
Data-Driven Static Analysis

25 April 2023 @IFIP WG 2.4 Meeting 67, York Harbor

Hakjoo Oh

• Members: 10 PhD and 5 MS students

• Research areas: programming languages (PL), software engineering
(SE), software security

• program analysis and testing

• program synthesis and repair

• Publication: in PL, SE, and Security venues:

• PL: POPL(’22),PLDI(’12,’14,’20),OOPSLA(’15,’17a,’17b,’18a,’18b,’19,’20,’23)

• SE: ICSE(’17,’18,’19,’20,’21’22a,’22b,’23a,’23b,’23c), FSE(’18,’19,’20,’21,’22), ASE(’18)

• Security: Oakland(’17,’20), USENIX Security(’21,’23)

http://prl.korea.ac.kr

PL/SE Research @Korea Univ.

2

http://prl.korea.ac.kr

• Members: 10 PhD and 5 MS students

• Research areas: programming languages (PL), software engineering
(SE), software security

• program analysis and testing

• program synthesis and repair

• Publication: in PL, SE, and Security venues:

• PL: POPL(’22),PLDI(’12,’14,’20),OOPSLA(’15,’17a,’17b,’18a,’18b,’19,’20,’23)

• SE: ICSE(’17,’18,’19,’20,’21’22a,’22b,’23a,’23b,’23c), FSE(’18,’19,’20,’21,’22), ASE(’18)

• Security: Oakland(’17,’20), USENIX Security(’21,’23)

http://prl.korea.ac.kr

PL/SE Research @Korea Univ.

2

http://prl.korea.ac.kr

• Members: 10 PhD and 5 MS students

• Research areas: programming languages (PL), software engineering
(SE), software security

• program analysis and testing

• program synthesis and repair

• Publication: in PL, SE, and Security venues:

• PL: POPL(’22),PLDI(’12,’14,’20),OOPSLA(’15,’17a,’17b,’18a,’18b,’19,’20,’23)

• SE: ICSE(’17,’18,’19,’20,’21’22a,’22b,’23a,’23b,’23c), FSE(’18,’19,’20,’21,’22), ASE(’18)

• Security: Oakland(’17,’20), USENIX Security(’21,’23)

http://prl.korea.ac.kr

PL/SE Research @Korea Univ.

2

14 hours

http://prl.korea.ac.kr

• Members: 10 PhD and 5 MS students

• Research areas: programming languages (PL), software engineering
(SE), software security

• program analysis and testing

• program synthesis and repair

• Publication: in PL, SE, and Security venues:

• PL: POPL(’22),PLDI(’12,’14,’20),OOPSLA(’15,’17a,’17b,’18a,’18b,’19,’20,’23)

• SE: ICSE(’17,’18,’19,’20,’21’22a,’22b,’23a,’23b,’23c), FSE(’18,’19,’20,’21,’22), ASE(’18)

• Security: Oakland(’17,’20), USENIX Security(’21,’23)

http://prl.korea.ac.kr

PL/SE Research @Korea Univ.

2

14 hours

Korea Univ.

KAIST

Seoul National Univ.

http://prl.korea.ac.kr

Tradeoff in Static Analysis

3

Soundness (more true positives)

Precision
(less false positives)

Scalability

Tradeoff in Static Analysis

3

Soundness (more true positives)

Precision
(less false positives)

Scalability
“bug-finders”

Tradeoff in Static Analysis

3

Soundness (more true positives)

Precision
(less false positives)

Scalability

“verifiers”

Tradeoff in Static Analysis

3

Soundness (more true positives)

Precision
(less false positives)

Scalability

“verifiers”

Tradeoff in Static Analysis

3

Soundness (more true positives)

Precision
(less false positives)

Scalability

?

