at
line 3 always has a value less than 7 (the size of mirror).
Note that, according to the top-10 features, variable i has a
high score in our method because it is a local variable (#1),
modified inside a local loop (#32), and incremented by one
(# 19).

The selected features also provided novel insights that
contradicted our conjecture. When we manually identified
important features in the early stage of this work, we con-
jectured that feature #10 (variables negated in a conditional
expression) would be a good indicator for flow-sensitivity,
because we found the following pattern in the program un-
der investigation (spell-1.0):

Figure 5. Top-10 feature frequencies with 10 training pro-
grams.

1 int pos = unknown;

2 if (!pos)

3 path[pos] = 0;

Although pos is unknown at line 1, its value at line 3 must
be 0 because pos is negated in the condition at line 2. How-
ever, after running our algorithm over the entire codebase,
we found that this pattern happens only rarely in practice,
and that feature #10 is actually a strong indicator for flow-
“insensitivity”.

Comparison with the impact pre-analysis approach [18]

Recently Oh et al. proposed to run a cheap pre-analysis,
called impact pre-analysis, and to use its results for deciding
which parts of a given program should be analysed precisely
by the main analysis [18]. We compared our approach with
Oh et al.’s proposal on partial flow sensitivity. Following Oh
et al.’s recipe [18], we implemented a impact pre-analysis
that is fully flow-sensitive but uses a cheap abstract domain,
in fact, the same one as in [18], which mainly tracks whether
integer variables store non-negative values or not. Then, we
built an analysis that uses the results of this pre-analysis for
achieving partially flow-sensitivity.
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• Relative importance between program features:
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Figure 4. (Left) Top-10 features (for flow-sensitivity) identified by our learning algorithm for ten trials. Each entry denotes
the feature numbers shown in Table 2. (Right) Counts of each feature (x-axis) that appears in the top-10 features during the ten
trials. Features #19 and #32 are in top-10 for all trials. The results have been obtained with 20 training programs.

(variables incremented by one) and #32 (variables modified
inside a local loop) are included in the top-10 features. Fea-
tures #1 (local variables), #4 (locations created by dynamic
memory allocation), #7 (location generated in library code),
and #28 (used as an array index) appear more than five times
across the ten trials. We also identified top-10 features when
trained with a smaller set of programs. Figure 5 shows the re-
sults with 10 training programs. In this case, features #1 (lo-
cal variables), #7 (assigned a constant expression), #9 (com-
pared with another variable), #19 (incremented by one), #28
(used as an array index), and #32 (modified inside a local
loop) appeared more than five times across ten trials.

The automatically selected features generally coincided
with our intuition on when and where flow-sensitivity helps.
For instance, the following code (taken from barcode-0.96)
shows a typical situation where flow-sensitivity is required:

1 int mirror[7];

2 int i = unknown;

3 for (i=1;i<7;i++)

4 if (mirror[i-1] == ’1’) ...

Because variable i is initially unknown and is incremented
in the loop, a flow-insensitive interval analysis cannot prove
the safety of buffer access at line 3. On the other hand, if we
analyze variable i flow-sensitively, we can prove that i-1 at
line 3 always has a value less than 7 (the size of mirror).
Note that, according to the top-10 features, variable i has a
high score in our method because it is a local variable (#1),
modified inside a local loop (#32), and incremented by one
(# 19).

The selected features also provided novel insights that
contradicted our conjecture. When we manually identified
important features in the early stage of this work, we con-
jectured that feature #10 (variables negated in a conditional
expression) would be a good indicator for flow-sensitivity,
because we found the following pattern in the program un-
der investigation (spell-1.0):

Figure 5. Top-10 feature frequencies with 10 training pro-
grams.

1 int pos = unknown;

2 if (!pos)

3 path[pos] = 0;

Although pos is unknown at line 1, its value at line 3 must
be 0 because pos is negated in the condition at line 2. How-
ever, after running our algorithm over the entire codebase,
we found that this pattern happens only rarely in practice,
and that feature #10 is actually a strong indicator for flow-
“insensitivity”.

