
Static Analysis-based Repair of
Memory Errors in C Programs

Hakjoo Oh
Korea University

2/25/2025@IFIP WG 2.4 Meeting 70 (Singapore)

• Members: ~15 graduate students

• Research area: intersection of programming languages
(PL) and software engineering (SE)

• program analysis and testing

• program synthesis and repair

• Publication: PL, SE, and Security
• PL: POPL(’22),PLDI(’12,’14,’20,’24),OOPSLA(’15,’17a,’17b,’18a,’18b,’19,’20,’23,’24a,’24b,25)

• SE: ICSE(’17,’18,’19,’20,’21’22a,’22b,’23a,’23b,’23c), FSE(’18,’19,’20,’21,’22,’23), ASE(’18,’24a,’24b)

• Security: IEEE S&P(’17,’20), USENIX Security(’21,’23)

http://kupl.github.io

PL/SE Research @Korea Univ.

2

http://kupl.github.io

Korea Univ.

Korea Univ.

PLDI 2025

ASE 2025

• Meeting 67, York Harbor (April 23-27, 2023)

• Meeting 69, Lugano (May 12-16, 2024)

My IFIP Talks

• Meeting 67, York Harbor (April 23-27, 2023)

• Meeting 69, Lugano (May 12-16, 2024)

My IFIP Talks

Today: automated program repair (APR)

• Automatic Diagnosis and Correction of Logical Errors for Functional Programming
Assignments. OOPSLA 2018

• Context-Aware and Data-Driven Feedback Generation for Programming Assignments.
ESEC/FSE 2021

• MemFix: Static Analysis-Based Repair of Memory Deallocation Errors for C. ESEC/FSE 2018

• SAVER: Scalable, Precise, and Safe Memory-Error Repair. ICSE 2020 (deployed in industry)

• NPEX: Repairing Java Null Pointer Exceptions without Tests. ICSE 2022

• PyTER: Effective Program Repair for Python Type Errors. ESEC/FSE 2022

• SmartFix: Fixing Vulnerable Smart Contracts by Accelerating Generate-and-Verify Repair
using Statistical Models. ESEC/FSE 2023

• Reducing the Cost of LLM-based APR via Execution-Guided Static Analysis. In progress

• Accurate Detection of Overfitting Patches in Automated Program Repair through Semantic
Anti-Patterns. In progress

APR Research @Korea Univ.

• Automatic Diagnosis and Correction of Logical Errors for Functional Programming
Assignments. OOPSLA 2018

• Context-Aware and Data-Driven Feedback Generation for Programming Assignments.
ESEC/FSE 2021

• MemFix: Static Analysis-Based Repair of Memory Deallocation Errors for C. ESEC/FSE 2018

• SAVER: Scalable, Precise, and Safe Memory-Error Repair. ICSE 2020 (deployed in industry)

• NPEX: Repairing Java Null Pointer Exceptions without Tests. ICSE 2022

• PyTER: Effective Program Repair for Python Type Errors. ESEC/FSE 2022

• SmartFix: Fixing Vulnerable Smart Contracts by Accelerating Generate-and-Verify Repair
using Statistical Models. ESEC/FSE 2023

• Reducing the Cost of LLM-based APR via Execution-Guided Static Analysis. In progress

• Accurate Detection of Overfitting Patches in Automated Program Repair through Semantic
Anti-Patterns. In progress

APR Research @Korea Univ.

• Automatic Diagnosis and Correction of Logical Errors for Functional Programming
Assignments. OOPSLA 2018

• Context-Aware and Data-Driven Feedback Generation for Programming Assignments.
ESEC/FSE 2021

• MemFix: Static Analysis-Based Repair of Memory Deallocation Errors for C. ESEC/FSE 2018

• SAVER: Scalable, Precise, and Safe Memory-Error Repair. ICSE 2020 (deployed in industry)

• NPEX: Repairing Java Null Pointer Exceptions without Tests. ICSE 2022

• PyTER: Effective Program Repair for Python Type Errors. ESEC/FSE 2022

• SmartFix: Fixing Vulnerable Smart Contracts by Accelerating Generate-and-Verify Repair
using Statistical Models. ESEC/FSE 2023

• Reducing the Cost of LLM-based APR via Execution-Guided Static Analysis. In progress

• Accurate Detection of Overfitting Patches in Automated Program Repair through Semantic
Anti-Patterns. In progress

APR Research @Korea Univ.

• Automatic Diagnosis and Correction of Logical Errors for Functional Programming
Assignments. OOPSLA 2018

• Context-Aware and Data-Driven Feedback Generation for Programming Assignments.
ESEC/FSE 2021

• MemFix: Static Analysis-Based Repair of Memory Deallocation Errors for C. ESEC/FSE 2018

• SAVER: Scalable, Precise, and Safe Memory-Error Repair. ICSE 2020 (deployed in industry)

• NPEX: Repairing Java Null Pointer Exceptions without Tests. ICSE 2022

• PyTER: Effective Program Repair for Python Type Errors. ESEC/FSE 2022

• SmartFix: Fixing Vulnerable Smart Contracts by Accelerating Generate-and-Verify Repair
using Statistical Models. ESEC/FSE 2023

• Reducing the Cost of LLM-based APR via Execution-Guided Static Analysis. In progress

• Accurate Detection of Overfitting Patches in Automated Program Repair through Semantic
Anti-Patterns. In progress

APR Research @Korea Univ.

• Automatic Diagnosis and Correction of Logical Errors for Functional Programming
Assignments. OOPSLA 2018

• Context-Aware and Data-Driven Feedback Generation for Programming Assignments.
ESEC/FSE 2021

• MemFix: Static Analysis-Based Repair of Memory Deallocation Errors for C. ESEC/FSE 2018

• SAVER: Scalable, Precise, and Safe Memory-Error Repair. ICSE 2020 (deployed in industry)

• NPEX: Repairing Java Null Pointer Exceptions without Tests. ICSE 2022

• PyTER: Effective Program Repair for Python Type Errors. ESEC/FSE 2022

• SmartFix: Fixing Vulnerable Smart Contracts by Accelerating Generate-and-Verify Repair
using Statistical Models. ESEC/FSE 2023

• Reducing the Cost of LLM-based APR via Execution-Guided Static Analysis. In progress

• Accurate Detection of Overfitting Patches in Automated Program Repair through Semantic
Anti-Patterns. In progress

APR Research @Korea Univ.

• Automatic Diagnosis and Correction of Logical Errors for Functional Programming
Assignments. OOPSLA 2018

• Context-Aware and Data-Driven Feedback Generation for Programming Assignments.
ESEC/FSE 2021

• MemFix: Static Analysis-Based Repair of Memory Deallocation Errors for C. ESEC/FSE 2018

• SAVER: Scalable, Precise, and Safe Memory-Error Repair. ICSE 2020 (deployed in industry)

• NPEX: Repairing Java Null Pointer Exceptions without Tests. ICSE 2022

• PyTER: Effective Program Repair for Python Type Errors. ESEC/FSE 2022

• SmartFix: Fixing Vulnerable Smart Contracts by Accelerating Generate-and-Verify Repair
using Statistical Models. ESEC/FSE 2023

• Reducing the Cost of LLM-based APR via Execution-Guided Static Analysis. In progress

• Accurate Detection of Overfitting Patches in Automated Program Repair through Semantic
Anti-Patterns. In progress

APR Research @Korea Univ.

• Automatic Diagnosis and Correction of Logical Errors for Functional Programming
Assignments. OOPSLA 2018

• Context-Aware and Data-Driven Feedback Generation for Programming Assignments.
ESEC/FSE 2021

• MemFix: Static Analysis-Based Repair of Memory Deallocation Errors for C. ESEC/FSE 2018

• SAVER: Scalable, Precise, and Safe Memory-Error Repair. ICSE 2020 (deployed in industry)

• NPEX: Repairing Java Null Pointer Exceptions without Tests. ICSE 2022

• PyTER: Effective Program Repair for Python Type Errors. ESEC/FSE 2022

• SmartFix: Fixing Vulnerable Smart Contracts by Accelerating Generate-and-Verify Repair
using Statistical Models. ESEC/FSE 2023

• Reducing the Cost of LLM-based APR via Execution-Guided Static Analysis. In progress

• Accurate Detection of Overfitting Patches in Automated Program Repair through Semantic
Anti-Patterns. In progress

APR Research @Korea Univ.

Our approach: Static analysis-based program repair

• Automatic Diagnosis and Correction of Logical Errors for Functional Programming
Assignments. OOPSLA 2018

• Context-Aware and Data-Driven Feedback Generation for Programming Assignments.
ESEC/FSE 2021

• MemFix: Static Analysis-Based Repair of Memory Deallocation Errors for C. ESEC/FSE 2018

• SAVER: Scalable, Precise, and Safe Memory-Error Repair. ICSE 2020 (deployed in industry)

• NPEX: Repairing Java Null Pointer Exceptions without Tests. ICSE 2022

• PyTER: Effective Program Repair for Python Type Errors. ESEC/FSE 2022

• SmartFix: Fixing Vulnerable Smart Contracts by Accelerating Generate-and-Verify Repair
using Statistical Models. ESEC/FSE 2023

• Reducing the Cost of LLM-based APR via Execution-Guided Static Analysis. In progress

• Accurate Detection of Overfitting Patches in Automated Program Repair through Semantic
Anti-Patterns. In progress

APR Research @Korea Univ.

Our approach: Static analysis-based program repair

• Memory-leak (ML), use-after-free (UAF), and double-free
(DF) are prevalent in real-world C programs

Memory Errors in C Programs

Automated Fixing of Memory Management Errors for C
Anonymous Author(s)

Table 1: Memory management errors are one of the most
common errors in C programs. For each open-source repos-
itory, it shows the number of total commits (#commits) and
the numbers of commits that mention memory leak (ML),
double-free (DF), use-after-free (UAF), and bu�er/integer-
over�ow (OF) errors. ‘Total’ indicates the total number of
memory manangement errors.

Repository #commits ML DF UAF Total *-over�ow
linux 721,119 3,740 821 1,986 6,363 5,092
openssl 21,009 220 36 12 264 61
numpy 17,008 58 2 2 59 53
php 105,613 1,129 148 197 1,449 649
git 49,475 350 19 95 442 258

ABSTRACT
CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability;

KEYWORDS
ACM proceedings, LATEX, text tagging

ACM Reference Format:
Anonymous Author(s). 2017. Automated Fixing of Memory Management
Errors for C. In Proceedings of 11th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Memory-management errors (i.e., memory-leak, double-free, and
use-after-free) are prevalent in C programs. Because the C language
entrusts memory management to developers, all unused objects
must be manually identi�ed and deallocated. This manual approach
to memory management likely leads to three types of errors: a
programmer may not deallocate an object (memory-leak), may
deallocate an object multiple times (double-free), or may deallocate
an object too early even before it is used (use-after-free). These
errors are commonly-found in modern C programs. For example,
Table 1 shows that memory-leak, double-free, and use-after-free
are more common than bu�er/integer-over�ow errors in a number
of popular open-source software projects.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE 2017, 4–8 September, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Manually �xing memory-management errors is error-prone and
time-consuming even for experienced developers.

• Memory-leak (ML), use-after-free (UAF), and double-free
(DF) are prevalent in real-world C programs

Memory Errors in C Programs

Automated Fixing of Memory Management Errors for C
Anonymous Author(s)

Table 1: Memory management errors are one of the most
common errors in C programs. For each open-source repos-
itory, it shows the number of total commits (#commits) and
the numbers of commits that mention memory leak (ML),
double-free (DF), use-after-free (UAF), and bu�er/integer-
over�ow (OF) errors. ‘Total’ indicates the total number of
memory manangement errors.

Repository #commits ML DF UAF Total *-over�ow
linux 721,119 3,740 821 1,986 6,363 5,092
openssl 21,009 220 36 12 264 61
numpy 17,008 58 2 2 59 53
php 105,613 1,129 148 197 1,449 649
git 49,475 350 19 95 442 258

ABSTRACT
CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability;

KEYWORDS
ACM proceedings, LATEX, text tagging

ACM Reference Format:
Anonymous Author(s). 2017. Automated Fixing of Memory Management
Errors for C. In Proceedings of 11th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Memory-management errors (i.e., memory-leak, double-free, and
use-after-free) are prevalent in C programs. Because the C language
entrusts memory management to developers, all unused objects
must be manually identi�ed and deallocated. This manual approach
to memory management likely leads to three types of errors: a
programmer may not deallocate an object (memory-leak), may
deallocate an object multiple times (double-free), or may deallocate
an object too early even before it is used (use-after-free). These
errors are commonly-found in modern C programs. For example,
Table 1 shows that memory-leak, double-free, and use-after-free
are more common than bu�er/integer-over�ow errors in a number
of popular open-source software projects.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE 2017, 4–8 September, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Manually �xing memory-management errors is error-prone and
time-consuming even for experienced developers.

• Significant sources of security vulnerabilities

• Long-term goal: Fully automated detection and repair

• This talk: SAVER, a system to automatically fix memory errors

Goal

buggy
program

bug
location line: 114

correct
programSAVER

• To be practical, SAVER is designed to be

• Scalable: Capable of handling large, industry programs

• Precise: Effectively fixes diverse bugs with high fix rates

• Safe: Generated patches are safe, not introducing new errors

(1) Double-Free
in Linux Kernel

8

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

(1) Double-Free
in Linux Kernel

8

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

Allocated

(1) Double-Free
in Linux Kernel

8

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

Allocated

Freed

(1) Double-Free
in Linux Kernel

8

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

Allocated

Freed

Double Free

(1) Double-Free
in Linux Kernel

8

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

Allocated

Freed

Double Free

(1) Double-Free
in Linux Kernel

8

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

Allocated

Freed

Double Free

Double Free

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

9

(1) Double-Free
in Linux Kernel

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

Challenge 1: Difficult to ensure that
bugs are fixed correctly

9

(1) Double-Free
in Linux Kernel

Second attempt (9 months later)

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

10

(1) Double-Free
in Linux Kernel

Second attempt (9 months later)

Challenge 2: Patches may introduce
new errors

memory leak

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

10

(1) Double-Free
in Linux Kernel

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);
out = NULL;
in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

Third attempt
(10 months after bug detection)

11

(1) Double-Free
in Linux Kernel

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);
out = NULL;
in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

Challenge 3: The resulting patches
are often not of high quality

Third attempt
(10 months after bug detection)

11

(1) Double-Free
in Linux Kernel

SAVER-Generated Patch

12

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

✓Fast (few mins)
✓Safety guarantee

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in); // double-free
 free(out);// double-free
 return;

SAVER

(2) Memory Leak in Snort

13

Memory Leak:
An object allocated at line 12  
becomes unreachable after line 15

(2) Memory Leak in Snort

13

Normal execution

Memory Leak:
An object allocated at line 12  
becomes unreachable after line 15

(2) Memory Leak in Snort

13

Buggy execution

Memory Leak:
An object allocated at line 12  
becomes unreachable after line 15

(2) Memory Leak in Snort

13

Memory Leak:
An object allocated at line 12  
becomes unreachable after line 15

cf) SAVER vs. Generative AI

14

• LLMs do not guarantee safety, e.g., GPT4-generated patch:

UAF or DF introduced

(+) append_data(ly, dptr); free(dptr);

cf) SAVER vs. Generative AI

14

• LLMs do not guarantee safety, e.g., GPT4-generated patch:

UAF or DF introduced

(+) append_data(ly, dptr); free(dptr);

(3) Use-After-Free in Binutils

15

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE ’20, May 23-29, 2020, Seoul, South Korea Anon.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

1 int append_data (Node *node, int *ndata) {

2 if (!(Node *n = malloc(sizeof(Node)))

3 return -1; // failed to be appended

4 n->data = ndata;

5 n->next = node->next; node->next = n;

6 return 0; // successfully appended

7 }

8

9 Node *lx = ... // a linked list

10 Node *ly = ... // a linked list

11 for (Node *node = lx; node != NULL; node = node->next) {

12 int *dptr = malloc(sizeof(int));

13 if (!dptr) return;

14 *dptr = *(node->data);

15 (-) append_data(ly, dptr); // potential memory-leak

16 (+) if ((append_data(ly, dptr)) == -1) free(dptr);

17 }

Figure 1: A memory leak error (line 12) and the SAVER-
generated patch (line 16).

2 OVERVIEW
We illustrate key features of SAVER and how it works.

2.1 Motivating Examples
Example 1. Figure 1 describes a simpli�ed memory-leak error

in the open-source program snort, which can be detected by the
I���� static analyzer [10] with the following error report:
Object allocated at line 12 is unreachable at line 15.

Global variables lx and ly at lines 9 and 10 are pointers to linked
lists. At line 11, the loop iterates over the list lx. At each iteration of
the loop, a new data object is allocated (line 12) and the data of the
current node is copied to the allocated object (line 14). At line 15, the
function call, append_data(ly, dptr), stores the allocated object
(dptr) in the list ly as its �rst element. The function append_data

returns 0 if the data is stored successfully (line 6). However, it
returns �1 when the data object fails to be appended to ly (line 3).
A memory leak error occurs in the latter case; when append_data

fails, the object allocated at line 12 becomes unreachable from the
environment at the next iteration of the loop since the pointer
variable dptr gets assigned a newly allocated object.

Given the program snort (320 kLoC) and the error report (such
as the one produced by I����), SAVER automatically generates the
patch at line 16. It replaces the call to append_data at line 15 by the
conditional statement given at line 16, correctly deallocating the
object (dptr) only when append_data fails to store the object in the
list ly. SAVER does so by inferring the program invariant that the
allocated object (dptr) at each loop iteration becomes unreachable
when append_data returns -1 and thus deallocating the object
under this condition is always safe.

