PL4XGL: A Programming Language Approach to Explainable Graph Learning

Hakjoo Oh Korea University

(co-work with Minseok Jeon and Jihyeok Park)

IFIP WG 2.4 Meeting @Lugano, Switzerland

PL/SE Research @Korea Univ.

- Members: 10+ PhD and MS students
- Research area: intersection of programming languages
 (PL) and software engineering (SE)
 - program analysis and testing
 - program synthesis and repair
- Publication: PL, SE, and Security

- PL: POPL('22),PLDI('12,'14,'20,'24),OOPSLA('15,'17a,'17b,'18a,'18b,'19,'20,'23)
- SE: ICSE('17,'18,'19,'20,'21'22a,'22b,'23a,'23b,'23c), FSE('18,'19,'20,'21,'22,'23)
- Security: IEEE S&P('17,'20), USENIX Security('21,'23)

http://kupl.github.io

Explainable AI (XAI)

• Today: Unexplainable AI

Explainable AI (XAI)

• Today: Unexplainable AI

• Tomorrow: Explainable Al

- Practical XAI should satisfy two criteria: (1) high accuracy and (2) high explainability
- No Al approaches can achieve them at the same time

- Practical XAI should satisfy two criteria: (1) high accuracy and (2) high explainability
- No Al approaches can achieve them at the same time

- Practical XAI should satisfy two criteria: (1) high accuracy and (2) high explainability
- No Al approaches can achieve them at the same time

- Practical XAI should satisfy two criteria: (1) high accuracy and (2) high explainability
- No Al approaches can achieve them at the same time

Our Proposal: A PL Approach to XAI

- Idea:
 - 1. Express Al models as programs written in a DSL
 - 2. Learn models (programs) from data via program synthesis
- Inherently accurate and explainable:
 - Accurate: PLs can describe any computational models
 - Explainable: DSLs are human-readable w/ high-level semantics

Our Proposal: A PL Approach to XAI

- Idea:
 - 1. Express Al models as programs written in a DSL
 - 2. Learn models (programs) from data via program synthesis
- Inherently accurate and explainable:
 - Accurate: PLs can describe any computational models
 - Explainable: DSLs are human-readable w/ high-level semantics
- This work: demonstration with a focus on graph learning
 - Graph Description Language (GDL)
 - Graph / node / edge classification

• Example graph

- Example graph v_1 v_2 v_3 v_4 $\langle 1.2 \rangle$ $\langle 0.2 \rangle$ $\langle 0.4 \rangle$ $\langle 0.8 \rangle$ label l_1 label l_2 label l_1 label l_2
- Mainstream approach: Graph Neural Network (GNN)

- Example graph v_1 v_2 v_3 v_4 $\langle 1.2 \rangle$ $\langle 0.2 \rangle$ $\langle 0.4 \rangle$ $\langle 0.8 \rangle$ label l_1 label l_2 label l_1 label l_2
- Mainstream approach: Graph Neural Network (GNN)

• GNNs are used with separate, post-hoc "explainers"

- Example graph v_1 v_2 v_3 v_4 $\langle 1.2 \rangle$ $\langle 0.2 \rangle$ $\langle 0.4 \rangle$ $\langle 0.8 \rangle$ label l_1 label l_2 label l_1 label l_2 label l_1 label l_2
- Mainstream approach: Graph Neural Network (GNN)

• GNNs are used with separate, post-hoc "explainers"