This talk: Using machine learning to balance
soundness, precision, and scalability

Example 1: Balancing Precision
and Scalability in Sound Analysis

4

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 0); // Query: always holds (x is 4 or 8)
 y = h(input());
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

Context Insensitivity

5

g

h

f

m

cheap but imprecise

c5,c6

c4

c3

c1,c2

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 0);
 y = h(input());
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

Context Sensitivity (k-CFA)

6

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

precise but expensive

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 0);
 y = h(input());
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

(k=3)
n = 4

n = 8

n = 8

n = ⊤

n = ⊤

n = ⊤

Selective Context Sensitivity

7

h

h

m

c4

c5,c6
c3

c1

c1
fg

h

f

c2

c2 h

Apply 2-ctx-sens: {h}
Apply 1-ctx-sens: {f}
Apply 0-ctx-sens: {g, m}

cheap and precise

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 0);
 y = h(input());
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

n = 4

n = ⊤

n = 8

n = ⊤

Hard Search Problem

8

Apply 2-ctx-sens: {h}
Apply 1-ctx-sens: {f}
Apply 0-ctx-sens: {g, m}

“How to find a good program
abstraction?”

Hard Search Problem

8

• Intractably large search space, if not infinite

• e.g., difference abstractions for context sensitivity

• Few solutions: many abstractions too imprecise or costly

(k + 1)|Func|

Apply 2-ctx-sens: {h}
Apply 1-ctx-sens: {f}
Apply 0-ctx-sens: {g, m}

“How to find a good program
abstraction?”

Hard Search Problem

8

• Intractably large search space, if not infinite

• e.g., difference abstractions for context sensitivity

• Few solutions: many abstractions too imprecise or costly

(k + 1)|Func|

A fundamental problem in static analysis
=> Use machine learning to solve this problem

Apply 2-ctx-sens: {h}
Apply 1-ctx-sens: {f}
Apply 0-ctx-sens: {g, m}

“How to find a good program
abstraction?”

9

7: p = sdp_seq_alloc();
8: sdp_attr_replace(rec, p);

Example 2: Balancing Soundness and
Scalability in Unsound Bug-Finders

(a memory-leak bug from bluez-5.55)

9

7: p = sdp_seq_alloc();
8: sdp_attr_replace(rec, p);

*rec
attrlist
next nil
data

*data

Pre-condition
*rec

attrlist
next nil

data

*data

Post-condition (success)

next
data

*rec
attrlist
next nil
data

*data

Post-condition (failure)

*rec
attrlist
next nil
data

*data

Post-condition (buggy)

rec attrlist next nil
data

p

*rec
attrlist

next nil
data

*data

next
data

rec attrlist next nil

data
p

*rec
attrlist

next

nil

data
*data

next

data

next

data

*rec
attrlist
next nil
data

*data

*rec
attrlist

next nil
data

*data

next
data

*rec attrlist next nil

data

*data

next

data

rec attrlist next nil
data

p

rec attrlist next nil

data
p

next

data

rec

p

attrlist next
data

nil rec

p

attrlist nilnext
data

next
data

rec

p

attrlist
nil

next
data

rec

p

attrlist nilnext
data

next
data

(a) (b)

Fig. 1: Memory states after the call (a) sdp_seq_alloc and
(b) sdp_attr_replace. The dotted boxes denote newly
allocated memory blocks.

• We evaluate our approach with Infer, an industrial bug-
finding static analyzer deployed within Meta, and show
that its efficiency can be improved significantly.

• For open science, we make our source code publicly
available.

II. OVERVIEW

A. Motivating Example

Bug Detection Example. With our technique, Infer success-
fully detected a memory-leak bug from open-source project
bluez-5.55. The alarm report produced by Infer is given
below:
Memory dynamically allocated at line 2007 by call
to sdp_seq_alloc(), is not freed after the last
access at line 2008, column 3.

The (simplified) code for lines 2007 and 2008 is as follows:
p = sdp_seq_alloc(...); // line 2007
sdp_attr_replace(rec, ..., p); // line 2008

where the pointer variable rec is an argument of the enclosing
function, and it refers to a memory block accessible from the
outside. The local variable p temporarily stores the result of
sdp_seq_alloc, is passed to sdp_attr_replace as an
argument, and is not used anymore after line 2008.

Executing the two lines above involves 14 different function
calls, but for the sake of brevity, let us consider the following
core executions related to the memory leak:

• When the function sdp_seq_alloc is called, it allo-
cates a new memory block and returns the address of the
block. This address is then assigned to the local variable
p (Figure ??).

