
Introduction to Software Research
@Korea University

11 June 2018 @S-Core

Hakjoo Oh
Korea University

Research Goals

Spec SW
(buggy)

SW
(correct)failures

programming
(manual)

testing
(manual)

debugging
(manual)

• Computer-aided software engineering: automated
programming / testing / debugging

Program Synthesis Program Analysis Program Repair

Data-Driven Program Analysis

3

Heuristics in Program Analysis

• Practical program analysis tools use many heuristics

• E.g., context/flow-sensitivity, variable clustering, unsoundness,
trace partitioning, path selection/pruning, state merging, etc

• Developing a good heuristic is an art

• Manually done by analysis designers: nontrivial & suboptimal

4

Astrée

our pointer analysis framework 11

• datalog-based pointer analysis framework for java

• declarative: what, not how
easier to express sophisticated analyses
correctness more clear
clear variation points
eases exploration of approximations
enables aggressive optimization

• sophisticated
subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-
sensitivity, call-site sensitive, object sensitive, thread sensitive, context-sensitive heap
abstraction, type filtering, precise exception analysis

• support for full semantic complexity of java
jvm initialization, reflection analysis, threads, reference queues, nativemethods, class
initialization, finalization, cast checking, assignment compatibility

• enables precision and performance
comparison

SAFE

Automatically Generating
Analysis Heuristics from Data
• Use data to make heuristic decisions in program

analysis

5

Goal

machine learning

context-sensitivity heuristics
flow-sensitivity heuristics
unsoundness heuristics
path-selection heuristics

…

• Automatic: little reliance on analysis designers

• Powerful: machine-tuning outperforms hand-tuning

• Stable: can be tuned for target programs

Context-Sensitivity

6

Without context-sensitivity,
analysis fails to prove queries

1: class D{} class E{}
2:
3: class C{
4: Object id(Object v){return v;}}
5:
6: class B{
7: void dummy(){}
8: Object id(Object v){
9: C c = new C();//C1
10: return c.id(v);}}
11:
12: class A{
13: public static void main(String[] args){
14: B b1 = new B();//B1
15: B b2 = new B();//B2
16: D d = (D) b1.id1(new D());//query1
17: E e = (E) b2.id1(new E());//query2
18: b1.dummy();
19: b2.dummy();}}

main

B.id

B.dummy

C.id

[*]

[*]

[*]

[*]

Ctx-Insens

Context-Sensitivity

7

2-object-sensitivity succeeds
but does not scale

1: class D{} class E{}
2:
3: class C{
4: Object id(Object v){return v;}}
5:
6: class B{
7: void dummy(){}
8: Object id(Object v){
9: C c = new C();//C1
10: return c.id(v);}}
11:
12: class A{
13: public static void main(String[] args){
14: B b1 = new B();//B1
15: B b2 = new B();//B2
16: D d = (D) b1.id1(new D());//query1
17: E e = (E) b2.id1(new E());//query2
18: b1.dummy();
19: b2.dummy();}}

main

B.id

B.dummy

C.id

[*,B2]

[*,B1]

[*,*]

[B2,C1]

B.dummy

[*,B2]

B.id

[*,B1]

C.id

[B2,C1]

2-obj-sens

Selective Context-Sensitivity

8

1: class D{} class E{}
2:
3: class C{
4: Object id(Object v){return v;}}
5:
6: class B{
7: void dummy(){}
8: Object id(Object v){
9: C c = new C();//C1
10: return c.id(v);}}
11:
12: class A{
13: public static void main(String[] args){
14: B b1 = new B();//B1
15: B b2 = new B();//B2
16: D d = (D) b1.id1(new D());//query1
17: E e = (E) b2.id1(new E());//query2
18: b1.dummy();
19: b2.dummy();}}

Apply 2-obj-sens: {C.id}
Apply 1-obj-sens: {B.id}
Apply insens: {B.m}

main B.id

B.dummy

C.id

[B2]

[*]

[*] [B2,C1]

B.id

[B1]

C.id

[B2,C1]

Selective-obj-sens

Solution
2-obj: {C.id}
1-obj: {B.id}
Insens: {B.dummy}

Selective Context-Sensitivity

8

1: class D{} class E{}
2:
3: class C{
4: Object id(Object v){return v;}}
5:
6: class B{
7: void dummy(){}
8: Object id(Object v){
9: C c = new C();//C1
10: return c.id(v);}}
11:
12: class A{
13: public static void main(String[] args){
14: B b1 = new B();//B1
15: B b2 = new B();//B2
16: D d = (D) b1.id1(new D());//query1
17: E e = (E) b2.id1(new E());//query2
18: b1.dummy();
19: b2.dummy();}}

Apply 2-obj-sens: {C.id}
Apply 1-obj-sens: {B.id}
Apply insens: {B.m}

main B.id

B.dummy

C.id

[B2]

[*]

[*] [B2,C1]

B.id

[B1]

C.id

[B2,C1]

Selective-obj-sens

Solution
2-obj: {C.id}
1-obj: {B.id}
Insens: {B.dummy}

Challenge: How to decide? Data-driven approach

Our Data-Driven Approach

9

Our DD Framework

OOPSLA’17

Training data
(programs)

Parametric
static analyzer

Atomic features
(a1,a2,…,a25)

e.g., methods have
invocation stmt,
methods return

strings, etc

Our Data-Driven Approach

9

Our DD Framework

OOPSLA’17

Training data
(programs)

Parametric
static analyzer

Atomic features
(a1,a2,…,a25)

e.g., methods have
invocation stmt,
methods return

strings, etc

Data-Driven Context-Sensitivity for Points-to Analysis 1:27

From (12), (13), De�nition 3.3, and the assumption that fj�1 is a minimal solution of the
problem �k , we have

8P 2 P.H�00j�1 (P) = H�j�1 (P). (14)
From (14), (9), we conclude

8P 2 P.H�j�1 (P) = H�0j�1 (P).

B LEARNED BOOLEAN FORMULAS
We list the boolean formulas learned by our approach. �e numbers in the formulas represent the
atomic feature in Tables 1. �e formulas for each analysis and context depth are as follows. Table 8
presents them by and-or tables.

• Selective object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ ¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ 6 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬9 ^ 13 ^ 14 ^ 15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(1 ^ 2 ^ ¬3 ^ 4 ^ ¬5 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬10 ^ ¬13 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22
^¬23 ^ ¬24 ^ ¬25)
• Object-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬1 ^ ¬2 ^ 5 ^ 8 ^ ¬9 ^ 11 ^ 12 ^ ¬14 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)
• Type-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
• Call-site-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬6 ^ ¬7 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬7 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Heuristic for applying (hybrid) object-sensitivity:
f2: Methods that require 2-object-sensitivity

f1: Methods that require 1-object-sensitivity

Data-Driven Context-Sensitivity for Points-to Analysis 1:27

From (12), (13), De�nition 3.3, and the assumption that fj�1 is a minimal solution of the
problem �k , we have

8P 2 P.H�00j�1 (P) = H�j�1 (P). (14)
From (14), (9), we conclude

8P 2 P.H�j�1 (P) = H�0j�1 (P).

B LEARNED BOOLEAN FORMULAS
We list the boolean formulas learned by our approach. �e numbers in the formulas represent the
atomic feature in Tables 1. �e formulas for each analysis and context depth are as follows. Table 8
presents them by and-or tables.

• Selective object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ ¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ 6 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬9 ^ 13 ^ 14 ^ 15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(1 ^ 2 ^ ¬3 ^ 4 ^ ¬5 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬10 ^ ¬13 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22
^¬23 ^ ¬24 ^ ¬25)
• Object-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬1 ^ ¬2 ^ 5 ^ 8 ^ ¬9 ^ 11 ^ 12 ^ ¬14 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)
• Type-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
• Call-site-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬6 ^ ¬7 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬7 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

10

• Training with 4 small programs from DaCapo, and
applied to 6 large programs (1 for validation)

• Machine-tuning outperforms hand-tuning
1:18 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh

Fig. 3. Precision and cost comparisons of among selective object-sensitive class. We purposely made an
exception in the case of S2objH+IntroB on jython benchmark, which is marked as timeout in Table 2, to
provide readers broader performance spectrum.

jython. �e results show that inclusion of speci�c features makes the analysis much more e�cient
without signi�cant trade-o� on precision.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:18 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh

Fig. 3. Precision and cost comparisons of among selective object-sensitive class. We purposely made an
exception in the case of S2objH+IntroB on jython benchmark, which is marked as timeout in Table 2, to
provide readers broader performance spectrum.

jython. �e results show that inclusion of speci�c features makes the analysis much more e�cient
without signi�cant trade-o� on precision.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:18 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh

Fig. 3. Precision and cost comparisons of among selective object-sensitive class. We purposely made an
exception in the case of S2objH+IntroB on jython benchmark, which is marked as timeout in Table 2, to
provide readers broader performance spectrum.

jython. �e results show that inclusion of speci�c features makes the analysis much more e�cient
without signi�cant trade-o� on precision.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Performance

Other Context-Sensitivities

• Plain (not hybrid) Object-sensitivity:

11

Data-Driven Context-Sensitivity for Points-to Analysis 1:27

From (12), (13), De�nition 3.3, and the assumption that fj�1 is a minimal solution of the
problem �k , we have

8P 2 P.H�00j�1 (P) = H�j�1 (P). (14)
From (14), (9), we conclude

8P 2 P.H�j�1 (P) = H�0j�1 (P).

B LEARNED BOOLEAN FORMULAS
We list the boolean formulas learned by our approach. �e numbers in the formulas represent the
atomic feature in Tables 1. �e formulas for each analysis and context depth are as follows. Table 8
presents them by and-or tables.

• Selective object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ ¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ 6 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬9 ^ 13 ^ 14 ^ 15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(1 ^ 2 ^ ¬3 ^ 4 ^ ¬5 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬10 ^ ¬13 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22
^¬23 ^ ¬24 ^ ¬25)
• Object-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬1 ^ ¬2 ^ 5 ^ 8 ^ ¬9 ^ 11 ^ 12 ^ ¬14 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)
• Type-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
• Call-site-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬6 ^ ¬7 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬7 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Data-Driven Context-Sensitivity for Points-to Analysis 1:27

From (12), (13), De�nition 3.3, and the assumption that fj�1 is a minimal solution of the
problem �k , we have

8P 2 P.H�00j�1 (P) = H�j�1 (P). (14)
From (14), (9), we conclude

8P 2 P.H�j�1 (P) = H�0j�1 (P).

B LEARNED BOOLEAN FORMULAS
We list the boolean formulas learned by our approach. �e numbers in the formulas represent the
atomic feature in Tables 1. �e formulas for each analysis and context depth are as follows. Table 8
presents them by and-or tables.

• Selective object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ ¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ 6 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬9 ^ 13 ^ 14 ^ 15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(1 ^ 2 ^ ¬3 ^ 4 ^ ¬5 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬10 ^ ¬13 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22
^¬23 ^ ¬24 ^ ¬25)
• Object-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬1 ^ ¬2 ^ 5 ^ 8 ^ ¬9 ^ 11 ^ 12 ^ ¬14 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)
• Type-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
• Call-site-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬6 ^ ¬7 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬7 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Data-Driven Context-Sensitivity for Points-to Analysis 1:27

From (12), (13), De�nition 3.3, and the assumption that fj�1 is a minimal solution of the
problem �k , we have

8P 2 P.H�00j�1 (P) = H�j�1 (P). (14)
From (14), (9), we conclude

8P 2 P.H�j�1 (P) = H�0j�1 (P).

B LEARNED BOOLEAN FORMULAS
We list the boolean formulas learned by our approach. �e numbers in the formulas represent the
atomic feature in Tables 1. �e formulas for each analysis and context depth are as follows. Table 8
presents them by and-or tables.

