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PL/SE Research @Korea Univ.

e Members: 10+ PhD and MS students

e Research area: intersection of programming languages
(PL) and software engineering (SE)

® program analysis and testing

® program synthesis and repair

e Publication: PL, SE, and Security

e PL: POPL('22),PLDI("12,/14,20,24),O0PSLA('15,17a,17b,/18a,18b,19,20,23)
o SE:ICSE('17,18,/19,20,21'22a,22b,/23a,23b,23c), FSE('18,19,20,21,22,23)

e Security: IEEE S&P('17,'20), USENIX Security('21,23)

http://kupl.github.io
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Key Challenge in XAl

e Practical XAl should satisty two criteria: (1) high accuracy
and (2) high explainability

* No Al approaches can achieve them at the same time
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Our Proposal: A PL Approach to XAl

* |dea:

1. Express Al models as programs written in a DSL

2. Learn models (programs) from data via program synthesis
* |Inherently accurate and explainable:

e Accurate: PLs can describe any computational models

e Explainable: DSLs are human-readable w/ high-level semantics



Our Proposal: A PL Approach to XAl

* |dea:

1. Express Al models as programs written in a DSL

2. Learn models (programs) from data via program synthesis
* |Inherently accurate and explainable:

e Accurate: PLs can describe any computational models

e Explainable: DSLs are human-readable w/ high-level semantics
e This work: demonstration with a focus on graph learning
e Graph Description Language (GDL)

e Graph/ node / edge classification
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e GNNs are used with separate, post-hoc “explainers”
1) high additional cost
- l 2) no correctness guarantee
1 1

V] v2 .
e — 2 b : Explanation
— | Explainer |[—
(0.8) vyl (e.g., subgraph)
V4 V3




Our Approach: PL4XGL

e GDL: A declarative language for describing graphs

Programs P :=0 targett € P =D"xT
® Syntax Descriptions 6 ==0dy |k € D =Dy wDg
Node Descriptions Jy ::= node x <$>? € Dy=Xxa?
Edge Descriptions g ::= edge (x,x) <$>? € D =XxXxo°
Target Symbols t :==node x | edge (x,x) |graph € T =X ((XxX)UW{e}
Intervals ¢ ==1n’,n"] € & =(RWY{-00}) X (RW{o0})
Real Numbers n :=0.2(0.7|6|-8 ... € R
Variables x ==x|ylz]|... e X
® Semantics
[<p1s ... ] p(RY) ={ £ [f=(fi,..., fi) ANYi. fi € v(di)}
[node <<b>]] p(G x H) = { (G,n) | v=n(z) AN € [<¢>[}
[edge (z, y> ] i p(GxH)={(G.n)|e€ENe=n(x)ny) N € [<p>]}
[0102 . .. 0] (G x H) = { (G,n) | Vi. (G.n) € [6:]}
[0 target node 7] (G x V) ={(G,v) | 3G,n) € [4]. v=n(z)}
[6 target edge (z,y)] : (G x E) = { (G,e) | (G, n) € [[é]] e=(n(x),nly))}
[0 target grapn] p(G)  ={ G [3(G.n) <[}

e A GDL program denotes a set of nodes (or edges, graphs)

[P] € Nodes
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How Our Approach Works

Training Data

(graphs w/ node labels)

Learning via program synthesis ‘

The set of nodes having a
predecessor whose
feature value is between

0.0 and 0.5

\%

// GDL program P1
node x <[0.0, 0.5]>
node y

edge (x, y)

target node y

hd

rfl D ﬂ()\\

The set of nodes having a
successor whose feature
value is between 0.2 and

0.7

M S

All nodes in the given
graph

Vv

// GDL program P2
node x

node y <[0.2, 0.7]1>
edge (x, y)

target node x

([0.0, 0.5]]—{ target ) ( target ]—{[0.2, 0.7]]

%

// GDL program P3

node x

target node x

( target J




How Our Approach Works

ini )
Training Data ——
(graphs w/ node labels) —

Decision Explanation
Learning via program synthesis ‘

----------

) vy (5P
((ll’Pl’O'g) 1 (ll)
vy 1 (ly, Py)
> | ([,, P,,0.8) >
(I}, P3,0.0) Vst h Py)
1>+ 32Ye
- J Vg i (h, Py)
Model = A set of GDL programs
// GDL program P1 // GDL program P2 // GDL program P3
node x <[0.0, 0.5]> node x
node y node y <[0.2, 0.7]1>
edge (x, y) edge (x, y) node X
target node y target node x target node x