• When the function sdp_attr_replace is called, it
allocates a new linked-list memory block. It then assigns
the address of the memory block pointed to by p to
the data field of the newly allocated linked-list block,
and inserts the block into the linked list designated by
rec->attrlist (Figure ??).

When sdp_attr_replace fails to allocate a memory
block, the program state remains as Figure ?? and hence
results in a memory leak. the local variable p is not used
later and its referenced memory block is not freed.

Difficulty of Finding the Bug. To detect this bug, Infer needs
to employ a carefully-tuned state-selection heuristic. Analyz-
ing the above two lines of code path-sensitively produces more
than two million distinct cases. The execution of the function
sdp_attr_replace involves 8 different function calls,

Fig. 2: Overview of our approach

each of which has multiple branches; analyzing a series of
function calls results in a combinatorial explosion of the num-
ber of possible execution cases, yielding more than 2,000 dis-
junctive summaries for the function sdp_attr_replace.
Similarly, the analysis produces more than 1,000 summaries
for the function sdp_seq_alloc. Among those two million
(2, 000⇥ 1, 000) execution paths, only 7% of them are buggy
paths that produce a memory leak. Our data-driven Infer could
accurately prioritize these paths and succeeded to report the
bug while the original Infer failed to do so.

B. Overall Workflow of Our Approach
Figure 2 provides an overview of our approach, which

is divided into two main stages: the training stage and the
analysis stage. The training stage generates a collection of
models for state-selection heuristics. First, it collects alarm
and non-alarm triggering traces from programs in the training
set. For this step, we use an extended analysis producing
a set of traces instead of summaries. Then, an off-the-shelf
learning algorithm trains a collection of models that predict
the probability of a state contributing to an alarm from the
collected traces. Finally, we select M models that collectively
perform the best in the validation set. The analysis stage first
selects the best model for each target program from the M
models, where we use a lightweight pre-analysis with a limited
Kpre to identify the model that best fits the target program.
Then, we proceed with the main analysis using Kmain with
the selected model.

III. PRELIMINARIES

A. Disjunctive Bug-Finding Static Analysis
In this section, we describe a generic algorithm for dis-

junctive static bug-finders, which forms the core of industrial
static analyzers such as Infer [1]. We note that soundness
is not a primary concern of such an analyzer; instead, the
analysis is designed with a focus on scalability and precision.
For scalability, the analysis is designed to be summary-based
and works in a bottom-up fashion [1], [10]. For precision,
it is designed to be disjunctive, among others, separately
maintaining program states along different execution paths.

Normal execution (no memory leak)

Example 2: Balancing Soundness and
Scalability in Unsound Bug-Finders

(a memory-leak bug from bluez-5.55)

9

7: p = sdp_seq_alloc();
8: sdp_attr_replace(rec, p);

*rec
attrlist
next nil
data

*data

Pre-condition
*rec

attrlist
next nil

data

*data

Post-condition (success)

next
data

*rec
attrlist
next nil
data

*data

Post-condition (failure)

*rec
attrlist
next nil
data

*data

Post-condition (buggy)

rec attrlist next nil
data

p

*rec
attrlist

next nil
data

*data

next
data

rec attrlist next nil

data
p

*rec
attrlist

next

nil

data
*data

next

data

next

data

*rec
attrlist
next nil
data

*data

*rec
attrlist

next nil
data

*data

next
data

*rec attrlist next nil

data

*data

next

data

rec attrlist next nil
data

p

rec attrlist next nil

data
p

next

data

rec

p

attrlist next
data

nil rec

p

attrlist nilnext
data

next
data

rec

p

attrlist
nil

next
data

rec

p

attrlist nilnext
data

next
data

(a) (b)

Fig. 1: Memory states after the call (a) sdp_seq_alloc and
(b) sdp_attr_replace. The dotted boxes denote newly
allocated memory blocks.

• We evaluate our approach with Infer, an industrial bug-
finding static analyzer deployed within Meta, and show
that its efficiency can be improved significantly.

