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• Today: Unexplainable AI

Explainable AI (XAI)
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• Practical XAI should satisfy two criteria: (1) high accuracy 
and (2) high explainability 

• No AI approaches can achieve them at the same time

Key Challenge in XAI
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• No AI approaches can achieve them at the same time

Key Challenge in XAI

4

Our GoalSimple 
Models

e.g., decision trees

Deep 
Learning

Accuracy

Ex
pl

ai
na

bi
lit

y



• Idea:  

1. Express AI models as programs written in a DSL 

2. Learn models (programs) from data via program synthesis 

• Inherently accurate and explainable: 

• Accurate: PLs can describe any computational models  

• Explainable: DSLs are human-readable w/ high-level semantics

Our Proposal: A PL Approach to XAI
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• This work: demonstration with a focus on graph learning 

• Graph Description Language (GDL) 

• Graph / node / edge classification



• Example graph

Node Classification
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Example: Node Classification on Graph Data
Example graph:

h1.2i h0.2i h0.4i h0.8i
v1 v2 v3 v4

label l1 label l2 label l1 label l2

Graph Neural Networks (GNNs):

Post-hoc explanation methods:

I additional high cost
I no correctness guarantee
I hardly generalizable
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• GNNs are used with separate, post-hoc “explainers”
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• GDL: A declarative language for describing graphs 

• Syntax 

• Semantics 

• A GDL program denotes a set of nodes (or edges, graphs) 

[[P]] ⊆ Nodes

Our Approach: PL4XGL
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234:6 Minseok Jeon, Jihyeok Park, and Hakjoo Oh

Programs % ::= X target C 2 P = D⇤ ⇥ T
Descriptions X ::= X+ | X⇢ 2 D = D+ ] D⇢

Node Descriptions X+ ::= node G <q>? 2 D+ = X ⇥ �3

Edge Descriptions X⇢ ::= edge (G,G) <q>? 2 D⇢ = X ⇥ X ⇥ �2

Target Symbols C ::= node G | edge (G,G) | graph 2 T = X ] (X ⇥ X) ] {n}
Intervals q ::= [=?,=?] 2 � = (R ] {�1}) ⇥ (R ] {1})
Real Numbers = ::= 0.2 | 0.7 | 6 |-8 . . . 2 R

Variables G ::= x | y | z | . . . 2 X

Fig. 4. The syntax of GDL.

»<q1, . . . ,q:>… : P(R: ) = { f | f = h51, . . . , 5:i ^ 88 . q8 = [0,1] ) 0  58  1}

»node G <q>… : P(G ⇥ H) = { (⌧,[) | E = [ (G) ^ f⌧E 2 »<q>…}
»edge (G,~) <q>… : P(G ⇥ H) = { (⌧,[) | 4 2 ⇢ ^ 4 = ([ (G),[ (~)) ^ f⌧4 2 »<q>…}
»X1X2 . . . X:… : P(G ⇥ H) = { (⌧,[) | 88 . (⌧,[) 2 »X8…}

»X target node G… : P(+ ) = { E | 9(⌧,[) 2 »X…. E = [ (G)}
»X target edge (G,~)… : P(⇢) = { 4 | 9(⌧,[) 2 »X…. 4 = ([ (G),[ (~))}
»X target graph… : P(G) = { ⌧ | 9(⌧,[) 2 »X…}

Fig. 5. The semantics of GDL where ⌧ = (+ , ⇢, F+ , F⇢ ) 2 G is a given featured graph.

3.2 Syntax of GDL
Figure 4 formally de�nes the syntax of GDL. We use the notation� to denote a sequence of elements
in �, and the notation �? to denote an optional element in �. A GDL program % 2 P consists of a
sequence of descriptions X 2 D and a target symbol C 2 T. A description X is either a node description
X+ 2 D+ or an edge description X⇢ 2 D⇢ . A node description node G <q1, . . . ,q3> introduces a new
variable G 2 X for a symbolic node whose 3-dimensional feature vector is bounded by the interval
vector <q1, . . . ,q3>. An edge description edge (G,~) <q1, . . . ,q2> describes a symbolic edge from
a symbolic node G to a symbolic node ~ whose 2-dimensional feature vector is bounded by the
interval vector <q1, . . . ,q2>. If no bound is speci�ed in an interval, the default lower (or upper)
bound is �1 (or1). Finally, a target symbol C 2 T is either 1) a symbolic node node G , 2) a symbolic
edge edge (G,~), or 3) a graph graph itself.