Our Approach: PL4XGL

- GDL: A declarative language for describing graphs
 - $P ::= \overline{\delta} \operatorname{target} t$ Programs $\in \mathbb{P} = \mathbb{D}^* \times \mathbb{T}$ • Syntax $\begin{array}{lll} \delta & ::= \delta_V \mid \delta_E & \in & \mathbb{D} &= \mathbb{D}_V \uplus \mathbb{D}_E \\ \delta_V & ::= \mathsf{node} \; x < \overline{\phi} >^? & \in & \mathbb{D}_V = \mathbb{X} \times \Phi^d \\ \delta_E & ::= \mathsf{edge} \; (x, x) < \overline{\phi} >^? & \in & \mathbb{D}_E = \mathbb{X} \times \mathbb{X} \times \Phi^c \end{array}$ Descriptions Node Descriptions Edge Descriptions $t ::= \text{node } x \mid \text{edge } (x, x) \mid \text{graph} \in \mathbb{T} = \mathbb{X} \uplus (\mathbb{X} \times \mathbb{X}) \uplus \{\epsilon\}$ Target Symbols $\phi ::= [n^{?}, n^{?}] \qquad \in \Phi = (\mathbb{R} \uplus \{-\infty\}) \times (\mathbb{R} \uplus \{\infty\})$ Intervals $n ::= 0.2 | 0.7 | 6 | -8 \dots$ Real Numbers $\in \mathbb{R}$ $x ::= x | y | z | \dots$ Variables ∈ X
 - Semantics

$$\begin{split} \left[\begin{array}{ccc} \langle \phi_1, \dots, \phi_k \rangle \right] & : \wp(\mathbb{R}^k) & = \{ \begin{array}{ccc} \mathbf{f} & | \ \mathbf{f} = (f_1, \dots, f_k) \land \forall i. \ f_i \in \gamma(\phi_i) \} \\ \\ \left[\operatorname{node} x < \overline{\phi} \rangle \right] & : \wp(\mathbb{G} \times \mathbb{H}) = \{ (G, \eta) \mid v = \eta(x) \land \mathbf{f}_v^G \in \llbracket < \overline{\phi} \rangle \rrbracket \} \\ \\ \left[\operatorname{edge} (x, y) < \overline{\phi} \rangle \right] & : \wp(\mathbb{G} \times \mathbb{H}) = \{ (G, \eta) \mid e \in E \land e = (\eta(x), \eta(y)) \land \mathbf{f}_e^G \in \llbracket < \overline{\phi} \rangle \rrbracket \} \\ \\ \left[\delta_1 \delta_2 \dots \delta_k \right] & : \wp(\mathbb{G} \times \mathbb{H}) = \{ (G, \eta) \mid \forall i. \ (G, \eta) \in \llbracket \delta_i \rrbracket \} \\ \\ \left[\overline{\delta} \operatorname{target node} x \rrbracket \right] & : \wp(\mathbb{G} \times V) = \{ (G, v) \mid \exists (G, \eta) \in \llbracket \delta \rrbracket \} \quad v = \eta(x) \} \\ \\ \left[\overline{\delta} \operatorname{target edge} (x, y) \rrbracket : \wp(\mathbb{G} \times E) = \{ (G, e) \mid \exists (G, \eta) \in \llbracket \delta \rrbracket \} \quad e = (\eta(x), \eta(y)) \} \\ \\ \\ \left[\overline{\delta} \operatorname{target graph} \rrbracket & : \wp(\mathbb{G}) & = \{ G \mid \exists (G, \eta) \in \llbracket \delta \rrbracket \} \end{cases}$$

A GDL program denotes a set of nodes (or edges, graphs)

$\llbracket P \rrbracket \subseteq \mathsf{Nodes}$

Training Data (graphs w/ node labels)

Training Data (graphs w/ node labels)

Learning via program synthesis

Model = A set of GDL programs

// GDL program P1 // GDL program P2 // GDL program P3 node x <[0.0, 0.5] > node x node y node y <[0.2, 0.7] > edge (x, y) edge (x, y) node x target node y target node x target node x $[0.0, 0.5] \rightarrow$ target [0.2, 0.7] target [0.2, 0.7]

Evaluation

- Compared PL4XGL with
 - representative GNNs: GCN, GAT, GIN, etc
 - state-of-the-art GNN explainer, SubgraphX*
- Research questions:
 - 1. Classification accuracy
 - 2. Explanation quality
- Machines used:
 - GNNs trained and evaluated using a GPU (RTX A6000)
 - PL4XGL trained and evaluated using a 64-core CPU

Datasets

- Four datasets for graph classification:
 - e.g., the MUTAG dataset (a set of molecule graphs)

- Eight datasets for node classification
 - e.g., the citation network datasets: Cora, Citeseer, Pubmed
- Each dataset is split into 8:1:1 for training, validation, and evaluation

Datasets

- Four datasets for graph classification:
 - e.g., the MUTAG dataset (a set of molecule graphs)