• For open science, we make our source code publicly
available.

II. OVERVIEW

A. Motivating Example

Bug Detection Example. With our technique, Infer success-
fully detected a memory-leak bug from open-source project
bluez-5.55. The alarm report produced by Infer is given
below:
Memory dynamically allocated at line 2007 by call
to sdp_seq_alloc(), is not freed after the last
access at line 2008, column 3.

The (simplified) code for lines 2007 and 2008 is as follows:
p = sdp_seq_alloc(...); // line 2007
sdp_attr_replace(rec, ..., p); // line 2008

where the pointer variable rec is an argument of the enclosing
function, and it refers to a memory block accessible from the
outside. The local variable p temporarily stores the result of
sdp_seq_alloc, is passed to sdp_attr_replace as an
argument, and is not used anymore after line 2008.

Executing the two lines above involves 14 different function
calls, but for the sake of brevity, let us consider the following
core executions related to the memory leak:

• When the function sdp_seq_alloc is called, it allo-
cates a new memory block and returns the address of the
block. This address is then assigned to the local variable
p (Figure ??).

• When the function sdp_attr_replace is called, it
allocates a new linked-list memory block. It then assigns
the address of the memory block pointed to by p to
the data field of the newly allocated linked-list block,
and inserts the block into the linked list designated by
rec->attrlist (Figure ??).

When sdp_attr_replace fails to allocate a memory
block, the program state remains as Figure ?? and hence
results in a memory leak. the local variable p is not used
later and its referenced memory block is not freed.

Difficulty of Finding the Bug. To detect this bug, Infer needs
to employ a carefully-tuned state-selection heuristic. Analyz-
ing the above two lines of code path-sensitively produces more
than two million distinct cases. The execution of the function
sdp_attr_replace involves 8 different function calls,

Fig. 2: Overview of our approach

each of which has multiple branches; analyzing a series of
function calls results in a combinatorial explosion of the num-
ber of possible execution cases, yielding more than 2,000 dis-
junctive summaries for the function sdp_attr_replace.
Similarly, the analysis produces more than 1,000 summaries
for the function sdp_seq_alloc. Among those two million
(2, 000⇥ 1, 000) execution paths, only 7% of them are buggy
paths that produce a memory leak. Our data-driven Infer could
accurately prioritize these paths and succeeded to report the
bug while the original Infer failed to do so.

B. Overall Workflow of Our Approach
Figure 2 provides an overview of our approach, which

is divided into two main stages: the training stage and the
analysis stage. The training stage generates a collection of
models for state-selection heuristics. First, it collects alarm
and non-alarm triggering traces from programs in the training
set. For this step, we use an extended analysis producing
a set of traces instead of summaries. Then, an off-the-shelf
learning algorithm trains a collection of models that predict
the probability of a state contributing to an alarm from the
collected traces. Finally, we select M models that collectively
perform the best in the validation set. The analysis stage first
selects the best model for each target program from the M
models, where we use a lightweight pre-analysis with a limited
Kpre to identify the model that best fits the target program.
Then, we proceed with the main analysis using Kmain with
the selected model.

III. PRELIMINARIES

A. Disjunctive Bug-Finding Static Analysis
In this section, we describe a generic algorithm for dis-

junctive static bug-finders, which forms the core of industrial
static analyzers such as Infer [1]. We note that soundness
is not a primary concern of such an analyzer; instead, the
analysis is designed with a focus on scalability and precision.
For scalability, the analysis is designed to be summary-based
and works in a bottom-up fashion [1], [10]. For precision,
it is designed to be disjunctive, among others, separately
maintaining program states along different execution paths.