Example. Figure 3b shows a GDL program %4 that describes nodes by target symbol node y in
featured graphs with 1-dimensional node and edge features. The program introduces three symbolic
nodes with variables x, y, and z with the interval vectors h[�1, 0.3]i, h[0.5, 1.0]i, and h[�1,1]i,
respectively. Similarly, it contains two edge descriptions for symbolic edges (x, y) and (y, z), and
the corresponding edge features are interval vectors h[�1,1]i and h[5,1]i, respectively. Finally,
the targets of the program are nodes described by the variable y. Figure 3c shows a graphical
representation of the program %4. Each node and edge in the graph represents a node and edge
description in the program, respectively, and the target symbolic node is highlighted in red. For
brevity, we omit the default interval vector h[�1,1]i in the graphical representation.

3.3 Semantics of GDL
Now,we de�ne the semantics of GDL.We �rst de�ne the semantics of interval vectors and node/edge
descriptions using valuations of symbolic nodes. Then, we de�ne the semantics of GDL programs.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

Example: Graph Description Language (GDL)

A declarative programming language for describing graphs.
I Syntax

I Semantics

Confidential

Programs P ::= � target t 2 P = D� ⇥ T
Descriptions � ::= �V | �E 2 D = DV � DE

Node Descriptions �V ::= node x <�>? 2 DV = X ⇥ �d

Edge Descriptions �E ::= edge (x,x) <�>? 2 DE = X ⇥ X ⇥ �c

Target Symbols t ::= node x | edge (x,x) | graph 2 T = X � (X ⇥ X) � {�}
Intervals � ::= [n?,n?] 2 � = (R � {��, �})2

Real Numbers n ::= 0.2 | 0.7 | 6 | -8 | . . . 2 R
Variables x ::= x | y | z | . . . 2 X

Figure 2: The syntax of GDL.

[[<�1, . . . ,�k>]] : �(Rk) = { f | f = (f1, . . . , fk) � �i. fi 2 �(�i)}
[[node x <�>]] : �(G ⇥ H) = { (G, �) | v = �(x) � fG

v 2 [[<�>]]}
[[edge (x,y) <�>]] : �(G ⇥ H) = { (G, �) | e 2 E � e = (�(x), �(y)) � fG

e 2 [[<�>]]}
[[�1�2 . . . �k]] : �(G ⇥ H) = { (G, �) | �i. (G, �) 2 [[�i]]}
[[� target node x]] : �(G ⇥ V ) = { (G, v) | �(G, �) 2 [[�]]. v = �(x)}
[[� target edge (x, y)]] : �(G ⇥ E) = { (G, e) | �(G, �) 2 [[�]]. e = (�(x), �(y))}
[[� target graph]] : �(G) = { G | �(G, �) 2 [[�]]}

Figure 3: The semantics of GDL. G = (V, E,FV ,FE) 2 G is a given featured graph.

Figure 2 shows the syntax of GDL. A GDL program P consists of a sequence of

descriptions � and a target symbol t. A description � is either a node description �V

or an edge description �E. A node description node x <�1, . . . ,�d> introduces a new

variable x for a symbolic node whose d-dimensional feature vector is bounded by the

interval vector <�1, . . . , �d>. An edge description edge (x, y) <�1, . . . ,�c> describes

a symbolic edge from a symbolic node x to a symbolic node y whose c-dimensional

feature vector is bounded by the interval vector <�1, . . . , �c>. Finally, a target symbol

t is either a symbolic node node x, a symbolic edge edge (x,y), or a graph graph itself.