By contrast, F���P���� [55],M��F�� [32], and L���F�� [18] fail
to correctly �x the error in Figure 1. In particular, F���P���� pro-
duces an unsafe patch by simply inserting free(dptr) after line
15 without checking the return value of append_data, which re-
moves the reported memory leak but introduces a more deadly

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: �first->name� */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 }

Figure 2: A use-after-free error (line 14) and the SAVER-
generated patch (lines 10 and 15).

use-after-free error (when the elements of list ly are used later).
Safe �xing tools,M��F�� and L���F�� are not scalable or robust
enough to analyze 320k lines of code but they would fail even with-
out these issues because their use is limited to producing patches
without conditionals. Note that the error in Figure 1 is never �xed
without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

2

(3) Use-After-Free in Binutils

15

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE ’20, May 23-29, 2020, Seoul, South Korea Anon.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

1 int append_data (Node *node, int *ndata) {

2 if (!(Node *n = malloc(sizeof(Node)))

3 return -1; // failed to be appended

4 n->data = ndata;

5 n->next = node->next; node->next = n;

6 return 0; // successfully appended

7 }

8

9 Node *lx = ... // a linked list

10 Node *ly = ... // a linked list

11 for (Node *node = lx; node != NULL; node = node->next) {

12 int *dptr = malloc(sizeof(int));

13 if (!dptr) return;

14 *dptr = *(node->data);

15 (-) append_data(ly, dptr); // potential memory-leak

16 (+) if ((append_data(ly, dptr)) == -1) free(dptr);

17 }

Figure 1: A memory leak error (line 12) and the SAVER-
generated patch (line 16).

2 OVERVIEW
We illustrate key features of SAVER and how it works.

2.1 Motivating Examples
Example 1. Figure 1 describes a simpli�ed memory-leak error

in the open-source program snort, which can be detected by the
I���� static analyzer [10] with the following error report:
Object allocated at line 12 is unreachable at line 15.

Global variables lx and ly at lines 9 and 10 are pointers to linked
lists. At line 11, the loop iterates over the list lx. At each iteration of
the loop, a new data object is allocated (line 12) and the data of the
current node is copied to the allocated object (line 14). At line 15, the
function call, append_data(ly, dptr), stores the allocated object
(dptr) in the list ly as its �rst element. The function append_data

returns 0 if the data is stored successfully (line 6). However, it
returns �1 when the data object fails to be appended to ly (line 3).
A memory leak error occurs in the latter case; when append_data

fails, the object allocated at line 12 becomes unreachable from the
environment at the next iteration of the loop since the pointer
variable dptr gets assigned a newly allocated object.

Given the program snort (320 kLoC) and the error report (such
as the one produced by I����), SAVER automatically generates the
patch at line 16. It replaces the call to append_data at line 15 by the
conditional statement given at line 16, correctly deallocating the
object (dptr) only when append_data fails to store the object in the
list ly. SAVER does so by inferring the program invariant that the
allocated object (dptr) at each loop iteration becomes unreachable
when append_data returns -1 and thus deallocating the object
under this condition is always safe.

By contrast, F���P���� [55],M��F�� [32], and L���F�� [18] fail
to correctly �x the error in Figure 1. In particular, F���P���� pro-
duces an unsafe patch by simply inserting free(dptr) after line
15 without checking the return value of append_data, which re-
moves the reported memory leak but introduces a more deadly

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: �first->name� */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 }

Figure 2: A use-after-free error (line 14) and the SAVER-
generated patch (lines 10 and 15).

use-after-free error (when the elements of list ly are used later).
Safe �xing tools,M��F�� and L���F�� are not scalable or robust
enough to analyze 320k lines of code but they would fail even with-
out these issues because their use is limited to producing patches
without conditionals. Note that the error in Figure 1 is never �xed
without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

2

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

(3) Use-After-Free in Binutils

15

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE ’20, May 23-29, 2020, Seoul, South Korea Anon.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

1 int append_data (Node *node, int *ndata) {

2 if (!(Node *n = malloc(sizeof(Node)))

3 return -1; // failed to be appended

4 n->data = ndata;

5 n->next = node->next; node->next = n;

6 return 0; // successfully appended

7 }

8

9 Node *lx = ... // a linked list

10 Node *ly = ... // a linked list

11 for (Node *node = lx; node != NULL; node = node->next) {

12 int *dptr = malloc(sizeof(int));

13 if (!dptr) return;

14 *dptr = *(node->data);

15 (-) append_data(ly, dptr); // potential memory-leak

16 (+) if ((append_data(ly, dptr)) == -1) free(dptr);

17 }

Figure 1: A memory leak error (line 12) and the SAVER-
generated patch (line 16).

2 OVERVIEW
We illustrate key features of SAVER and how it works.

2.1 Motivating Examples
Example 1. Figure 1 describes a simpli�ed memory-leak error

in the open-source program snort, which can be detected by the
I���� static analyzer [10] with the following error report:
Object allocated at line 12 is unreachable at line 15.

Global variables lx and ly at lines 9 and 10 are pointers to linked
lists. At line 11, the loop iterates over the list lx. At each iteration of
the loop, a new data object is allocated (line 12) and the data of the
current node is copied to the allocated object (line 14). At line 15, the
function call, append_data(ly, dptr), stores the allocated object
(dptr) in the list ly as its �rst element. The function append_data

returns 0 if the data is stored successfully (line 6). However, it
returns �1 when the data object fails to be appended to ly (line 3).
A memory leak error occurs in the latter case; when append_data

fails, the object allocated at line 12 becomes unreachable from the
environment at the next iteration of the loop since the pointer
variable dptr gets assigned a newly allocated object.

Given the program snort (320 kLoC) and the error report (such
as the one produced by I����), SAVER automatically generates the
patch at line 16. It replaces the call to append_data at line 15 by the
conditional statement given at line 16, correctly deallocating the
object (dptr) only when append_data fails to store the object in the
list ly. SAVER does so by inferring the program invariant that the
allocated object (dptr) at each loop iteration becomes unreachable
when append_data returns -1 and thus deallocating the object
under this condition is always safe.

By contrast, F���P���� [55],M��F�� [32], and L���F�� [18] fail
to correctly �x the error in Figure 1. In particular, F���P���� pro-
duces an unsafe patch by simply inserting free(dptr) after line
15 without checking the return value of append_data, which re-
moves the reported memory leak but introduces a more deadly

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: �first->name� */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 }

Figure 2: A use-after-free error (line 14) and the SAVER-
generated patch (lines 10 and 15).

use-after-free error (when the elements of list ly are used later).
Safe �xing tools,M��F�� and L���F�� are not scalable or robust
enough to analyze 320k lines of code but they would fail even with-
out these issues because their use is limited to producing patches
without conditionals. Note that the error in Figure 1 is never �xed
without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

2

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

true

(3) Use-After-Free in Binutils

15

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE ’20, May 23-29, 2020, Seoul, South Korea Anon.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

1 int append_data (Node *node, int *ndata) {

2 if (!(Node *n = malloc(sizeof(Node)))

3 return -1; // failed to be appended

4 n->data = ndata;

5 n->next = node->next; node->next = n;

6 return 0; // successfully appended

7 }

8

9 Node *lx = ... // a linked list

10 Node *ly = ... // a linked list

11 for (Node *node = lx; node != NULL; node = node->next) {

12 int *dptr = malloc(sizeof(int));

13 if (!dptr) return;

14 *dptr = *(node->data);

15 (-) append_data(ly, dptr); // potential memory-leak

16 (+) if ((append_data(ly, dptr)) == -1) free(dptr);

17 }

Figure 1: A memory leak error (line 12) and the SAVER-
generated patch (line 16).

2 OVERVIEW
We illustrate key features of SAVER and how it works.

2.1 Motivating Examples
Example 1. Figure 1 describes a simpli�ed memory-leak error

in the open-source program snort, which can be detected by the
I���� static analyzer [10] with the following error report:
Object allocated at line 12 is unreachable at line 15.

Global variables lx and ly at lines 9 and 10 are pointers to linked
lists. At line 11, the loop iterates over the list lx. At each iteration of
the loop, a new data object is allocated (line 12) and the data of the
current node is copied to the allocated object (line 14). At line 15, the
function call, append_data(ly, dptr), stores the allocated object
(dptr) in the list ly as its �rst element. The function append_data

returns 0 if the data is stored successfully (line 6). However, it
returns �1 when the data object fails to be appended to ly (line 3).
A memory leak error occurs in the latter case; when append_data

fails, the object allocated at line 12 becomes unreachable from the
environment at the next iteration of the loop since the pointer
variable dptr gets assigned a newly allocated object.

Given the program snort (320 kLoC) and the error report (such
as the one produced by I����), SAVER automatically generates the
patch at line 16. It replaces the call to append_data at line 15 by the
conditional statement given at line 16, correctly deallocating the
object (dptr) only when append_data fails to store the object in the
list ly. SAVER does so by inferring the program invariant that the
allocated object (dptr) at each loop iteration becomes unreachable
when append_data returns -1 and thus deallocating the object
under this condition is always safe.

By contrast, F���P���� [55],M��F�� [32], and L���F�� [18] fail
to correctly �x the error in Figure 1. In particular, F���P���� pro-
duces an unsafe patch by simply inserting free(dptr) after line
15 without checking the return value of append_data, which re-
moves the reported memory leak but introduces a more deadly

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: �first->name� */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 }

Figure 2: A use-after-free error (line 14) and the SAVER-
generated patch (lines 10 and 15).

use-after-free error (when the elements of list ly are used later).
Safe �xing tools,M��F�� and L���F�� are not scalable or robust
enough to analyze 320k lines of code but they would fail even with-
out these issues because their use is limited to producing patches
without conditionals. Note that the error in Figure 1 is never �xed
without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

2

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

(3) Use-After-Free in Binutils

15

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE ’20, May 23-29, 2020, Seoul, South Korea Anon.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

1 int append_data (Node *node, int *ndata) {

2 if (!(Node *n = malloc(sizeof(Node)))

3 return -1; // failed to be appended

4 n->data = ndata;

5 n->next = node->next; node->next = n;

6 return 0; // successfully appended

7 }

8

9 Node *lx = ... // a linked list

10 Node *ly = ... // a linked list

11 for (Node *node = lx; node != NULL; node = node->next) {

12 int *dptr = malloc(sizeof(int));

13 if (!dptr) return;

14 *dptr = *(node->data);

15 (-) append_data(ly, dptr); // potential memory-leak

16 (+) if ((append_data(ly, dptr)) == -1) free(dptr);

17 }

Figure 1: A memory leak error (line 12) and the SAVER-
generated patch (line 16).

2 OVERVIEW
We illustrate key features of SAVER and how it works.

2.1 Motivating Examples
Example 1. Figure 1 describes a simpli�ed memory-leak error

in the open-source program snort, which can be detected by the
I���� static analyzer [10] with the following error report:
Object allocated at line 12 is unreachable at line 15.

Global variables lx and ly at lines 9 and 10 are pointers to linked
lists. At line 11, the loop iterates over the list lx. At each iteration of
the loop, a new data object is allocated (line 12) and the data of the
current node is copied to the allocated object (line 14). At line 15, the
function call, append_data(ly, dptr), stores the allocated object
(dptr) in the list ly as its �rst element. The function append_data

returns 0 if the data is stored successfully (line 6). However, it
returns �1 when the data object fails to be appended to ly (line 3).
A memory leak error occurs in the latter case; when append_data

fails, the object allocated at line 12 becomes unreachable from the
environment at the next iteration of the loop since the pointer
variable dptr gets assigned a newly allocated object.

Given the program snort (320 kLoC) and the error report (such
as the one produced by I����), SAVER automatically generates the
patch at line 16. It replaces the call to append_data at line 15 by the
conditional statement given at line 16, correctly deallocating the
object (dptr) only when append_data fails to store the object in the
list ly. SAVER does so by inferring the program invariant that the
allocated object (dptr) at each loop iteration becomes unreachable
when append_data returns -1 and thus deallocating the object
under this condition is always safe.

By contrast, F���P���� [55],M��F�� [32], and L���F�� [18] fail
to correctly �x the error in Figure 1. In particular, F���P���� pro-
duces an unsafe patch by simply inserting free(dptr) after line
15 without checking the return value of append_data, which re-
moves the reported memory leak but introduces a more deadly

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: �first->name� */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 }

Figure 2: A use-after-free error (line 14) and the SAVER-
generated patch (lines 10 and 15).

use-after-free error (when the elements of list ly are used later).
Safe �xing tools,M��F�� and L���F�� are not scalable or robust
enough to analyze 320k lines of code but they would fail even with-
out these issues because their use is limited to producing patches
without conditionals. Note that the error in Figure 1 is never �xed
without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

2

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

false

(3) Use-After-Free in Binutils

15

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE ’20, May 23-29, 2020, Seoul, South Korea Anon.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

1 int append_data (Node *node, int *ndata) {

2 if (!(Node *n = malloc(sizeof(Node)))

3 return -1; // failed to be appended

4 n->data = ndata;

5 n->next = node->next; node->next = n;

6 return 0; // successfully appended

7 }

8

9 Node *lx = ... // a linked list

10 Node *ly = ... // a linked list

11 for (Node *node = lx; node != NULL; node = node->next) {

12 int *dptr = malloc(sizeof(int));

13 if (!dptr) return;

14 *dptr = *(node->data);

15 (-) append_data(ly, dptr); // potential memory-leak

16 (+) if ((append_data(ly, dptr)) == -1) free(dptr);

17 }

Figure 1: A memory leak error (line 12) and the SAVER-
generated patch (line 16).

2 OVERVIEW
We illustrate key features of SAVER and how it works.

2.1 Motivating Examples
Example 1. Figure 1 describes a simpli�ed memory-leak error

in the open-source program snort, which can be detected by the
I���� static analyzer [10] with the following error report:
Object allocated at line 12 is unreachable at line 15.

Global variables lx and ly at lines 9 and 10 are pointers to linked
lists. At line 11, the loop iterates over the list lx. At each iteration of
the loop, a new data object is allocated (line 12) and the data of the
current node is copied to the allocated object (line 14). At line 15, the
function call, append_data(ly, dptr), stores the allocated object
(dptr) in the list ly as its �rst element. The function append_data

returns 0 if the data is stored successfully (line 6). However, it
returns �1 when the data object fails to be appended to ly (line 3).
A memory leak error occurs in the latter case; when append_data

fails, the object allocated at line 12 becomes unreachable from the
environment at the next iteration of the loop since the pointer
variable dptr gets assigned a newly allocated object.

Given the program snort (320 kLoC) and the error report (such
as the one produced by I����), SAVER automatically generates the
patch at line 16. It replaces the call to append_data at line 15 by the
conditional statement given at line 16, correctly deallocating the
object (dptr) only when append_data fails to store the object in the
list ly. SAVER does so by inferring the program invariant that the
allocated object (dptr) at each loop iteration becomes unreachable
when append_data returns -1 and thus deallocating the object
under this condition is always safe.

By contrast, F���P���� [55],M��F�� [32], and L���F�� [18] fail
to correctly �x the error in Figure 1. In particular, F���P���� pro-
duces an unsafe patch by simply inserting free(dptr) after line
15 without checking the return value of append_data, which re-
moves the reported memory leak but introduces a more deadly

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: �first->name� */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 }

Figure 2: A use-after-free error (line 14) and the SAVER-
generated patch (lines 10 and 15).

use-after-free error (when the elements of list ly are used later).
Safe �xing tools,M��F�� and L���F�� are not scalable or robust
enough to analyze 320k lines of code but they would fail even with-
out these issues because their use is limited to producing patches
without conditionals. Note that the error in Figure 1 is never �xed
without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

2

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

(3) Use-After-Free in Binutils

15

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE ’20, May 23-29, 2020, Seoul, South Korea Anon.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

1 int append_data (Node *node, int *ndata) {

2 if (!(Node *n = malloc(sizeof(Node)))

3 return -1; // failed to be appended

4 n->data = ndata;

5 n->next = node->next; node->next = n;

6 return 0; // successfully appended

7 }

8

9 Node *lx = ... // a linked list

10 Node *ly = ... // a linked list

11 for (Node *node = lx; node != NULL; node = node->next) {

12 int *dptr = malloc(sizeof(int));

13 if (!dptr) return;

14 *dptr = *(node->data);

15 (-) append_data(ly, dptr); // potential memory-leak

16 (+) if ((append_data(ly, dptr)) == -1) free(dptr);

17 }

Figure 1: A memory leak error (line 12) and the SAVER-
generated patch (line 16).

2 OVERVIEW
We illustrate key features of SAVER and how it works.

2.1 Motivating Examples
Example 1. Figure 1 describes a simpli�ed memory-leak error

in the open-source program snort, which can be detected by the
I���� static analyzer [10] with the following error report:
Object allocated at line 12 is unreachable at line 15.

Global variables lx and ly at lines 9 and 10 are pointers to linked
lists. At line 11, the loop iterates over the list lx. At each iteration of
the loop, a new data object is allocated (line 12) and the data of the
current node is copied to the allocated object (line 14). At line 15, the
function call, append_data(ly, dptr), stores the allocated object
(dptr) in the list ly as its �rst element. The function append_data

returns 0 if the data is stored successfully (line 6). However, it
returns �1 when the data object fails to be appended to ly (line 3).
A memory leak error occurs in the latter case; when append_data

fails, the object allocated at line 12 becomes unreachable from the
environment at the next iteration of the loop since the pointer
variable dptr gets assigned a newly allocated object.

Given the program snort (320 kLoC) and the error report (such
as the one produced by I����), SAVER automatically generates the
patch at line 16. It replaces the call to append_data at line 15 by the
conditional statement given at line 16, correctly deallocating the
object (dptr) only when append_data fails to store the object in the
list ly. SAVER does so by inferring the program invariant that the
allocated object (dptr) at each loop iteration becomes unreachable
when append_data returns -1 and thus deallocating the object
under this condition is always safe.