(10.0, 0.51 }—{ target | [ target }—{10.2,0.71) ( target |




Evaluation

e Compared PLAXGL with
e representative GNNs: GCN, GAT, GIN, etc
e state-of-the-art GNN explainer, SubgraphX*
e Research questions:
1. Classification accuracy
2. Explanation quality
e Machines used:
e GNNs trained and evaluated using a GPU (RTX A6000)

e PL4AXGL trained and evaluated using a 64-core CPU

*Yuan et al. On explainability of graph neural networks via subgraph explorations. ICML 2021



Datasets

e Four datasets for graph classification:
* c.g.,the MUTAG dataset (a set of molecule graphs)
0 mutation will occur
YA e
- l | »[ Model
/\C’C\o/\f\ mutation will not occur

molecule

e Eight datasets for node classification

® e.g., the citation network datasets: Cora, Citeseer, Pubmed

e Fach datasetis splitinto 8:1:1 for training, validation, and
evaluation

10



Datasets

e Four datasets for graph classification:

* c.g.,the MUTAG dataset (a set of molecule graphs)

®

- mutation will occur

Graph classification

Node classification

Molecular datasets

Synthetic datasets

Web page datasets

Citation networks

MUTAG BBBP BACE HIV

BA-SuaApreEs TREE-CYCLES

WiscoNSIN TExAs CORNELL

CorA CITESEER PUBMED

# Graphs

# Nodes (avg)

# Edges (avg)

# Labels

# Node features
# Edge features

188 2,039 1,513 41,127
179 24.0 340 255
19.7 259 368 27.5
2 2 2 2
1 9 9 9
1 3 3 3

1

1

700 871
2,055 971
4 2

1 1

0 0

1

1

1

183 183 251
450 279 277
5 5 5
1,703 1,703 1,703
0 0 0

1

1

1

2,708 3,327 19,717
5,278 4,552 44,324
7 6 3
1,433 3,703 500
0 0 0

~7

® e.g., the citation network datasets: Cora, Citeseer, Pubmed

e Fach datasetis splitinto 8:1:1 for training, validation, and

evaluation

10



(1) Classification Accuracy

e Overall, PLAXGL can compete with GNNs
e For 5 datasets, achieved the best accuracy (e.g., 100% for MUTAG)

* Forthe largest benchmark (HIV), PLAXGL did not scale (48 hours)

GCN GAT CHEBYNET JKNET GRAPHSAGE GIN DGCN | PL4XGL
MUTAG [80.0+0.0 89.0+2.2 86.0+4.1 68.0+7.5 78.0+44 91.0+54 N/A [100.0+0.0
BBBP 83.6+1.4 82.3+1.6 84.6+x1.0 85.6+x1.9 86.6+09 86.2+14 N/A | 86.8+0.0
BACE 78.4+2.8 52.4+3.3 789+14 79.9+19 79.8+0.8 80.9+0.4 N/A 80.9+0.0
HIV 96.4+0.0 96.4+0.0 96.8+0.2 96.8+0.1 96.9+0.2 96.8+0.1 N/A N/A
BA-SHAPES [95.1+0.6 76.8+2.3 97.1+0.0 94.3+0.0 97.1+0.0 92.0+1.1 95.1+0.7 | 95.7+0.0
TREE-CYCLES|97.7+0.0 90.9+0.0 100.0+0.0 98.9+0.0 100.0+0.0 93.2+0.0 99.2+0.5 [100.0+0.0
WISCONSIN [64.0+0.0 49.6+3.1 86.4+3.9 64.8+1.5 92.8+2.9 56.0+0.0 96.0+0.0| 88.0+0.0
TEXAS 67.7+5.3 50.0+0.0 87.7+2.1 68.8+4.3 86.6+2.6 50.0+0.0 86.6+2.6| 83.3+0.0
CORNELL |58.9+2.6 61.1+£0.0 81.0+6.5 61.1+0.0 87.7+2.1 61.1+0.0 86.6+2.6 | 88.8+0.0
Cora 85.6+0.3 86.4+1.8 86.5+5.2 84.9+35 86.3+3.2 86.7+0.0 83.2+5.9| 80.0+ 0.0
CITESEER |75.2+0.0 74.3+0.7 79.1+0.9 73.7+4.2 75.9+2.3 75.2+0.0 71.3+6.0 | 63.8+ 0.0
PuBMED |82.8+1.1 84.7+1.2 88.7+1.0 83.2+0.4 88.0+0.4 86.1+0.6 85.1+0.6 | 81.4+0.0