Figure 3 shows the semantics of GDL. The semantics is defined depending on the

target. For a k-dimensional interval vector <�> = <�1, . . . ,�k> 2 �k, its semantics

[[<�>]] : �(Rk) is a set of k-dimensional feature vectors where each dimension is

bounded by the corresponding interval. The semantics [[�]] : �(G⇥H) of a description

This proposal is intended solely for the panel review of Samsung Research Funding Center for Future Technology and may contain
trade secret, industrial technology or privileged and confidential information otherwise protected under applicable law including the
Unfair Competition Prevention and Trade Secret Protection Act. Any unauthorized dissemination, distribution, copying of use of the
information contained in this communication is strictly prohibited and subject to legal action.
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A GDL program denotes a set of nodes (or edges, graphs).
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(l1, P1,0.9)
(l2, P2,0.8)
(l1, P3,0.0)

Model = A set of GDL programs

Example: Node Classification with GDL-based Model

Confidential

� 2 D is a set of pairs of featured graphs and valuations that satisfy the description

�. A valuation � 2 H = X ! V is a mapping from variables denoting symbolic

nodes in the GDL program to concrete nodes in the featured graph and represents a

subgraph G|� of G with nodes V |� = {�(x) | x 2 X}, and edges E|� = {(�(x), �(y)) |
(�(x), �(y)) 2 E�(x, y) 2 X⇥X}. The semantics of GDL program [[� target node x]] :

�(G⇥V ) collects graphs with nodes that can be assigned to the target symbolic node

x by any valuation � satisfying all the descriptions �. Similarly, [[� target edge (x, y)]] :

�(G ⇥ E) collects graphs with edges. If the target symbol is graph, the program

semantics [[� target graph]] : �(G) describes a set of graphs containing at least one

subgraph G|� by a valuation � satisfying all the descriptions �.

Example Consider the example graph, where the gray-colored nodes (v1 and v3)

belong to label l1 and the white-colored nodes (v2 and v4) have label l2,

h1.2i h0.2i h0.4i h0.8i
v1 v2 v3 v4

and a GDL-based explainable model M1 2 M = �(L ⇥ P ⇥ [0, 1]):

M1 = {(l1, P1, 0.9), (l2, P2, 0.8), (l1, P3, 0.0)}

where GDL programs P1, P2, and P3 are as follows:

// GDL program P1

node x <[0.0, 0.5]>

node y

edge (x, y)

target node y

// GDL program P2

node x

node y <[0.2, 0.7]>

edge (x, y)

target node x

// GDL program P3

node x

target node x

In a natural language, these programs describe:

P1 : “Nodes having a predecessor whose feature value is between 0.0 and 0.5”

P2 : “Nodes having a successor whose feature value is between 0.2 and 0.7”

P3 : “All nodes in the graph”

This proposal is intended solely for the panel review of Samsung Research Funding Center for Future Technology and may contain
trade secret, industrial technology or privileged and confidential information otherwise protected under applicable law including the
Unfair Competition Prevention and Trade Secret Protection Act. Any unauthorized dissemination, distribution, copying of use of the
information contained in this communication is strictly prohibited and subject to legal action.
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“Nodes having a predecessor whose 
feature value is between 0.0 and 0.5”

target[0.0, 0.5] target [0.2, 0.7] target
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• Compared PL4XGL with  

• representative GNNs: GCN, GAT, GIN, etc 

• state-of-the-art GNN explainer, SubgraphX* 

• Research questions: 

1. Classification accuracy 

2. Explanation quality 

• Machines used: 

• GNNs trained and evaluated using a GPU (RTX A6000) 

• PL4XGL trained and evaluated using a 64-core CPU 

Evaluation

9
*Yuan et al. On explainability of graph neural networks via subgraph explorations. ICML 2021



• Four datasets for graph classification:  

• e.g., the MUTAG dataset (a set of molecule graphs)

Datasets
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Fig. 9. How we translate a GDL program into a subgraph explanation.

Fig. 10. Comparison of Fidelity and Sparsity between PL4XGL and S�������X. The size of the subgraph
explanations is parameterized in S�������X; the blue lines show how Fidelity and Sparsity changes over the
chosen hyperparameter values (i.e., size of the explanations). In PL4XGL, the size of explanation is determined
by the model. The squares (⇤) present Fidelity and Sparsity of PL4XGL’s explanations.

represent edge descriptions with the most general constraint h[�1,1]i; they describe all the types
of bonds. The column “Transformed subgraph” presents a subgraph (bold edges) described by
the GDL program % . For example, the node descriptions h[�1,1]i , h[1, 1]i , h[2,1]i , h[1,1]i are
valuated as carbon (C), nitrogen (N), chlorine (cl), and oxygen (O). For a given graph ⌧ , multiple
subgraphs of it can be described by a GDL program % (i.e., |{⌧ |[ | (⌧,[) 2 »X…}| > 1). However, all
the subgraphs in {⌧ |[ | (⌧,[) 2 »X…} have the same Sparsity score because the subgraphs have the
same number of nodes. Also, they are guaranteed to achieve the same Fidelity score (Theorem 6.1).
Figure 10 compares Fidelity and Sparsity of PL4XGL and S�������X for the nine datasets.