By contrast, F���P���� [55],M��F�� [32], and L���F�� [18] fail
to correctly �x the error in Figure 1. In particular, F���P���� pro-
duces an unsafe patch by simply inserting free(dptr) after line
15 without checking the return value of append_data, which re-
moves the reported memory leak but introduces a more deadly

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: �first->name� */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 }

Figure 2: A use-after-free error (line 14) and the SAVER-
generated patch (lines 10 and 15).

use-after-free error (when the elements of list ly are used later).
Safe �xing tools,M��F�� and L���F�� are not scalable or robust
enough to analyze 320k lines of code but they would fail even with-
out these issues because their use is limited to producing patches
without conditionals. Note that the error in Figure 1 is never �xed
without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

2

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

false

(3) Use-After-Free in Binutils

15

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE ’20, May 23-29, 2020, Seoul, South Korea Anon.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

1 int append_data (Node *node, int *ndata) {

2 if (!(Node *n = malloc(sizeof(Node)))

3 return -1; // failed to be appended

4 n->data = ndata;

5 n->next = node->next; node->next = n;

6 return 0; // successfully appended

7 }

8

9 Node *lx = ... // a linked list

10 Node *ly = ... // a linked list

11 for (Node *node = lx; node != NULL; node = node->next) {

12 int *dptr = malloc(sizeof(int));

13 if (!dptr) return;

14 *dptr = *(node->data);

15 (-) append_data(ly, dptr); // potential memory-leak

16 (+) if ((append_data(ly, dptr)) == -1) free(dptr);

17 }

Figure 1: A memory leak error (line 12) and the SAVER-
generated patch (line 16).

2 OVERVIEW
We illustrate key features of SAVER and how it works.

2.1 Motivating Examples
Example 1. Figure 1 describes a simpli�ed memory-leak error

in the open-source program snort, which can be detected by the
I���� static analyzer [10] with the following error report:
Object allocated at line 12 is unreachable at line 15.

Global variables lx and ly at lines 9 and 10 are pointers to linked
lists. At line 11, the loop iterates over the list lx. At each iteration of
the loop, a new data object is allocated (line 12) and the data of the
current node is copied to the allocated object (line 14). At line 15, the
function call, append_data(ly, dptr), stores the allocated object
(dptr) in the list ly as its �rst element. The function append_data

returns 0 if the data is stored successfully (line 6). However, it
returns �1 when the data object fails to be appended to ly (line 3).
A memory leak error occurs in the latter case; when append_data

fails, the object allocated at line 12 becomes unreachable from the
environment at the next iteration of the loop since the pointer
variable dptr gets assigned a newly allocated object.

Given the program snort (320 kLoC) and the error report (such
as the one produced by I����), SAVER automatically generates the
patch at line 16. It replaces the call to append_data at line 15 by the
conditional statement given at line 16, correctly deallocating the
object (dptr) only when append_data fails to store the object in the
list ly. SAVER does so by inferring the program invariant that the
allocated object (dptr) at each loop iteration becomes unreachable
when append_data returns -1 and thus deallocating the object
under this condition is always safe.

By contrast, F���P���� [55],M��F�� [32], and L���F�� [18] fail
to correctly �x the error in Figure 1. In particular, F���P���� pro-
duces an unsafe patch by simply inserting free(dptr) after line
15 without checking the return value of append_data, which re-
moves the reported memory leak but introduces a more deadly

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: �first->name� */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 }

Figure 2: A use-after-free error (line 14) and the SAVER-
generated patch (lines 10 and 15).

use-after-free error (when the elements of list ly are used later).
Safe �xing tools,M��F�� and L���F�� are not scalable or robust
enough to analyze 320k lines of code but they would fail even with-
out these issues because their use is limited to producing patches
without conditionals. Note that the error in Figure 1 is never �xed
without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

2

use-after-free

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a �nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is

false

SAVER-Generated Patch
117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE ’20, May 23-29, 2020, Seoul, South Korea Anon.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

1 int append_data (Node *node, int *ndata) {

2 if (!(Node *n = malloc(sizeof(Node)))

3 return -1; // failed to be appended

4 n->data = ndata;

5 n->next = node->next; node->next = n;

6 return 0; // successfully appended

7 }

8

9 Node *lx = ... // a linked list

10 Node *ly = ... // a linked list

11 for (Node *node = lx; node != NULL; node = node->next) {

12 int *dptr = malloc(sizeof(int));

13 if (!dptr) return;

14 *dptr = *(node->data);

15 (-) append_data(ly, dptr); // potential memory-leak

16 (+) if ((append_data(ly, dptr)) == -1) free(dptr);

17 }

Figure 1: A memory leak error (line 12) and the SAVER-
generated patch (line 16).

2 OVERVIEW
We illustrate key features of SAVER and how it works.

2.1 Motivating Examples
Example 1. Figure 1 describes a simpli�ed memory-leak error

in the open-source program snort, which can be detected by the
I���� static analyzer [10] with the following error report:
Object allocated at line 12 is unreachable at line 15.

Global variables lx and ly at lines 9 and 10 are pointers to linked
lists. At line 11, the loop iterates over the list lx. At each iteration of
the loop, a new data object is allocated (line 12) and the data of the
current node is copied to the allocated object (line 14). At line 15, the
function call, append_data(ly, dptr), stores the allocated object
(dptr) in the list ly as its �rst element. The function append_data

returns 0 if the data is stored successfully (line 6). However, it
returns �1 when the data object fails to be appended to ly (line 3).
A memory leak error occurs in the latter case; when append_data

fails, the object allocated at line 12 becomes unreachable from the
environment at the next iteration of the loop since the pointer
variable dptr gets assigned a newly allocated object.

Given the program snort (320 kLoC) and the error report (such
as the one produced by I����), SAVER automatically generates the
patch at line 16. It replaces the call to append_data at line 15 by the
conditional statement given at line 16, correctly deallocating the
object (dptr) only when append_data fails to store the object in the
list ly. SAVER does so by inferring the program invariant that the
allocated object (dptr) at each loop iteration becomes unreachable
when append_data returns -1 and thus deallocating the object
under this condition is always safe.

By contrast, F���P���� [55],M��F�� [32], and L���F�� [18] fail
to correctly �x the error in Figure 1. In particular, F���P���� pro-
duces an unsafe patch by simply inserting free(dptr) after line
15 without checking the return value of append_data, which re-
moves the reported memory leak but introduces a more deadly

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: �first->name� */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 }

Figure 2: A use-after-free error (line 14) and the SAVER-
generated patch (lines 10 and 15).

use-after-free error (when the elements of list ly are used later).
Safe �xing tools,M��F�� and L���F�� are not scalable or robust
enough to analyze 320k lines of code but they would fail even with-
out these issues because their use is limited to producing patches
without conditionals. Note that the error in Figure 1 is never �xed
without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is �1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the �rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the �rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

2

How SAVER Works

Memory leak: is not freed when the false branch is takeno1

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is →1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the !rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the !rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER !xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to !x such an error is clearly beyond the
reach of the existing techniques. F!!"P#"$%,M&’F(), and L&#*+
F() attempt to !x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
ω

use

free

unreach

ω

use

ω

unreach

ω

free

unreach

(b) Object !ow graph

Figure 5: Example program and object !ow graph

deallocators (without conditionals). However, it is impossible to !x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a !nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To !x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
"ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control "ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
↑ (7,C,o1) indicates that the object o1 is

freed when it "ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

ω
↑ (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to !x the error by relabeling the object "ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · ω · use · ω · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (ω) of
the edge (6,¬C,o1)

ω
↑ (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · ω · use · free · unreach

Note that it is unsafe to replace the !rst ω by free, as it introduces
a use-after-free pattern, alloc · free · use · ω · unreach, which is

How SAVER Works

Memory leak: is not freed when the false branch is takeno1

if (!C) free(p);

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is →1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the !rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the !rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER !xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to !x such an error is clearly beyond the
reach of the existing techniques. F!!"P#"$%,M&’F(), and L&#*+
F() attempt to !x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
ω

use

free

unreach

ω

use

ω

unreach

ω

free

unreach

(b) Object !ow graph

Figure 5: Example program and object !ow graph

deallocators (without conditionals). However, it is impossible to !x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a !nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To !x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
"ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control "ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
↑ (7,C,o1) indicates that the object o1 is

freed when it "ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

ω
↑ (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to !x the error by relabeling the object "ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · ω · use · ω · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (ω) of
the edge (6,¬C,o1)

ω
↑ (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · ω · use · free · unreach

Note that it is unsafe to replace the !rst ω by free, as it introduces
a use-after-free pattern, alloc · free · use · ω · unreach, which is

1. Run a static analysis to generate object flow graph

How SAVER WorksSAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is →1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the !rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the !rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER !xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to !x such an error is clearly beyond the
reach of the existing techniques. F!!"P#"$%,M&’F(), and L&#*+
F() attempt to !x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
ω

use

free

unreach

ω

use

ω

unreach

ω

free

unreach

(b) Object !ow graph

Figure 5: Example program and object !ow graph

deallocators (without conditionals). However, it is impossible to !x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a !nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To !x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
"ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control "ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
↑ (7,C,o1) indicates that the object o1 is

freed when it "ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

ω
↑ (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to !x the error by relabeling the object "ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · ω · use · ω · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (ω) of
the edge (6,¬C,o1)

ω
↑ (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · ω · use · free · unreach

Note that it is unsafe to replace the !rst ω by free, as it introduces
a use-after-free pattern, alloc · free · use · ω · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is →1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the !rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the !rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER !xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to !x such an error is clearly beyond the
reach of the existing techniques. F!!"P#"$%,M&’F(), and L&#*+
F() attempt to !x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
ω

use

free

unreach

ω

use

ω

unreach

ω

free

unreach

(b) Object !ow graph

Figure 5: Example program and object !ow graph

deallocators (without conditionals). However, it is impossible to !x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a !nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To !x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
"ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control "ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
↑ (7,C,o1) indicates that the object o1 is

freed when it "ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

ω
↑ (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to !x the error by relabeling the object "ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · ω · use · ω · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (ω) of
the edge (6,¬C,o1)

ω
↑ (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · ω · use · free · unreach

Note that it is unsafe to replace the !rst ω by free, as it introduces
a use-after-free pattern, alloc · free · use · ω · unreach, which is

• Vertex: (program point, path condition, available heap object)

• Edge: control flow labeled w/ events that could occur for objects

How SAVER WorksSAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is →1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the !rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the !rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER !xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to !x such an error is clearly beyond the
reach of the existing techniques. F!!"P#"$%,M&’F(), and L&#*+
F() attempt to !x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
ω

use

free

unreach

ω

use

ω

unreach

ω

free

unreach

(b) Object !ow graph

Figure 5: Example program and object !ow graph

deallocators (without conditionals). However, it is impossible to !x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a !nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To !x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
"ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control "ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
↑ (7,C,o1) indicates that the object o1 is

freed when it "ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

ω
↑ (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to !x the error by relabeling the object "ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · ω · use · ω · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (ω) of
the edge (6,¬C,o1)

ω
↑ (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · ω · use · free · unreach

Note that it is unsafe to replace the !rst ω by free, as it introduces
a use-after-free pattern, alloc · free · use · ω · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is →1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the !rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the !rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER !xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to !x such an error is clearly beyond the
reach of the existing techniques. F!!"P#"$%,M&’F(), and L&#*+
F() attempt to !x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
ω

use

free

unreach

ω

use

ω

unreach

ω

free

unreach

(b) Object !ow graph

Figure 5: Example program and object !ow graph

deallocators (without conditionals). However, it is impossible to !x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a !nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To !x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
"ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control "ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
↑ (7,C,o1) indicates that the object o1 is

freed when it "ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

ω
↑ (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to !x the error by relabeling the object "ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · ω · use · ω · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (ω) of
the edge (6,¬C,o1)

ω
↑ (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · ω · use · free · unreach

Note that it is unsafe to replace the !rst ω by free, as it introduces
a use-after-free pattern, alloc · free · use · ω · unreach, which is

2. Relabel object flow graph to eliminate buggy paths

How SAVER WorksSAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is →1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the !rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the !rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER !xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to !x such an error is clearly beyond the
reach of the existing techniques. F!!"P#"$%,M&’F(), and L&#*+
F() attempt to !x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
ω

use

free

unreach

ω

use

ω

unreach

ω

free

unreach

(b) Object !ow graph

Figure 5: Example program and object !ow graph

deallocators (without conditionals). However, it is impossible to !x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a !nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To !x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
"ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control "ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
↑ (7,C,o1) indicates that the object o1 is

freed when it "ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

ω
↑ (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to !x the error by relabeling the object "ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · ω · use · ω · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (ω) of
the edge (6,¬C,o1)

ω
↑ (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · ω · use · free · unreach

Note that it is unsafe to replace the !rst ω by free, as it introduces
a use-after-free pattern, alloc · free · use · ω · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is →1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the !rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the !rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER !xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to !x such an error is clearly beyond the
reach of the existing techniques. F!!"P#"$%,M&’F(), and L&#*+
F() attempt to !x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
ω

use

free

unreach

ω

use

ω

unreach

ω

free

unreach

(b) Object !ow graph

Figure 5: Example program and object !ow graph

deallocators (without conditionals). However, it is impossible to !x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a !nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To !x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
"ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control "ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
↑ (7,C,o1) indicates that the object o1 is

freed when it "ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

ω
↑ (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to !x the error by relabeling the object "ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · ω · use · ω · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (ω) of
the edge (6,¬C,o1)

ω
↑ (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · ω · use · free · unreach

Note that it is unsafe to replace the !rst ω by free, as it introduces
a use-after-free pattern, alloc · free · use · ω · unreach, which is

2. Relabel object flow graph to eliminate buggy paths

𝖿𝗋𝖾𝖾

How SAVER Works

• SAVER supports four types of re-labeling strategies:ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Seongjoon Hong, Junhee Lee, Jeongsoo Lee, and Hakjoo Oh

use ω free unreach

ω free
unreach

(a) Inserting free

ω free free ω

unreach

(b) Relocating free

ω use free use ω

(c) Relocating use (dereference)

free free ω

(d) Deleting free

Figure 6: Fixing strategies that SAVER supports

absent in the original OFG. SAVER supports four types of labeling
strategies: inserting frees, deleting frees, and relocating uses and
frees. Figure 6 shows example applications of these strategies for
eliminating error patterns. For example, SAVER uses the strategy
(relocating use) in Figure 6c to !x the use-after-free error in Figure 2.

Step 3: Generating a Patch. The last step is to generate the

patch, if(¬C) free(p), from the newly labeled edge (6,¬C,o1)
free
→

(7,¬C,o1). The patch location is between lines 6 and 7. The condi-
tional expression (¬C) of the patch comes from the path condition
of the destination object. The pointer expression p comes from the
points-to information which is supposed to be associated with each
vertex but omitted for simplicity in this example.

3 APPROACH DETAILS
The high-level idea described in Section 2.2 is simple but imple-
menting it for real programs is not straightforward. In this section,
we describe our approach in detail, explaining what technical is-
sues arise and how we address them. The !rst issue is e"ciency. In
reality, errors often span multiple paths and we need to !nd a set
of labeling operations from a large search space. In Section 3.2, we
explain this issue and present an algorithm based on space reduc-
tion and pruning. Also, Section 3.1 describes our design choices for
cost-e#ective heap analysis. The second issue is safety. Ensuring
safety requires exact reasoning about program semantics. However,
any static analysis results are inexact, so care is needed when rela-
beling object $ow graph (Section 3.2) and transforming the result
into actual patches (Section 3.3).

Program and Error Report. Let us !rst de!ne programs and
error reports, which are given as input to SAVER.

The !rst input to SAVER is a program P represented by a control
$ow graph (C, ω→, ce , cx), where C denotes the set of program
points, ω→ ↑ C ↓ C is the set of $ow edges, and ce and cx are the
entry and exit points of the program. A program point c ↔ C is
associated with a command, denoted cmd (c):

cmd → x := ω | x := ↗ω | ↗x := ω | alloc(x) | free(x) | assume(b)

b → x = n | x ! n | x = ω | x ! ω

A command is either copy (x := ω), load (x := ↗ω), store (↗x :=
ω), heap allocation (alloc(x)), deallocation (free(x)), or assume(b)
where b denotes a branch condition. Although we consider a simple
pointer language without functions for presentation, SAVER works
in interprocedural settings and supports the full C language.

The second is an error report R = (c1, ev1, c2, ev2), where c1
and c2 are program points and ev1 and ev2 are events. We call

(c1, ev1) and (c2, ev2) source and sink, respectively. Memory errors
are speci!ed with !ve types of events:

ev1, ev2 ↔ Event = {alloc, free, use, def, unreach}.

For example, the following memory leak alarm reported by a static
analyzer (e.g., Infer [10])
An object allocated at line 1 is unreachable at line 5

is represented by (1, alloc, 5, unreach). Note that ev1 and ev2 deter-
mine the error type: memory leak, double-free, and use-after-free
are represented by (c1, alloc, c2, unreach), (c1, free, c2, free), and
(c1, free, c2, use/def), respectively.

3.1 Step 1: Constructing Object Flow Graph
The !rst step of SAVER is to construct an object $ow graph by
statically analyzing the heap-related behavior of the program.

Static Heap Analysis. As object $ow graphs play key roles in
our approach, we have carefully designed a static heap analysis that
can generate precise object $ow graphs in practice. The key design
decisions are path-sensitivity and heap abstraction. When !xing
an error, it is important to isolate the error path from the normal
execution paths. To this end, we developed a path-sensitive analysis
that uses relational invariants as the path information and merges
them selectively for scalability. Also, dynamic data structures such
as linked lists are used extensively in real-world C programs. To
accurately distinguish the memory objects stored in data structures
from those outside, we represent each heap object by a pair of its
allocation-site and variables that must point-to the object.