Normal execution (no memory leak)

Example 2: Balancing Soundness and
Scalability in Unsound Bug-Finders

(a memory-leak bug from bluez-5.55)

9

7: p = sdp_seq_alloc();
8: sdp_attr_replace(rec, p);

(a)

*rec
attrlist
next nil
data

*data

Pre-condition
*rec

attrlist
next nil

data

*data

Post-condition (success)

next
data

*rec
attrlist
next nil
data

*data

Post-condition (failure)

*rec
attrlist
next nil
data

*data

Post-condition (buggy)

rec attrlist next nil
data

p

*rec
attrlist

next nil
data

*data

next
data

rec attrlist next nil

data
p

*rec
attrlist

next

nil

data
*data

next

data

next

data

*rec
attrlist
next nil
data

*data

*rec
attrlist

next nil
data

*data

next
data

*rec attrlist next nil

data

*data

next

data

rec attrlist next nil
data

p

rec attrlist next nil

data
p

next

data

rec

p

attrlist next
data

nil rec

p

attrlist nilnext
data

next
data

rec

p

attrlist
nil

next
data

rec

p

attrlist nilnext
data

next
data

(b)

Fig. 1: Memory states after the call (a) sdp_seq_alloc and
(b) sdp_attr_replace. The dotted boxes denote newly
allocated memory blocks.

• We evaluate our approach with Infer, an industrial bug-
finding static analyzer deployed within Meta, and show
that its efficiency can be improved significantly.

• For open science, we make our source code publicly
available.

II. OVERVIEW

A. Motivating Example

Bug Detection Example. With our technique, Infer success-
fully detected a memory-leak bug from open-source project
bluez-5.55. The alarm report produced by Infer is given
below:
Memory dynamically allocated at line 2007 by call
to sdp_seq_alloc(), is not freed after the last
access at line 2008, column 3.

The (simplified) code for lines 2007 and 2008 is as follows:
p = sdp_seq_alloc(...); // line 2007
sdp_attr_replace(rec, ..., p); // line 2008

where the pointer variable rec is an argument of the enclosing
function, and it refers to a memory block accessible from the
outside. The local variable p temporarily stores the result of
sdp_seq_alloc, is passed to sdp_attr_replace as an
argument, and is not used anymore after line 2008.

Executing the two lines above involves 14 different function
calls, but for the sake of brevity, let us consider the following
core executions related to the memory leak:

• When the function sdp_seq_alloc is called, it allo-
cates a new memory block and returns the address of the
block. This address is then assigned to the local variable
p (Figure ??).

• When the function sdp_attr_replace is called, it
allocates a new linked-list memory block. It then assigns
the address of the memory block pointed to by p to
the data field of the newly allocated linked-list block,
and inserts the block into the linked list designated by
rec->attrlist (Figure ??).

When sdp_attr_replace fails to allocate a memory
block, the program state remains as Figure ?? and hence
results in a memory leak. the local variable p is not used
later and its referenced memory block is not freed.

Difficulty of Finding the Bug. To detect this bug, Infer needs
to employ a carefully-tuned state-selection heuristic. Analyz-
ing the above two lines of code path-sensitively produces more
than two million distinct cases. The execution of the function
sdp_attr_replace involves 8 different function calls,

Fig. 2: Overview of our approach

each of which has multiple branches; analyzing a series of
function calls results in a combinatorial explosion of the num-
ber of possible execution cases, yielding more than 2,000 dis-
junctive summaries for the function sdp_attr_replace.
Similarly, the analysis produces more than 1,000 summaries
for the function sdp_seq_alloc. Among those two million
(2, 000⇥ 1, 000) execution paths, only 7% of them are buggy
paths that produce a memory leak. Our data-driven Infer could
accurately prioritize these paths and succeeded to report the
bug while the original Infer failed to do so.

B. Overall Workflow of Our Approach
Figure 2 provides an overview of our approach, which

is divided into two main stages: the training stage and the
analysis stage. The training stage generates a collection of
models for state-selection heuristics. First, it collects alarm
and non-alarm triggering traces from programs in the training
set. For this step, we use an extended analysis producing
a set of traces instead of summaries. Then, an off-the-shelf
learning algorithm trains a collection of models that predict
the probability of a state contributing to an alarm from the
collected traces. Finally, we select M models that collectively
perform the best in the validation set. The analysis stage first
selects the best model for each target program from the M
models, where we use a lightweight pre-analysis with a limited
Kpre to identify the model that best fits the target program.
Then, we proceed with the main analysis using Kmain with
the selected model.