• Selective object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ ¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ 6 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬9 ^ 13 ^ 14 ^ 15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(1 ^ 2 ^ ¬3 ^ 4 ^ ¬5 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬10 ^ ¬13 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22
^¬23 ^ ¬24 ^ ¬25)
• Object-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

(1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬1 ^ ¬2 ^ 5 ^ 8 ^ ¬9 ^ 11 ^ 12 ^ ¬14 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)
• Type-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
– Depth-1 formula (f1):

1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25
• Call-site-sensitivity:

– Depth-2 formula (f2):
1 ^ ¬6 ^ ¬7 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬7 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

• Call-site-sensitivity:

• Type-sensitivity:

Obj-Sens vs. Type-Sens

• In theory, obj-sens is more precise than type-sens

• The set of methods that benefit from obj-sens is a
superset of the methods that benefit from type-sens

• Interestingly, our algorithm automatically discovered
this rule from data:

12

Data-Driven Context-Sensitivity for Points-to Analysis 1:21

completely di�erent formula for call-site-sensitivity, which uses di�erent heap abstraction from
other object-based sensitivities.3
Another unexpected observation was that the learned formulas have orders according to the

theoretical orders of the analysis precision. For example, our learning algorithm produced depth-1
formulas (f1) for object-sensitivity and type-sensitivity as follows:

(1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬16 ^ · · · ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
f1 for 2objH+Data : (¬1 ^ ¬2 ^ 8 ^ 5 ^ ¬9 ^ 11 ^ 12 ^ · · · ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_

(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ · · · ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)
f1 for 2typeH+Data : 1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬15 ^ ¬16 ^ · · · ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

Note that the formula f1 for object-sensitivity is logically more general than that for type-sensitivity,
as boldfaced clause in f1 for 2typeH+Data is subsumed by the boldfaced clause in f1 for 2objH+Data.
�erefore, f1 for 2objH+Data describes a superset of the methods described by f1 for 2typeH+Data.
�eoretically, since object-sensitivity is more precise than type-sensitivity, the set of methods that
bene�t from object-sensitivity must be a superset of the methods that bene�t from type-sensitivity.
Interestingly, our learning algorithm automatically discovered this fact from data.
Lastly, we spo�ed that some atomic features are frequently used as negative forms. Break-

point(16), EnterMonitor(17), ExitMonitor(18), Lookup(21), Nop(22), and Ret(23) statements rarely
appear in the programs. �erefore, conjoining a formula with the negation of these features would
make li�le di�erence. Methods that return the void type deserve shallower context depths because
they are less likely to jeopardize points-to analysis than ones who return objects. We also found
that some control-�ow features also frequently appear in negated forms.

4.4 Threats to Validity
• Benchmarks: Our experimental evaluation were conducted on the DaCapo benchmark, but
the DaCapo benchmark may not be a reputable material for machine learning purposes
although it does for points-to analysis community.
• Generality: �e DaCapo benchmark may not represent general Java programs as it is a

collection of speci�c types of programs, comprising mostly compilers and interpreters. In
experiments, we also assumed that a heuristic learned from smaller programs is likely to
work well for larger programs, which may not be true in other circumstances.
• Features: We evaluated our approach with a �xed set of atomic features: signature and
statement features. Di�erent set of atomic features are likely to produce di�erent results.

5 RELATEDWORK
Context-sensitive points-to analysis has a vast amount of past literature, e.g., (Agesen 1994; Chat-
terjee et al. 1999; Grove et al. 1997; Hind 2001; Lhoták and Hendren 2006, 2008; Liang and Harrold
1999; Liang et al. 2005; Milanova et al. 2005; Ruf 1995, 2000; Wilson and Lam 1995). In this section,
we discuss prior works that are closely related to ours.

Tuning Context-Sensitivity in Points-to Analysis. Most of the existing techniques for tun-
ing context-sensitivity in points-to analysis are traditional rule-based techniques (Kastrinis and
Smaragdakis 2013a; Oh et al. 2014; Smaragdakis et al. 2014; Tripp et al. 2009). �ey selectively
apply context-sensitivity based on some manually-designed syntactic or semantic features of the
program. For instance, in the approach by Smaragdakis et al. (2014), a cheap pre-analysis is used

3Although we do not discuss the performance of our approach for call-site-sensitivity since call-site-sensitivity is less
important than others in points-to analysis for Java, we also evaluated the analysis and obtained similar performance
improvements as in others.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Concolic Testing
(Dynamic Symbolic Execution)

• Concolic testing is an effective software testing
method based on symbolic execution

13

• Key challenge: path explosion

• Our solution: mitigate the problem with good
search heuristics

Limitation of Random Testing

14

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

Probability of the error? (0 ≤ x,y ≤ 100)

Limitation of Random Testing

14

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

Probability of the error?

< 0.4%

 (0 ≤ x,y ≤ 100)

Limitation of Random Testing

14

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

Probability of the error?

< 0.4%

- random testing requires 250 runs
- concolic testing finds it in 3 runs

 (0 ≤ x,y ≤ 100)

Concolic Testing

15

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

x=22, y=7 x=α, y=β

Concrete
State

Symbolic
State

true

1st iteration

Concolic Testing

16

x=22, y=7,  
z=14

x=α, y=β,z=2*β

true

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

1st iteration

Concolic Testing

17

x=22, y=7,  
z=14

x=α, y=β,z=2*β
2*β ≠ α

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

1st iteration

Concolic Testing

18

x=22, y=7,  
z=14

x=α, y=β,z=2*β
2*β ≠ α

Concrete
State

Symbolic
State

Solve: 2*β = α
Solution: α=2,β=1

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

1st iteration

Concolic Testing

19

x=2, y=1 x=α, y=β

Concrete
State

Symbolic
State

true

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

2nd iteration

Concolic Testing

20

x=2, y=1,  
z=2

x=α, y=β,z=2*β

true

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

2nd iteration

Concolic Testing

21

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

x=2, y=1,  
z=2

x=α, y=β,z=2*β

2*β = α

2nd iteration

Concolic Testing

22

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

x=2, y=1,  
z=2

x=α, y=β,z=2*β

2*β = α ∧  
α ≤ β+10

2nd iteration

Concolic Testing

23

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

x=2, y=1,  
z=2

x=α, y=β,z=2*β

2*β = α ∧  
α ≤ β+10

Solve: 2*β = α ∧ α > β+10
Solution: α=30, β=15

2nd iteration

Concolic Testing

24

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

x=30, y=15 x=α, y=β

Concrete
State

Symbolic
State

true

3rd iteration

Concolic Testing

25

x=30, y=15,  
z=30

x=α, y=β,z=2*β

true

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

3rd iteration

Concolic Testing

26

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

x=30, y=15,  
z=30

x=α, y=β,z=2*β

2*β = α

3rd iteration

Concolic Testing

27

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

x=30, y=15,  
z=30

x=α, y=β,z=2*β

2*β = α ∧
α > β+15

3rd iteration

error-triggering
input

Concolic Testing

28

ɸ1

b1

b2

b3

execution tree

solve (b1⋀¬b2)

Concolic Testing

29

ɸ

b1

b

b

b4

b5

ɸ2

execution tree

solve (¬b1)

Concolic Testing

30

ɸ

b

b

b

b

b

b6

b7

b8

ɸ ɸ3

execution tree

Concolic Testing Algorithm

31

ICSE’18, May 2018, Gothenburg, Sweden Anon.

2 PRELIMINARIES
In Section 2.1, we de�ne a generic concolic testing algorithm. Sec-
tion 2.2 discusses existing search heuristics and their limitations.

2.1 Concolic Testing
Concolic testing is a hybrid software testing technique that com-
bines symbolic [21] and concrete executions to systematically ex-
plore the program’s execution paths.

Concolic testing begins with executing the subject program P

with an initial input �0. During the concrete execution, concolic
testing maintains a symbolic memory state S and a path condition
�. The symbolic memory is a mapping from program variables
to symbolic values. It is used to evaluate the symbolic values of
expressions. For instance, when S is [x 7! � ,� 7! � + 1] (variables
x and � are mapped to symbolic expressions � and � + 1 where �
and � are symbols), the statement z := x +� transfers the symbolic
memory into [x 7! � ,� 7! � + 1, z 7! � + � + 1]. The path
condition represents the sequence of branches taken during the
current execution of the program. It is updated whenever an assume
statement assume(e) is encountered. For instance, when S = [x 7!
�] and e = x < 1, the path condition � gets updated by �^ (� < 1).

Let � = �1 ^ �2 ^ · · · ^ �n be the path condition that results
from the initial execution. To obtain the next input value, concolic
testing chooses a branch condition �i and generates the new path
condition �0 as follows: �0 = Vj<i � j ^ ¬�i . That is, the new
condition �0 has the same pre�x as � up to the i-th branch with
�i negated, so that input values that satisfy �0 drive the program
execution to follow the opposite branch of �i . Such concrete input
values can be obtained from an SMT solver. This process is repeated
until a �xed testing budget runs out.

Algorithm 1 presents the concolic testing algorithm. The algo-
rithm takes a program P , an initial input vector �0, and a testing
budget N (i.e., the number of executions of the program). The algo-
rithm maintains the execution tree T of the program, which is the
list of previously explored path conditions. The execution tree T
and input vector � are initially empty and the initial input vector,
respectively (lines 1 and 2). At line 4, the program P is executed
with the input � , resulting in the current execution path �m ex-
plored. The path condition is appended to T (line 5). In lines 6–8,
the algorithm chooses a branch to negate. The function Choose
�rst chooses a path condition � from T , then selects a branch, i.e.,
�i , from �. Once a branch �i is chosen, the algorithm generates
the new path condition �0 = Vj<i � j ^ ¬�i . If �0 is satis�able,
the next input vector is computed (line 9), where SAT(�) returns
true i� � is satis�able and model(�) �nds an input vector � which
is a model of �, i.e., � |= �. Otherwise, if �0 is unsatis�able, the
algorithm repeatedly tries to negate another branch until a satis�-
able path condition is found. This procedure repeats for the given
budget N and the �nal number of covered branches |Branches(T) |
is returned.

The performance of Algorithm 1 varies depending on the choice
of the function Choose, namely a search heuristic. Since the num-
ber of execution paths in a program is usually exponential in the
number of branches, exploring all possible execution paths is infea-
sible. To address this problem, concolic testing relies on the search
heuristic that steers concolic testing in a way to maximize code

Algorithm 1: Concolic Testing
Input :Program P , initial input vector �0, budget N
Output :The number of branches covered
1: T hi
2: � �0
3: form = 1 to N do
4: �m RunProgram(P ,�)
5: T T · �m
6: repeat
7: (�,�i) Choose(T) (� = �1 ^ · · · ^ �n)
8: until SAT(

V
j<i � j ^ ¬�i)

9: � model(
V
j<i � j ^ ¬�i)

10: end for
11: return |Branches(T) |

coverage in a given limited time budget [5]. The goal of this paper is
to automatically generate an e�ective heuristic for a given program.

2.2 Existing Search Heuristics
Before presenting our technique, we describe two notable search
heuristics. These heuristics are known to perform comparatively
better than other heuristics [2, 26].

Control-Flow Directed Search (CFDS) [2]. CFDS is based on
the natural intuition that uncovered branches near the current
execution path would be easier to be exercised in the next execution.
This heuristic �rst picks the last path condition �m , then selects a
branch whose opposite branch is the nearest from any of the unseen
branches. The distance between two branches is calculated by the
number of branches on the path from the source to the destination.
To calculate the distance, CFDS uses control �ow graph of the
program, which is statically constructed before the testing.

Context-Guided Search (CGS) [26]. CGS basically performs
the breath-�rst search (BFS) on the execution tree, while reducing
the search space by excluding branches whose “contexts” are al-
ready explored. Given an execution path, the context of a branch
in the path is de�ned as a sequence of preceding branches. The
search gathers candidate branches at depth d from the execution
tree, picks a branch from the candidates, and the context of the
branch is calculated. If the context has been already considered,
CGS skips that branch and continues to pick the next one. Oth-
erwise, the branch is negated and the context is recorded. When
all the candidate branches at depth d are considered, the search
proceeds to the depth d + 1 of the execution tree and repeats the
process explained above.

Limitations. Existing search heuristics have a key limitation;
they rely on a �xed heuristic and fail to consistently perform well
on a wide range of target programs. Our experience with these
heuristics is that they are unstable and their e�ectiveness signi�-
cantly varies depending on the target programs. For example, CGS
outperforms other existing heuristics for several benchmarks: e.g.,
expat-2.1.0 and grep-2.2 (Figure 1). However, we found that the
CGS heuristic is sometimes inferior even to the random heuristic

Concolic Testing Algorithm

31

ICSE’18, May 2018, Gothenburg, Sweden Anon.

2 PRELIMINARIES
In Section 2.1, we de�ne a generic concolic testing algorithm. Sec-
tion 2.2 discusses existing search heuristics and their limitations.

2.1 Concolic Testing
Concolic testing is a hybrid software testing technique that com-
bines symbolic [21] and concrete executions to systematically ex-
plore the program’s execution paths.

Concolic testing begins with executing the subject program P

with an initial input �0. During the concrete execution, concolic
testing maintains a symbolic memory state S and a path condition
�. The symbolic memory is a mapping from program variables
to symbolic values. It is used to evaluate the symbolic values of
expressions. For instance, when S is [x 7! � ,� 7! � + 1] (variables
x and � are mapped to symbolic expressions � and � + 1 where �
and � are symbols), the statement z := x +� transfers the symbolic
memory into [x 7! � ,� 7! � + 1, z 7! � + � + 1]. The path
condition represents the sequence of branches taken during the
current execution of the program. It is updated whenever an assume
statement assume(e) is encountered. For instance, when S = [x 7!
�] and e = x < 1, the path condition � gets updated by �^ (� < 1).