Fidelity and Sparsity of S�������X are not available for the citation networks as it failed to produce
explanations. Similarly, these metrics of PL4XGL are not available for the HIV dataset. In the plots,
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• e.g., the citation network datasets: Cora, Citeseer, Pubmed 

• Each dataset is split into 8:1:1 for training, validation, and 
evaluation
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Table 1. Statistics of the datasets
Graph classi�cation Node classi�cation
Molecular datasets Synthetic datasets Web page datasets Citation networks

MUTAG BBBP BACE HIV BA�S����� T����C����� W�������� T���� C������ C��� C������� P�����
# Graphs 188 2,039 1,513 41,127 1 1 1 1 1 1 1 1
# Nodes (avg) 17.9 24.0 34.0 25.5 700 871 183 183 251 2,708 3,327 19,717
# Edges (avg) 19.7 25.9 36.8 27.5 2,055 971 450 279 277 5,278 4,552 44,324
# Labels 2 2 2 2 4 2 5 5 5 7 6 3
# Node features 1 9 9 9 1 1 1,703 1,703 1,703 1,433 3,703 500
# Edge features 1 3 3 3 0 0 0 0 0 0 0 0
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Fig. 8. Simplified examples of synthetic datasets. Numbers in nodes represent the labels nodes belong to.

the base BA graph. Additionally, 70 random edges are added to the resulting graph for perturbation.
There are four di�erent node labels based on their structural roles. Nodes that do not belong to
house-structured motifs are assigned label 0, and each house motif consists of a top node (label 3),
two middle nodes (label 1), and two bottom nodes (label 2). A middle node in a motif is connected
to the base BA graph. Figure 8a shows an example of a house-structured motif attached to a base
graph and describes how nodes are labeled di�erently. (2) The T����C����� dataset consists of a
base 8-level balanced binary tree (label 0) and 80 six-node cycle motifs (label 1). Each cycle motif
is randomly attached to the base binary tree, and 87 edges are randomly added to the resulting
graph. In both BA�S����� and T����C�����, we used degrees (i.e., # of edges of a node) as a node
feature. In the web page datasets (W��������, T����, and C������), nodes and edges represent
web pages and hyperlinks, respectively, and the labels represent the categories (i.e., student, project,
course, sta�, and faculty). In the citation networks (C���, C�������, and P�����), nodes and edges
represent documents and citation links, respectively, and the labels represent document classes. In
these six datasets, nodes are associated with bag-of-words feature vectors.

Baseline GNN-based Models for S�������X. For a fair comparison with S�������X, we use
the original experimental setting of S�������X as much as possible. The baseline GNN-based
models for S�������X are GIN [Xu et al. 2019] and GCN [Kipf and Welling 2017] because they
are used for evaluation in the original paper of S�������X and also the most popular models
on which other recent GNN explanation techniques have been evaluated [Luo et al. 2020; Ying
et al. 2019; Yuan et al. 2021]. For graph classi�cation tasks, we use GCN for BBBP and GIN for
MUTAG, BACE, and HIV as the baseline GNN-based model. For node classi�cation tasks, we use
GCN as the baseline GNN-based model for all �ve datasets. We split the datasets into 8:1:1 for
training, validation, and testing sets, respectively. For the two molecular datasets MUTAG and
BBBP, we utilize the data split used in Yuan et al. [2021]. We applied a random split to the other
remaining datasets. In our evaluation, PL4XGL used an AMD Ryzen Threadripper 3990X with 64
cores. The GNNs and S�������X used an NVIDIA RTX A6000 GPU for training and producing
the explanations.