Comparison with the impact pre-analysis approach [18]

Recently Oh et al. proposed to run a cheap pre-analysis,
called impact pre-analysis, and to use its results for deciding
which parts of a given program should be analysed precisely
by the main analysis [18]. We compared our approach with
Oh et al.’s proposal on partial flow sensitivity. Following Oh
et al.’s recipe [18], we implemented a impact pre-analysis
that is fully flow-sensitive but uses a cheap abstract domain,
in fact, the same one as in [18], which mainly tracks whether
integer variables store non-negative values or not. Then, we
built an analysis that uses the results of this pre-analysis for
achieving partially flow-sensitivity.
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Insights on Flow-Sensitivity
• Relative importance between program features:

Trials
rank 1 2 3 4 5 6 7 8 9 10
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2 # 32 # 32 # 32 # 32 # 32 # 19 # 19 # 19 # 19 # 28
3 # 1 # 28 # 37 # 1 # 1 # 28 # 24 # 28 # 28 # 32
4 # 4 # 33 # 40 # 27 # 4 # 12 # 26 # 12 # 32 # 7
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Figure 4. (Left) Top-10 features (for flow-sensitivity) identified by our learning algorithm for ten trials. Each entry denotes
the feature numbers shown in Table 2. (Right) Counts of each feature (x-axis) that appears in the top-10 features during the ten
trials. Features #19 and #32 are in top-10 for all trials. The results have been obtained with 20 training programs.

(variables incremented by one) and #32 (variables modified
inside a local loop) are included in the top-10 features. Fea-
tures #1 (local variables), #4 (locations created by dynamic
memory allocation), #7 (location generated in library code),
and #28 (used as an array index) appear more than five times
across the ten trials. We also identified top-10 features when
trained with a smaller set of programs. Figure 5 shows the re-
sults with 10 training programs. In this case, features #1 (lo-
cal variables), #7 (assigned a constant expression), #9 (com-
pared with another variable), #19 (incremented by one), #28
(used as an array index), and #32 (modified inside a local
loop) appeared more than five times across ten trials.

The automatically selected features generally coincided
with our intuition on when and where flow-sensitivity helps.
For instance, the following code (taken from barcode-0.96)
shows a typical situation where flow-sensitivity is required:

1 int mirror[7];

2 int i = unknown;

3 for (i=1;i<7;i++)

4 if (mirror[i-1] == ’1’) ...

Because variable i is initially unknown and is incremented
in the loop, a flow-insensitive interval analysis cannot prove
the safety of buffer access at line 3. On the other hand, if we
analyze variable i flow-sensitively, we can prove that i-1 at
line 3 always has a value less than 7 (the size of mirror).
Note that, according to the top-10 features, variable i has a
high score in our method because it is a local variable (#1),
modified inside a local loop (#32), and incremented by one
(# 19).

The selected features also provided novel insights that
contradicted our conjecture. When we manually identified
important features in the early stage of this work, we con-
jectured that feature #10 (variables negated in a conditional
expression) would be a good indicator for flow-sensitivity,
because we found the following pattern in the program un-
der investigation (spell-1.0):

Figure 5. Top-10 feature frequencies with 10 training pro-
grams.

1 int pos = unknown;

2 if (!pos)

3 path[pos] = 0;

Although pos is unknown at line 1, its value at line 3 must
be 0 because pos is negated in the condition at line 2. How-
ever, after running our algorithm over the entire codebase,
we found that this pattern happens only rarely in practice,
and that feature #10 is actually a strong indicator for flow-
“insensitivity”.

Comparison with the impact pre-analysis approach [18]

Recently Oh et al. proposed to run a cheap pre-analysis,
called impact pre-analysis, and to use its results for deciding
which parts of a given program should be analysed precisely
by the main analysis [18]. We compared our approach with
Oh et al.’s proposal on partial flow sensitivity. Following Oh
et al.’s recipe [18], we implemented a impact pre-analysis
that is fully flow-sensitive but uses a cheap abstract domain,
in fact, the same one as in [18], which mainly tracks whether
integer variables store non-negative values or not. Then, we
built an analysis that uses the results of this pre-analysis for
achieving partially flow-sensitivity.
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Insights on Flow-Sensitivity

• Typical scenario where flow-sensitivity helps:

Trials
rank 1 2 3 4 5 6 7 8 9 10

1 # 19 # 19 # 19 # 19 # 19 # 11 # 11 # 11 # 13 # 19
2 # 32 # 32 # 32 # 32 # 32 # 19 # 19 # 19 # 19 # 28
3 # 1 # 28 # 37 # 1 # 1 # 28 # 24 # 28 # 28 # 32
4 # 4 # 33 # 40 # 27 # 4 # 12 # 26 # 12 # 32 # 7
5 # 28 # 29 # 31 # 4 # 28 # 1 # 28 # 1 # 26 # 3
6 # 33 # 18 # 1 # 28 # 7 # 32 # 32 # 4 # 7 # 33
7 # 29 # 8 # 39 # 7 # 15 # 26 # 18 # 42 # 45 # 24
8 # 3 # 14 # 27 # 9 # 33 # 21 # 43 # 23 # 3 # 20
9 # 43 # 37 # 20 # 6 # 29 # 7 # 36 # 32 # 33 # 40