Let � = �1 ^ �2 ^ · · · ^ �n be the path condition that results
from the initial execution. To obtain the next input value, concolic
testing chooses a branch condition �i and generates the new path
condition �0 as follows: �0 = Vj<i � j ^ ¬�i . That is, the new
condition �0 has the same pre�x as � up to the i-th branch with
�i negated, so that input values that satisfy �0 drive the program
execution to follow the opposite branch of �i . Such concrete input
values can be obtained from an SMT solver. This process is repeated
until a �xed testing budget runs out.

Algorithm 1 presents the concolic testing algorithm. The algo-
rithm takes a program P , an initial input vector �0, and a testing
budget N (i.e., the number of executions of the program). The algo-
rithm maintains the execution tree T of the program, which is the
list of previously explored path conditions. The execution tree T
and input vector � are initially empty and the initial input vector,
respectively (lines 1 and 2). At line 4, the program P is executed
with the input � , resulting in the current execution path �m ex-
plored. The path condition is appended to T (line 5). In lines 6–8,
the algorithm chooses a branch to negate. The function Choose
�rst chooses a path condition � from T , then selects a branch, i.e.,
�i , from �. Once a branch �i is chosen, the algorithm generates
the new path condition �0 = Vj<i � j ^ ¬�i . If �0 is satis�able,
the next input vector is computed (line 9), where SAT(�) returns
true i� � is satis�able and model(�) �nds an input vector � which
is a model of �, i.e., � |= �. Otherwise, if �0 is unsatis�able, the
algorithm repeatedly tries to negate another branch until a satis�-
able path condition is found. This procedure repeats for the given
budget N and the �nal number of covered branches |Branches(T) |
is returned.

The performance of Algorithm 1 varies depending on the choice
of the function Choose, namely a search heuristic. Since the num-
ber of execution paths in a program is usually exponential in the
number of branches, exploring all possible execution paths is infea-
sible. To address this problem, concolic testing relies on the search
heuristic that steers concolic testing in a way to maximize code

Algorithm 1: Concolic Testing
Input :Program P , initial input vector �0, budget N
Output :The number of branches covered
1: T hi
2: � �0
3: form = 1 to N do
4: �m RunProgram(P ,�)
5: T T · �m
6: repeat
7: (�,�i) Choose(T) (� = �1 ^ · · · ^ �n)
8: until SAT(

V
j<i � j ^ ¬�i)

9: � model(
V
j<i � j ^ ¬�i)

10: end for
11: return |Branches(T) |

coverage in a given limited time budget [5]. The goal of this paper is
to automatically generate an e�ective heuristic for a given program.

2.2 Existing Search Heuristics
Before presenting our technique, we describe two notable search
heuristics. These heuristics are known to perform comparatively
better than other heuristics [2, 26].

Control-Flow Directed Search (CFDS) [2]. CFDS is based on
the natural intuition that uncovered branches near the current
execution path would be easier to be exercised in the next execution.
This heuristic �rst picks the last path condition �m , then selects a
branch whose opposite branch is the nearest from any of the unseen
branches. The distance between two branches is calculated by the
number of branches on the path from the source to the destination.
To calculate the distance, CFDS uses control �ow graph of the
program, which is statically constructed before the testing.

Context-Guided Search (CGS) [26]. CGS basically performs
the breath-�rst search (BFS) on the execution tree, while reducing
the search space by excluding branches whose “contexts” are al-
ready explored. Given an execution path, the context of a branch
in the path is de�ned as a sequence of preceding branches. The
search gathers candidate branches at depth d from the execution
tree, picks a branch from the candidates, and the context of the
branch is calculated. If the context has been already considered,
CGS skips that branch and continues to pick the next one. Oth-
erwise, the branch is negated and the context is recorded. When
all the candidate branches at depth d are considered, the search
proceeds to the depth d + 1 of the execution tree and repeats the
process explained above.

Limitations. Existing search heuristics have a key limitation;
they rely on a �xed heuristic and fail to consistently perform well
on a wide range of target programs. Our experience with these
heuristics is that they are unstable and their e�ectiveness signi�-
cantly varies depending on the target programs. For example, CGS
outperforms other existing heuristics for several benchmarks: e.g.,
expat-2.1.0 and grep-2.2 (Figure 1). However, we found that the
CGS heuristic is sometimes inferior even to the random heuristic

Search
Heuristic

Search Heuristics

• Concolic testing relies on search heuristics to
maximize code coverage in a limited time budget.

• Key but the most manual and ad-hoc component
of concolic testing

• Numerous heuristics have been proposed:

• DFS [PLDI’05], BFS, Random, CFDS [ASE’08],
Generational [NDSS’08], CarFast[FSE’12], CGS
[FSE’14], …

32

Limitations of Existing
Search Heuristics

• No existing heuristics perform well in practice

• Developing a heuristic requires a huge amount of
engineering effort and expertise.

33

Limitations of Existing
Search Heuristics

• No existing heuristics perform well in practice

• Developing a heuristic requires a huge amount of
engineering effort and expertise.

33

Our goal: automatically generating search heuristics

Effectiveness of Our Method

• Considerable increase in branch coverage

34

ICSE’18, May 2018, Gothenburg, Sweden Anon.

Figure 1: Average branch coverage achieved by each search heuristic on 6 large benchmarks

4.1 E�ectiveness of Generated Heuristics
For each benchmark program,we ran our algorithm (Algorithm 2) to
generate our search heuristic (ours), and compared its performance
with that of the existing heuristics. We evaluate the e�ectiveness
with two measures: branch coverage and capability of �nding bugs.

Branch Coverage. For branch coverage, we measured the av-
erage and maximum coverages: The average branch coverage is
obtained by averaging the results over the 100 trials (20 for vim).
The maximum coverage refers to the highest coverage achieved
during the 100 trials (20 for vim). The former indicates the average

ICSE’18, May 2018, Gothenburg, Sweden Anon.

Figure 1: Average branch coverage achieved by each search heuristic on 6 large benchmarks

4.1 E�ectiveness of Generated Heuristics
For each benchmark program,we ran our algorithm (Algorithm 2) to
generate our search heuristic (ours), and compared its performance
with that of the existing heuristics. We evaluate the e�ectiveness
with two measures: branch coverage and capability of �nding bugs.

Branch Coverage. For branch coverage, we measured the av-
erage and maximum coverages: The average branch coverage is
obtained by averaging the results over the 100 trials (20 for vim).
The maximum coverage refers to the highest coverage achieved
during the 100 trials (20 for vim). The former indicates the average

ICSE’18

Effectiveness of Our Method

• Considerable increase in branch coverage

34

ICSE’18, May 2018, Gothenburg, Sweden Anon.

Figure 1: Average branch coverage achieved by each search heuristic on 6 large benchmarks

4.1 E�ectiveness of Generated Heuristics
For each benchmark program,we ran our algorithm (Algorithm 2) to
generate our search heuristic (ours), and compared its performance
with that of the existing heuristics. We evaluate the e�ectiveness
with two measures: branch coverage and capability of �nding bugs.

Branch Coverage. For branch coverage, we measured the av-
erage and maximum coverages: The average branch coverage is
obtained by averaging the results over the 100 trials (20 for vim).
The maximum coverage refers to the highest coverage achieved
during the 100 trials (20 for vim). The former indicates the average

ICSE’18, May 2018, Gothenburg, Sweden Anon.

Figure 1: Average branch coverage achieved by each search heuristic on 6 large benchmarks

4.1 E�ectiveness of Generated Heuristics
For each benchmark program,we ran our algorithm (Algorithm 2) to
generate our search heuristic (ours), and compared its performance
with that of the existing heuristics. We evaluate the e�ectiveness
with two measures: branch coverage and capability of �nding bugs.

Branch Coverage. For branch coverage, we measured the av-
erage and maximum coverages: The average branch coverage is
obtained by averaging the results over the 100 trials (20 for vim).
The maximum coverage refers to the highest coverage achieved
during the 100 trials (20 for vim). The former indicates the average

• Dramatic increase in bug-finding

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE’18, May 2018, Gothenburg, Sweden Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 3: Average branch coverage on 4 small benchmarks

OURS CFDS CGS Random Gen DFS

cdaudio 250 250 250 242 250 236
�oppy 205 205 205 170 205 168
replace 181 177 181 174 176 171
kb�ltr 149 149 149 149 149 134

Table 4: E�ectiveness in terms ofmaximumbranch coverage

OURS CFDS CGS Random Gen DFS

vim 8,788 8,585 6,488 8,143 5,161 2,646
expat 1,422 1,060 1,337 965 1,348 1,027
gawk 2,684 2,532 2,449 2,035 2,443 1,025
grep 1,807 1,726 1,751 1,598 1,640 1,456
sed 830 780 781 690 698 568
tree 797 702 599 704 600 360

Table 5: E�ectiveness in terms of �nding bugs

OURS CFDS CGS Random Gen DFS

gawk-3.0.3 100/100 0/100 0/100 0/100 0/100 0/100
grep-2.2 47/100 0/100 5/100 0/100 0/100 0/100

in concolic testing [15], the randomness of search heuristics, and
so on. We repeated the experiments 100 times for all benchmarks
except for vim for which we averaged over 50 trials as its execution
takes much longer time. The experiments were done on a linux
machine with two Intel Xeon Processor E5-2630 and 192GB RAM.

4.1 E�ectiveness of Generated Heuristics
For each benchmark program,we ran our algorithm (Algorithm 2) to
generate our search heuristic (ours), and compared its performance
with that of the existing heuristics. We evaluate the e�ectiveness
with two measures: branch coverage and capability of �nding bugs.

Branch Coverage. For branch coverage, we measured the av-
erage and maximum coverages. The average branch coverage is
obtained by averaging the results over the 100 trials (50 for vim).
The maximum coverage refers to the highest coverage achieved
during the 100 trials (50 for vim). The former indicates the average
performance while the latter the best performance achievable by
each heuristic.

Figure 1 compares the average branch coverage achieved by
di�erent search heuristics on 6 large benchmarks. The results show
that the search heuristics generated by our approach (ours) achieve
the best coverage on all programs. In particular, ours signi�cantly
increased the branch coverage on two largest benchmarks: vim
and gawk. For vim, ours covered 8,297 branches in 4,000 executions
while the CFDS heuristic, which took the second place for vim,
covered 7,990 branches. Note that CFDS is already highly tuned
and therefore outperforms the other heuristics for vim (for instance,
CGS covered 6,166 branches only). For gawk, ours covered 2,684

branches while the CGS heuristic, the second best one, managed
to cover 2,321 branches. For expat, sed, and tree, our approach
improved the existing heuristics considerably. For example, ours
covered 1,327 branches for expat, increasing the branch coverage
of CGS by 50. For grep, ours also performed the best followed by
CGS and CFDS. On small benchmarks, we obtained similar results;
ours (together with CGS) consistently achieved the highest average
coverage (Table 3). In the rest of the paper, we focus only on the 6
large benchmarks, where existing manually-crafted heuristics fail
to perform well.

In Figure 1, we compared the e�ectiveness of search heuristics
over iterations (# of executions)4, but our approach was also su-
perior to others over execution time. For example, given the same
time budget (1,000 sec), ours and Random (the second best) cov-
ered 8,947 and 8,272 branches, respectively, for vim (Figure 2). The
results were averaged over 50 trials.

Table 4 compares the heuristics in terms of the maximum branch
coverage on 6 large benchmarks. The results show that our ap-
proach in this case also achieves the best performance on all pro-
grams. For instance, in vim, we considerably increased the coverage
of CFDS, the second best strategy; ours covered 8,788 branches
while CFDS managed to cover 8,585. For expat, ours and CGS (the
second best) have covered 1,422 and 1,337 branches, respectively.

Note that there is no clear winner among the existing search
heuristics. Except for ours, CFDS took the �rst place for vim and sed
in terms of average branch coverage. For gawk, expat, and grep,
the CGS heuristic was the best. For tree, the Random heuristic
was better than CFDS and CGS. In terms of the maximum branch
coverage, CFDS was better than the others for vim and gawk while
CGSwas for grep and sed. The Generational and Randomheuristics
surpassed CFDS and CGS in expat and tree, respectively. On the
other hand, our approach is able to consistently produce the best
search heuristics in terms of both coverage metrics.

Bug Finding. We found that the increased branch coverage by
our approach leads to more e�ective �nding of real bugs. Table 5
reports the number of trials that successfully generate test-cases,
which trigger the known bugs in gawk and grep [13, 18]. During
the 100 trials (where a single trial consists of 4,000 executions), our
heuristic always found the bug in gawkwhile all the other heuristics
completely failed to �nd it. In grep, ours succeeded to �nd the bug
47 times out of 100 trials, which is much better than CGS does (5
times). Other heuristics were not able to trigger the bug at all.

Our heuristics are good at �nding bugs because they are much
better than other heuristics in exercising diverse program paths. We
observed that other heuristics such as CGS, CFDS, and Generational
search also have covered the branches where the bugs originate.
However, the bugs are caused only by some speci�c path conditions
and the existing heuristics were not able to generate inputs that
satisfy the conditions.