	Graph classification				Node classification								
	Molecular datasets				Syntheti	c datasets	Web page datasets			Citation networks			
	MUTAG	BBBP	BACE	HIV	BA-Shapes	TREE-CYCLES	Wisconsin	Texas	Cornell	Cora	Citeseer	Pubmed	
# Graphs	188	2,039	1,513	41,127	1	1	1	1	1	1	1	1	
# Nodes (avg)	17.9	24.0	34.0	25.5	700	871	183	183	251	2,708	3,327	19,717	
# Edges (avg)	19.7	25.9	36.8	27.5	2,055	971	450	279	277	5,278	4,552	44,324	
# Labels	2	2	2	2	4	2	5	5	5	7	6	3	
# Node features	1	9	9	9	1	1	1,703	1,703	1,703	1,433	3,703	500	
# Edge features	1	3	3	3	0	0	0	0	0	0	0	0	

mutation will occur

- e.g., the citation network datasets: Cora, Citeseer, Pubmed
- Each dataset is split into 8:1:1 for training, validation, and evaluation

(1) Classification Accuracy

- Overall, PL4XGL can compete with GNNs
 - For 5 datasets, achieved the best accuracy (e.g., 100% for MUTAG)
- For the largest benchmark (HIV), PL4XGL did not scale (48 hours)

	GCN	GAT	СневуNет	JKNet	GRAPHSAGE	GIN	DGCN	PL4XGL
MUTAG	80.0 ± 0.0	89.0 ± 2.2	86.0±4.1	68.0 ± 7.5	78.0 ± 4.4	91.0 ± 5.4	N/A	$100.0{\pm}0.0$
BBBP	83.6±1.4	82.3±1.6	84.6±1.0	85.6±1.9	86.6±0.9	86.2 ± 1.4	N/A	86.8±0.0
BACE	78.4 ± 2.8	52.4 ± 3.3	78.9 ± 1.4	79.9±1.9	79.8 ± 0.8	$80.9{\pm}0.4$	N/A	80.9±0.0
HIV	96.4±0.0	$96.4 {\pm} 0.0$	96.8 ± 0.2	96.8±0.1	96.9±0.2	96.8 ± 0.1	N/A	N/A
BA-Shapes	95.1±0.6	76.8 ± 2.3	97.1±0.0	94.3±0.0	97.1±0.0	92.0±1.1	95.1 ± 0.7	95.7±0.0
TREE-CYCLES	97.7±0.0	90.9 ± 0.0	$100.0{\pm}0.0$	98.9 ± 0.0	$100.0{\pm}0.0$	93.2 ± 0.0	99.2 ± 0.5	$100.0{\pm}0.0$
Wisconsin	64.0 ± 0.0	49.6 ± 3.1	86.4±3.9	64.8 ± 1.5	92.8 ± 2.9	56.0 ± 0.0	$96.0{\pm}0.0$	88.0 ± 0.0
Texas	67.7±5.3	50.0 ± 0.0	87.7 ± 2.1	68.8 ± 4.3	86.6 ± 2.6	50.0 ± 0.0	$\textbf{86.6}{\pm}\textbf{2.6}$	83.3±0.0
Cornell	58.9 ± 2.6	61.1 ± 0.0	81.0 ± 6.5	61.1 ± 0.0	87.7±2.1	61.1 ± 0.0	86.6 ± 2.6	88.8±0.0
Cora	85.6±0.3	86.4 ± 1.8	86.5 ± 5.2	84.9 ± 3.5	86.3±3.2	$86.7{\pm}0.0$	83.2 ± 5.9	80.0 ± 0.0
Citeseer	75.2±0.0	74.3 ± 0.7	79.1±0.9	73.7 ± 4.2	75.9 ± 2.3	75.2 ± 0.0	71.3 ± 6.0	63.8 ± 0.0
Pubmed	82.8±1.1	84.7±1.2	$88.7{\pm}1.0$	83.2±0.4	$88.0 {\pm} 0.4$	86.1±0.6	85.1±0.6	81.4 ± 0.0

(2) Explanation Quality

• Fidelity quantifies the correctness of explanations (in range 0 and 1 – lower is better)