III. PRELIMINARIES

A. Disjunctive Bug-Finding Static Analysis
In this section, we describe a generic algorithm for dis-

junctive static bug-finders, which forms the core of industrial
static analyzers such as Infer [1]. We note that soundness
is not a primary concern of such an analyzer; instead, the
analysis is designed with a focus on scalability and precision.
For scalability, the analysis is designed to be summary-based
and works in a bottom-up fashion [1], [10]. For precision,
it is designed to be disjunctive, among others, separately
maintaining program states along different execution paths.

Normal execution (no memory leak)

Example 2: Balancing Soundness and
Scalability in Unsound Bug-Finders

(a memory-leak bug from bluez-5.55)

10

Buggy execution (memory leak)

7: p = sdp_seq_alloc();
8: sdp_attr_replace(rec, p);

Example 2: Balancing Soundness and
Scalability in Unsound Bug-Finders

10

*rec
attrlist
next nil
data

*data

Pre-condition
*rec

attrlist
next nil

data

*data

Post-condition (success)

next
data

*rec
attrlist
next nil
data

*data

Post-condition (failure)

*rec
attrlist
next nil
data

*data

Post-condition (buggy)

rec attrlist next nil
data

p

*rec
attrlist

next nil
data

*data

next
data

rec attrlist next nil

data
p

*rec
attrlist

next

nil

data
*data

next

data

next

data

*rec
attrlist
next nil
data

*data

*rec
attrlist

next nil
data

*data

next
data

*rec attrlist next nil

data

*data

next

data

rec attrlist next nil
data

p

rec attrlist next nil

data
p

next

data

rec

p

attrlist next
data

nil rec

p

attrlist nilnext
data

next
data

rec

p

attrlist
nil

next
data

rec

p

attrlist nilnext
data

next
data

(a) (b)

Fig. 1: Memory states after the call (a) sdp_seq_alloc and
(b) sdp_attr_replace. The dotted boxes denote newly
allocated memory blocks.

• We evaluate our approach with Infer, an industrial bug-
finding static analyzer deployed within Meta, and show
that its efficiency can be improved significantly.

• For open science, we make our source code publicly
available.

II. OVERVIEW

A. Motivating Example

Bug Detection Example. With our technique, Infer success-
fully detected a memory-leak bug from open-source project
bluez-5.55. The alarm report produced by Infer is given
below:
Memory dynamically allocated at line 2007 by call
to sdp_seq_alloc(), is not freed after the last
access at line 2008, column 3.

The (simplified) code for lines 2007 and 2008 is as follows:
p = sdp_seq_alloc(...); // line 2007
sdp_attr_replace(rec, ..., p); // line 2008

where the pointer variable rec is an argument of the enclosing
function, and it refers to a memory block accessible from the
outside. The local variable p temporarily stores the result of
sdp_seq_alloc, is passed to sdp_attr_replace as an
argument, and is not used anymore after line 2008.

Executing the two lines above involves 14 different function
calls, but for the sake of brevity, let us consider the following
core executions related to the memory leak:

• When the function sdp_seq_alloc is called, it allo-
cates a new memory block and returns the address of the
block. This address is then assigned to the local variable
p (Figure ??).

• When the function sdp_attr_replace is called, it
allocates a new linked-list memory block. It then assigns
the address of the memory block pointed to by p to
the data field of the newly allocated linked-list block,
and inserts the block into the linked list designated by
rec->attrlist (Figure ??).

When sdp_attr_replace fails to allocate a memory
block, the program state remains as Figure ?? and hence
results in a memory leak. the local variable p is not used
later and its referenced memory block is not freed.

Difficulty of Finding the Bug. To detect this bug, Infer needs
to employ a carefully-tuned state-selection heuristic. Analyz-
ing the above two lines of code path-sensitively produces more
than two million distinct cases. The execution of the function
sdp_attr_replace involves 8 different function calls,

Fig. 2: Overview of our approach

each of which has multiple branches; analyzing a series of
function calls results in a combinatorial explosion of the num-
ber of possible execution cases, yielding more than 2,000 dis-
junctive summaries for the function sdp_attr_replace.
Similarly, the analysis produces more than 1,000 summaries
for the function sdp_seq_alloc. Among those two million
(2, 000⇥ 1, 000) execution paths, only 7% of them are buggy
paths that produce a memory leak. Our data-driven Infer could
accurately prioritize these paths and succeeded to report the
bug while the original Infer failed to do so.