We remark that we did not specially tune our approach towards
�nding those bugs. In fact, we were not aware of the presence of
those bugs at the early stage of this work. The bugs in gawk and
grep [13, 18] cause performance problems; for example, grep-2.2

4 Evaluating the performance of search heuristics over iterations is a common prac-
tice [3, 29], as the execution time of a program may vary considerably depending on
the input.

ICSE’18

Automatic Debugging
(Automatic Program Repair)

MemFix: 메모리 관리 오류 자동 수정기

p = malloc(1);
...
return;

Memory Leak

p = malloc(1);
...
free(p);
...
free(p);

Double-Free

p = malloc(1);
...
free(p);
...
use(p);

Use-After-Free

• 메모리 관리 오류: C/C++에서 빈번하게 발생

• 심각한 소프트웨어 보안취약점의 주요 원인

Spatio-Temporal Context Reduction: A Pointer-Analysis-Based
Static Approach for Detecting Use-After-Free Vulnerabilities †

Hua Yan ∗

School of Computer Science and Engineering
University of New South Wales, Australia

Yulei Sui ∗
Centre for Artificial Intelligence and School of Software

University of Technology Sydney, Australia

Shiping Chen
Data61

CSIRO, Australia

Jingling Xue
School of Computer Science and Engineering
University of New South Wales, Australia

ABSTRACT
Zero-day Use-After-Free (UAF) vulnerabilities are increasingly pop-
ular and highly dangerous, but few mitigations exist. We introduce
a new pointer-analysis-based static analysis, CRed, for finding UAF
bugs in multi-MLOC C source code efficiently and effectively. CRed
achieves this by making three advances: (i) a spatio-temporal con-
text reduction technique for scaling down soundly and precisely the
exponential number of contexts that would otherwise be considered
at a pair of free and use sites, (ii) a multi-stage analysis for filtering
out false alarms efficiently, and (iii) a path-sensitive demand-driven
approach for finding the points-to information required.

We have implemented CRed in LLVM-3.8.0 and compared it with
four different state-of-the-art static tools: CBMC (model checking),
Clang (abstract interpretation), Coccinelle (pattern matching),
and Supa (pointer analysis) using all the C test cases in Juliet Test
Suite (JTS) and 10 open-source C applications. For the ground-truth
validated with JTS, CRed detects all the 138 known UAF bugs as
CBMC and Supa do while Clang and Coccinelle miss some bugs,
with no false alarms from any tool. For practicality validated with
the 10 applications (totaling 3+ MLOC), CRed reports 132 warnings
including 85 bugs in 7.6 hours while the existing tools are either
unscalable by terminating within 3 days only for one application
(CBMC) or impractical by finding virtually no bugs (Clang and
Coccinelle) or issuing an excessive number of false alarms (Supa).

CCS CONCEPTS
• Security andprivacy→ Software and application security; •
Theory of computation→ Program analysis; • Software and
its engineering→ Software defect analysis;

KEYWORDS
use-after-free, program analysis, bug detection
∗These two authors contributed equally to this work.
†This work is supported by ARC Grants (DP180104069 and DE170101081).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180178

ACM Reference Format:
Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2018. Spatio-Temporal
Context Reduction: A Pointer-Analysis-Based Static Approach for Detecting
Use-After-Free Vulnerabilities . In Proceedings of ICSE ’18: 40th International
Conference on Software Engineering , Gothenburg, Sweden, May 27-June 3,
2018 (ICSE ’18), 11 pages.
https://doi.org/10.1145/3180155.3180178

1 INTRODUCTION
Use-After-Free (UAF) vulnerabilities, i.e., dangling pointer derefer-
ences (referencing an object that has been freed), are increasingly
being exploited, as shown in Figure 1. UAF vulnerabilities are highly
dangerous, with 80.14% in the NVD database being rated critical or
high in severity, causing crashes, silent data corruption and arbi-
trary code execution. This vulnerability class persists in all kinds
of C/C++ applications. While other types of memory corruption
errors such as buffer overflows are nowadays harder to exploit due
to mitigations, there are few mitigations deployed in production
environments to prevent UAF vulnerabilities [53].

0
50

100
150
200
250
300

High Severity (7 - 10)
All Severity Levels (0 - 10)

Figure 1: Use-after-free vulnerabilities in NVD [49].

There have been considerable efforts on building automatic tools
for mitigating UAF bugs. However, existing solutions almost ex-
clusively rely on dynamic analysis [10, 12, 25, 30, 35, 47, 51, 53],
which inserts metadata-manipulating instrumentation code into
the program, and detects or protects against UAF bugs at runtime
by performing checks at all pointer dereferences [10, 30, 35, 51] or
invalidating all dangling pointers identified [25, 53]. While main-
taining zero or low false alarms (due to unsound modeling for, e.g.,
casting [30] and safety window sizes [10]), dynamic techniques
have a number of limitations, including low code coverage (when
used as debugging aids), binary incompatibility (due to memory
layout transformations such as fat pointers [51]), and high runtime
and memory overheads (due to runtime instrumentation).

Static analysis for detecting UAF bugs will not suffer from
such instrumentation-based limitations. However, static techniques
for UAF detection are scarce, with [18] focusing on binary code,
although there are several source code analysis tools for de-
tecting other types of memory corruption bugs, such as buffer

327

2018 ACM/IEEE 40th International Conference on Software Engineering

(Yan et al. ICSE 2018)

• 사전 탐지 및 정확한 수정이 매우 어려움

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

Example
(Linux Kernel)

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

Example
(Linux Kernel)

double-free

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

Example
(Linux Kernel)

double-free

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

Example
(Linux Kernel)

in = malloc(1);
out = malloc(1);
... // use in, out
// removed
free(in);

in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

Example
(Linux Kernel)

in = malloc(1);
out = malloc(1);
... // use in, out
// removed
free(in);

in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

memory leak

Example
(Linux Kernel)

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);
out = NULL;
in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}
// removed
out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

Example
(Linux Kernel)

in = malloc(1);
out = malloc(1);
... // use in, out
// removed
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 // removed

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

MemFix

MemFix 알고리즘

in = malloc(2);
if (in == NULL) {

 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 // removed

 goto err;
}

Fixing memory errors
(undecidable)

Exact cover problem
(NP-complete)

Boolean satisfiability
(NP-complete)

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ESEC/FSE 2018, 4-9 November, 2018, Lake Buena Vista, Florida, United States Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

It includes the access paths that may point-to the object, fromwhich
mustNot 0 is removed to ensure the object invariant. The sets must 0

and mustNot 0 are de�ned depending on the type of statements. For
example, when cmd (c) = alloc(x), must 0 and mustNot 0 are:

must 0 = mustalias(c,must \mayalias(c, {x , ⇤x }))
mustNot 0 = mustalias(c,mustNot \mayalias(c, {x , ⇤x }) [{x })

Because x refers to a new object after the allocation, we remove all
the access paths that are reachable from x (i.e.mayalias(c, {x , ⇤x }))
from must and mustNot. In addition, mustNot 0 includes x since we
know that x de�nitely does not point-to the old object. Other cases
are de�ned similarly.

3.3 Solving an Exact Cover Problem
The second step of M��F�� is to establish and solve an exact cover
problem. The static analysis computes safe and unsafe patches
separately for each object. However, a patch that is safe for an
object may be unsafe for others. Thus, M��F�� aims to choose a
set of patches that are simultaneously safe for all allocated objects.
M��F�� does so by solving an exact cover problem derived from
the static analysis.

We �rst describe the basic method (Section 3.3.1), which captures
the key idea behind our approach but works correctly with an
assumption on the input program. We will explain the assumption
and how to discharge it in Section 3.3.2.

3.3.1 Basic Method. Let R ✓ S be the set of reachable states
available at the exit node of the program according to the static
analysis: i.e., R = (lfpF) (cx). Then, we de�ne safe, unsafe, and
candidate patches as follows:

SafeR =
[
{patch | h_, _, _, _, patch, _i 2 R}

UnSafeR =
[
{patchNot | h_, _, _, _, _, patchNoti 2 R}

CandR = SafeR \ UnSafeR
SafeR contains the patches that are guaranteed to safely deallocate
some object. UnSafeR is the set of patches that may be unsafe for
some object. Excluding UnSafeR from SafeR , we obtain the set of
candidate patches that we can use in repairing the program.

LetM : CandR ! P (R) be the function from candidate patches
to the reachable states that can be safely deallocated by the corre-
sponding patches:

M (c) = {ho,may,must,mustNot, patch, patchNoti 2 R | c 2 patch}
For example,M describes the incidence matrix in Section 2.2. Then,
the problem of �nding correct patches is de�ned as follows.

De�nition 3.1 (The Correct Patch Problem). Find a subset C ✓
CandR of candidate patches such that
• C covers the reachable states R, i.e., R =

S
c 2C M (c), and

• the chosen subsets in M (c) (where c 2 C) are pairwise dis-
joint, i.e.,M (c1) \M (c2) = ; for all c1, c2 2 C .

The �rst condition means that all allocated objects must be deallo-
cated (i.e. no memory-leaks). The second one means that every allo-
cated object is deallocated no more than once (i.e. no double-frees).
We guarantee the absence of use-after-frees as well because the

patches that may cause use-after-free are all collected in UnSafeR
and already excluded from CandR .

Note that this is an instance of the exact cover problem, a well-
known NP-complete problem [9]. We solve the exact cover problem
by encoding it as boolean satis�ability and leveraging an o�-the-
shelf SAT solver. Let R = {r1, . . . , rm } be the set of reachable object
states and CandR = {c1, . . . , cn } be the set of candidate patches
for R. Let C ✓ CandR be the solution of the patch problem (De�-
nition 3.2). We introduce boolean variables Si (1 i n) and Ti j
(1 i n, 1 j m) to encode the solution of the patch problem
and the functionM :

Si () ci 2 C, Ti j () r j 2 M (ci).

That is, Si is true i� the patch candidate ci 2 Cand is included in
the solution C , and Ti j is true i� the object state r j 2 R is deallo-
cated by the patch ci . Then, we can encode the two conditions in
De�nition 3.2 by boolean constraints �1 and �2:

�1 =
m̂

j=1

n_

i=1
Ti j ^ Si

�2 =
m̂

j=1

n̂

i1=1

n̂

i2=1

⇣
(i1 , i2) =) ¬

⇣
(Ti1 j ^ Si1) ^ (Ti2 j ^ Si2)

⌘⌘

The formula �1 encodes the �rst condition of De�nition 3.2: for any
reachable object r j , some patch ci in the solution must deallocate
the object. The formula �2 encodes the second condition: for any
reachable object r j , two di�erent patches ci1 and ci2 in the solution
do not deallocate the object r j at the same time. Finding a satisfying
assignment of �1 ^ �2, which assigns truth values to variables Si ,
determines the solution C . M��F�� succeeds to repair the input
program i� �1 ^ �2 is satis�able.

3.3.2 Ensuring Safety during Patch Generation. Now we explain
the assumption behind the basic method and how to address it. Con-
sider the code: p=malloc(); *p=malloc();, where two objects o1
and o2 are allocated and pointed to by p and *p, respectively. Our
method �nds out that the object o1 can be deallocated by free(p)

and o2 by free(*p) at the end of the code. Thus, the method gen-
erates one of the following two �xes:

(1) p=malloc(); *p=malloc(); free(*p); free(p);

(2) p=malloc(); *p=malloc(); free(p); free(*p);

However, the second one is not safe because the object pointed
to by p is deallocated by free(p) and then dereferenced by the
subsequent deallocation free(*p), causing a use-after-free. Note
that this type of use-after-free is caused by the inserted patches,
not by the ordinary uses present in the original code (for which the
our method guarantees the safety).

We can simply address this problem by assuming that the input
program is written in a way that a temporary variable is introduced
whenever a pointer expression is dereferenced. For example, we
assume that the code above has been transformed to the follow-
ing before we apply our algorithm: p=malloc(); *p=malloc();

tmp=*p; where variable tmp is created to store the value of the
pointer expression *p. Then we can avoid the problem of the ba-
sic method by generating patches whose pointer expressions are

approx. by
static analysis SAT encoding

FSE
’18

MemFix 알고리즘

• Soundness and safety proved formally

• Soundness: the patch gurantees to fix the error

• Safety: no new errors are introduced

Automatic Feedback Generation
for Programming Assignments

• In my programming language course,

• students hardly receive personalized feedback, and

• instructor’s solutions are not very helpful.

Automatic Error Correction for
Functional Programming Assignment

JunHo Lee, Dowon Song and Hakjoo Oh
Korea University

‘17.06.11

5. Conclusion
✓ 코드의의미상오류를자동으로찾는

새로운알고리즘제안
-오류위치추정 : MAX-SAT기법이용
-오류자동수정: Program Synthesis기법이용

✓ 기존의연구와다르게실제언어에
대해효율적으로코드생성

2. Research Goal 프로그래밍과제피드백자동화

1. Motivation
과제를 어려워하는 친구들을 보면서:
프로그래밍 과제 피드백을 자동화 할 수 없을까?

• 학생 :점수는받지만,피드백이없다.
• 교수자:일일이피드백을주기어렵다 (2~3명 vs 80 명이상).