10 # 18 # 9 # 4 # 15 # 3 # 45 # 7 # 6 # 35 # 8

Figure 4. (Left) Top-10 features (for flow-sensitivity) identified by our learning algorithm for ten trials. Each entry denotes
the feature numbers shown in Table 2. (Right) Counts of each feature (x-axis) that appears in the top-10 features during the ten
trials. Features #19 and #32 are in top-10 for all trials. The results have been obtained with 20 training programs.

(variables incremented by one) and #32 (variables modified
inside a local loop) are included in the top-10 features. Fea-
tures #1 (local variables), #4 (locations created by dynamic
memory allocation), #7 (location generated in library code),
and #28 (used as an array index) appear more than five times
across the ten trials. We also identified top-10 features when
trained with a smaller set of programs. Figure 5 shows the re-
sults with 10 training programs. In this case, features #1 (lo-
cal variables), #7 (assigned a constant expression), #9 (com-
pared with another variable), #19 (incremented by one), #28
(used as an array index), and #32 (modified inside a local
loop) appeared more than five times across ten trials.

The automatically selected features generally coincided
with our intuition on when and where flow-sensitivity helps.
For instance, the following code (taken from barcode-0.96)
shows a typical situation where flow-sensitivity is required:

1 int mirror[7];

2 int i = unknown;

3 for (i=1;i<7;i++)

4 if (mirror[i-1] == ’1’) ...

Because variable i is initially unknown and is incremented
in the loop, a flow-insensitive interval analysis cannot prove
the safety of buffer access at line 3. On the other hand, if we
analyze variable i flow-sensitively, we can prove that i-1 at
line 3 always has a value less than 7 (the size of mirror).
Note that, according to the top-10 features, variable i has a
high score in our method because it is a local variable (#1),
modified inside a local loop (#32), and incremented by one
(# 19).

The selected features also provided novel insights that
contradicted our conjecture. When we manually identified
important features in the early stage of this work, we con-
jectured that feature #10 (variables negated in a conditional
expression) would be a good indicator for flow-sensitivity,
because we found the following pattern in the program un-
der investigation (spell-1.0):

Figure 5. Top-10 feature frequencies with 10 training pro-
grams.

1 int pos = unknown;

2 if (!pos)

3 path[pos] = 0;

Although pos is unknown at line 1, its value at line 3 must
be 0 because pos is negated in the condition at line 2. How-
ever, after running our algorithm over the entire codebase,
we found that this pattern happens only rarely in practice,
and that feature #10 is actually a strong indicator for flow-
“insensitivity”.

Comparison with the impact pre-analysis approach [18]

Recently Oh et al. proposed to run a cheap pre-analysis,
called impact pre-analysis, and to use its results for deciding
which parts of a given program should be analysed precisely
by the main analysis [18]. We compared our approach with
Oh et al.’s proposal on partial flow sensitivity. Following Oh
et al.’s recipe [18], we implemented a impact pre-analysis
that is fully flow-sensitive but uses a cheap abstract domain,
in fact, the same one as in [18], which mainly tracks whether
integer variables store non-negative values or not. Then, we
built an analysis that uses the results of this pre-analysis for
achieving partially flow-sensitivity.
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Figure 4. (Left) Top-10 features (for flow-sensitivity) identified by our learning algorithm for ten trials. Each entry denotes
the feature numbers shown in Table 2. (Right) Counts of each feature (x-axis) that appears in the top-10 features during the ten
trials. Features #19 and #32 are in top-10 for all trials. The results have been obtained with 20 training programs.

(variables incremented by one) and #32 (variables modified
inside a local loop) are included in the top-10 features. Fea-
tures #1 (local variables), #4 (locations created by dynamic
memory allocation), #7 (location generated in library code),
and #28 (used as an array index) appear more than five times
across the ten trials. We also identified top-10 features when
trained with a smaller set of programs. Figure 5 shows the re-
sults with 10 training programs. In this case, features #1 (lo-
cal variables), #7 (assigned a constant expression), #9 (com-
pared with another variable), #19 (incremented by one), #28
(used as an array index), and #32 (modified inside a local
loop) appeared more than five times across ten trials.