B. Overall Workflow of Our Approach
Figure 2 provides an overview of our approach, which

is divided into two main stages: the training stage and the
analysis stage. The training stage generates a collection of
models for state-selection heuristics. First, it collects alarm
and non-alarm triggering traces from programs in the training
set. For this step, we use an extended analysis producing
a set of traces instead of summaries. Then, an off-the-shelf
learning algorithm trains a collection of models that predict
the probability of a state contributing to an alarm from the
collected traces. Finally, we select M models that collectively
perform the best in the validation set. The analysis stage first
selects the best model for each target program from the M
models, where we use a lightweight pre-analysis with a limited
Kpre to identify the model that best fits the target program.
Then, we proceed with the main analysis using Kmain with
the selected model.

III. PRELIMINARIES

A. Disjunctive Bug-Finding Static Analysis
In this section, we describe a generic algorithm for dis-

junctive static bug-finders, which forms the core of industrial
static analyzers such as Infer [1]. We note that soundness
is not a primary concern of such an analyzer; instead, the
analysis is designed with a focus on scalability and precision.
For scalability, the analysis is designed to be summary-based
and works in a bottom-up fashion [1], [10]. For precision,
it is designed to be disjunctive, among others, separately
maintaining program states along different execution paths.

Buggy execution (memory leak)

7: p = sdp_seq_alloc();
8: sdp_attr_replace(rec, p);

Example 2: Balancing Soundness and
Scalability in Unsound Bug-Finders

10

*rec
attrlist
next nil
data

*data

Pre-condition
*rec

attrlist
next nil

data

*data

Post-condition (success)

next
data

*rec
attrlist
next nil
data

*data

Post-condition (failure)

*rec
attrlist
next nil
data

*data

Post-condition (buggy)

rec attrlist next nil
data

p

*rec
attrlist

next nil
data

*data

next
data

rec attrlist next nil

data
p

*rec
attrlist

next

nil

data
*data

next

data

next

data

*rec
attrlist
next nil
data

*data

*rec
attrlist

next nil
data

*data

next
data

*rec attrlist next nil

data

*data

next

data

rec attrlist next nil
data

p

rec attrlist next nil

data
p

next

data

rec

p

attrlist next
data

nil rec

p

attrlist nilnext
data

next
data

rec

p

attrlist
nil

next
data

rec

p

attrlist nilnext
data

next
data

(a) (b)

Fig. 1: Memory states after the call (a) sdp_seq_alloc and
(b) sdp_attr_replace. The dotted boxes denote newly
allocated memory blocks.

• We evaluate our approach with Infer, an industrial bug-
finding static analyzer deployed within Meta, and show
that its efficiency can be improved significantly.

• For open science, we make our source code publicly
available.

II. OVERVIEW

A. Motivating Example

Bug Detection Example. With our technique, Infer success-
fully detected a memory-leak bug from open-source project
bluez-5.55. The alarm report produced by Infer is given
below:
Memory dynamically allocated at line 2007 by call
to sdp_seq_alloc(), is not freed after the last
access at line 2008, column 3.

The (simplified) code for lines 2007 and 2008 is as follows:
p = sdp_seq_alloc(...); // line 2007
sdp_attr_replace(rec, ..., p); // line 2008

where the pointer variable rec is an argument of the enclosing
function, and it refers to a memory block accessible from the
outside. The local variable p temporarily stores the result of
sdp_seq_alloc, is passed to sdp_attr_replace as an
argument, and is not used anymore after line 2008.

Executing the two lines above involves 14 different function
calls, but for the sake of brevity, let us consider the following
core executions related to the memory leak:

• When the function sdp_seq_alloc is called, it allo-
cates a new memory block and returns the address of the
block. This address is then assigned to the local variable
p (Figure ??).