The abstract domain of the analysis is de!ned as follows:

A ↔ D = C→ P (State)
s ↔ State = PC ↓ Store
ε ↔ PC = P (Var ↓ {=,!} ↓ (Var + Z))
ϑ ↔ Store = Loc → P (Heap)
l ↔ Loc = Var + Heap
h ↔ Heap = AllocSite ↓ P (Var)
a ↔ AllocSite ↑ C

A domain element A ↔ D is a !nite table that maps each program
point to a set of reachable states. A state s = (ε ,ϑ) ↔ State at
program point c ↔ C consists of a path condition (ε ↔ PC) and a
store (ϑ ↔ Store). The path condition ε is a collection of branches
that have been taken up to the program point c , where a single
branch denotes a relation between two variables (or a variable and
a number). The store ϑ is a map from locations to heap objects,
representing the may-point-to information. A location l ↔ Loc is
either a variable or of a heap object. We represent a heap object
h ↔ Heap by its allocation site (AllocSite) and a set of must-point-to
variables (P (Var)).

The aim of the static analysis is to compute a least !xed point
(lfpF) of the semantic function F ↔ D→ D de!ned as follows:

F (X) = ϖc . fc
(⋃

c ↘ω→c
X (c ↘)

)

where fc : P (State) → P (State) is the transfer function at c:

fc (S) = {(f
PC
c (ε), f Storec (ϑ)) | (ε ,ϑ) ↔ S }.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Seongjoon Hong, Junhee Lee, Jeongsoo Lee, and Hakjoo Oh

use ω free unreach

ω free
unreach

(a) Inserting free

ω free free ω

unreach

(b) Relocating free

ω use free use ω

(c) Relocating use (dereference)

free free ω

(d) Deleting free

Figure 6: Fixing strategies that SAVER supports

absent in the original OFG. SAVER supports four types of labeling
strategies: inserting frees, deleting frees, and relocating uses and
frees. Figure 6 shows example applications of these strategies for
eliminating error patterns. For example, SAVER uses the strategy
(relocating use) in Figure 6c to !x the use-after-free error in Figure 2.

Step 3: Generating a Patch. The last step is to generate the

patch, if(¬C) free(p), from the newly labeled edge (6,¬C,o1)
free
→

(7,¬C,o1). The patch location is between lines 6 and 7. The condi-
tional expression (¬C) of the patch comes from the path condition
of the destination object. The pointer expression p comes from the
points-to information which is supposed to be associated with each
vertex but omitted for simplicity in this example.

3 APPROACH DETAILS
The high-level idea described in Section 2.2 is simple but imple-
menting it for real programs is not straightforward. In this section,
we describe our approach in detail, explaining what technical is-
sues arise and how we address them. The !rst issue is e"ciency. In
reality, errors often span multiple paths and we need to !nd a set
of labeling operations from a large search space. In Section 3.2, we
explain this issue and present an algorithm based on space reduc-
tion and pruning. Also, Section 3.1 describes our design choices for
cost-e#ective heap analysis. The second issue is safety. Ensuring
safety requires exact reasoning about program semantics. However,
any static analysis results are inexact, so care is needed when rela-
beling object $ow graph (Section 3.2) and transforming the result
into actual patches (Section 3.3).

Program and Error Report. Let us !rst de!ne programs and
error reports, which are given as input to SAVER.

The !rst input to SAVER is a program P represented by a control
$ow graph (C, ω→, ce , cx), where C denotes the set of program
points, ω→ ↑ C ↓ C is the set of $ow edges, and ce and cx are the
entry and exit points of the program. A program point c ↔ C is
associated with a command, denoted cmd (c):

cmd → x := ω | x := ↗ω | ↗x := ω | alloc(x) | free(x) | assume(b)

b → x = n | x ! n | x = ω | x ! ω

A command is either copy (x := ω), load (x := ↗ω), store (↗x :=
ω), heap allocation (alloc(x)), deallocation (free(x)), or assume(b)
where b denotes a branch condition. Although we consider a simple
pointer language without functions for presentation, SAVER works
in interprocedural settings and supports the full C language.

The second is an error report R = (c1, ev1, c2, ev2), where c1
and c2 are program points and ev1 and ev2 are events. We call

(c1, ev1) and (c2, ev2) source and sink, respectively. Memory errors
are speci!ed with !ve types of events:

ev1, ev2 ↔ Event = {alloc, free, use, def, unreach}.

For example, the following memory leak alarm reported by a static
analyzer (e.g., Infer [10])
An object allocated at line 1 is unreachable at line 5

is represented by (1, alloc, 5, unreach). Note that ev1 and ev2 deter-
mine the error type: memory leak, double-free, and use-after-free
are represented by (c1, alloc, c2, unreach), (c1, free, c2, free), and
(c1, free, c2, use/def), respectively.

3.1 Step 1: Constructing Object Flow Graph
The !rst step of SAVER is to construct an object $ow graph by
statically analyzing the heap-related behavior of the program.

Static Heap Analysis. As object $ow graphs play key roles in
our approach, we have carefully designed a static heap analysis that
can generate precise object $ow graphs in practice. The key design
decisions are path-sensitivity and heap abstraction. When !xing
an error, it is important to isolate the error path from the normal
execution paths. To this end, we developed a path-sensitive analysis
that uses relational invariants as the path information and merges
them selectively for scalability. Also, dynamic data structures such
as linked lists are used extensively in real-world C programs. To
accurately distinguish the memory objects stored in data structures
from those outside, we represent each heap object by a pair of its
allocation-site and variables that must point-to the object.

The abstract domain of the analysis is de!ned as follows:

A ↔ D = C→ P (State)
s ↔ State = PC ↓ Store
ε ↔ PC = P (Var ↓ {=,!} ↓ (Var + Z))
ϑ ↔ Store = Loc → P (Heap)
l ↔ Loc = Var + Heap
h ↔ Heap = AllocSite ↓ P (Var)
a ↔ AllocSite ↑ C

A domain element A ↔ D is a !nite table that maps each program
point to a set of reachable states. A state s = (ε ,ϑ) ↔ State at
program point c ↔ C consists of a path condition (ε ↔ PC) and a
store (ϑ ↔ Store). The path condition ε is a collection of branches
that have been taken up to the program point c , where a single
branch denotes a relation between two variables (or a variable and
a number). The store ϑ is a map from locations to heap objects,
representing the may-point-to information. A location l ↔ Loc is
either a variable or of a heap object. We represent a heap object
h ↔ Heap by its allocation site (AllocSite) and a set of must-point-to
variables (P (Var)).

The aim of the static analysis is to compute a least !xed point
(lfpF) of the semantic function F ↔ D→ D de!ned as follows:

F (X) = ϖc . fc
(⋃

c ↘ω→c
X (c ↘)

)

where fc : P (State) → P (State) is the transfer function at c:

fc (S) = {(f
PC
c (ε), f Storec (ϑ)) | (ε ,ϑ) ↔ S }.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Seongjoon Hong, Junhee Lee, Jeongsoo Lee, and Hakjoo Oh

use ω free unreach

ω free
unreach

(a) Inserting free

ω free free ω

unreach

(b) Relocating free

ω use free use ω

(c) Relocating use (dereference)

free free ω

(d) Deleting free

Figure 6: Fixing strategies that SAVER supports

absent in the original OFG. SAVER supports four types of labeling
strategies: inserting frees, deleting frees, and relocating uses and
frees. Figure 6 shows example applications of these strategies for
eliminating error patterns. For example, SAVER uses the strategy
(relocating use) in Figure 6c to !x the use-after-free error in Figure 2.

Step 3: Generating a Patch. The last step is to generate the

patch, if(¬C) free(p), from the newly labeled edge (6,¬C,o1)
free
→

(7,¬C,o1). The patch location is between lines 6 and 7. The condi-
tional expression (¬C) of the patch comes from the path condition
of the destination object. The pointer expression p comes from the
points-to information which is supposed to be associated with each
vertex but omitted for simplicity in this example.

3 APPROACH DETAILS
The high-level idea described in Section 2.2 is simple but imple-
menting it for real programs is not straightforward. In this section,
we describe our approach in detail, explaining what technical is-
sues arise and how we address them. The !rst issue is e"ciency. In
reality, errors often span multiple paths and we need to !nd a set
of labeling operations from a large search space. In Section 3.2, we
explain this issue and present an algorithm based on space reduc-
tion and pruning. Also, Section 3.1 describes our design choices for
cost-e#ective heap analysis. The second issue is safety. Ensuring
safety requires exact reasoning about program semantics. However,
any static analysis results are inexact, so care is needed when rela-
beling object $ow graph (Section 3.2) and transforming the result
into actual patches (Section 3.3).

Program and Error Report. Let us !rst de!ne programs and
error reports, which are given as input to SAVER.

The !rst input to SAVER is a program P represented by a control
$ow graph (C, ω→, ce , cx), where C denotes the set of program
points, ω→ ↑ C ↓ C is the set of $ow edges, and ce and cx are the
entry and exit points of the program. A program point c ↔ C is
associated with a command, denoted cmd (c):

cmd → x := ω | x := ↗ω | ↗x := ω | alloc(x) | free(x) | assume(b)

b → x = n | x ! n | x = ω | x ! ω

A command is either copy (x := ω), load (x := ↗ω), store (↗x :=
ω), heap allocation (alloc(x)), deallocation (free(x)), or assume(b)
where b denotes a branch condition. Although we consider a simple
pointer language without functions for presentation, SAVER works
in interprocedural settings and supports the full C language.

The second is an error report R = (c1, ev1, c2, ev2), where c1
and c2 are program points and ev1 and ev2 are events. We call

(c1, ev1) and (c2, ev2) source and sink, respectively. Memory errors
are speci!ed with !ve types of events:

ev1, ev2 ↔ Event = {alloc, free, use, def, unreach}.

For example, the following memory leak alarm reported by a static
analyzer (e.g., Infer [10])
An object allocated at line 1 is unreachable at line 5

is represented by (1, alloc, 5, unreach). Note that ev1 and ev2 deter-
mine the error type: memory leak, double-free, and use-after-free
are represented by (c1, alloc, c2, unreach), (c1, free, c2, free), and
(c1, free, c2, use/def), respectively.

3.1 Step 1: Constructing Object Flow Graph
The !rst step of SAVER is to construct an object $ow graph by
statically analyzing the heap-related behavior of the program.

Static Heap Analysis. As object $ow graphs play key roles in
our approach, we have carefully designed a static heap analysis that
can generate precise object $ow graphs in practice. The key design
decisions are path-sensitivity and heap abstraction. When !xing
an error, it is important to isolate the error path from the normal
execution paths. To this end, we developed a path-sensitive analysis
that uses relational invariants as the path information and merges
them selectively for scalability. Also, dynamic data structures such
as linked lists are used extensively in real-world C programs. To
accurately distinguish the memory objects stored in data structures
from those outside, we represent each heap object by a pair of its
allocation-site and variables that must point-to the object.

The abstract domain of the analysis is de!ned as follows:

A ↔ D = C→ P (State)
s ↔ State = PC ↓ Store
ε ↔ PC = P (Var ↓ {=,!} ↓ (Var + Z))
ϑ ↔ Store = Loc → P (Heap)
l ↔ Loc = Var + Heap
h ↔ Heap = AllocSite ↓ P (Var)
a ↔ AllocSite ↑ C

A domain element A ↔ D is a !nite table that maps each program
point to a set of reachable states. A state s = (ε ,ϑ) ↔ State at
program point c ↔ C consists of a path condition (ε ↔ PC) and a
store (ϑ ↔ Store). The path condition ε is a collection of branches
that have been taken up to the program point c , where a single
branch denotes a relation between two variables (or a variable and
a number). The store ϑ is a map from locations to heap objects,
representing the may-point-to information. A location l ↔ Loc is
either a variable or of a heap object. We represent a heap object
h ↔ Heap by its allocation site (AllocSite) and a set of must-point-to
variables (P (Var)).

The aim of the static analysis is to compute a least !xed point
(lfpF) of the semantic function F ↔ D→ D de!ned as follows:

F (X) = ϖc . fc
(⋃

c ↘ω→c
X (c ↘)

)

where fc : P (State) → P (State) is the transfer function at c:

fc (S) = {(f
PC
c (ε), f Storec (ϑ)) | (ε ,ϑ) ↔ S }.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Seongjoon Hong, Junhee Lee, Jeongsoo Lee, and Hakjoo Oh

use ω free unreach

ω free
unreach

(a) Inserting free

ω free free ω

unreach

(b) Relocating free

ω use free use ω

(c) Relocating use (dereference)

free free ω

(d) Deleting free

Figure 6: Fixing strategies that SAVER supports

absent in the original OFG. SAVER supports four types of labeling
strategies: inserting frees, deleting frees, and relocating uses and
frees. Figure 6 shows example applications of these strategies for
eliminating error patterns. For example, SAVER uses the strategy
(relocating use) in Figure 6c to !x the use-after-free error in Figure 2.

Step 3: Generating a Patch. The last step is to generate the

patch, if(¬C) free(p), from the newly labeled edge (6,¬C,o1)
free
→

(7,¬C,o1). The patch location is between lines 6 and 7. The condi-
tional expression (¬C) of the patch comes from the path condition
of the destination object. The pointer expression p comes from the
points-to information which is supposed to be associated with each
vertex but omitted for simplicity in this example.

3 APPROACH DETAILS
The high-level idea described in Section 2.2 is simple but imple-
menting it for real programs is not straightforward. In this section,
we describe our approach in detail, explaining what technical is-
sues arise and how we address them. The !rst issue is e"ciency. In
reality, errors often span multiple paths and we need to !nd a set
of labeling operations from a large search space. In Section 3.2, we
explain this issue and present an algorithm based on space reduc-
tion and pruning. Also, Section 3.1 describes our design choices for
cost-e#ective heap analysis. The second issue is safety. Ensuring
safety requires exact reasoning about program semantics. However,
any static analysis results are inexact, so care is needed when rela-
beling object $ow graph (Section 3.2) and transforming the result
into actual patches (Section 3.3).

Program and Error Report. Let us !rst de!ne programs and
error reports, which are given as input to SAVER.

The !rst input to SAVER is a program P represented by a control
$ow graph (C, ω→, ce , cx), where C denotes the set of program
points, ω→ ↑ C ↓ C is the set of $ow edges, and ce and cx are the
entry and exit points of the program. A program point c ↔ C is
associated with a command, denoted cmd (c):

cmd → x := ω | x := ↗ω | ↗x := ω | alloc(x) | free(x) | assume(b)

b → x = n | x ! n | x = ω | x ! ω

A command is either copy (x := ω), load (x := ↗ω), store (↗x :=
ω), heap allocation (alloc(x)), deallocation (free(x)), or assume(b)
where b denotes a branch condition. Although we consider a simple
pointer language without functions for presentation, SAVER works
in interprocedural settings and supports the full C language.

The second is an error report R = (c1, ev1, c2, ev2), where c1
and c2 are program points and ev1 and ev2 are events. We call

(c1, ev1) and (c2, ev2) source and sink, respectively. Memory errors
are speci!ed with !ve types of events:

ev1, ev2 ↔ Event = {alloc, free, use, def, unreach}.

For example, the following memory leak alarm reported by a static
analyzer (e.g., Infer [10])
An object allocated at line 1 is unreachable at line 5

is represented by (1, alloc, 5, unreach). Note that ev1 and ev2 deter-
mine the error type: memory leak, double-free, and use-after-free
are represented by (c1, alloc, c2, unreach), (c1, free, c2, free), and
(c1, free, c2, use/def), respectively.

3.1 Step 1: Constructing Object Flow Graph
The !rst step of SAVER is to construct an object $ow graph by
statically analyzing the heap-related behavior of the program.

Static Heap Analysis. As object $ow graphs play key roles in
our approach, we have carefully designed a static heap analysis that
can generate precise object $ow graphs in practice. The key design
decisions are path-sensitivity and heap abstraction. When !xing
an error, it is important to isolate the error path from the normal
execution paths. To this end, we developed a path-sensitive analysis
that uses relational invariants as the path information and merges
them selectively for scalability. Also, dynamic data structures such
as linked lists are used extensively in real-world C programs. To
accurately distinguish the memory objects stored in data structures
from those outside, we represent each heap object by a pair of its
allocation-site and variables that must point-to the object.

The abstract domain of the analysis is de!ned as follows:

A ↔ D = C→ P (State)
s ↔ State = PC ↓ Store
ε ↔ PC = P (Var ↓ {=,!} ↓ (Var + Z))
ϑ ↔ Store = Loc → P (Heap)
l ↔ Loc = Var + Heap
h ↔ Heap = AllocSite ↓ P (Var)
a ↔ AllocSite ↑ C

A domain element A ↔ D is a !nite table that maps each program
point to a set of reachable states. A state s = (ε ,ϑ) ↔ State at
program point c ↔ C consists of a path condition (ε ↔ PC) and a
store (ϑ ↔ Store). The path condition ε is a collection of branches
that have been taken up to the program point c , where a single
branch denotes a relation between two variables (or a variable and
a number). The store ϑ is a map from locations to heap objects,
representing the may-point-to information. A location l ↔ Loc is
either a variable or of a heap object. We represent a heap object
h ↔ Heap by its allocation site (AllocSite) and a set of must-point-to
variables (P (Var)).

The aim of the static analysis is to compute a least !xed point
(lfpF) of the semantic function F ↔ D→ D de!ned as follows:

F (X) = ϖc . fc
(⋃

c ↘ω→c
X (c ↘)

)

where fc : P (State) → P (State) is the transfer function at c:

fc (S) = {(f
PC
c (ε), f Storec (ϑ)) | (ε ,ϑ) ↔ S }.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Seongjoon Hong, Junhee Lee, Jeongsoo Lee, and Hakjoo Oh

use ω free unreach

ω free
unreach

(a) Inserting free

ω free free ω

unreach

(b) Relocating free

ω use free use ω

(c) Relocating use (dereference)

free free ω

(d) Deleting free

Figure 6: Fixing strategies that SAVER supports

absent in the original OFG. SAVER supports four types of labeling
strategies: inserting frees, deleting frees, and relocating uses and
frees. Figure 6 shows example applications of these strategies for
eliminating error patterns. For example, SAVER uses the strategy
(relocating use) in Figure 6c to !x the use-after-free error in Figure 2.