6.1 RQ1. Explanation Cost
We �rst compare the explanation cost of PL4XGL and S�������X [Yuan et al. 2021]. We used
the artifact of Liu et al. [2021] that provides the implementation of S�������X. For a thorough
comparison, we also compare the training and classi�cation costs.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.
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(1) Classification Accuracy

PL4XGL: A Programming Language Approach to Explainable Graph Learning 234:19

Table 5. Classification accuracy (%) comparison of PL4XGL against representative GNNs.

GCN GAT C����N�� JKN�� G����S��� GIN DGCN PL4XGL
MUTAG 80.0±0.0 89.0±2.2 86.0±4.1 68.0±7.5 78.0±4.4 91.0±5.4 N/A 100.0±0.0
BBBP 83.6±1.4 82.3±1.6 84.6±1.0 85.6±1.9 86.6±0.9 86.2±1.4 N/A 86.8±0.0
BACE 78.4±2.8 52.4±3.3 78.9±1.4 79.9±1.9 79.8±0.8 80.9±0.4 N/A 80.9±0.0
HIV 96.4±0.0 96.4±0.0 96.8±0.2 96.8±0.1 96.9±0.2 96.8±0.1 N/A N/A

BA�S����� 95.1±0.6 76.8±2.3 97.1±0.0 94.3±0.0 97.1±0.0 92.0±1.1 95.1±0.7 95.7±0.0
T����C����� 97.7±0.0 90.9±0.0 100.0±0.0 98.9±0.0 100.0±0.0 93.2±0.0 99.2±0.5 100.0±0.0
W�������� 64.0±0.0 49.6±3.1 86.4±3.9 64.8±1.5 92.8±2.9 56.0±0.0 96.0±0.0 88.0±0.0

T���� 67.7±5.3 50.0±0.0 87.7±2.1 68.8±4.3 86.6±2.6 50.0±0.0 86.6±2.6 83.3±0.0
C������ 58.9±2.6 61.1±0.0 81.0±6.5 61.1±0.0 87.7±2.1 61.1±0.0 86.6±2.6 88.8±0.0
C��� 85.6±0.3 86.4±1.8 86.5±5.2 84.9±3.5 86.3±3.2 86.7±0.0 83.2±5.9 80.0± 0.0

C������� 75.2±0.0 74.3±0.7 79.1±0.9 73.7±4.2 75.9±2.3 75.2±0.0 71.3±6.0 63.8± 0.0
P����� 82.8±1.1 84.7±1.2 88.7±1.0 83.2±0.4 88.0±0.4 86.1±0.6 85.1±0.6 81.4±0.0

The GDL programs in Table 4 describe the properties of the synthetic datasets. For example,
h[12,1]i h[�1,1]i h[12,1]i presents a property of a Barabási-Albert (BA) graph (i.e., label 0 in
BA�S�����), which is often used to model several human-made networks (e.g., world wide web),
a majority of nodes (e.g., web pages) are connected with other nodes that have a large number
of edges. The program precisely and robustly desribed nodes in the Barabási-Albert graphs. In
the BA�S����� dataset, 97% of the nodes in label 0 are described by the program, and 99% of
the nodes belong to the program have the label 0. h[2, 2]i h[2, 2]i describes a property of a
bottom node (label 2) in house motifs that has two edges and is connected to another bottom node.
h[4,1]i h[3, 4]i h[2, 2]i explains that the middle nodes (label 1) have three or four edges and can be
connected to any type of nodes (e.g., top, middle, bottom, and BA nodes), where h[2, 2]i describes
a top or bottom node, and h[4,1]i a middle node or a node in the BA graph (that has at least four
edges). h[4,1]i h[2, 2]i h[3, 4]i captures that top nodes (label 3) have two edges and are connected
with two middle nodes who have three or four edges. h[3, 4]i and h[4,1]i capture the middle nodes
that have three and four nodes, respectively. In the T����C����� dataset, h[3, 5]i h[3, 3]i h[3, 3]i

describes a property of internal nodes in a binary tree (label 0). h[�1,1]i h[�1, 2]i h[�1, 2]i describes
a property of the nodes in Cycle motifs (label 1) that have an adjacent node that has two edges, and
the adjacent node also has another adjacent node that has two edges.