The automatically selected features generally coincided
with our intuition on when and where flow-sensitivity helps.
For instance, the following code (taken from barcode-0.96)
shows a typical situation where flow-sensitivity is required:

1 int mirror[7];

2 int i = unknown;

3 for (i=1;i<7;i++)

4 if (mirror[i-1] == ’1’) ...

Because variable i is initially unknown and is incremented
in the loop, a flow-insensitive interval analysis cannot prove
the safety of buffer access at line 3. On the other hand, if we
analyze variable i flow-sensitively, we can prove that i-1 at
line 3 always has a value less than 7 (the size of mirror).
Note that, according to the top-10 features, variable i has a
high score in our method because it is a local variable (#1),
modified inside a local loop (#32), and incremented by one
(# 19).

The selected features also provided novel insights that
contradicted our conjecture. When we manually identified
important features in the early stage of this work, we con-
jectured that feature #10 (variables negated in a conditional
expression) would be a good indicator for flow-sensitivity,
because we found the following pattern in the program un-
der investigation (spell-1.0):

Figure 5. Top-10 feature frequencies with 10 training pro-
grams.

1 int pos = unknown;

2 if (!pos)

3 path[pos] = 0;

Although pos is unknown at line 1, its value at line 3 must
be 0 because pos is negated in the condition at line 2. How-
ever, after running our algorithm over the entire codebase,
we found that this pattern happens only rarely in practice,
and that feature #10 is actually a strong indicator for flow-
“insensitivity”.

Comparison with the impact pre-analysis approach [18]

Recently Oh et al. proposed to run a cheap pre-analysis,
called impact pre-analysis, and to use its results for deciding
which parts of a given program should be analysed precisely
by the main analysis [18]. We compared our approach with
Oh et al.’s proposal on partial flow sensitivity. Following Oh
et al.’s recipe [18], we implemented a impact pre-analysis
that is fully flow-sensitive but uses a cheap abstract domain,
in fact, the same one as in [18], which mainly tracks whether
integer variables store non-negative values or not. Then, we
built an analysis that uses the results of this pre-analysis for
achieving partially flow-sensitivity.
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Note that, according to the top-10 features, variable i has a
high score in our method because it is a local variable (#1),
modified inside a local loop (#32), and incremented by one
(# 19).

The selected features also provided novel insights that
contradicted our conjecture. When we manually identified
important features in the early stage of this work, we con-
jectured that feature #10 (variables negated in a conditional
expression) would be a good indicator for flow-sensitivity,
because we found the following pattern in the program un-
der investigation (spell-1.0):
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grams.
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2 if (!pos)
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Although pos is unknown at line 1, its value at line 3 must
be 0 because pos is negated in the condition at line 2. How-
ever, after running our algorithm over the entire codebase,
we found that this pattern happens only rarely in practice,
and that feature #10 is actually a strong indicator for flow-
“insensitivity”.

Comparison with the impact pre-analysis approach [18]

Recently Oh et al. proposed to run a cheap pre-analysis,
called impact pre-analysis, and to use its results for deciding
which parts of a given program should be analysed precisely
by the main analysis [18]. We compared our approach with
Oh et al.’s proposal on partial flow sensitivity. Following Oh
et al.’s recipe [18], we implemented a impact pre-analysis
that is fully flow-sensitive but uses a cheap abstract domain,
in fact, the same one as in [18], which mainly tracks whether
integer variables store non-negative values or not. Then, we
built an analysis that uses the results of this pre-analysis for
achieving partially flow-sensitivity.
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in the loop, a flow-insensitive interval analysis cannot prove
the safety of buffer access at line 3. On the other hand, if we
analyze variable i flow-sensitively, we can prove that i-1 at
line 3 always has a value less than 7 (the size of mirror).
Note that, according to the top-10 features, variable i has a
high score in our method because it is a local variable (#1),
modified inside a local loop (#32), and incremented by one
(# 19).

The selected features also provided novel insights that
contradicted our conjecture. When we manually identified
important features in the early stage of this work, we con-
jectured that feature #10 (variables negated in a conditional
expression) would be a good indicator for flow-sensitivity,
because we found the following pattern in the program un-
der investigation (spell-1.0):
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2 if (!pos)
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Although pos is unknown at line 1, its value at line 3 must
be 0 because pos is negated in the condition at line 2. How-
ever, after running our algorithm over the entire codebase,
we found that this pattern happens only rarely in practice,
and that feature #10 is actually a strong indicator for flow-
“insensitivity”.