Step 3: Generating a Patch. The last step is to generate the

patch, if(¬C) free(p), from the newly labeled edge (6,¬C,o1)
free
→

(7,¬C,o1). The patch location is between lines 6 and 7. The condi-
tional expression (¬C) of the patch comes from the path condition
of the destination object. The pointer expression p comes from the
points-to information which is supposed to be associated with each
vertex but omitted for simplicity in this example.

3 APPROACH DETAILS
The high-level idea described in Section 2.2 is simple but imple-
menting it for real programs is not straightforward. In this section,
we describe our approach in detail, explaining what technical is-
sues arise and how we address them. The !rst issue is e"ciency. In
reality, errors often span multiple paths and we need to !nd a set
of labeling operations from a large search space. In Section 3.2, we
explain this issue and present an algorithm based on space reduc-
tion and pruning. Also, Section 3.1 describes our design choices for
cost-e#ective heap analysis. The second issue is safety. Ensuring
safety requires exact reasoning about program semantics. However,
any static analysis results are inexact, so care is needed when rela-
beling object $ow graph (Section 3.2) and transforming the result
into actual patches (Section 3.3).

Program and Error Report. Let us !rst de!ne programs and
error reports, which are given as input to SAVER.

The !rst input to SAVER is a program P represented by a control
$ow graph (C, ω→, ce , cx), where C denotes the set of program
points, ω→ ↑ C ↓ C is the set of $ow edges, and ce and cx are the
entry and exit points of the program. A program point c ↔ C is
associated with a command, denoted cmd (c):

cmd → x := ω | x := ↗ω | ↗x := ω | alloc(x) | free(x) | assume(b)

b → x = n | x ! n | x = ω | x ! ω

A command is either copy (x := ω), load (x := ↗ω), store (↗x :=
ω), heap allocation (alloc(x)), deallocation (free(x)), or assume(b)
where b denotes a branch condition. Although we consider a simple
pointer language without functions for presentation, SAVER works
in interprocedural settings and supports the full C language.

The second is an error report R = (c1, ev1, c2, ev2), where c1
and c2 are program points and ev1 and ev2 are events. We call

(c1, ev1) and (c2, ev2) source and sink, respectively. Memory errors
are speci!ed with !ve types of events:

ev1, ev2 ↔ Event = {alloc, free, use, def, unreach}.

For example, the following memory leak alarm reported by a static
analyzer (e.g., Infer [10])
An object allocated at line 1 is unreachable at line 5

is represented by (1, alloc, 5, unreach). Note that ev1 and ev2 deter-
mine the error type: memory leak, double-free, and use-after-free
are represented by (c1, alloc, c2, unreach), (c1, free, c2, free), and
(c1, free, c2, use/def), respectively.

3.1 Step 1: Constructing Object Flow Graph
The !rst step of SAVER is to construct an object $ow graph by
statically analyzing the heap-related behavior of the program.

Static Heap Analysis. As object $ow graphs play key roles in
our approach, we have carefully designed a static heap analysis that
can generate precise object $ow graphs in practice. The key design
decisions are path-sensitivity and heap abstraction. When !xing
an error, it is important to isolate the error path from the normal
execution paths. To this end, we developed a path-sensitive analysis
that uses relational invariants as the path information and merges
them selectively for scalability. Also, dynamic data structures such
as linked lists are used extensively in real-world C programs. To
accurately distinguish the memory objects stored in data structures
from those outside, we represent each heap object by a pair of its
allocation-site and variables that must point-to the object.

The abstract domain of the analysis is de!ned as follows:

A ↔ D = C→ P (State)
s ↔ State = PC ↓ Store
ε ↔ PC = P (Var ↓ {=,!} ↓ (Var + Z))
ϑ ↔ Store = Loc → P (Heap)
l ↔ Loc = Var + Heap
h ↔ Heap = AllocSite ↓ P (Var)
a ↔ AllocSite ↑ C

A domain element A ↔ D is a !nite table that maps each program
point to a set of reachable states. A state s = (ε ,ϑ) ↔ State at
program point c ↔ C consists of a path condition (ε ↔ PC) and a
store (ϑ ↔ Store). The path condition ε is a collection of branches
that have been taken up to the program point c , where a single
branch denotes a relation between two variables (or a variable and
a number). The store ϑ is a map from locations to heap objects,
representing the may-point-to information. A location l ↔ Loc is
either a variable or of a heap object. We represent a heap object
h ↔ Heap by its allocation site (AllocSite) and a set of must-point-to
variables (P (Var)).

The aim of the static analysis is to compute a least !xed point
(lfpF) of the semantic function F ↔ D→ D de!ned as follows:

F (X) = ϖc . fc
(⋃

c ↘ω→c
X (c ↘)

)

where fc : P (State) → P (State) is the transfer function at c:

fc (S) = {(f
PC
c (ε), f Storec (ϑ)) | (ε ,ϑ) ↔ S }.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Seongjoon Hong, Junhee Lee, Jeongsoo Lee, and Hakjoo Oh

use ω free unreach

ω free
unreach

(a) Inserting free

ω free free ω

unreach

(b) Relocating free

ω use free use ω

(c) Relocating use (dereference)

free free ω

(d) Deleting free

Figure 6: Fixing strategies that SAVER supports

absent in the original OFG. SAVER supports four types of labeling
strategies: inserting frees, deleting frees, and relocating uses and
frees. Figure 6 shows example applications of these strategies for
eliminating error patterns. For example, SAVER uses the strategy
(relocating use) in Figure 6c to !x the use-after-free error in Figure 2.

Step 3: Generating a Patch. The last step is to generate the

patch, if(¬C) free(p), from the newly labeled edge (6,¬C,o1)
free
→

(7,¬C,o1). The patch location is between lines 6 and 7. The condi-
tional expression (¬C) of the patch comes from the path condition
of the destination object. The pointer expression p comes from the
points-to information which is supposed to be associated with each
vertex but omitted for simplicity in this example.

3 APPROACH DETAILS
The high-level idea described in Section 2.2 is simple but imple-
menting it for real programs is not straightforward. In this section,
we describe our approach in detail, explaining what technical is-
sues arise and how we address them. The !rst issue is e"ciency. In
reality, errors often span multiple paths and we need to !nd a set
of labeling operations from a large search space. In Section 3.2, we
explain this issue and present an algorithm based on space reduc-
tion and pruning. Also, Section 3.1 describes our design choices for
cost-e#ective heap analysis. The second issue is safety. Ensuring
safety requires exact reasoning about program semantics. However,
any static analysis results are inexact, so care is needed when rela-
beling object $ow graph (Section 3.2) and transforming the result
into actual patches (Section 3.3).

Program and Error Report. Let us !rst de!ne programs and
error reports, which are given as input to SAVER.

The !rst input to SAVER is a program P represented by a control
$ow graph (C, ω→, ce , cx), where C denotes the set of program
points, ω→ ↑ C ↓ C is the set of $ow edges, and ce and cx are the
entry and exit points of the program. A program point c ↔ C is
associated with a command, denoted cmd (c):

cmd → x := ω | x := ↗ω | ↗x := ω | alloc(x) | free(x) | assume(b)

b → x = n | x ! n | x = ω | x ! ω

A command is either copy (x := ω), load (x := ↗ω), store (↗x :=
ω), heap allocation (alloc(x)), deallocation (free(x)), or assume(b)
where b denotes a branch condition. Although we consider a simple
pointer language without functions for presentation, SAVER works
in interprocedural settings and supports the full C language.

The second is an error report R = (c1, ev1, c2, ev2), where c1
and c2 are program points and ev1 and ev2 are events. We call

(c1, ev1) and (c2, ev2) source and sink, respectively. Memory errors
are speci!ed with !ve types of events:

ev1, ev2 ↔ Event = {alloc, free, use, def, unreach}.

For example, the following memory leak alarm reported by a static
analyzer (e.g., Infer [10])
An object allocated at line 1 is unreachable at line 5

is represented by (1, alloc, 5, unreach). Note that ev1 and ev2 deter-
mine the error type: memory leak, double-free, and use-after-free
are represented by (c1, alloc, c2, unreach), (c1, free, c2, free), and
(c1, free, c2, use/def), respectively.

3.1 Step 1: Constructing Object Flow Graph
The !rst step of SAVER is to construct an object $ow graph by
statically analyzing the heap-related behavior of the program.

Static Heap Analysis. As object $ow graphs play key roles in
our approach, we have carefully designed a static heap analysis that
can generate precise object $ow graphs in practice. The key design
decisions are path-sensitivity and heap abstraction. When !xing
an error, it is important to isolate the error path from the normal
execution paths. To this end, we developed a path-sensitive analysis
that uses relational invariants as the path information and merges
them selectively for scalability. Also, dynamic data structures such
as linked lists are used extensively in real-world C programs. To
accurately distinguish the memory objects stored in data structures
from those outside, we represent each heap object by a pair of its
allocation-site and variables that must point-to the object.

The abstract domain of the analysis is de!ned as follows:

A ↔ D = C→ P (State)
s ↔ State = PC ↓ Store
ε ↔ PC = P (Var ↓ {=,!} ↓ (Var + Z))
ϑ ↔ Store = Loc → P (Heap)
l ↔ Loc = Var + Heap
h ↔ Heap = AllocSite ↓ P (Var)
a ↔ AllocSite ↑ C

A domain element A ↔ D is a !nite table that maps each program
point to a set of reachable states. A state s = (ε ,ϑ) ↔ State at
program point c ↔ C consists of a path condition (ε ↔ PC) and a
store (ϑ ↔ Store). The path condition ε is a collection of branches
that have been taken up to the program point c , where a single
branch denotes a relation between two variables (or a variable and
a number). The store ϑ is a map from locations to heap objects,
representing the may-point-to information. A location l ↔ Loc is
either a variable or of a heap object. We represent a heap object
h ↔ Heap by its allocation site (AllocSite) and a set of must-point-to
variables (P (Var)).

The aim of the static analysis is to compute a least !xed point
(lfpF) of the semantic function F ↔ D→ D de!ned as follows:

F (X) = ϖc . fc
(⋃

c ↘ω→c
X (c ↘)

)

where fc : P (State) → P (State) is the transfer function at c:

fc (S) = {(f
PC
c (ε), f Storec (ϑ)) | (ε ,ϑ) ↔ S }.

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is →1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the !rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the !rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER !xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to !x such an error is clearly beyond the
reach of the existing techniques. F!!"P#"$%,M&’F(), and L&#*+
F() attempt to !x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
ω

use

free

unreach

ω

use

ω

unreach

ω

free

unreach

(b) Object !ow graph

Figure 5: Example program and object !ow graph

deallocators (without conditionals). However, it is impossible to !x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a !nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To !x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
"ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control "ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
↑ (7,C,o1) indicates that the object o1 is

freed when it "ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

ω
↑ (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to !x the error by relabeling the object "ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · ω · use · ω · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (ω) of
the edge (6,¬C,o1)

ω
↑ (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · ω · use · free · unreach

Note that it is unsafe to replace the !rst ω by free, as it introduces
a use-after-free pattern, alloc · free · use · ω · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is →1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the !rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the !rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER !xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to !x such an error is clearly beyond the
reach of the existing techniques. F!!"P#"$%,M&’F(), and L&#*+
F() attempt to !x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
ω

use

free

unreach

ω

use

ω

unreach

ω

free

unreach

(b) Object !ow graph

Figure 5: Example program and object !ow graph

deallocators (without conditionals). However, it is impossible to !x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a !nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To !x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
"ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control "ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
↑ (7,C,o1) indicates that the object o1 is

freed when it "ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

ω
↑ (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to !x the error by relabeling the object "ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · ω · use · ω · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (ω) of
the edge (6,¬C,o1)

ω
↑ (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · ω · use · free · unreach

Note that it is unsafe to replace the !rst ω by free, as it introduces
a use-after-free pattern, alloc · free · use · ω · unreach, which is

2. Relabel object flow graph to eliminate buggy paths

𝖿𝗋𝖾𝖾

How SAVER WorksSAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is →1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the !rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the !rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER !xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to !x such an error is clearly beyond the
reach of the existing techniques. F!!"P#"$%,M&’F(), and L&#*+
F() attempt to !x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
ω

use

free

unreach

ω

use

ω

unreach

ω

free

unreach

(b) Object !ow graph

Figure 5: Example program and object !ow graph

deallocators (without conditionals). However, it is impossible to !x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a !nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To !x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
"ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control "ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
↑ (7,C,o1) indicates that the object o1 is

freed when it "ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

ω
↑ (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to !x the error by relabeling the object "ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · ω · use · ω · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (ω) of
the edge (6,¬C,o1)

ω
↑ (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · ω · use · free · unreach

Note that it is unsafe to replace the !rst ω by free, as it introduces
a use-after-free pattern, alloc · free · use · ω · unreach, which is

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

without introducing a new conditional statement. For example, in-
serting free(ndata) between lines 2 and 3 causes use-after-free in
snort as append_data is called at multiple places where the object
pointed to by ndata is used even when the return value is →1 (e.g.
for printing the error code), which we omitted in Figure 1.

Example 2. Figure 2 shows a tricky use-after-free error [3]. In-
stead of using primitive deallocators (e.g. free), the program uses
the make_cleanup and do_cleanups functions as a special mech-
anism for memory management. The code maintains a global list
called cleanup, which holds memory objects to be deallocated.
Function make_cleanup is used to append an object to the cleanup
list and do_cleanups deallocates all objects in it.

The use-after-free error occurs as follows. At the !rst iteration
of the loop, a new object is allocated at line 4 and its address is
stored in the cleanup list by calling make_cleanup(new) at line 5.
Suppose the true branch of the !rst conditional at line 8 is taken,
where a new alias (first) for the allocated object is made (line 9).
The heap can be depicted as follows:

cleanup

new

o1 cleanup

new

firsto1

The left and right diagrams show the heap right after lines 5 and 9,
respectively. In each diagram, oi represents the object allocated at
the i-th iteration of the loop. In the second iteration of the loop, a
new object o2 is allocated and appended to list cleanup, and first
still refers to o1 as depicted in the left diagram below:

cleanup

first new

o1 o2 cleanup

first new

o1 o2

Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER !xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to !x such an error is clearly beyond the
reach of the existing techniques. F!!"P#"$%,M&’F(), and L&#*+
F() attempt to !x memory errors only by inserting or deleting

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
ω

use

free

unreach

ω

use

ω

unreach

ω

free

unreach

(b) Object !ow graph

Figure 5: Example program and object !ow graph

deallocators (without conditionals). However, it is impossible to !x
the use-after-free error described above with this strategy because
there is no way to deallocate an unbounded number of objects with
a !nite number of primitive deallocators.

2.2 How SAVER Works
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To !x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
"ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control "ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
↑ (7,C,o1) indicates that the object o1 is

freed when it "ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

ω
↑ (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to !x the error by relabeling the object "ow graph. Note that the
memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · ω · use · ω · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (ω) of
the edge (6,¬C,o1)

ω
↑ (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · ω · use · free · unreach

Note that it is unsafe to replace the !rst ω by free, as it introduces
a use-after-free pattern, alloc · free · use · ω · unreach, which is

3. Generate a patch from the re-labeled edge

𝖿𝗋𝖾𝖾

if (!C) free(p);

• Improved scalability (in the paper)

• Selective path sensitivity

• Program slicing

• Improved usability (not in the paper)

• Build failures

• Robust translation from IR-level patches to source-level

For Deployment

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Comparison of SAVER and F!!"P#"$% on!xingmemory leaks detected by I&’(). For each program, #T and #F denote
the numbers of true and false alarms (i.e. error reports) produced by I&’(), respectively. Pre(s) reports the time taken by the
pre-analysis of SAVER(pre-analysis is run only once and its result is shared by every error !x). Fix(s) reports the total time
taken by each tool in attempting to !x the reported errors. The patch statistics are given in columns G,✁,→ and ✂, where
the subscripts T and F indicate whether the result is for true or false alarms, respectively. G: # of generated patches. ✁: #
of successful patches that !xed errors (without introducing new errors). →: # of incomplete patches that are safe but fail to
completely !x errors. ✂: # of unsafe patches that introduce new errors.

I&’() SAVER F!!"P#"$% [60]

Program kLoC #T #F Pre(s) Fix(s) GT ✁T →T ✂T GF ✂F Fix(s) GT ✁T →T ✂T GF ✂F
rappel (ad8efd7) 2.2 1 0 2.2 0.0 1 1 0 0 0 0 8.9 1 1 0 0 0 0
!ex (d3de49f) 22.3 3 4 26.3 2.5 0 0 0 0 0 0 51.0 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 44.6 22.1 0 0 0 0 0 0 67.9 0 0 0 0 2 2
Swoole (a4256e4) 43.0 15 3 88.5 10.1 11 11 0 0 0 0 392.5 9 7 0 2 1 1
lxc (72cc48f) 49.9 3 5 230.6 5.8 3 3 0 0 0 0 179.6 0 0 0 0 1 1
p11-kit (ead7ara) 62.9 33 9 646.2 288.8 24 24 0 0 0 0 566.4 8 7 1 0 2 2
x264 (d4099dd) 73.2 10 0 144.3 9.9 10 10 0 0 0 0 426.9 2 2 0 0 0 0
recutils-1.8 92.0 10 11 144.1 44.4 8 8 0 0 0 0 662.2 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 44.8 2.5 4 4 0 0 0 0 182.1 0 0 0 0 0 0
snort-2.9.13 320.8 16 27 2372.0 216.0 11 10 1 0 0 0 4636.4 3 0 0 3 19 18
Total 814.4 96 66 3743.6 602.1 72 71 1 0 0 0 7173.9 26 19 2 5 26 25

from diverse domains: network (inetutils), text-processing (!ex,
recutils), multimedia(WavPack, x264), and security (p11-kit, Snort).