The subgraph explanations of S�������X capture the key subgraphs (i.e., motifs) for the labels.
The subgraphs (bold edges) in Table 4 explain why the red-colored nodes are classi�ed into the
corresponding labels. For example in Label 1 of the T����C����� dataset, the explanation illustrates
that the node is classi�ed into Label 1 because the node is in a cycle motif.

6.3 RQ3. Classification Accuracy
Now, we compare the classi�cation accuracy of PL4XGL against representative GNNs.

Baseline GNNs.We evaluate the classi�cation accuracy of PL4XGL in comparison with seven graph
neural networks: GCN [Kipf and Welling 2017], GAT [Veličković et al. 2018], C����N�� [De�errard
et al. 2016], JKN�� [Xu et al. 2018], G����S��� [Hamilton et al. 2017], GIN [Xu et al. 2019], and
DGCN [Park et al. 2022]. GCN, GAT, GIN are provided by the artifact of S�������X [Yuan et al.
2021], and we additionally implemented C����N��, JKN��, and G����S���. We chose these GNNs
(except for the last) from a recent survey [Wu et al. 2021], which introduces representative GNN
models. For comparison with more recent GNNs, we include DGCN [Park et al. 2022], which
addressed limitations of GNNs in classifying heterophilic graphs such as the graphs in the web page
datasets. Details of training GNNs are described in Section C of our supplementary material.
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• Overall, PL4XGL can compete with GNNs 

• For 5 datasets, achieved the best accuracy (e.g., 100% for MUTAG) 

• For the largest benchmark (HIV), PL4XGL did not scale (48 hours)



• Fidelity quantifies the correctness of explanations (in range 
0 and 1 — lower is better)

(2) Explanation Quality
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(2) Explanation Quality
• PL4XGL produced better explanations than SubgraphX 

• E.g., graph classification on the MUTAG dataset
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• E.g., the learned model for MUTAG (20 GDL programs)

Human-Readable Models
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Preliminary Result
The learned model for the MUTAG dataset (20 GDL programs):

Label 1 
(mutagenic)

Label 2 
(non-

mutagenic)
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Table 3. The learned model (22 abstract graphs) for the MUTAG dataset. For readability, we replace intervals
with symbols and colors. In the abstract graphs, � presents the most general abstract nodes (�[��,�]�) that
the matching atoms can have any type. C and N denote the matching atoms are carbons (�[0, 0]�) and nitrogens
(�[1, 1]�), respectively. The black colored edges present the most general abstract edges ((�[��,�]�, �,�)).
The green and yellow colored ones present aromatic and single bonds, respectively. The blue edges with
intervals present multiple types of bonds. The columns � �� reports the weight of the abstract graphs.
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where Accuracytr and Recalltr denote the accuracy ( # correctly chosen training graphs
# chosen training graphs ) and recall

( # correctly chosen training graphs
# training graphs belonging to the label ) of the abstract graph over the training set. J����� classi�ed

the test graphs captured by the above abstract graph into label 1 because the abstract graph
accurately (e.g., Accuracytr = 0.98) and robustly (e.g., Recalltr = 0.78) describes graphs with label
1 in the training set. The explanation is also general. J����� classi�ed 12 test graphs into label
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• Problem: Accurate and explainable graph learning  

• Solution: A purely PL-based approach to XAI 

• Domain-specific languages for defining AI models  

• Program synthesis for learning model programs from data 

• Result:  

• Accuracy can compete with GNNs 

• Better explainability than GNNs with post-hoc explainer

Summary

15
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Conclusion: PL techniques are useful even for AI!
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PL4XGL: A Programming Language Approach to Explainable Graph Learning 234:15

Table 2. Cost comparison between PL4XGL and the baseline GNN with S�������X in minutes. The rows
“Training” show the cost of training the model, “Classification” show the cost of classifying the test sets, and
“Explanation” show the cost of producing explanations for the test sets. The rows “Total” show the sum of
the three costs. The bold numbers indicate the be�er (i.e., lower) ones. ‘timeout’ indicates that the method
failed to finish its task within the time budget (2 days for training, 1 day for classification, and 4 days for
explanation).