3. Algorithm
3.1 잘못된부분자동으로찾기 Maximum Satisfiability(MAX-SAT) 문제로해결

4. Evaluation

✓ 프로그래밍언어수업에서사용된문제들
✓ 탐색기법을적용하지않은알고리즘과비교
✓ 평균적으로 380배정도의향상

Test Basic (sec) Component
(sec)

Type +
Component

(sec)
속도향상

List zipper 133 0.488 0.176 760x
Prime 0.1 0.016 0.02 5x

List map Time out 10.96 2.06 n/a
Factorial 380.064 6.764 0.936 400x

-미분문제 (정답률 : 47%)

…
| Sum plus ->
(match plus with
[] -> Const 0
| [hd] -> diff(hd, var)
| hd::tl -> Sum [diff(hd, var); diff(Times tl, var)]

) …

Sum

let rec map f (l,var) =
match l with
| [] -> []
| hd::tl -> (f (hd,var))::(map f (tl,var))

…
| Sum lst -> Sum (map diff (lst,var))
…

오답코드

모범답안

오답코드가모범답안과차이가많이남

3.2 잘못된부분자동교정 타입과프로그램구성요소를이용한프로그램합성문제로해결

let rec f n =
if(n=1) then 1
else ?

let rec f n =
if(n=1) then 1
else n * (f (n-1))

-합성을진행할위치에사용가능한변수를추출

Free Variable set
={f, n}

-정답코드에서사용된구성요소 추출

Expression set
={ ?=?, (? ?), ? * ?, 1, ?-?,

if ? then ? else ?}

(2) 타입시스템을활용

-옳지않은타입을가진프로그램의경우가지치기

(1) 구성요소추출

실행환경 OS Kali-linux 2016.1/ Intel Core i7-7700/2 Core/16GB DDR4

Test case: 3 -> 4 { input ≔ 3 ⋀ output≔ 4 }

let rec func n =
if (n=1) then 1
else n

{ n ≔ input ⋀
output ≔ if (guard,1,r) ⋀
guard≔ (n=1) ⋀ r ≔ n }

-프로그램과테스트케이스를논리식으로표현

(1) 오류탐색을 SAT Problem으로변환
-모순을만들지않는최대의논리식

(2) MAX-SAT을이용해최소한의오류를탐색

-논리식에모순이생기면오류가존재

{ input ≔ 3 ⋀
output≔ 4 ⋀
n ≔ input ⋀
output ≔ if (guard,1,r) ⋀
guard≔ (n=1) ⋀ r ≔ n }

모순발생
(Error Program)

Weighted Partial
MAX-SAT Solver

필수조건을충족시키며모순을만들지않는최대의논리식

{n ≔ input ⋀
output ≔ if (guard,1,r) ⋀
guard≔ (n=1) ⋀ r ≔ n }

{ input ≔ 3 ⋀
output≔ 4 } {n ≔ input ⋀

output ≔ if (guard,1,r) ⋀
guard≔ (n=1)}

-논리식의Weight를부여해가장큰논리식계산

output ≔ If (guard, 1, r) -> 5

Guard ≔ (n=1) -> 2 1 -> 1

n ≔ input -> 1

r ≔ n -> 1

1 -> 1

r ≔ n -> 1

Automatic Error Correction for
Functional Programming Assignment

JunHo Lee, Dowon Song and Hakjoo Oh
Korea University

‘17.06.11

5. Conclusion
✓ 코드의의미상오류를자동으로찾는

새로운알고리즘제안
-오류위치추정 : MAX-SAT기법이용
-오류자동수정: Program Synthesis기법이용

✓ 기존의연구와다르게실제언어에
대해효율적으로코드생성

2. Research Goal 프로그래밍과제피드백자동화

1. Motivation
과제를 어려워하는 친구들을 보면서:
프로그래밍 과제 피드백을 자동화 할 수 없을까?

• 학생 :점수는받지만,피드백이없다.
• 교수자:일일이피드백을주기어렵다 (2~3명 vs 80 명이상).

3. Algorithm
3.1 잘못된부분자동으로찾기 Maximum Satisfiability(MAX-SAT) 문제로해결

4. Evaluation

✓ 프로그래밍언어수업에서사용된문제들
✓ 탐색기법을적용하지않은알고리즘과비교
✓ 평균적으로 380배정도의향상

Test Basic (sec) Component
(sec)

Type +
Component

(sec)
속도향상

List zipper 133 0.488 0.176 760x
Prime 0.1 0.016 0.02 5x

List map Time out 10.96 2.06 n/a
Factorial 380.064 6.764 0.936 400x

-미분문제 (정답률 : 47%)

…
| Sum plus ->
(match plus with
[] -> Const 0
| [hd] -> diff(hd, var)
| hd::tl -> Sum [diff(hd, var); diff(Times tl, var)]

) …

Sum

let rec map f (l,var) =
match l with
| [] -> []
| hd::tl -> (f (hd,var))::(map f (tl,var))

…
| Sum lst -> Sum (map diff (lst,var))
…

오답코드

모범답안

오답코드가모범답안과차이가많이남

3.2 잘못된부분자동교정 타입과프로그램구성요소를이용한프로그램합성문제로해결

let rec f n =
if(n=1) then 1
else ?

let rec f n =
if(n=1) then 1
else n * (f (n-1))

-합성을진행할위치에사용가능한변수를추출

Free Variable set
={f, n}

-정답코드에서사용된구성요소 추출

Expression set
={ ?=?, (? ?), ? * ?, 1, ?-?,

if ? then ? else ?}

(2) 타입시스템을활용

-옳지않은타입을가진프로그램의경우가지치기

(1) 구성요소추출

실행환경 OS Kali-linux 2016.1/ Intel Core i7-7700/2 Core/16GB DDR4

Test case: 3 -> 4 { input ≔ 3 ⋀ output≔ 4 }

let rec func n =
if (n=1) then 1
else n

{ n ≔ input ⋀
output ≔ if (guard,1,r) ⋀
guard≔ (n=1) ⋀ r ≔ n }

-프로그램과테스트케이스를논리식으로표현

(1) 오류탐색을 SAT Problem으로변환
-모순을만들지않는최대의논리식

(2) MAX-SAT을이용해최소한의오류를탐색

-논리식에모순이생기면오류가존재

{ input ≔ 3 ⋀
output≔ 4 ⋀
n ≔ input ⋀
output ≔ if (guard,1,r) ⋀
guard≔ (n=1) ⋀ r ≔ n }

모순발생
(Error Program)

Weighted Partial
MAX-SAT Solver

필수조건을충족시키며모순을만들지않는최대의논리식

{n ≔ input ⋀
output ≔ if (guard,1,r) ⋀
guard≔ (n=1) ⋀ r ≔ n }

{ input ≔ 3 ⋀
output≔ 4 } {n ≔ input ⋀

output ≔ if (guard,1,r) ⋀
guard≔ (n=1)}

-논리식의Weight를부여해가장큰논리식계산

output ≔ If (guard, 1, r) -> 5

Guard ≔ (n=1) -> 2 1 -> 1

n ≔ input -> 1

r ≔ n -> 1

1 -> 1

r ≔ n -> 1

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Anon.

6 | Sum of aexp list

7
8 let rec diff : aexp * string -> aexp

9 = fun (e, x) ->

10 match e with

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1 E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek) | [E1; . . . ;Ek]
| if E1 E2 E3 | c (E1, . . . ,Ek) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1 (x1) = E1 and . . . and fk (xk) = Ek in E

| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk] | (p1, . . . ,p2) | c (p1, . . . ,pk) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12
13 let rec deployEnv : env -> int -> aexp list

14 = fun env flag ->

15 match env with

16 | hd::tl ->

17 (

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

모범답안

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Anon.

6 | Sum of aexp list

7
8 let rec diff : aexp * string -> aexp

9 = fun (e, x) ->

10 match e with

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1 E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek) | [E1; . . . ;Ek]
| if E1 E2 E3 | c (E1, . . . ,Ek) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1 (x1) = E1 and . . . and fk (xk) = Ek in E

| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk] | (p1, . . . ,p2) | c (p1, . . . ,pk) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12
13 let rec deployEnv : env -> int -> aexp list

14 = fun env flag ->

15 match env with

16 | hd::tl ->

17 (

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.
1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Automatic Error Correction for Functional Programming Assignments 1:29

18 match hd with

19 |(x, c, p) ->

20 if (flag = 0 && c = 0) then deployEnv tl flag

21 else if (x = �const� && flag = 1 && c = 1) then deployEnv tl flag

22 else if (p = 0) then (CONST c)::(deployEnv tl flag)

23 else if (c = 1 && p = 1) then (VAR x)::(deployEnv tl flag)

24 else if (p = 1) then TIMES[CONST c; VAR x]::(deployEnv tl flag)

25 else if (c = 1) then POWER(x, p)::(deployEnv tl flag)

26 else TIMES [CONST c; POWER(x, p)]::(deployEnv tl flag)

27)

28 | [] -> []

29 in

30
31 let rec updateEnv : (string * int * int) -> env -> int -> env

32 = fun elem env flag ->

33 match env with

34 | (hd::tl) ->

35 (

36 match hd with

37 | (x, c, p) ->

38 (

39 match elem with

40 |(x2, c2, p2) ->

41 if (flag = 0) then

42 if (x = x2 && p = p2) then (x, (c + c2), p)::tl

43 else hd::(updateEnv elem tl flag)

44 else

45 if (x = x2) then (x, (c*c2), (p + p2))::tl

46 else hd::(updateEnv elem tl flag)

47)

48)

49 | [] -> elem::[]

50 in

51
52 let rec doDiff : aexp * string -> aexp

53 = fun (aexp, x) ->

54 match aexp with

55 | CONST _ -> CONST 0

56 | VAR v ->

57 if (x = v) then CONST 1

58 else CONST 0

59 | POWER (v, p) ->

60 if (p = 0) then CONST 0

61 else if (x = v) then TIMES ((CONST p)::POWER (v, p-1)::[])

62 else CONST 0

63 | TIMES lst ->

64 (

65 match lst with

66 | (hd::[]) -> doDiff (hd, x)

67 | (hd::tl) ->

68 let diff_hd = doDiff(hd, x) in

69 let diff_tl = doDiff((TIMES tl), x) in

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Anon.

70 (

71 match (hd, diff_hd, tl, diff_tl) with

72 | (CONST p, CONST s, [CONST r], CONST q) -> CONST (p*q + r*s)

73 | (CONST p, _, _, CONST q) ->

74 if (diff_hd = CONST 0 || tl = [CONST 0]) then CONST (p*q)

75 else SUM [CONST(p*q); TIMES(diff_hd::tl)]

76 | (_, CONST s, [CONST r], _) ->

77 if (hd = CONST 0 || diff_tl = CONST 0) then CONST (r*s)

78 else SUM [TIMES [hd; diff_tl]; CONST(r*s)]

79 | _ ->

80 if (hd = CONST 0 || diff_tl = CONST 0) then TIMES(diff_hd::tl)

81 else if (tl = [CONST 0] || diff_hd = CONST 0) then TIMES [hd; diff_tl]

82 else SUM [TIMES [hd; diff_tl]; TIMES (diff_hd::tl)]

83)

84 | [] -> CONST 0

85)

86 | SUM lst -> SUM(List.map (fun aexp -> doDiff(aexp, x)) lst)

87 in

88
89 let rec simplify : aexp -> env -> int -> aexp list

90 = fun aexp env flag ->

91 match aexp with

92 | SUM lst ->

93 (

94 match lst with

95 | (CONST c)::tl -> simplify (SUM tl) (updateEnv (�const�, c, 0) env 0) 0

96 | (VAR x)::tl -> simplify (SUM tl) (updateEnv (x, 1, 1) env 0) 0

97 | (POWER (x, p))::tl -> simplify (SUM tl) (updateEnv (x, 1, p) env 0) 0

98 | (SUM lst)::tl -> simplify (SUM (List.append lst tl)) env 0

99 | (TIMES lst)::tl ->

100 (

101 let l = simplify (TIMES lst) [] 1 in

102 match l with

103 | h::t ->

104 if (t = []) then List.append l (simplify (SUM tl) env 0)

105 else List.append (TIMES l::[]) (simplify (SUM tl) env 0)

106 | [] -> []

107)

108 | [] -> deployEnv env 0

109)

110 | TIMES lst ->

111 (

112 match lst with

113 | (CONST c)::tl -> simplify (TIMES tl) (updateEnv (�const�, c, 0) env 1) 1

114 | (VAR x)::tl -> simplify (TIMES tl) (updateEnv (x, 1, 1) env 1) 1

115 | (POWER (x, p))::tl -> simplify (TIMES tl) (updateEnv (x, 1, p) env 1) 1

116 | (SUM lst)::tl ->

117 (

118 let l = simplify (SUM lst) [] 0 in

119 match l with

120 | h::t ->

121 if (t = []) then List.append l (simplify (TIMES tl) env 1)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Automatic Error Correction for Functional Programming Assignments 1:31

122 else List.append (SUM l::[]) (simplify (TIMES tl) env 1)

123 | [] -> [] (* Feedback : Replace [] by ((Sum lst) :: tl) *)

124)

125 | (TIMES lst)::tl -> simplify (TIMES (List.append lst tl)) env 1

126 | [] -> deployEnv env 1

127)

128 in

129
130 let result = doDiff (aexp, x) in

131 match result with

132 | SUM _ -> SUM (simplify result [] 0)

133 | TIMES _ -> TIMES (simplify result [] 1)

134 | _ -> result

REFERENCES
Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive Program Synthesis. In Proceedings of the 25th

International Conference on Computer Aided Veri�cation (CAV’13). Springer-Verlag, Berlin, Heidelberg, 934–950. DOI:
http://dx.doi.org/10.1007/978-3-642-39799-8_67

Thomas Ball, Mayur Naik, and Sriram K. Rajamani. 2003. From Symptom to Cause: Localizing Errors in Counterexample
Traces. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’03).
ACM, New York, NY, USA, 97–105. DOI:http://dx.doi.org/10.1145/604131.604140

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning
to Write Programs. In ICLR.