(2) Explanation Quality

e Fidelity quantifies the correctness of explanations (in range
0 and 1 — lower is better)

/\/:::\C —>@—>decmon —>(SubgraphX)—> ,\,

” 2 explana’uon (subgraph)

,

o,c\/!c\ —>—> decision

e Sparsity quantifies the simplicity (size) of explanations (in

range O and 1 — higher is better)
/
|

AN [ ( Explainer 1 )—» 2%
AL _>_’decision/ \

L L
¢ N N\ A °
: \( Explainer 2 )—> .\’/\Iﬂ/\[/\}o
| |

€
” \o/ \C/C

e
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(2) Explanation Quality

o PLAXGL produced better explanations than SubgraphX

* E.g., graph classitication on the MUTAG dataset

-

0O 051 — SUBGRAPHX

©

% 0.4-

e Py

% = 0.3

O O

R LL. 0.2

O

v

— 0.1

@) PL4XGL
O 0.01

L . 0.2 0.3 0.4 0.5 0.6 0.7
O Sparsity

Simpler explanation



Human-Readable Models

e E.g., the learned model for MUTAG (20 GDL programs)

Label 1

(mutagenic)

Label 2

(non-
mutagenic)

C




Summary

e Problem: Accurate and explainable graph learning
e Solution: A purely PL-based approach to XAl

e Domain-specific languages for defining Al models

* Program synthesis for learning model programs from data
e Result:

e Accuracy can compete with GNNs

e Better explainability than GNNs with post-hoc explainer
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Summary

e Problem: Accurate and explainable graph learning
e Solution: A purely PL-based approach to XAl

e Domain-specific languages for defining Al models

* Program synthesis for learning model programs from data
e Result:

e Accuracy can compete with GNNs

e Better explainability than GNNs with post-hoc explainer

Conclusion: PL techniques are useful even for Al!

15
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Training / Inference Cost

Dataset |Cost (minutes) GNN+ PL4XGL| Dataset |Cost (minutes) GNN+ PL4XGL
SUBGRAPHX SUBGRAPHX
Training 0.2 12.3 Training 0.4 8.0
Classification 0.1 0.1 Classification 0.1 0.1
MUTAG & planation 84l 0.0 ISCONSIN g Tanation 693 0.0
Total 8.7 12.4 Total 69.5 8.1
Training 1.0 34.3 Training 0.4 5.0
Classification 0.1 0.7 Classification 0.1 0.1
BBBP Explanation 160.0 0.0 Texas Explanation 52.1 0.0
Total 161.1 35.0 Total 52.3 5.1
Training 1.0 60.6 Training 0.3 5.0
Classification 0.1 4.0 Classification 0.1 0.1
BACE Explanation 141.1 0.0 CORNELL Explanation 95.8 0.0
Total 142.2 69.9 Total 96.0 5.1
Training 12.2| timeout Training 0.4 61.6
Classification 0.1 N/A Classification 0.1 0.9
HIV . Cora . .
Explanation 2887.8 N/A Explanation timeout 0.0
Total 2900.1| timeout Total timeout 62.5
Training 0.1 0.2 Training 0.4 245.2
BA-SHAPES Classification 0.1 0.1 CITESEER Classification 0.1 2.0
Explanation 4756.0 0.0 Explanation timeout 0.0
Total 4756.2 0.2 Total timeout| 247.2
Training 0.1 0.2 Training 0.6| 2702.9
Classification 0.1 0.1 Classification 0.1 17.0
TREE-CYCLES . PUBMED . .
Explanation 3.4 0.0 Explanation timeout 0.0
Total 3.6 0.2 Total timeout| 2719.9

17



General Methodology

* |n principle, applicable to general classification tasks
e [: instances (e.g., nodes)
e [ :labels(e.g., node labels)

e D e ¢(l X1L): training data

Goal: Learn a classifierf: 1 —» L from D

18



General Methodology

e Model = Programs in domain-specitic language P
e Aprogram P € P denotes a set of instances:
[P] € go(l)
e QOur language-based model:
MeM=g(LxPx[0,1])
e Qur classifier:
fp:Il=LXP

Giveni e€l, f ,(i) returns (I, P,y) € M with highest w

19



General Methodology

® |earningis formulated as program synthesis
Learn : (I X L) - M

e Goal isto synthesize programs in ./ from D, maximizing
classification accuracy over the training data

e \We use a variant of search-based synthesis algorithms

([—00, ])

([~ 0, co]) [<[_°i’m]>] (= o0.0])

SO (TS e L
v

((1=c0.0) (([=c0,01)) ([—00.,01)
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