Running I!"#$ on those 10 programs produced a total of 162
alarms. We manually classi"ed the alarms into 96 true and 66 false
positives. Then we (automatically) converted each alarm into an
error report for SAVER. We included false positives as well in our
evaluation, because we assume a use case of repair tools in combina-
tion with static bug-"nders in an end-to-end way without requiring
humans to classify static analysis alarms into true or false.

When running I!"#$, we enabled the --headers option to ana-
lyze header "les as well.Without this option, I!"#$ skips translating
headers into IR, which results in imprecision and increases false
alarms. This is why the number(18) of alarms for Swoole in Table 1
is less than that(20) reported in [60].

In Table 1, we compared SAVER with F%%&P’&() only, since
other tools, M#*F+, [34] and L#’-F+, [18], were not scalable or
robust enough to analyze the benchmark programs.M#*F+, did not
terminate for the benchmark programs except for rappel, for which
it successfully "xed the reported error. L#’-F+, also ran on rappel
but produced no patches. For other programs, L#’-F+, produced
runtime errors. We ran F%%&P’&() in its global mode [60] to allow
it to discover more patch candidates from the entire program. We
obtained F%%&P’&() from its public website.2

For each patch generated by SAVER and F%%&P’&(), we man-
ually checked whether the patch "xed the target error correctly.
For true alarms, we say a patch is correct (✁T) if it removes the
reported memory-leak alarm completely (e.g. "xing all memory
leaks between the source and sink points speci"ed by each alarm)
and introduces no new errors. If the generated patch introduces
a new error, we counted it as unsafe (✂T,✂F). The remaining case
(i.e., the patch is safe but fails to "x the error completely) is counted
as incomplete (→T).

2https://github.com/squaresLab/footpatch

Result. Table 1 shows the experimental results. For the 96 true
positives, SAVER generated 72 patches. Among them, 71 were cor-
rect and "xed errors completely, leading to a 74% "x rate (71/96).
One key contributor to this high "x rate was the ability to gener-
ate conditional patches. For example, all of the correct patches for
snort-2.9.13 involve conditional.

It is notable that SAVER generated no patches for false alarms.
This is mainly because SAVER aims to ensure the patch safety;
in most cases, SAVER naturally fails to “"x” false alarms because
otherwise it needs to "nd a way to modify a program that is already
correct without introducing errors, which is muchmore challenging
than transforming an incorrect program into correct one.

Meanwhile, F%%&P’&() generated 26 patches for true alarms, 19
of which were correct, leading to a 20% "x rate (19/96). The remain-
ing 7 patches were classi"ed into 2 incomplete and 5 unsafe ones
(introducing use-after-frees or double-frees). For the 66 false alarms,
F%%&P’&() generated 26 patches where 25 were unsafe. Note that
most of the false alarm patches are unsafe, implying that “"xing”
false alarms correctly is challenging in practice and a practical tool
needs to ensure safety to avoid it. In total, F%%&P’&() generated
52 patches for all 162 (true and false) alarms and 30 (58%) of them
were unsafe and introduced new errors.

Each of SAVER and F%%&P’&() generated one incomplete patch.
SAVER failed to completely "x an error in snort-2.9.13. Consider
the following simpli"ed situation:

1 int f(void *p) {

2 if (...) return 0; // memory leak

3 if (...) return -1; // memory leak

4 return 0; // no memory leak }

5 int g(void *p) {

6 x = f(p);

7 // Objects pointed by `p` are used

8 /* SAVER: if(x==-1) free(p); */ }

Effectiveness

10 programs

96 true
alarms

66 false
alarms

SAVER

FootPatch

SAVER

FootPatch

Existing memory error repair tool [ICSE 2018]

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Comparison of SAVER and F!!"P#"$% on!xingmemory leaks detected by I&’(). For each program, #T and #F denote
the numbers of true and false alarms (i.e. error reports) produced by I&’(), respectively. Pre(s) reports the time taken by the
pre-analysis of SAVER(pre-analysis is run only once and its result is shared by every error !x). Fix(s) reports the total time
taken by each tool in attempting to !x the reported errors. The patch statistics are given in columns G,✁,→ and ✂, where
the subscripts T and F indicate whether the result is for true or false alarms, respectively. G: # of generated patches. ✁: #
of successful patches that !xed errors (without introducing new errors). →: # of incomplete patches that are safe but fail to
completely !x errors. ✂: # of unsafe patches that introduce new errors.

I&’() SAVER F!!"P#"$% [60]

Program kLoC #T #F Pre(s) Fix(s) GT ✁T →T ✂T GF ✂F Fix(s) GT ✁T →T ✂T GF ✂F
rappel (ad8efd7) 2.2 1 0 2.2 0.0 1 1 0 0 0 0 8.9 1 1 0 0 0 0
!ex (d3de49f) 22.3 3 4 26.3 2.5 0 0 0 0 0 0 51.0 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 44.6 22.1 0 0 0 0 0 0 67.9 0 0 0 0 2 2
Swoole (a4256e4) 43.0 15 3 88.5 10.1 11 11 0 0 0 0 392.5 9 7 0 2 1 1
lxc (72cc48f) 49.9 3 5 230.6 5.8 3 3 0 0 0 0 179.6 0 0 0 0 1 1
p11-kit (ead7ara) 62.9 33 9 646.2 288.8 24 24 0 0 0 0 566.4 8 7 1 0 2 2
x264 (d4099dd) 73.2 10 0 144.3 9.9 10 10 0 0 0 0 426.9 2 2 0 0 0 0
recutils-1.8 92.0 10 11 144.1 44.4 8 8 0 0 0 0 662.2 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 44.8 2.5 4 4 0 0 0 0 182.1 0 0 0 0 0 0
snort-2.9.13 320.8 16 27 2372.0 216.0 11 10 1 0 0 0 4636.4 3 0 0 3 19 18
Total 814.4 96 66 3743.6 602.1 72 71 1 0 0 0 7173.9 26 19 2 5 26 25

from diverse domains: network (inetutils), text-processing (!ex,
recutils), multimedia(WavPack, x264), and security (p11-kit, Snort).

Running I!"#$ on those 10 programs produced a total of 162
alarms. We manually classi"ed the alarms into 96 true and 66 false
positives. Then we (automatically) converted each alarm into an
error report for SAVER. We included false positives as well in our
evaluation, because we assume a use case of repair tools in combina-
tion with static bug-"nders in an end-to-end way without requiring
humans to classify static analysis alarms into true or false.

When running I!"#$, we enabled the --headers option to ana-
lyze header "les as well.Without this option, I!"#$ skips translating
headers into IR, which results in imprecision and increases false
alarms. This is why the number(18) of alarms for Swoole in Table 1
is less than that(20) reported in [60].

In Table 1, we compared SAVER with F%%&P’&() only, since
other tools, M#*F+, [34] and L#’-F+, [18], were not scalable or
robust enough to analyze the benchmark programs.M#*F+, did not
terminate for the benchmark programs except for rappel, for which
it successfully "xed the reported error. L#’-F+, also ran on rappel
but produced no patches. For other programs, L#’-F+, produced
runtime errors. We ran F%%&P’&() in its global mode [60] to allow
it to discover more patch candidates from the entire program. We
obtained F%%&P’&() from its public website.2

For each patch generated by SAVER and F%%&P’&(), we man-
ually checked whether the patch "xed the target error correctly.
For true alarms, we say a patch is correct (✁T) if it removes the
reported memory-leak alarm completely (e.g. "xing all memory
leaks between the source and sink points speci"ed by each alarm)
and introduces no new errors. If the generated patch introduces
a new error, we counted it as unsafe (✂T,✂F). The remaining case
(i.e., the patch is safe but fails to "x the error completely) is counted
as incomplete (→T).

2https://github.com/squaresLab/footpatch

Result. Table 1 shows the experimental results. For the 96 true
positives, SAVER generated 72 patches. Among them, 71 were cor-
rect and "xed errors completely, leading to a 74% "x rate (71/96).
One key contributor to this high "x rate was the ability to gener-
ate conditional patches. For example, all of the correct patches for
snort-2.9.13 involve conditional.

It is notable that SAVER generated no patches for false alarms.
This is mainly because SAVER aims to ensure the patch safety;
in most cases, SAVER naturally fails to “"x” false alarms because
otherwise it needs to "nd a way to modify a program that is already
correct without introducing errors, which is muchmore challenging
than transforming an incorrect program into correct one.

Meanwhile, F%%&P’&() generated 26 patches for true alarms, 19
of which were correct, leading to a 20% "x rate (19/96). The remain-
ing 7 patches were classi"ed into 2 incomplete and 5 unsafe ones
(introducing use-after-frees or double-frees). For the 66 false alarms,
F%%&P’&() generated 26 patches where 25 were unsafe. Note that
most of the false alarm patches are unsafe, implying that “"xing”
false alarms correctly is challenging in practice and a practical tool
needs to ensure safety to avoid it. In total, F%%&P’&() generated
52 patches for all 162 (true and false) alarms and 30 (58%) of them
were unsafe and introduced new errors.

Each of SAVER and F%%&P’&() generated one incomplete patch.
SAVER failed to completely "x an error in snort-2.9.13. Consider
the following simpli"ed situation:

1 int f(void *p) {

2 if (...) return 0; // memory leak

3 if (...) return -1; // memory leak

4 return 0; // no memory leak }

5 int g(void *p) {

6 x = f(p);

7 // Objects pointed by `p` are used

8 /* SAVER: if(x==-1) free(p); */ }

Effectiveness

10 programs

96 true
alarms

66 false
alarms

SAVER

FootPatch

SAVER

FootPatch

Generated 72 patches
(Fixed: 71, Safe: 1, Unsafe: 0)

Existing memory error repair tool [ICSE 2018]

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Comparison of SAVER and F!!"P#"$% on!xingmemory leaks detected by I&’(). For each program, #T and #F denote
the numbers of true and false alarms (i.e. error reports) produced by I&’(), respectively. Pre(s) reports the time taken by the
pre-analysis of SAVER(pre-analysis is run only once and its result is shared by every error !x). Fix(s) reports the total time
taken by each tool in attempting to !x the reported errors. The patch statistics are given in columns G,✁,→ and ✂, where
the subscripts T and F indicate whether the result is for true or false alarms, respectively. G: # of generated patches. ✁: #
of successful patches that !xed errors (without introducing new errors). →: # of incomplete patches that are safe but fail to
completely !x errors. ✂: # of unsafe patches that introduce new errors.

I&’() SAVER F!!"P#"$% [60]

Program kLoC #T #F Pre(s) Fix(s) GT ✁T →T ✂T GF ✂F Fix(s) GT ✁T →T ✂T GF ✂F
rappel (ad8efd7) 2.2 1 0 2.2 0.0 1 1 0 0 0 0 8.9 1 1 0 0 0 0
!ex (d3de49f) 22.3 3 4 26.3 2.5 0 0 0 0 0 0 51.0 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 44.6 22.1 0 0 0 0 0 0 67.9 0 0 0 0 2 2
Swoole (a4256e4) 43.0 15 3 88.5 10.1 11 11 0 0 0 0 392.5 9 7 0 2 1 1
lxc (72cc48f) 49.9 3 5 230.6 5.8 3 3 0 0 0 0 179.6 0 0 0 0 1 1
p11-kit (ead7ara) 62.9 33 9 646.2 288.8 24 24 0 0 0 0 566.4 8 7 1 0 2 2
x264 (d4099dd) 73.2 10 0 144.3 9.9 10 10 0 0 0 0 426.9 2 2 0 0 0 0
recutils-1.8 92.0 10 11 144.1 44.4 8 8 0 0 0 0 662.2 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 44.8 2.5 4 4 0 0 0 0 182.1 0 0 0 0 0 0
snort-2.9.13 320.8 16 27 2372.0 216.0 11 10 1 0 0 0 4636.4 3 0 0 3 19 18
Total 814.4 96 66 3743.6 602.1 72 71 1 0 0 0 7173.9 26 19 2 5 26 25

from diverse domains: network (inetutils), text-processing (!ex,
recutils), multimedia(WavPack, x264), and security (p11-kit, Snort).

Running I!"#$ on those 10 programs produced a total of 162
alarms. We manually classi"ed the alarms into 96 true and 66 false
positives. Then we (automatically) converted each alarm into an
error report for SAVER. We included false positives as well in our
evaluation, because we assume a use case of repair tools in combina-
tion with static bug-"nders in an end-to-end way without requiring
humans to classify static analysis alarms into true or false.

When running I!"#$, we enabled the --headers option to ana-
lyze header "les as well.Without this option, I!"#$ skips translating
headers into IR, which results in imprecision and increases false
alarms. This is why the number(18) of alarms for Swoole in Table 1
is less than that(20) reported in [60].

In Table 1, we compared SAVER with F%%&P’&() only, since
other tools, M#*F+, [34] and L#’-F+, [18], were not scalable or
robust enough to analyze the benchmark programs.M#*F+, did not
terminate for the benchmark programs except for rappel, for which
it successfully "xed the reported error. L#’-F+, also ran on rappel
but produced no patches. For other programs, L#’-F+, produced
runtime errors. We ran F%%&P’&() in its global mode [60] to allow
it to discover more patch candidates from the entire program. We
obtained F%%&P’&() from its public website.2

For each patch generated by SAVER and F%%&P’&(), we man-
ually checked whether the patch "xed the target error correctly.
For true alarms, we say a patch is correct (✁T) if it removes the
reported memory-leak alarm completely (e.g. "xing all memory
leaks between the source and sink points speci"ed by each alarm)
and introduces no new errors. If the generated patch introduces
a new error, we counted it as unsafe (✂T,✂F). The remaining case
(i.e., the patch is safe but fails to "x the error completely) is counted
as incomplete (→T).

2https://github.com/squaresLab/footpatch

Result. Table 1 shows the experimental results. For the 96 true
positives, SAVER generated 72 patches. Among them, 71 were cor-
rect and "xed errors completely, leading to a 74% "x rate (71/96).
One key contributor to this high "x rate was the ability to gener-
ate conditional patches. For example, all of the correct patches for
snort-2.9.13 involve conditional.

It is notable that SAVER generated no patches for false alarms.
This is mainly because SAVER aims to ensure the patch safety;
in most cases, SAVER naturally fails to “"x” false alarms because
otherwise it needs to "nd a way to modify a program that is already
correct without introducing errors, which is muchmore challenging
than transforming an incorrect program into correct one.

Meanwhile, F%%&P’&() generated 26 patches for true alarms, 19
of which were correct, leading to a 20% "x rate (19/96). The remain-
ing 7 patches were classi"ed into 2 incomplete and 5 unsafe ones
(introducing use-after-frees or double-frees). For the 66 false alarms,
F%%&P’&() generated 26 patches where 25 were unsafe. Note that
most of the false alarm patches are unsafe, implying that “"xing”
false alarms correctly is challenging in practice and a practical tool
needs to ensure safety to avoid it. In total, F%%&P’&() generated
52 patches for all 162 (true and false) alarms and 30 (58%) of them
were unsafe and introduced new errors.

Each of SAVER and F%%&P’&() generated one incomplete patch.
SAVER failed to completely "x an error in snort-2.9.13. Consider
the following simpli"ed situation:

1 int f(void *p) {

2 if (...) return 0; // memory leak

3 if (...) return -1; // memory leak

4 return 0; // no memory leak }

5 int g(void *p) {

6 x = f(p);

7 // Objects pointed by `p` are used

8 /* SAVER: if(x==-1) free(p); */ }

Effectiveness

10 programs

96 true
alarms

66 false
alarms

SAVER

FootPatch

SAVER

FootPatch

Generated 72 patches
(Fixed: 71, Safe: 1, Unsafe: 0)

74% fix rate

Existing memory error repair tool [ICSE 2018]

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Comparison of SAVER and F!!"P#"$% on!xingmemory leaks detected by I&’(). For each program, #T and #F denote
the numbers of true and false alarms (i.e. error reports) produced by I&’(), respectively. Pre(s) reports the time taken by the
pre-analysis of SAVER(pre-analysis is run only once and its result is shared by every error !x). Fix(s) reports the total time
taken by each tool in attempting to !x the reported errors. The patch statistics are given in columns G,✁,→ and ✂, where
the subscripts T and F indicate whether the result is for true or false alarms, respectively. G: # of generated patches. ✁: #
of successful patches that !xed errors (without introducing new errors). →: # of incomplete patches that are safe but fail to
completely !x errors. ✂: # of unsafe patches that introduce new errors.

I&’() SAVER F!!"P#"$% [60]

Program kLoC #T #F Pre(s) Fix(s) GT ✁T →T ✂T GF ✂F Fix(s) GT ✁T →T ✂T GF ✂F
rappel (ad8efd7) 2.2 1 0 2.2 0.0 1 1 0 0 0 0 8.9 1 1 0 0 0 0
!ex (d3de49f) 22.3 3 4 26.3 2.5 0 0 0 0 0 0 51.0 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 44.6 22.1 0 0 0 0 0 0 67.9 0 0 0 0 2 2
Swoole (a4256e4) 43.0 15 3 88.5 10.1 11 11 0 0 0 0 392.5 9 7 0 2 1 1
lxc (72cc48f) 49.9 3 5 230.6 5.8 3 3 0 0 0 0 179.6 0 0 0 0 1 1
p11-kit (ead7ara) 62.9 33 9 646.2 288.8 24 24 0 0 0 0 566.4 8 7 1 0 2 2
x264 (d4099dd) 73.2 10 0 144.3 9.9 10 10 0 0 0 0 426.9 2 2 0 0 0 0
recutils-1.8 92.0 10 11 144.1 44.4 8 8 0 0 0 0 662.2 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 44.8 2.5 4 4 0 0 0 0 182.1 0 0 0 0 0 0
snort-2.9.13 320.8 16 27 2372.0 216.0 11 10 1 0 0 0 4636.4 3 0 0 3 19 18
Total 814.4 96 66 3743.6 602.1 72 71 1 0 0 0 7173.9 26 19 2 5 26 25

from diverse domains: network (inetutils), text-processing (!ex,
recutils), multimedia(WavPack, x264), and security (p11-kit, Snort).