 Sparsity quantifies the simplicity (size) of explanations (in range 0 and 1 – higher is better)

(2) Explanation Quality

- PL4XGL produced better explanations than SubgraphX
- E.g., graph classification on the MUTAG dataset

Human-Readable Models

• E.g., the learned model for MUTAG (20 GDL programs)

Summary

- Problem: Accurate and explainable graph learning
- Solution: A purely PL-based approach to XAI
 - Domain-specific languages for defining AI models
 - Program synthesis for learning model programs from data
- Result:
 - Accuracy can compete with GNNs
 - Better explainability than GNNs with post-hoc explainer

Summary

- Problem: Accurate and explainable graph learning
- Solution: A purely PL-based approach to XAI
 - Domain-specific languages for defining AI models
 - Program synthesis for learning model programs from data
- Result:
 - Accuracy can compete with GNNs
 - Better explainability than GNNs with post-hoc explainer

Conclusion: PL techniques are useful even for AI!

Backup Slides

Training / Inference Cost

Dataset	Cost (minutes)	GNN+ SubgraphX	PL4XGL	Dataset	Cost (minutes)	GNN+ SubgraphX	PL4XGL
MUTAG	Training	0.2	12.3		Training	0.4	8.0
	Classification	0.1	0.1	Wisconsin	Classification	0.1	0.1
	Explanation	8.4	0.0	WISCONSIN	Explanation	69.3	0.0
	Total	8.7	12.4		Total	69.5	8.1
BBBP	Training	1.0	34.3	Texas	Training	0.4	5.0
	Classification	0.1	0.7		Classification	0.1	0.1
	Explanation	160.0	0.0		Explanation	52.1	0.0
	Total	161.1	35.0		Total	52.3	5.1
BACE	Training	1.0	60.6		Training	0.3	5.0
	Classification	0.1	4.0	Cornell	Classification	0.1	0.1
	Explanation	141.1	0.0		Explanation	95.8	0.0
	Total	142.2	69.9		Total	96.0	5.1
	Training	12.2 timeou			Training	0.4	61.6
HIV	Classification	0.1	N/A		Classification	0.1	0.9
	Explanation	2887.8	N/A	CORA	Explanation	timeout	0.0
	Total	2900.1	timeout		Total	timeout	62.5
BA-Shapes	Training	0.1	0.2		Training	0.4	245.2
	Classification	0.1 0.1		CITECEE	Classification	0.1	2.0
	Explanation	4756.0	0.0	CITESEER	Explanation	timeout	0.0
	Total	4756.2	0.2		Total	timeout	247.2
Tree-Cycles	Training	0.1	0.2		Training	0.6	2702.9
	Classification (0.1		Classification	0.1	17.0
	Explanation	3.4	0.0		Explanation	timeout	0.0
	Total	3.6	0.2		Total	timeout	2719.9

General Methodology

- In principle, applicable to general classification tasks
 - I: instances (e.g., nodes)
 - L: labels (e.g., node labels)
 - $D \in \mathcal{D}(\mathbb{I} \times \mathbb{L})$: training data

Goal: Learn a classifier $f \colon \mathbb{I} \to \mathbb{L}$ from D

General Methodology

- Model = Programs in domain-specific language \mathbb{P}
 - A program $P \in \mathbb{P}$ denotes a set of instances:

$[\![P]\!] \in \wp(\mathbb{I})$

• Our language-based model:

$$\mathscr{M} \in \mathbb{M} = \mathscr{D}(\mathbb{L} \times \mathbb{P} \times [0,1])$$

• Our classifier:

$$f_{\mathcal{M}}:\mathbb{I}\to\mathbb{L}\times\mathbb{P}$$

Given $i\in\mathbb{I},\,f_{\mathscr{M}}(i)$ returns $(l,P,\psi)\in\mathscr{M}$ with highest ψ

General Methodology

• Learning is formulated as program synthesis

 $Learn: {\mathcal D}(\mathbb{I}\times\mathbb{L})\to\mathbb{M}$

- Goal is to synthesize programs in \mathcal{M} from D, maximizing classification accuracy over the training data
- We use a variant of search-based synthesis algorithms