Sahil Bhatia and Rishabh Singh. 2016. Automated Correction for Syntax Errors in Programming Assignments using Recurrent
Neural Networks. CoRR abs/1603.06129 (2016). arXiv:1603.06129 http://arxiv.org/abs/1603.06129

Sheng Chen and Martin Erwig. 2014. Counter-factual Typing for Debugging Type Errors. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). ACM, New York, NY, USA, 583–594.
DOI:http://dx.doi.org/10.1145/2535838.2535863

Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program Repair with Quantiative Objectives. (July 2016).
https://www.microsoft.com/en-us/research/publication/qlose-program-repair-with-quantiative-objectives/

Yu Feng, Ruben Martins, Jacob Van Ge�en, Isil Dillig, and Swarat Chaudhuri. 2017a. Component-based Synthesis of
Table Consolidation and Transformation Tasks from Examples. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2017). ACM, New York, NY, USA, 422–436. DOI:http:
//dx.doi.org/10.1145/3062341.3062351

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017b. Component-based Synthesis for Complex
APIs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM,
New York, NY, USA, 599–612. DOI:http://dx.doi.org/10.1145/3009837.3009851

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-output
Examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’15). ACM, New York, NY, USA, 229–239. DOI:http://dx.doi.org/10.1145/2737924.2737977

Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. 2009. A Genetic Programming Approach
to Automated Software Repair. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation
(GECCO ’09). ACM, New York, NY, USA, 947–954. DOI:http://dx.doi.org/10.1145/1569901.1570031

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-directed Synthesis: A Type-
theoretic Interpretation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’16). ACM, New York, NY, USA, 802–815. DOI:http://dx.doi.org/10.1145/2837614.2837629

Andreas Griesmayer, Stefan Staber, and Roderick Bloem. 2007. Automated Fault Localization for C Programs. Electron.
Notes Theor. Comput. Sci. 174, 4 (May 2007), 95–111. DOI:http://dx.doi.org/10.1016/j.entcs.2006.12.032

Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. 2006. Error Explanation with Distance Metrics. Int. J. Softw.
Tools Technol. Transf. 8, 3 (June 2006), 229–247. DOI:http://dx.doi.org/10.1007/s10009-005-0202-0

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-output Examples. In Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM, New York,
NY, USA, 317–330. DOI:http://dx.doi.org/10.1145/1926385.1926423

Sumit Gulwani, Ivan Radicek, and Florian Zuleger. 2018. Automated Clustering and Program Repair for Introductory
Programming Assignments (PLDI ’18). To appear.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

학생 제출 답안

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Anon.

6 | Sum of aexp list

7
8 let rec diff : aexp * string -> aexp

9 = fun (e, x) ->

10 match e with

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1 E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek) | [E1; . . . ;Ek]
| if E1 E2 E3 | c (E1, . . . ,Ek) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1 (x1) = E1 and . . . and fk (xk) = Ek in E

| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk] | (p1, . . . ,p2) | c (p1, . . . ,pk) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12
13 let rec deployEnv : env -> int -> aexp list

14 = fun env flag ->

15 match env with

16 | hd::tl ->

17 (

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

모범답안

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Anon.

6 | Sum of aexp list

7
8 let rec diff : aexp * string -> aexp

9 = fun (e, x) ->

10 match e with

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1 E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek) | [E1; . . . ;Ek]
| if E1 E2 E3 | c (E1, . . . ,Ek) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1 (x1) = E1 and . . . and fk (xk) = Ek in E

| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk] | (p1, . . . ,p2) | c (p1, . . . ,pk) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12
13 let rec deployEnv : env -> int -> aexp list

14 = fun env flag ->

15 match env with

16 | hd::tl ->

17 (

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.
1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Automatic Error Correction for Functional Programming Assignments 1:29

18 match hd with

19 |(x, c, p) ->

20 if (flag = 0 && c = 0) then deployEnv tl flag

21 else if (x = �const� && flag = 1 && c = 1) then deployEnv tl flag

22 else if (p = 0) then (CONST c)::(deployEnv tl flag)

23 else if (c = 1 && p = 1) then (VAR x)::(deployEnv tl flag)

24 else if (p = 1) then TIMES[CONST c; VAR x]::(deployEnv tl flag)

25 else if (c = 1) then POWER(x, p)::(deployEnv tl flag)

26 else TIMES [CONST c; POWER(x, p)]::(deployEnv tl flag)

27)

28 | [] -> []

29 in

30
31 let rec updateEnv : (string * int * int) -> env -> int -> env

32 = fun elem env flag ->

33 match env with

34 | (hd::tl) ->

35 (

36 match hd with

37 | (x, c, p) ->

38 (

39 match elem with

40 |(x2, c2, p2) ->

41 if (flag = 0) then

42 if (x = x2 && p = p2) then (x, (c + c2), p)::tl

43 else hd::(updateEnv elem tl flag)

44 else

45 if (x = x2) then (x, (c*c2), (p + p2))::tl

46 else hd::(updateEnv elem tl flag)

47)

48)

49 | [] -> elem::[]

50 in

51
52 let rec doDiff : aexp * string -> aexp

53 = fun (aexp, x) ->

54 match aexp with

55 | CONST _ -> CONST 0

56 | VAR v ->

57 if (x = v) then CONST 1

58 else CONST 0

59 | POWER (v, p) ->

60 if (p = 0) then CONST 0

61 else if (x = v) then TIMES ((CONST p)::POWER (v, p-1)::[])

62 else CONST 0

63 | TIMES lst ->

64 (

65 match lst with

66 | (hd::[]) -> doDiff (hd, x)

67 | (hd::tl) ->

68 let diff_hd = doDiff(hd, x) in

69 let diff_tl = doDiff((TIMES tl), x) in

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Anon.

70 (

71 match (hd, diff_hd, tl, diff_tl) with

72 | (CONST p, CONST s, [CONST r], CONST q) -> CONST (p*q + r*s)

73 | (CONST p, _, _, CONST q) ->

74 if (diff_hd = CONST 0 || tl = [CONST 0]) then CONST (p*q)

75 else SUM [CONST(p*q); TIMES(diff_hd::tl)]

76 | (_, CONST s, [CONST r], _) ->

77 if (hd = CONST 0 || diff_tl = CONST 0) then CONST (r*s)

78 else SUM [TIMES [hd; diff_tl]; CONST(r*s)]

79 | _ ->

80 if (hd = CONST 0 || diff_tl = CONST 0) then TIMES(diff_hd::tl)

81 else if (tl = [CONST 0] || diff_hd = CONST 0) then TIMES [hd; diff_tl]

82 else SUM [TIMES [hd; diff_tl]; TIMES (diff_hd::tl)]

83)

84 | [] -> CONST 0

85)

86 | SUM lst -> SUM(List.map (fun aexp -> doDiff(aexp, x)) lst)

87 in

88
89 let rec simplify : aexp -> env -> int -> aexp list

90 = fun aexp env flag ->

91 match aexp with

92 | SUM lst ->

93 (

94 match lst with

95 | (CONST c)::tl -> simplify (SUM tl) (updateEnv (�const�, c, 0) env 0) 0

96 | (VAR x)::tl -> simplify (SUM tl) (updateEnv (x, 1, 1) env 0) 0

97 | (POWER (x, p))::tl -> simplify (SUM tl) (updateEnv (x, 1, p) env 0) 0

98 | (SUM lst)::tl -> simplify (SUM (List.append lst tl)) env 0

99 | (TIMES lst)::tl ->

100 (

101 let l = simplify (TIMES lst) [] 1 in

102 match l with

103 | h::t ->

104 if (t = []) then List.append l (simplify (SUM tl) env 0)

105 else List.append (TIMES l::[]) (simplify (SUM tl) env 0)

106 | [] -> []

107)

108 | [] -> deployEnv env 0

109)

110 | TIMES lst ->

111 (

112 match lst with

113 | (CONST c)::tl -> simplify (TIMES tl) (updateEnv (�const�, c, 0) env 1) 1

114 | (VAR x)::tl -> simplify (TIMES tl) (updateEnv (x, 1, 1) env 1) 1

115 | (POWER (x, p))::tl -> simplify (TIMES tl) (updateEnv (x, 1, p) env 1) 1

116 | (SUM lst)::tl ->

117 (

118 let l = simplify (SUM lst) [] 0 in

119 match l with

120 | h::t ->

121 if (t = []) then List.append l (simplify (TIMES tl) env 1)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Automatic Error Correction for Functional Programming Assignments 1:31

122 else List.append (SUM l::[]) (simplify (TIMES tl) env 1)

123 | [] -> [] (* Feedback : Replace [] by ((Sum lst) :: tl) *)

124)

125 | (TIMES lst)::tl -> simplify (TIMES (List.append lst tl)) env 1

126 | [] -> deployEnv env 1

127)

128 in

129
130 let result = doDiff (aexp, x) in

131 match result with

132 | SUM _ -> SUM (simplify result [] 0)

133 | TIMES _ -> TIMES (simplify result [] 1)

134 | _ -> result

REFERENCES
Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive Program Synthesis. In Proceedings of the 25th

International Conference on Computer Aided Veri�cation (CAV’13). Springer-Verlag, Berlin, Heidelberg, 934–950. DOI:
http://dx.doi.org/10.1007/978-3-642-39799-8_67

Thomas Ball, Mayur Naik, and Sriram K. Rajamani. 2003. From Symptom to Cause: Localizing Errors in Counterexample
Traces. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’03).
ACM, New York, NY, USA, 97–105. DOI:http://dx.doi.org/10.1145/604131.604140

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning
to Write Programs. In ICLR.

Sahil Bhatia and Rishabh Singh. 2016. Automated Correction for Syntax Errors in Programming Assignments using Recurrent
Neural Networks. CoRR abs/1603.06129 (2016). arXiv:1603.06129 http://arxiv.org/abs/1603.06129

Sheng Chen and Martin Erwig. 2014. Counter-factual Typing for Debugging Type Errors. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). ACM, New York, NY, USA, 583–594.
DOI:http://dx.doi.org/10.1145/2535838.2535863

Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program Repair with Quantiative Objectives. (July 2016).
https://www.microsoft.com/en-us/research/publication/qlose-program-repair-with-quantiative-objectives/

Yu Feng, Ruben Martins, Jacob Van Ge�en, Isil Dillig, and Swarat Chaudhuri. 2017a. Component-based Synthesis of
Table Consolidation and Transformation Tasks from Examples. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2017). ACM, New York, NY, USA, 422–436. DOI:http:
//dx.doi.org/10.1145/3062341.3062351

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017b. Component-based Synthesis for Complex
APIs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM,
New York, NY, USA, 599–612. DOI:http://dx.doi.org/10.1145/3009837.3009851

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-output
Examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’15). ACM, New York, NY, USA, 229–239. DOI:http://dx.doi.org/10.1145/2737924.2737977

Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. 2009. A Genetic Programming Approach
to Automated Software Repair. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation
(GECCO ’09). ACM, New York, NY, USA, 947–954. DOI:http://dx.doi.org/10.1145/1569901.1570031

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-directed Synthesis: A Type-
theoretic Interpretation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’16). ACM, New York, NY, USA, 802–815. DOI:http://dx.doi.org/10.1145/2837614.2837629

Andreas Griesmayer, Stefan Staber, and Roderick Bloem. 2007. Automated Fault Localization for C Programs. Electron.
Notes Theor. Comput. Sci. 174, 4 (May 2007), 95–111. DOI:http://dx.doi.org/10.1016/j.entcs.2006.12.032

Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. 2006. Error Explanation with Distance Metrics. Int. J. Softw.
Tools Technol. Transf. 8, 3 (June 2006), 229–247. DOI:http://dx.doi.org/10.1007/s10009-005-0202-0

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-output Examples. In Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM, New York,
NY, USA, 317–330. DOI:http://dx.doi.org/10.1145/1926385.1926423

Sumit Gulwani, Ivan Radicek, and Florian Zuleger. 2018. Automated Clustering and Program Repair for Introductory
Programming Assignments (PLDI ’18). To appear.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

학생 제출 답안

((Sum lst)::tl)

The FixML System

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Anon.