Running I!"#$ on those 10 programs produced a total of 162
alarms. We manually classi"ed the alarms into 96 true and 66 false
positives. Then we (automatically) converted each alarm into an
error report for SAVER. We included false positives as well in our
evaluation, because we assume a use case of repair tools in combina-
tion with static bug-"nders in an end-to-end way without requiring
humans to classify static analysis alarms into true or false.

When running I!"#$, we enabled the --headers option to ana-
lyze header "les as well.Without this option, I!"#$ skips translating
headers into IR, which results in imprecision and increases false
alarms. This is why the number(18) of alarms for Swoole in Table 1
is less than that(20) reported in [60].

In Table 1, we compared SAVER with F%%&P’&() only, since
other tools, M#*F+, [34] and L#’-F+, [18], were not scalable or
robust enough to analyze the benchmark programs.M#*F+, did not
terminate for the benchmark programs except for rappel, for which
it successfully "xed the reported error. L#’-F+, also ran on rappel
but produced no patches. For other programs, L#’-F+, produced
runtime errors. We ran F%%&P’&() in its global mode [60] to allow
it to discover more patch candidates from the entire program. We
obtained F%%&P’&() from its public website.2

For each patch generated by SAVER and F%%&P’&(), we man-
ually checked whether the patch "xed the target error correctly.
For true alarms, we say a patch is correct (✁T) if it removes the
reported memory-leak alarm completely (e.g. "xing all memory
leaks between the source and sink points speci"ed by each alarm)
and introduces no new errors. If the generated patch introduces
a new error, we counted it as unsafe (✂T,✂F). The remaining case
(i.e., the patch is safe but fails to "x the error completely) is counted
as incomplete (→T).

2https://github.com/squaresLab/footpatch

Result. Table 1 shows the experimental results. For the 96 true
positives, SAVER generated 72 patches. Among them, 71 were cor-
rect and "xed errors completely, leading to a 74% "x rate (71/96).
One key contributor to this high "x rate was the ability to gener-
ate conditional patches. For example, all of the correct patches for
snort-2.9.13 involve conditional.

It is notable that SAVER generated no patches for false alarms.
This is mainly because SAVER aims to ensure the patch safety;
in most cases, SAVER naturally fails to “"x” false alarms because
otherwise it needs to "nd a way to modify a program that is already
correct without introducing errors, which is muchmore challenging
than transforming an incorrect program into correct one.

Meanwhile, F%%&P’&() generated 26 patches for true alarms, 19
of which were correct, leading to a 20% "x rate (19/96). The remain-
ing 7 patches were classi"ed into 2 incomplete and 5 unsafe ones
(introducing use-after-frees or double-frees). For the 66 false alarms,
F%%&P’&() generated 26 patches where 25 were unsafe. Note that
most of the false alarm patches are unsafe, implying that “"xing”
false alarms correctly is challenging in practice and a practical tool
needs to ensure safety to avoid it. In total, F%%&P’&() generated
52 patches for all 162 (true and false) alarms and 30 (58%) of them
were unsafe and introduced new errors.

Each of SAVER and F%%&P’&() generated one incomplete patch.
SAVER failed to completely "x an error in snort-2.9.13. Consider
the following simpli"ed situation:

1 int f(void *p) {

2 if (...) return 0; // memory leak

3 if (...) return -1; // memory leak

4 return 0; // no memory leak }

5 int g(void *p) {

6 x = f(p);

7 // Objects pointed by `p` are used

8 /* SAVER: if(x==-1) free(p); */ }

Effectiveness

10 programs

96 true
alarms

66 false
alarms

SAVER

FootPatch

SAVER

FootPatch

Generated 72 patches
(Fixed: 71, Safe: 1, Unsafe: 0)

Generated 26 patches
(Fixed: 19, Safe: 2, Unsafe: 5)

74% fix rate

Existing memory error repair tool [ICSE 2018]

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Comparison of SAVER and F!!"P#"$% on!xingmemory leaks detected by I&’(). For each program, #T and #F denote
the numbers of true and false alarms (i.e. error reports) produced by I&’(), respectively. Pre(s) reports the time taken by the
pre-analysis of SAVER(pre-analysis is run only once and its result is shared by every error !x). Fix(s) reports the total time
taken by each tool in attempting to !x the reported errors. The patch statistics are given in columns G,✁,→ and ✂, where
the subscripts T and F indicate whether the result is for true or false alarms, respectively. G: # of generated patches. ✁: #
of successful patches that !xed errors (without introducing new errors). →: # of incomplete patches that are safe but fail to
completely !x errors. ✂: # of unsafe patches that introduce new errors.

I&’() SAVER F!!"P#"$% [60]

Program kLoC #T #F Pre(s) Fix(s) GT ✁T →T ✂T GF ✂F Fix(s) GT ✁T →T ✂T GF ✂F
rappel (ad8efd7) 2.2 1 0 2.2 0.0 1 1 0 0 0 0 8.9 1 1 0 0 0 0
!ex (d3de49f) 22.3 3 4 26.3 2.5 0 0 0 0 0 0 51.0 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 44.6 22.1 0 0 0 0 0 0 67.9 0 0 0 0 2 2
Swoole (a4256e4) 43.0 15 3 88.5 10.1 11 11 0 0 0 0 392.5 9 7 0 2 1 1
lxc (72cc48f) 49.9 3 5 230.6 5.8 3 3 0 0 0 0 179.6 0 0 0 0 1 1
p11-kit (ead7ara) 62.9 33 9 646.2 288.8 24 24 0 0 0 0 566.4 8 7 1 0 2 2
x264 (d4099dd) 73.2 10 0 144.3 9.9 10 10 0 0 0 0 426.9 2 2 0 0 0 0
recutils-1.8 92.0 10 11 144.1 44.4 8 8 0 0 0 0 662.2 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 44.8 2.5 4 4 0 0 0 0 182.1 0 0 0 0 0 0
snort-2.9.13 320.8 16 27 2372.0 216.0 11 10 1 0 0 0 4636.4 3 0 0 3 19 18
Total 814.4 96 66 3743.6 602.1 72 71 1 0 0 0 7173.9 26 19 2 5 26 25

from diverse domains: network (inetutils), text-processing (!ex,
recutils), multimedia(WavPack, x264), and security (p11-kit, Snort).

Running I!"#$ on those 10 programs produced a total of 162
alarms. We manually classi"ed the alarms into 96 true and 66 false
positives. Then we (automatically) converted each alarm into an
error report for SAVER. We included false positives as well in our
evaluation, because we assume a use case of repair tools in combina-
tion with static bug-"nders in an end-to-end way without requiring
humans to classify static analysis alarms into true or false.

When running I!"#$, we enabled the --headers option to ana-
lyze header "les as well.Without this option, I!"#$ skips translating
headers into IR, which results in imprecision and increases false
alarms. This is why the number(18) of alarms for Swoole in Table 1
is less than that(20) reported in [60].

In Table 1, we compared SAVER with F%%&P’&() only, since
other tools, M#*F+, [34] and L#’-F+, [18], were not scalable or
robust enough to analyze the benchmark programs.M#*F+, did not
terminate for the benchmark programs except for rappel, for which
it successfully "xed the reported error. L#’-F+, also ran on rappel
but produced no patches. For other programs, L#’-F+, produced
runtime errors. We ran F%%&P’&() in its global mode [60] to allow
it to discover more patch candidates from the entire program. We
obtained F%%&P’&() from its public website.2

For each patch generated by SAVER and F%%&P’&(), we man-
ually checked whether the patch "xed the target error correctly.
For true alarms, we say a patch is correct (✁T) if it removes the
reported memory-leak alarm completely (e.g. "xing all memory
leaks between the source and sink points speci"ed by each alarm)
and introduces no new errors. If the generated patch introduces
a new error, we counted it as unsafe (✂T,✂F). The remaining case
(i.e., the patch is safe but fails to "x the error completely) is counted
as incomplete (→T).

2https://github.com/squaresLab/footpatch

Result. Table 1 shows the experimental results. For the 96 true
positives, SAVER generated 72 patches. Among them, 71 were cor-
rect and "xed errors completely, leading to a 74% "x rate (71/96).
One key contributor to this high "x rate was the ability to gener-
ate conditional patches. For example, all of the correct patches for
snort-2.9.13 involve conditional.

It is notable that SAVER generated no patches for false alarms.
This is mainly because SAVER aims to ensure the patch safety;
in most cases, SAVER naturally fails to “"x” false alarms because
otherwise it needs to "nd a way to modify a program that is already
correct without introducing errors, which is muchmore challenging
than transforming an incorrect program into correct one.

Meanwhile, F%%&P’&() generated 26 patches for true alarms, 19
of which were correct, leading to a 20% "x rate (19/96). The remain-
ing 7 patches were classi"ed into 2 incomplete and 5 unsafe ones
(introducing use-after-frees or double-frees). For the 66 false alarms,
F%%&P’&() generated 26 patches where 25 were unsafe. Note that
most of the false alarm patches are unsafe, implying that “"xing”
false alarms correctly is challenging in practice and a practical tool
needs to ensure safety to avoid it. In total, F%%&P’&() generated
52 patches for all 162 (true and false) alarms and 30 (58%) of them
were unsafe and introduced new errors.

Each of SAVER and F%%&P’&() generated one incomplete patch.
SAVER failed to completely "x an error in snort-2.9.13. Consider
the following simpli"ed situation:

1 int f(void *p) {

2 if (...) return 0; // memory leak

3 if (...) return -1; // memory leak

4 return 0; // no memory leak }

5 int g(void *p) {

6 x = f(p);

7 // Objects pointed by `p` are used

8 /* SAVER: if(x==-1) free(p); */ }

Effectiveness

10 programs

96 true
alarms

66 false
alarms

SAVER

FootPatch

SAVER

FootPatch

Generated 72 patches
(Fixed: 71, Safe: 1, Unsafe: 0)

Generated 26 patches
(Fixed: 19, Safe: 2, Unsafe: 5)

74% fix rate

20% fix rate

Existing memory error repair tool [ICSE 2018]

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Comparison of SAVER and F!!"P#"$% on!xingmemory leaks detected by I&’(). For each program, #T and #F denote
the numbers of true and false alarms (i.e. error reports) produced by I&’(), respectively. Pre(s) reports the time taken by the
pre-analysis of SAVER(pre-analysis is run only once and its result is shared by every error !x). Fix(s) reports the total time
taken by each tool in attempting to !x the reported errors. The patch statistics are given in columns G,✁,→ and ✂, where
the subscripts T and F indicate whether the result is for true or false alarms, respectively. G: # of generated patches. ✁: #
of successful patches that !xed errors (without introducing new errors). →: # of incomplete patches that are safe but fail to
completely !x errors. ✂: # of unsafe patches that introduce new errors.

I&’() SAVER F!!"P#"$% [60]

Program kLoC #T #F Pre(s) Fix(s) GT ✁T →T ✂T GF ✂F Fix(s) GT ✁T →T ✂T GF ✂F
rappel (ad8efd7) 2.2 1 0 2.2 0.0 1 1 0 0 0 0 8.9 1 1 0 0 0 0
!ex (d3de49f) 22.3 3 4 26.3 2.5 0 0 0 0 0 0 51.0 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 44.6 22.1 0 0 0 0 0 0 67.9 0 0 0 0 2 2
Swoole (a4256e4) 43.0 15 3 88.5 10.1 11 11 0 0 0 0 392.5 9 7 0 2 1 1
lxc (72cc48f) 49.9 3 5 230.6 5.8 3 3 0 0 0 0 179.6 0 0 0 0 1 1
p11-kit (ead7ara) 62.9 33 9 646.2 288.8 24 24 0 0 0 0 566.4 8 7 1 0 2 2
x264 (d4099dd) 73.2 10 0 144.3 9.9 10 10 0 0 0 0 426.9 2 2 0 0 0 0
recutils-1.8 92.0 10 11 144.1 44.4 8 8 0 0 0 0 662.2 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 44.8 2.5 4 4 0 0 0 0 182.1 0 0 0 0 0 0
snort-2.9.13 320.8 16 27 2372.0 216.0 11 10 1 0 0 0 4636.4 3 0 0 3 19 18
Total 814.4 96 66 3743.6 602.1 72 71 1 0 0 0 7173.9 26 19 2 5 26 25

from diverse domains: network (inetutils), text-processing (!ex,
recutils), multimedia(WavPack, x264), and security (p11-kit, Snort).

Running I!"#$ on those 10 programs produced a total of 162
alarms. We manually classi"ed the alarms into 96 true and 66 false
positives. Then we (automatically) converted each alarm into an
error report for SAVER. We included false positives as well in our
evaluation, because we assume a use case of repair tools in combina-
tion with static bug-"nders in an end-to-end way without requiring
humans to classify static analysis alarms into true or false.

When running I!"#$, we enabled the --headers option to ana-
lyze header "les as well.Without this option, I!"#$ skips translating
headers into IR, which results in imprecision and increases false
alarms. This is why the number(18) of alarms for Swoole in Table 1
is less than that(20) reported in [60].

In Table 1, we compared SAVER with F%%&P’&() only, since
other tools, M#*F+, [34] and L#’-F+, [18], were not scalable or
robust enough to analyze the benchmark programs.M#*F+, did not
terminate for the benchmark programs except for rappel, for which
it successfully "xed the reported error. L#’-F+, also ran on rappel
but produced no patches. For other programs, L#’-F+, produced
runtime errors. We ran F%%&P’&() in its global mode [60] to allow
it to discover more patch candidates from the entire program. We
obtained F%%&P’&() from its public website.2

For each patch generated by SAVER and F%%&P’&(), we man-
ually checked whether the patch "xed the target error correctly.
For true alarms, we say a patch is correct (✁T) if it removes the
reported memory-leak alarm completely (e.g. "xing all memory
leaks between the source and sink points speci"ed by each alarm)
and introduces no new errors. If the generated patch introduces
a new error, we counted it as unsafe (✂T,✂F). The remaining case
(i.e., the patch is safe but fails to "x the error completely) is counted
as incomplete (→T).

2https://github.com/squaresLab/footpatch

Result. Table 1 shows the experimental results. For the 96 true
positives, SAVER generated 72 patches. Among them, 71 were cor-
rect and "xed errors completely, leading to a 74% "x rate (71/96).
One key contributor to this high "x rate was the ability to gener-
ate conditional patches. For example, all of the correct patches for
snort-2.9.13 involve conditional.

It is notable that SAVER generated no patches for false alarms.
This is mainly because SAVER aims to ensure the patch safety;
in most cases, SAVER naturally fails to “"x” false alarms because
otherwise it needs to "nd a way to modify a program that is already
correct without introducing errors, which is muchmore challenging
than transforming an incorrect program into correct one.

Meanwhile, F%%&P’&() generated 26 patches for true alarms, 19
of which were correct, leading to a 20% "x rate (19/96). The remain-
ing 7 patches were classi"ed into 2 incomplete and 5 unsafe ones
(introducing use-after-frees or double-frees). For the 66 false alarms,
F%%&P’&() generated 26 patches where 25 were unsafe. Note that
most of the false alarm patches are unsafe, implying that “"xing”
false alarms correctly is challenging in practice and a practical tool
needs to ensure safety to avoid it. In total, F%%&P’&() generated
52 patches for all 162 (true and false) alarms and 30 (58%) of them
were unsafe and introduced new errors.

Each of SAVER and F%%&P’&() generated one incomplete patch.
SAVER failed to completely "x an error in snort-2.9.13. Consider
the following simpli"ed situation:

1 int f(void *p) {

2 if (...) return 0; // memory leak

3 if (...) return -1; // memory leak

4 return 0; // no memory leak }

5 int g(void *p) {

6 x = f(p);

7 // Objects pointed by `p` are used

8 /* SAVER: if(x==-1) free(p); */ }

Effectiveness

10 programs

96 true
alarms

66 false
alarms

SAVER

FootPatch

SAVER

FootPatch

Generated 72 patches
(Fixed: 71, Safe: 1, Unsafe: 0)

Generated 26 patches
(Fixed: 19, Safe: 2, Unsafe: 5)

Generated 0 patches

74% fix rate

20% fix rate

Existing memory error repair tool [ICSE 2018]

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Comparison of SAVER and F!!"P#"$% on!xingmemory leaks detected by I&’(). For each program, #T and #F denote
the numbers of true and false alarms (i.e. error reports) produced by I&’(), respectively. Pre(s) reports the time taken by the
pre-analysis of SAVER(pre-analysis is run only once and its result is shared by every error !x). Fix(s) reports the total time
taken by each tool in attempting to !x the reported errors. The patch statistics are given in columns G,✁,→ and ✂, where
the subscripts T and F indicate whether the result is for true or false alarms, respectively. G: # of generated patches. ✁: #
of successful patches that !xed errors (without introducing new errors). →: # of incomplete patches that are safe but fail to
completely !x errors. ✂: # of unsafe patches that introduce new errors.