Comparison with the impact pre-analysis approach [18]

Recently Oh et al. proposed to run a cheap pre-analysis,
called impact pre-analysis, and to use its results for deciding
which parts of a given program should be analysed precisely
by the main analysis [18]. We compared our approach with
Oh et al.’s proposal on partial flow sensitivity. Following Oh
et al.’s recipe [18], we implemented a impact pre-analysis
that is fully flow-sensitive but uses a cheap abstract domain,
in fact, the same one as in [18], which mainly tracks whether
integer variables store non-negative values or not. Then, we
built an analysis that uses the results of this pre-analysis for
achieving partially flow-sensitivity.
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(variables incremented by one) and #32 (variables modified
inside a local loop) are included in the top-10 features. Fea-
tures #1 (local variables), #4 (locations created by dynamic
memory allocation), #7 (location generated in library code),
and #28 (used as an array index) appear more than five times
across the ten trials. We also identified top-10 features when
trained with a smaller set of programs. Figure 5 shows the re-
sults with 10 training programs. In this case, features #1 (lo-
cal variables), #7 (assigned a constant expression), #9 (com-
pared with another variable), #19 (incremented by one), #28
(used as an array index), and #32 (modified inside a local
loop) appeared more than five times across ten trials.

The automatically selected features generally coincided
with our intuition on when and where flow-sensitivity helps.
For instance, the following code (taken from barcode-0.96)
shows a typical situation where flow-sensitivity is required:

1 int mirror[7];

2 int i = unknown;

3 for (i=1;i<7;i++)

4 if (mirror[i-1] == ’1’) ...

Because variable i is initially unknown and is incremented
in the loop, a flow-insensitive interval analysis cannot prove
the safety of buffer access at line 3. On the other hand, if we
analyze variable i flow-sensitively, we can prove that i-1 at
line 3 always has a value less than 7 (the size of mirror).
Note that, according to the top-10 features, variable i has a
high score in our method because it is a local variable (#1),
modified inside a local loop (#32), and incremented by one
(# 19).

The selected features also provided novel insights that
contradicted our conjecture. When we manually identified
important features in the early stage of this work, we con-
jectured that feature #10 (variables negated in a conditional
expression) would be a good indicator for flow-sensitivity,
because we found the following pattern in the program un-
der investigation (spell-1.0):

Figure 5. Top-10 feature frequencies with 10 training pro-
grams.

1 int pos = unknown;

2 if (!pos)

3 path[pos] = 0;

Although pos is unknown at line 1, its value at line 3 must
be 0 because pos is negated in the condition at line 2. How-
ever, after running our algorithm over the entire codebase,
we found that this pattern happens only rarely in practice,
and that feature #10 is actually a strong indicator for flow-
“insensitivity”.

Comparison with the impact pre-analysis approach [18]

Recently Oh et al. proposed to run a cheap pre-analysis,
called impact pre-analysis, and to use its results for deciding
which parts of a given program should be analysed precisely
by the main analysis [18]. We compared our approach with
Oh et al.’s proposal on partial flow sensitivity. Following Oh
et al.’s recipe [18], we implemented a impact pre-analysis
that is fully flow-sensitive but uses a cheap abstract domain,
in fact, the same one as in [18], which mainly tracks whether
integer variables store non-negative values or not. Then, we
built an analysis that uses the results of this pre-analysis for
achieving partially flow-sensitivity.

• Over the entire codebase, the feature is a strong 
indicator for flow-“insensitivity”
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Note that, according to the top-10 features, variable i has a
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(# 19).
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Although pos is unknown at line 1, its value at line 3 must
be 0 because pos is negated in the condition at line 2. How-
ever, after running our algorithm over the entire codebase,
we found that this pattern happens only rarely in practice,
and that feature #10 is actually a strong indicator for flow-
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Comparison with the impact pre-analysis approach [18]

Recently Oh et al. proposed to run a cheap pre-analysis,
called impact pre-analysis, and to use its results for deciding
which parts of a given program should be analysed precisely
by the main analysis [18]. We compared our approach with
Oh et al.’s proposal on partial flow sensitivity. Following Oh
et al.’s recipe [18], we implemented a impact pre-analysis
that is fully flow-sensitive but uses a cheap abstract domain,
in fact, the same one as in [18], which mainly tracks whether
integer variables store non-negative values or not. Then, we
built an analysis that uses the results of this pre-analysis for
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