ML
Correct Program

ML
Incorrect Program

ML
Repaired Program

MLMLMLML

Statistical Fault
Localization

Program Synthesis
Testcases

Component
Reduction

Type-directed
Enumeration

Symbolic
Execution

Fig. 4. Overview of F��ML.

F��ML precisely captures this root cause and modi�es (help_append_list l1 l2) at line 13
into (help_append_list l1 (help_append_list l2 [])), where duplicates in l2 are removed
by applying help_append_list to l2 and [] (help_append_list correctly checks duplicates in
the �rst argument list). We remark that this feedback is exactly the same as the manual feedback
provided by a human in the post and agreed upon by several others without any objections.

2.2 How F��ML Works
Fig. 4 illustrates how F��ML works. Given a student’s incorrect program, a set of testcases, and a
correct implementation from an instructor, F��ML repairs the student code by using statistical error
localization and enhanced type-directed synthesis. Let us illustrate our algorithm using a simple
example. Assume that we are given the following buggy (left) and correct (right) implementations
of the factorial function:

1 let rec factorial n =

2 match n with

3 | 0 -> 1

4 | x -> 2 (* error *)

1 let rec factorial n =

2 if (n=0) then 1

3 else n * factorial (n-1)

as well as a set of input-output testcases, {0 7! 1, 3 7! 6, 4 7! 24}.
Statistical Error Localization. F��ML begins with localizing the error and produces a ranked

list of partial programs. The error-localization procedure works in the three steps. First, we classify
the testcases into positive (P) and negative (N) testcases: P = {0 7! 1} and N = {3 7! 6, 4 7! 24},
such that the buggy program correctly works for P but not for N . Second, we collect subexpres-
sions of the buggy program that are evaluated with the negative testcases. In our example, these
subexpressions are: S = {2, n, match n with | 0 -> 1 | x -> 2}. Then, we generate a set of
partial programs by replacing each expression in S by a hole, producing the following three partial
programs:

(1)

let rec factorial n =

match n with

| 0 -> 1

| x -> ?

(2)

let rec factorial n =

match ? with

| 0 -> 1

| x -> 2

(3) let rec factorial n = ?

Finally, we rank the partial programs based on the observation that subexpressions that are less
involved with the positive cases P are more likely to be erroneous. As a result, our algorithm

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

submitte
d to

OOPSLA’18

Program Synthesis

47

Synthesizing Imperative
Programs

48

• Specification is given as test cases

cf) A General View of Compilers

Compilers can be seen as a code synthesizer that transforms specification
into implementation.

I specification: high-level impl, logics, examples, natural languages, etc
I implementation: low-level impl, high-level impl, algorithm design, etc

e.g., specification: reverse(12) = 21, reverse(123) = 321

See our recent paper:
Synthesizing Imperative Programs for Introductory Programming
Assignments. https://arxiv.org/abs/1702.06334

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 8, 2017 15 / 15

cf) A General View of Compilers

Compilers can be seen as a code synthesizer that transforms specification
into implementation.

I specification: high-level impl, logics, examples, natural languages, etc
I implementation: low-level impl, high-level impl, algorithm design, etc

e.g., specification: reverse(12) = 21, reverse(123) = 321

See our recent paper:
Synthesizing Imperative Programs for Introductory Programming
Assignments. https://arxiv.org/abs/1702.06334

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 8, 2017 15 / 15

2.5s

SAS’17

Performance

49

Domain No Description Vars Ints Exs Time (sec)
IVars AVars Base Base+Opt Ours

Integer

1 Given n, return n!. 2 0 2 4 0.0 0.0 0.0
2 Given n, return n!! (i.e., double factorial). 3 0 3 4 0.0 0.0 0.0
3 Given n, return P

n

i=1 i. 3 0 2 4 0.1 0.0 0.0
4 Given n, return P

n

i=1 i

2. 4 0 2 3 122.4 18.1 0.3
5 Given n, return Q

n

i=1 i

2. 4 0 2 3 102.9 13.6 0.2
6 Given a and n, return a

n. 4 0 2 4 0.7 0.1 0.1
7 Given n and m, return P

m

i=n

i. 3 0 2 3 0.2 0.0 0.0
8 Given n and m, return Q

m

i=n

i. 3 0 2 3 0.2 0.0 0.1
9 Count the number of digit for an integer. 3 0 3 3 0.0 0.0 0.0

10 Sum the digits of an integer. 3 0 3 4 5.2 2.2 1.3
11 Calculate product of digits of an intger. 3 0 3 3 0.7 2.3 0.3
12 Count the number of binary digit of an integer. 2 0 3 3 0.0 0.0 0.0
13 Find the nth Fibonacci number. 3 0 3 4 98.7 13.9 2.6
14 Given n, return P

n

i=1(
P

i

m=1 m)). 3 0 2 4 ? 324.9 37.6
15 Given n, return Q

n

i=1(
Q

i

m=1 m)). 3 0 2 4 ? 316.6 86.9
16 Reverse a given integer. 3 0 3 3 ? 367.3 2.5

Array

17 Find the sum of all elements of an array. 3 1 2 2 8.1 3.6 0.9
18 Find the product of all elements of an array. 3 1 2 2 7.6 3.9 0.9
19 Sum two arrays of same length into one array. 3 2 2 2 44.6 29.9 0.2
20 Multiply two arrays of same length into one array. 3 2 2 2 47.4 26.4 0.3
21 Cube each element of an array. 3 1 1 2 1283.3 716.1 13.0
22 Manipulate each element into 4th power. 3 1 1 2 1265.8 715.5 13.0
23 Find a maximum element. 3 1 2 2 0.9 0.7 0.4
24 Find a minimum element. 3 1 2 2 0.8 0.3 0.1
25 Add 1 to each element. 2 1 1 3 0.3 0.0 0.0
26 Find the sum of square of each element. 3 1 2 2 2700.0 186.2 11.5
27 Find the multiplication of square of each element. 3 1 1 2 1709.8 1040.3 12.6
28 Sum the products of matching elements of two arrays. 3 2 1 3 20.5 38.7 1.5
29 Sum the absolute values of each element. 2 1 1 2 45.0 50.5 12.1
30 Count the number of each element. 3 1 3 2 238.9 1094.1 0.2

Average > 616.8 165.5 6.6

Table 1: Performance of SIMPL. ? denotes timeout (> 1 hour). Assume ? as 3,600 seconds for the average of “Base”.

on students’ programming submissions. Our system, SIMPL,
has the following advantages over prior works:

• Feedback on incomplete programs: Existing systems
produce feedback only for complete programs; they can-
not help students who do not know how to proceed fur-
ther. In this case, SIMPL can help by automatically gen-
erating solutions starting from incomplete solutions.

• No burden on instructor: Existing systems require
instructor’s manual effort. For example, the system
in [Singh et al., 2013] needs a correct implementation
and a set of correction rules manually designed by the
instructor. On the other hand, SIMPL does not require
anything from the instructor.
An exception is [Farrell et al., 1984], where an auto-
matic LISP feedback system is presented. However, the
system produces feedback by relying on ad-hoc rules.

Programming by example Our work differs from prior
programming-by-example (PBE) techniques in two ways.
First, to our knowledge, our work is the first to synthe-
size imperative programs with loops. Most of the PBE ap-
proaches focus on domain-specific languages for string trans-
formation [Gulwani, 2011; Kini and Gulwani, 2015; Raza et

al., 2015; Manshadi et al., 2013; Wu and Knoblock, 2015],
number transformation [Singh and Gulwani, 2012], XML
transformation [Raza et al., 2014], and extracting relational
data [Le and Gulwani, 2014], etc. Several others have studied
synthesis of functional programs ([Albarghouthi et al., 2013;
Osera and Zdancewic, 2015; Frankle et al., 2016]. Second,
our algorithm differs from prior work in that we combine
semantic-based static analysis technology with enumerative
program synthesis. Existing enumerative synthesis technol-
ogy used pruning techniques such as type systems [Osera and
Zdancewic, 2015; Frankle et al., 2016] and deductions [Feser
et al., 2015], which are not applicable to our setting.

7 Conclusion
In this paper, we have shown that combining enumerative
synthesis and static analysis is a promising way of synthe-
sizing introductory imperative programs. The enumerative
search allows us to find the smallest possible, therefore gen-
eral, program while the semantics-based static analysis dra-
matically accelerates the process in a safe way. We demon-
strated the effectiveness for 30 real programming problems
gathered from online forums.

• Better than humans for introductory programming
tasks

Synthesizing Pattern
Programs

50

programmers; they have been posted as open questions in
online forums for several months.

To use our tool, it suffices to provide example patterns
only. Without any hints from the user, PAT is able to generate
a program that reproduces the patterns while generalizing
the behavior beyond the given examples.

Problem 1 (Isosceles Triangle) The first problem is to write
a program that displays isosceles triangles (i.e. triangle with
at least two equal sides). One possible example pattern is as
follows:

F
FFF

FFFFF
FFFFFFF

Given this pattern, PAT takes 0.04 seconds to synthesize the
program that draws the pattern:

for i in N do:
for j in N � i do: print
for j in 2 ⇤ i� 1 do: print F
print

The outermost loop iterates through the rows of the triangle,
where N represents the number of the rows to be displayed.
In each iteration, two inner loops are used to print N � i

blanks () followed by 2⇤ i�1 star symbols (F). Also, the
program puts a newline () upon completion of each row.
In this case, PAT can generate the program from a single
example pattern.

Problem 2 (Rectangle with an empty trapezoid) The sec-
ond problem is to write a program that produces a rectangle
with an empty trapezoid. Suppose that the following two ex-
ample patterns are given:

FFFFFF FFFFFFFF
FF FF FFF FFF
F F FF FF

F F

where the size of each pattern varies with the number of
rows. Given these examples, PAT generates the program in
1.0 seconds:

for i in N do:
for j in N � i+ 1 do: print F
for j in 2 ⇤ i� 2 do: print
for j in N � i+ 1 do: print F
print

Note that PAT is able to automatically infer a series of inner
loops that repeat through columns.

Problem 3 (Hollow square with diagonals) Consider the
problem of generating hollow squares with diagonals inside:

FFFFF FFFFFFF
FF FF FF FF
F F F F F F F
FF FF F F F
FFFFF F F F F

FF FF
FFFFFFF

This problem has remained open in an online forum2 for
more than three months.

With PAT, however, we can solve this problem in 5.2s.
Given the two examples above, it generates the following:

for i in N do:
for j in N do:

if (i = 1 || i = N || j = 1 || j = i ||
j = N � i+ 1 || j = N): print F

else: print
print

The program prints out F when one of the following condi-
tion holds: the first row (i = 1), the last row (i = N), the
first column (j = 1), the last column (j = N), the lower-
right-oriented diagonal (j = i), and the upper-right-oriented
diagonal (j = N � i + 1). PAT accomplishes this by intro-
ducing a conditional statement within the nested loops.

Note that the synthesized program generalizes well be-
yond the given example patterns. For instance, the following
shows the output of the program when N is 6 or 8:

FFFFFF FFFFFFFF
FF FF FF FF
F FF F F F F F
F FF F F FF F
FF FF F FF F
FFFFFF F F F F

FF FF
FFFFFFFF

This generalization is a bit surprising since we did not pro-
vide example patterns for even numbers of N . In fact, we
were unsure how the patterns should be when N is even
since the question in the online forum was originally given
without such examples.
Problem 4 (W-shape) Consider the task of generating W-
patterns:

FFFFFFFFF FFFFFFFFFFFFF
FFFFFFFF FFFFFFFFFFFF
FFFFFFF FFFFFFFFFFF

FFFFFFFFFF

This problem also came from the online forum3, which
still remains open. We provided PAT with the two examples
above and obtained the following program in 4.2 seconds:

for i in N do:
for j in 4 ⇤N � i� 2 do:

if (j = 2 ⇤N � i || j = 2 ⇤N + i� 2 ||
j = 4 ⇤N � i� 2 || j = i): print F

else: print
print

Note that PAT is clever enough to identify the four cases: the
two lower-right-oriented diagonals (j = i, j = 2⇤N+i�2)
and the two upper-right-oriented diagonals (j = 2 ⇤ N �
i, j = 4 ⇤N � i� 2).