I&’() SAVER F!!"P#"$% [60]

Program kLoC #T #F Pre(s) Fix(s) GT ✁T →T ✂T GF ✂F Fix(s) GT ✁T →T ✂T GF ✂F
rappel (ad8efd7) 2.2 1 0 2.2 0.0 1 1 0 0 0 0 8.9 1 1 0 0 0 0
!ex (d3de49f) 22.3 3 4 26.3 2.5 0 0 0 0 0 0 51.0 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 44.6 22.1 0 0 0 0 0 0 67.9 0 0 0 0 2 2
Swoole (a4256e4) 43.0 15 3 88.5 10.1 11 11 0 0 0 0 392.5 9 7 0 2 1 1
lxc (72cc48f) 49.9 3 5 230.6 5.8 3 3 0 0 0 0 179.6 0 0 0 0 1 1
p11-kit (ead7ara) 62.9 33 9 646.2 288.8 24 24 0 0 0 0 566.4 8 7 1 0 2 2
x264 (d4099dd) 73.2 10 0 144.3 9.9 10 10 0 0 0 0 426.9 2 2 0 0 0 0
recutils-1.8 92.0 10 11 144.1 44.4 8 8 0 0 0 0 662.2 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 44.8 2.5 4 4 0 0 0 0 182.1 0 0 0 0 0 0
snort-2.9.13 320.8 16 27 2372.0 216.0 11 10 1 0 0 0 4636.4 3 0 0 3 19 18
Total 814.4 96 66 3743.6 602.1 72 71 1 0 0 0 7173.9 26 19 2 5 26 25

from diverse domains: network (inetutils), text-processing (!ex,
recutils), multimedia(WavPack, x264), and security (p11-kit, Snort).

Running I!"#$ on those 10 programs produced a total of 162
alarms. We manually classi"ed the alarms into 96 true and 66 false
positives. Then we (automatically) converted each alarm into an
error report for SAVER. We included false positives as well in our
evaluation, because we assume a use case of repair tools in combina-
tion with static bug-"nders in an end-to-end way without requiring
humans to classify static analysis alarms into true or false.

When running I!"#$, we enabled the --headers option to ana-
lyze header "les as well.Without this option, I!"#$ skips translating
headers into IR, which results in imprecision and increases false
alarms. This is why the number(18) of alarms for Swoole in Table 1
is less than that(20) reported in [60].

In Table 1, we compared SAVER with F%%&P’&() only, since
other tools, M#*F+, [34] and L#’-F+, [18], were not scalable or
robust enough to analyze the benchmark programs.M#*F+, did not
terminate for the benchmark programs except for rappel, for which
it successfully "xed the reported error. L#’-F+, also ran on rappel
but produced no patches. For other programs, L#’-F+, produced
runtime errors. We ran F%%&P’&() in its global mode [60] to allow
it to discover more patch candidates from the entire program. We
obtained F%%&P’&() from its public website.2

For each patch generated by SAVER and F%%&P’&(), we man-
ually checked whether the patch "xed the target error correctly.
For true alarms, we say a patch is correct (✁T) if it removes the
reported memory-leak alarm completely (e.g. "xing all memory
leaks between the source and sink points speci"ed by each alarm)
and introduces no new errors. If the generated patch introduces
a new error, we counted it as unsafe (✂T,✂F). The remaining case
(i.e., the patch is safe but fails to "x the error completely) is counted
as incomplete (→T).

2https://github.com/squaresLab/footpatch

Result. Table 1 shows the experimental results. For the 96 true
positives, SAVER generated 72 patches. Among them, 71 were cor-
rect and "xed errors completely, leading to a 74% "x rate (71/96).
One key contributor to this high "x rate was the ability to gener-
ate conditional patches. For example, all of the correct patches for
snort-2.9.13 involve conditional.

It is notable that SAVER generated no patches for false alarms.
This is mainly because SAVER aims to ensure the patch safety;
in most cases, SAVER naturally fails to “"x” false alarms because
otherwise it needs to "nd a way to modify a program that is already
correct without introducing errors, which is muchmore challenging
than transforming an incorrect program into correct one.

Meanwhile, F%%&P’&() generated 26 patches for true alarms, 19
of which were correct, leading to a 20% "x rate (19/96). The remain-
ing 7 patches were classi"ed into 2 incomplete and 5 unsafe ones
(introducing use-after-frees or double-frees). For the 66 false alarms,
F%%&P’&() generated 26 patches where 25 were unsafe. Note that
most of the false alarm patches are unsafe, implying that “"xing”
false alarms correctly is challenging in practice and a practical tool
needs to ensure safety to avoid it. In total, F%%&P’&() generated
52 patches for all 162 (true and false) alarms and 30 (58%) of them
were unsafe and introduced new errors.

Each of SAVER and F%%&P’&() generated one incomplete patch.
SAVER failed to completely "x an error in snort-2.9.13. Consider
the following simpli"ed situation:

1 int f(void *p) {

2 if (...) return 0; // memory leak

3 if (...) return -1; // memory leak

4 return 0; // no memory leak }

5 int g(void *p) {

6 x = f(p);

7 // Objects pointed by `p` are used

8 /* SAVER: if(x==-1) free(p); */ }

Effectiveness

10 programs

96 true
alarms

66 false
alarms

SAVER

FootPatch

SAVER

FootPatch

Generated 72 patches
(Fixed: 71, Safe: 1, Unsafe: 0)

Generated 26 patches
(Fixed: 19, Safe: 2, Unsafe: 5)

Generated 0 patches

74% fix rate

20% fix rate

0% unsafe fix rate

Existing memory error repair tool [ICSE 2018]

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Comparison of SAVER and F!!"P#"$% on!xingmemory leaks detected by I&’(). For each program, #T and #F denote
the numbers of true and false alarms (i.e. error reports) produced by I&’(), respectively. Pre(s) reports the time taken by the
pre-analysis of SAVER(pre-analysis is run only once and its result is shared by every error !x). Fix(s) reports the total time
taken by each tool in attempting to !x the reported errors. The patch statistics are given in columns G,✁,→ and ✂, where
the subscripts T and F indicate whether the result is for true or false alarms, respectively. G: # of generated patches. ✁: #
of successful patches that !xed errors (without introducing new errors). →: # of incomplete patches that are safe but fail to
completely !x errors. ✂: # of unsafe patches that introduce new errors.

I&’() SAVER F!!"P#"$% [60]

Program kLoC #T #F Pre(s) Fix(s) GT ✁T →T ✂T GF ✂F Fix(s) GT ✁T →T ✂T GF ✂F
rappel (ad8efd7) 2.2 1 0 2.2 0.0 1 1 0 0 0 0 8.9 1 1 0 0 0 0
!ex (d3de49f) 22.3 3 4 26.3 2.5 0 0 0 0 0 0 51.0 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 44.6 22.1 0 0 0 0 0 0 67.9 0 0 0 0 2 2
Swoole (a4256e4) 43.0 15 3 88.5 10.1 11 11 0 0 0 0 392.5 9 7 0 2 1 1
lxc (72cc48f) 49.9 3 5 230.6 5.8 3 3 0 0 0 0 179.6 0 0 0 0 1 1
p11-kit (ead7ara) 62.9 33 9 646.2 288.8 24 24 0 0 0 0 566.4 8 7 1 0 2 2
x264 (d4099dd) 73.2 10 0 144.3 9.9 10 10 0 0 0 0 426.9 2 2 0 0 0 0
recutils-1.8 92.0 10 11 144.1 44.4 8 8 0 0 0 0 662.2 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 44.8 2.5 4 4 0 0 0 0 182.1 0 0 0 0 0 0
snort-2.9.13 320.8 16 27 2372.0 216.0 11 10 1 0 0 0 4636.4 3 0 0 3 19 18
Total 814.4 96 66 3743.6 602.1 72 71 1 0 0 0 7173.9 26 19 2 5 26 25

from diverse domains: network (inetutils), text-processing (!ex,
recutils), multimedia(WavPack, x264), and security (p11-kit, Snort).

Running I!"#$ on those 10 programs produced a total of 162
alarms. We manually classi"ed the alarms into 96 true and 66 false
positives. Then we (automatically) converted each alarm into an
error report for SAVER. We included false positives as well in our
evaluation, because we assume a use case of repair tools in combina-
tion with static bug-"nders in an end-to-end way without requiring
humans to classify static analysis alarms into true or false.

When running I!"#$, we enabled the --headers option to ana-
lyze header "les as well.Without this option, I!"#$ skips translating
headers into IR, which results in imprecision and increases false
alarms. This is why the number(18) of alarms for Swoole in Table 1
is less than that(20) reported in [60].

In Table 1, we compared SAVER with F%%&P’&() only, since
other tools, M#*F+, [34] and L#’-F+, [18], were not scalable or
robust enough to analyze the benchmark programs.M#*F+, did not
terminate for the benchmark programs except for rappel, for which
it successfully "xed the reported error. L#’-F+, also ran on rappel
but produced no patches. For other programs, L#’-F+, produced
runtime errors. We ran F%%&P’&() in its global mode [60] to allow
it to discover more patch candidates from the entire program. We
obtained F%%&P’&() from its public website.2

For each patch generated by SAVER and F%%&P’&(), we man-
ually checked whether the patch "xed the target error correctly.
For true alarms, we say a patch is correct (✁T) if it removes the
reported memory-leak alarm completely (e.g. "xing all memory
leaks between the source and sink points speci"ed by each alarm)
and introduces no new errors. If the generated patch introduces
a new error, we counted it as unsafe (✂T,✂F). The remaining case
(i.e., the patch is safe but fails to "x the error completely) is counted
as incomplete (→T).

2https://github.com/squaresLab/footpatch

Result. Table 1 shows the experimental results. For the 96 true
positives, SAVER generated 72 patches. Among them, 71 were cor-
rect and "xed errors completely, leading to a 74% "x rate (71/96).
One key contributor to this high "x rate was the ability to gener-
ate conditional patches. For example, all of the correct patches for
snort-2.9.13 involve conditional.

It is notable that SAVER generated no patches for false alarms.
This is mainly because SAVER aims to ensure the patch safety;
in most cases, SAVER naturally fails to “"x” false alarms because
otherwise it needs to "nd a way to modify a program that is already
correct without introducing errors, which is muchmore challenging
than transforming an incorrect program into correct one.

Meanwhile, F%%&P’&() generated 26 patches for true alarms, 19
of which were correct, leading to a 20% "x rate (19/96). The remain-
ing 7 patches were classi"ed into 2 incomplete and 5 unsafe ones
(introducing use-after-frees or double-frees). For the 66 false alarms,
F%%&P’&() generated 26 patches where 25 were unsafe. Note that
most of the false alarm patches are unsafe, implying that “"xing”
false alarms correctly is challenging in practice and a practical tool
needs to ensure safety to avoid it. In total, F%%&P’&() generated
52 patches for all 162 (true and false) alarms and 30 (58%) of them
were unsafe and introduced new errors.

Each of SAVER and F%%&P’&() generated one incomplete patch.
SAVER failed to completely "x an error in snort-2.9.13. Consider
the following simpli"ed situation:

1 int f(void *p) {

2 if (...) return 0; // memory leak

3 if (...) return -1; // memory leak

4 return 0; // no memory leak }

5 int g(void *p) {

6 x = f(p);

7 // Objects pointed by `p` are used

8 /* SAVER: if(x==-1) free(p); */ }

Effectiveness

10 programs

96 true
alarms

66 false
alarms

SAVER

FootPatch

SAVER

FootPatch

Generated 72 patches
(Fixed: 71, Safe: 1, Unsafe: 0)

Generated 26 patches
(Fixed: 19, Safe: 2, Unsafe: 5)

Generated 0 patches

Generated 26 patches
(Fixed: 0, Safe: 1, Unsafe: 25)

74% fix rate

20% fix rate

0% unsafe fix rate

Existing memory error repair tool [ICSE 2018]

SAVER: Scalable, Precise, and Safe Memory-Error Repair ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Comparison of SAVER and F!!"P#"$% on!xingmemory leaks detected by I&’(). For each program, #T and #F denote
the numbers of true and false alarms (i.e. error reports) produced by I&’(), respectively. Pre(s) reports the time taken by the
pre-analysis of SAVER(pre-analysis is run only once and its result is shared by every error !x). Fix(s) reports the total time
taken by each tool in attempting to !x the reported errors. The patch statistics are given in columns G,✁,→ and ✂, where
the subscripts T and F indicate whether the result is for true or false alarms, respectively. G: # of generated patches. ✁: #
of successful patches that !xed errors (without introducing new errors). →: # of incomplete patches that are safe but fail to
completely !x errors. ✂: # of unsafe patches that introduce new errors.

I&’() SAVER F!!"P#"$% [60]

Program kLoC #T #F Pre(s) Fix(s) GT ✁T →T ✂T GF ✂F Fix(s) GT ✁T →T ✂T GF ✂F
rappel (ad8efd7) 2.2 1 0 2.2 0.0 1 1 0 0 0 0 8.9 1 1 0 0 0 0
!ex (d3de49f) 22.3 3 4 26.3 2.5 0 0 0 0 0 0 51.0 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 44.6 22.1 0 0 0 0 0 0 67.9 0 0 0 0 2 2
Swoole (a4256e4) 43.0 15 3 88.5 10.1 11 11 0 0 0 0 392.5 9 7 0 2 1 1
lxc (72cc48f) 49.9 3 5 230.6 5.8 3 3 0 0 0 0 179.6 0 0 0 0 1 1
p11-kit (ead7ara) 62.9 33 9 646.2 288.8 24 24 0 0 0 0 566.4 8 7 1 0 2 2
x264 (d4099dd) 73.2 10 0 144.3 9.9 10 10 0 0 0 0 426.9 2 2 0 0 0 0
recutils-1.8 92.0 10 11 144.1 44.4 8 8 0 0 0 0 662.2 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 44.8 2.5 4 4 0 0 0 0 182.1 0 0 0 0 0 0
snort-2.9.13 320.8 16 27 2372.0 216.0 11 10 1 0 0 0 4636.4 3 0 0 3 19 18
Total 814.4 96 66 3743.6 602.1 72 71 1 0 0 0 7173.9 26 19 2 5 26 25

from diverse domains: network (inetutils), text-processing (!ex,
recutils), multimedia(WavPack, x264), and security (p11-kit, Snort).

Running I!"#$ on those 10 programs produced a total of 162
alarms. We manually classi"ed the alarms into 96 true and 66 false
positives. Then we (automatically) converted each alarm into an
error report for SAVER. We included false positives as well in our
evaluation, because we assume a use case of repair tools in combina-
tion with static bug-"nders in an end-to-end way without requiring
humans to classify static analysis alarms into true or false.

When running I!"#$, we enabled the --headers option to ana-
lyze header "les as well.Without this option, I!"#$ skips translating
headers into IR, which results in imprecision and increases false
alarms. This is why the number(18) of alarms for Swoole in Table 1
is less than that(20) reported in [60].

In Table 1, we compared SAVER with F%%&P’&() only, since
other tools, M#*F+, [34] and L#’-F+, [18], were not scalable or
robust enough to analyze the benchmark programs.M#*F+, did not
terminate for the benchmark programs except for rappel, for which
it successfully "xed the reported error. L#’-F+, also ran on rappel
but produced no patches. For other programs, L#’-F+, produced
runtime errors. We ran F%%&P’&() in its global mode [60] to allow
it to discover more patch candidates from the entire program. We
obtained F%%&P’&() from its public website.2

For each patch generated by SAVER and F%%&P’&(), we man-
ually checked whether the patch "xed the target error correctly.
For true alarms, we say a patch is correct (✁T) if it removes the
reported memory-leak alarm completely (e.g. "xing all memory
leaks between the source and sink points speci"ed by each alarm)
and introduces no new errors. If the generated patch introduces
a new error, we counted it as unsafe (✂T,✂F). The remaining case
(i.e., the patch is safe but fails to "x the error completely) is counted
as incomplete (→T).

2https://github.com/squaresLab/footpatch

Result. Table 1 shows the experimental results. For the 96 true
positives, SAVER generated 72 patches. Among them, 71 were cor-
rect and "xed errors completely, leading to a 74% "x rate (71/96).
One key contributor to this high "x rate was the ability to gener-
ate conditional patches. For example, all of the correct patches for
snort-2.9.13 involve conditional.

It is notable that SAVER generated no patches for false alarms.
This is mainly because SAVER aims to ensure the patch safety;
in most cases, SAVER naturally fails to “"x” false alarms because
otherwise it needs to "nd a way to modify a program that is already
correct without introducing errors, which is muchmore challenging
than transforming an incorrect program into correct one.

Meanwhile, F%%&P’&() generated 26 patches for true alarms, 19
of which were correct, leading to a 20% "x rate (19/96). The remain-
ing 7 patches were classi"ed into 2 incomplete and 5 unsafe ones
(introducing use-after-frees or double-frees). For the 66 false alarms,
F%%&P’&() generated 26 patches where 25 were unsafe. Note that
most of the false alarm patches are unsafe, implying that “"xing”
false alarms correctly is challenging in practice and a practical tool
needs to ensure safety to avoid it. In total, F%%&P’&() generated
52 patches for all 162 (true and false) alarms and 30 (58%) of them
were unsafe and introduced new errors.

Each of SAVER and F%%&P’&() generated one incomplete patch.
SAVER failed to completely "x an error in snort-2.9.13. Consider
the following simpli"ed situation:

1 int f(void *p) {

2 if (...) return 0; // memory leak

3 if (...) return -1; // memory leak

4 return 0; // no memory leak }

5 int g(void *p) {

6 x = f(p);

7 // Objects pointed by `p` are used

8 /* SAVER: if(x==-1) free(p); */ }

Effectiveness

10 programs

96 true
alarms

66 false
alarms

SAVER

FootPatch

SAVER

FootPatch

Generated 72 patches
(Fixed: 71, Safe: 1, Unsafe: 0)

Generated 26 patches
(Fixed: 19, Safe: 2, Unsafe: 5)

Generated 0 patches

Generated 26 patches
(Fixed: 0, Safe: 1, Unsafe: 25)

74% fix rate

20% fix rate

0% unsafe fix rate

18% unsafe fix rate

Existing memory error repair tool [ICSE 2018]

• Static analysis-based program repair for C memory errors

• Scalable, precise, and safe

• Successfully deployed in industry

• https://github.com/kupl/kaprese

Summary

Thank you!

https://github.com/kupl/kaprese