Dataset Cost (minutes) GNN+
S�������X PL4XGL Dataset Cost (minutes) GNN+

S�������X PL4XGL

MUTAG

Training 0.2 12.3

W��������

Training 0.4 8.0
Classi�cation 0.1 0.1 Classi�cation 0.1 0.1
Explanation 8.4 0.0 Explanation 69.3 0.0
Total 8.7 12.4 Total 69.5 8.1

BBBP

Training 1.0 34.3

T����

Training 0.4 5.0
Classi�cation 0.1 0.7 Classi�cation 0.1 0.1
Explanation 160.0 0.0 Explanation 52.1 0.0
Total 161.1 35.0 Total 52.3 5.1

BACE

Training 1.0 60.6

C������

Training 0.3 5.0
Classi�cation 0.1 4.0 Classi�cation 0.1 0.1
Explanation 141.1 0.0 Explanation 95.8 0.0
Total 142.2 69.9 Total 96.0 5.1

HIV

Training 12.2 timeout

C���

Training 0.4 61.6
Classi�cation 0.1 N/A Classi�cation 0.1 0.9
Explanation 2887.8 N/A Explanation timeout 0.0
Total 2900.1 timeout Total timeout 62.5

BA�S�����

Training 0.1 0.2

C�������

Training 0.4 245.2
Classi�cation 0.1 0.1 Classi�cation 0.1 2.0
Explanation 4756.0 0.0 Explanation timeout 0.0
Total 4756.2 0.2 Total timeout 247.2

T����C�����

Training 0.1 0.2

P�����

Training 0.6 2702.9
Classi�cation 0.1 0.1 Classi�cation 0.1 17.0
Explanation 3.4 0.0 Explanation timeout 0.0
Total 3.6 0.2 Total timeout 2719.9

Table 2 shows the cost comparison in minutes. The columns “GNN+S�������X” and “PL4XGL”
represent the cost of the baseline and PL4XGL, respectively. The rows “Training”, “Classi�cation”,
and “Explanation” present the respective costs for training the model, classifying the test sets, and
generating explanations for the test sets. The rows “Total” sum the three costs. The bold numbers
indicate the better (i.e., lower) ones. The term “timeout” means the method failed to �nish its task
within the time budget. The time budget was 2 days for training, 1 day for classi�cation, and 4 days
for generating explanations.
As PL4XGL is designed to produce explanations for predictions simultaneously, its explana-

tion cost is always 0. By contrast, the explanation cost of S�������X was signi�cant. For the
BA�S����� dataset, S�������X took about 3 days to produce explanations for the test set. S���
�����X took this amount of time because it explored a huge number of candidate subgraphs. For
example, to explain a single node belonging to the Barabási-Albert graph (label 0), S�������X had
to explore 2355 candidate subgraphs. Note that S�������X failed to produce explanations for the
three citation network datasets because of its expensive explanation cost. In terms of classi�cation
and explanation costs (i.e.,“Classi�cation” + “Explanation”), PL4XGL was at least 35 times faster.

The classi�cation and training costs, however, show a trade-o� of PL4XGL. In the largest dataset
HIV, for example, PL4XGL failed to �nish its learning within the time budget (i.e., 2 days), whereas
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• In principle, applicable to general classification tasks 

• : instances (e.g., nodes) 

• : labels (e.g., node labels) 

• : training data 

𝕀

𝕃

D ∈ ℘(𝕀 × 𝕃)

General Methodology

18

Goal: Learn a classifier  from f : 𝕀 → 𝕃 D



• Model = Programs in domain-specific language  

• A program  denotes a set of instances: 

 

• Our language-based model:  

 

• Our classifier: 

 

ℙ

P ∈ ℙ

[[P]] ∈ ℘(𝕀)

ℳ ∈ 𝕄 = ℘(𝕃 × ℙ × [0,1])

fℳ : 𝕀 → 𝕃 × ℙ

Given i ∈ 𝕀, fℳ(i) returns (l, P, ψ) ∈ ℳ with highest ψ

General Methodology

19



•  Learning is formulated as program synthesis 

 

• Goal is to synthesize programs in  from , maximizing 
classification accuracy over the training data 

• We use a variant of search-based synthesis algorithms

Learn : ℘(𝕀 × 𝕃) → 𝕄

ℳ D

General Methodology
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• 임의의 그래프에 대해서 더 많이 고르는 프로그램일 수록 더 큰 (일반적인) 프로그램
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