2http://codeforwin.org/2015/07/c-program-to-print-diamond-
star-pattern.html, accessed 11-Sep-2017

3http://codeforwin.org/2016/10/c-program-to-print-x-star-
pattern.html, accessed 11-Sep-2017

programmers; they have been posted as open questions in
online forums for several months.

To use our tool, it suffices to provide example patterns
only. Without any hints from the user, PAT is able to generate
a program that reproduces the patterns while generalizing
the behavior beyond the given examples.

Problem 1 (Isosceles Triangle) The first problem is to write
a program that displays isosceles triangles (i.e. triangle with
at least two equal sides). One possible example pattern is as
follows:

F
FFF

FFFFF
FFFFFFF

Given this pattern, PAT takes 0.04 seconds to synthesize the
program that draws the pattern:

for i in N do:
for j in N � i do: print
for j in 2 ⇤ i� 1 do: print F
print

The outermost loop iterates through the rows of the triangle,
where N represents the number of the rows to be displayed.
In each iteration, two inner loops are used to print N � i

blanks () followed by 2⇤ i�1 star symbols (F). Also, the
program puts a newline () upon completion of each row.
In this case, PAT can generate the program from a single
example pattern.

Problem 2 (Rectangle with an empty trapezoid) The sec-
ond problem is to write a program that produces a rectangle
with an empty trapezoid. Suppose that the following two ex-
ample patterns are given:

FFFFFF FFFFFFFF
FF FF FFF FFF
F F FF FF

F F

where the size of each pattern varies with the number of
rows. Given these examples, PAT generates the program in
1.0 seconds:

for i in N do:
for j in N � i+ 1 do: print F
for j in 2 ⇤ i� 2 do: print
for j in N � i+ 1 do: print F
print

Note that PAT is able to automatically infer a series of inner
loops that repeat through columns.

Problem 3 (Hollow square with diagonals) Consider the
problem of generating hollow squares with diagonals inside:

FFFFF FFFFFFF
FF FF FF FF
F F F F F F F
FF FF F F F
FFFFF F F F F

FF FF
FFFFFFF

This problem has remained open in an online forum2 for
more than three months.

With PAT, however, we can solve this problem in 5.2s.
Given the two examples above, it generates the following:

for i in N do:
for j in N do:

if (i = 1 || i = N || j = 1 || j = i ||
j = N � i+ 1 || j = N): print F

else: print
print

The program prints out F when one of the following condi-
tion holds: the first row (i = 1), the last row (i = N), the
first column (j = 1), the last column (j = N), the lower-
right-oriented diagonal (j = i), and the upper-right-oriented
diagonal (j = N � i + 1). PAT accomplishes this by intro-
ducing a conditional statement within the nested loops.

Note that the synthesized program generalizes well be-
yond the given example patterns. For instance, the following
shows the output of the program when N is 6 or 8:

FFFFFF FFFFFFFF
FF FF FF FF
F FF F F F F F
F FF F F FF F
FF FF F FF F
FFFFFF F F F F

FF FF
FFFFFFFF

This generalization is a bit surprising since we did not pro-
vide example patterns for even numbers of N . In fact, we
were unsure how the patterns should be when N is even
since the question in the online forum was originally given
without such examples.
Problem 4 (W-shape) Consider the task of generating W-
patterns:

FFFFFFFFF FFFFFFFFFFFFF
FFFFFFFF FFFFFFFFFFFF
FFFFFFF FFFFFFFFFFF

FFFFFFFFFF

This problem also came from the online forum3, which
still remains open. We provided PAT with the two examples
above and obtained the following program in 4.2 seconds:

for i in N do:
for j in 4 ⇤N � i� 2 do:

if (j = 2 ⇤N � i || j = 2 ⇤N + i� 2 ||
j = 4 ⇤N � i� 2 || j = i): print F

else: print
print

Note that PAT is clever enough to identify the four cases: the
two lower-right-oriented diagonals (j = i, j = 2⇤N+i�2)
and the two upper-right-oriented diagonals (j = 2 ⇤ N �
i, j = 4 ⇤N � i� 2).

2http://codeforwin.org/2015/07/c-program-to-print-diamond-
star-pattern.html, accessed 11-Sep-2017

3http://codeforwin.org/2016/10/c-program-to-print-x-star-
pattern.html, accessed 11-Sep-2017

programmers; they have been posted as open questions in
online forums for several months.

To use our tool, it suffices to provide example patterns
only. Without any hints from the user, PAT is able to generate
a program that reproduces the patterns while generalizing
the behavior beyond the given examples.

Problem 1 (Isosceles Triangle) The first problem is to write
a program that displays isosceles triangles (i.e. triangle with
at least two equal sides). One possible example pattern is as
follows:

F
FFF

FFFFF
FFFFFFF

Given this pattern, PAT takes 0.04 seconds to synthesize the
program that draws the pattern:

for i in N do:
for j in N � i do: print
for j in 2 ⇤ i� 1 do: print F
print

The outermost loop iterates through the rows of the triangle,
where N represents the number of the rows to be displayed.
In each iteration, two inner loops are used to print N � i

blanks () followed by 2⇤ i�1 star symbols (F). Also, the
program puts a newline () upon completion of each row.
In this case, PAT can generate the program from a single
example pattern.

Problem 2 (Rectangle with an empty trapezoid) The sec-
ond problem is to write a program that produces a rectangle
with an empty trapezoid. Suppose that the following two ex-
ample patterns are given:

FFFFFF FFFFFFFF
FF FF FFF FFF
F F FF FF

F F

where the size of each pattern varies with the number of
rows. Given these examples, PAT generates the program in
1.0 seconds:

for i in N do:
for j in N � i+ 1 do: print F
for j in 2 ⇤ i� 2 do: print
for j in N � i+ 1 do: print F
print

Note that PAT is able to automatically infer a series of inner
loops that repeat through columns.

Problem 3 (Hollow square with diagonals) Consider the
problem of generating hollow squares with diagonals inside:

FFFFF FFFFFFF
FF FF FF FF
F F F F F F F
FF FF F F F
FFFFF F F F F

FF FF
FFFFFFF

This problem has remained open in an online forum2 for
more than three months.

With PAT, however, we can solve this problem in 5.2s.
Given the two examples above, it generates the following:

for i in N do:
for j in N do:

if (i = 1 || i = N || j = 1 || j = i ||
j = N � i+ 1 || j = N): print F

else: print
print

The program prints out F when one of the following condi-
tion holds: the first row (i = 1), the last row (i = N), the
first column (j = 1), the last column (j = N), the lower-
right-oriented diagonal (j = i), and the upper-right-oriented
diagonal (j = N � i + 1). PAT accomplishes this by intro-
ducing a conditional statement within the nested loops.

Note that the synthesized program generalizes well be-
yond the given example patterns. For instance, the following
shows the output of the program when N is 6 or 8:

FFFFFF FFFFFFFF
FF FF FF FF
F FF F F F F F
F FF F F FF F
FF FF F FF F
FFFFFF F F F F

FF FF
FFFFFFFF

This generalization is a bit surprising since we did not pro-
vide example patterns for even numbers of N . In fact, we
were unsure how the patterns should be when N is even
since the question in the online forum was originally given
without such examples.
Problem 4 (W-shape) Consider the task of generating W-
patterns:

FFFFFFFFF FFFFFFFFFFFFF
FFFFFFFF FFFFFFFFFFFF
FFFFFFF FFFFFFFFFFF

FFFFFFFFFF

This problem also came from the online forum3, which
still remains open. We provided PAT with the two examples
above and obtained the following program in 4.2 seconds:

for i in N do:
for j in 4 ⇤N � i� 2 do:

if (j = 2 ⇤N � i || j = 2 ⇤N + i� 2 ||
j = 4 ⇤N � i� 2 || j = i): print F

else: print
print

Note that PAT is clever enough to identify the four cases: the
two lower-right-oriented diagonals (j = i, j = 2⇤N+i�2)
and the two upper-right-oriented diagonals (j = 2 ⇤ N �
i, j = 4 ⇤N � i� 2).

2http://codeforwin.org/2015/07/c-program-to-print-diamond-
star-pattern.html, accessed 11-Sep-2017

3http://codeforwin.org/2016/10/c-program-to-print-x-star-
pattern.html, accessed 11-Sep-2017

programmers; they have been posted as open questions in
online forums for several months.

To use our tool, it suffices to provide example patterns
only. Without any hints from the user, PAT is able to generate
a program that reproduces the patterns while generalizing
the behavior beyond the given examples.

Problem 1 (Isosceles Triangle) The first problem is to write
a program that displays isosceles triangles (i.e. triangle with
at least two equal sides). One possible example pattern is as
follows:

F
FFF

FFFFF
FFFFFFF

Given this pattern, PAT takes 0.04 seconds to synthesize the
program that draws the pattern:

for i in N do:
for j in N � i do: print
for j in 2 ⇤ i� 1 do: print F
print

The outermost loop iterates through the rows of the triangle,
where N represents the number of the rows to be displayed.
In each iteration, two inner loops are used to print N � i

blanks () followed by 2⇤ i�1 star symbols (F). Also, the
program puts a newline () upon completion of each row.
In this case, PAT can generate the program from a single
example pattern.

Problem 2 (Rectangle with an empty trapezoid) The sec-
ond problem is to write a program that produces a rectangle
with an empty trapezoid. Suppose that the following two ex-
ample patterns are given:

FFFFFF FFFFFFFF
FF FF FFF FFF
F F FF FF

F F

where the size of each pattern varies with the number of
rows. Given these examples, PAT generates the program in
1.0 seconds:

for i in N do:
for j in N � i+ 1 do: print F
for j in 2 ⇤ i� 2 do: print
for j in N � i+ 1 do: print F
print

Note that PAT is able to automatically infer a series of inner
loops that repeat through columns.

Problem 3 (Hollow square with diagonals) Consider the
problem of generating hollow squares with diagonals inside:

FFFFF FFFFFFF
FF FF FF FF
F F F F F F F
FF FF F F F
FFFFF F F F F

FF FF
FFFFFFF

This problem has remained open in an online forum2 for
more than three months.

With PAT, however, we can solve this problem in 5.2s.
Given the two examples above, it generates the following:

for i in N do:
for j in N do:

if (i = 1 || i = N || j = 1 || j = i ||
j = N � i+ 1 || j = N): print F

else: print
print

The program prints out F when one of the following condi-
tion holds: the first row (i = 1), the last row (i = N), the
first column (j = 1), the last column (j = N), the lower-
right-oriented diagonal (j = i), and the upper-right-oriented
diagonal (j = N � i + 1). PAT accomplishes this by intro-
ducing a conditional statement within the nested loops.

Note that the synthesized program generalizes well be-
yond the given example patterns. For instance, the following
shows the output of the program when N is 6 or 8:

FFFFFF FFFFFFFF
FF FF FF FF
F FF F F F F F
F FF F F FF F
FF FF F FF F
FFFFFF F F F F

FF FF
FFFFFFFF

This generalization is a bit surprising since we did not pro-
vide example patterns for even numbers of N . In fact, we
were unsure how the patterns should be when N is even
since the question in the online forum was originally given
without such examples.
Problem 4 (W-shape) Consider the task of generating W-
patterns:

FFFFFFFFF FFFFFFFFFFFFF
FFFFFFFF FFFFFFFFFFFF
FFFFFFF FFFFFFFFFFF

FFFFFFFFFF

This problem also came from the online forum3, which
still remains open. We provided PAT with the two examples
above and obtained the following program in 4.2 seconds:

for i in N do:
for j in 4 ⇤N � i� 2 do:

if (j = 2 ⇤N � i || j = 2 ⇤N + i� 2 ||
j = 4 ⇤N � i� 2 || j = i): print F

else: print
print

Note that PAT is clever enough to identify the four cases: the
two lower-right-oriented diagonals (j = i, j = 2⇤N+i�2)
and the two upper-right-oriented diagonals (j = 2 ⇤ N �
i, j = 4 ⇤N � i� 2).

2http://codeforwin.org/2015/07/c-program-to-print-diamond-
star-pattern.html, accessed 11-Sep-2017

3http://codeforwin.org/2016/10/c-program-to-print-x-star-
pattern.html, accessed 11-Sep-2017

IJCAI’18

Thank you!

• Research areas: programming languages, software engineering,
software security

• program analysis and testing

• program synthesis and repair

• Publication: top-venues in PL, SE,  
Security, and AI:

• PLDI(’12,’14), OOPSLA(’15,’17,’17),TOPLAS(’14,’16,’17),  
ICSE(’17,’18), FSE’18, S&P’17, IJCAI(’17,’18), etc

http://prl.korea.ac.kr

http://prl.korea.ac.kr