• When the function sdp_attr_replace is called, it
allocates a new linked-list memory block. It then assigns
the address of the memory block pointed to by p to
the data field of the newly allocated linked-list block,
and inserts the block into the linked list designated by
rec->attrlist (Figure ??).

When sdp_attr_replace fails to allocate a memory
block, the program state remains as Figure ?? and hence
results in a memory leak. the local variable p is not used
later and its referenced memory block is not freed.

Difficulty of Finding the Bug. To detect this bug, Infer needs
to employ a carefully-tuned state-selection heuristic. Analyz-
ing the above two lines of code path-sensitively produces more
than two million distinct cases. The execution of the function
sdp_attr_replace involves 8 different function calls,

Fig. 2: Overview of our approach

each of which has multiple branches; analyzing a series of
function calls results in a combinatorial explosion of the num-
ber of possible execution cases, yielding more than 2,000 dis-
junctive summaries for the function sdp_attr_replace.
Similarly, the analysis produces more than 1,000 summaries
for the function sdp_seq_alloc. Among those two million
(2, 000⇥ 1, 000) execution paths, only 7% of them are buggy
paths that produce a memory leak. Our data-driven Infer could
accurately prioritize these paths and succeeded to report the
bug while the original Infer failed to do so.

B. Overall Workflow of Our Approach
Figure 2 provides an overview of our approach, which

is divided into two main stages: the training stage and the
analysis stage. The training stage generates a collection of
models for state-selection heuristics. First, it collects alarm
and non-alarm triggering traces from programs in the training
set. For this step, we use an extended analysis producing
a set of traces instead of summaries. Then, an off-the-shelf
learning algorithm trains a collection of models that predict
the probability of a state contributing to an alarm from the
collected traces. Finally, we select M models that collectively
perform the best in the validation set. The analysis stage first
selects the best model for each target program from the M
models, where we use a lightweight pre-analysis with a limited
Kpre to identify the model that best fits the target program.
Then, we proceed with the main analysis using Kmain with
the selected model.

III. PRELIMINARIES

A. Disjunctive Bug-Finding Static Analysis
In this section, we describe a generic algorithm for dis-

junctive static bug-finders, which forms the core of industrial
static analyzers such as Infer [1]. We note that soundness
is not a primary concern of such an analyzer; instead, the
analysis is designed with a focus on scalability and precision.
For scalability, the analysis is designed to be summary-based
and works in a bottom-up fashion [1], [10]. For precision,
it is designed to be disjunctive, among others, separately
maintaining program states along different execution paths.

Buggy execution (memory leak)

7: p = sdp_seq_alloc();
8: sdp_attr_replace(rec, p);

Example 2: Balancing Soundness and
Scalability in Unsound Bug-Finders

10

*rec
attrlist
next nil
data

*data

Pre-condition
*rec

attrlist
next nil

data

*data

Post-condition (success)

next
data

*rec
attrlist
next nil
data

*data

Post-condition (failure)

*rec
attrlist
next nil
data

*data

Post-condition (buggy)

rec attrlist next nil
data

p

*rec
attrlist

next nil
data

*data

next
data

rec attrlist next nil

data
p

*rec
attrlist

next

nil

data
*data

next

data

next

data

*rec
attrlist
next nil
data

*data

*rec
attrlist

next nil
data

*data

next
data

*rec attrlist next nil

data

*data

next

data

rec attrlist next nil
data

p

rec attrlist next nil

data
p

next

data

rec

p

attrlist next
data

nil rec

p

attrlist nilnext
data

next
data

rec

p

attrlist
nil

next
data

rec

p

attrlist nilnext
data

next
data

(a) (b)

Fig. 1: Memory states after the call (a) sdp_seq_alloc and
(b) sdp_attr_replace. The dotted boxes denote newly
allocated memory blocks.

• We evaluate our approach with Infer, an industrial bug-
finding static analyzer deployed within Meta, and show
that its efficiency can be improved significantly.

• For open science, we make our source code publicly
available.

II. OVERVIEW

A. Motivating Example

Bug Detection Example. With our technique, Infer success-
fully detected a memory-leak bug from open-source project
bluez-5.55. The alarm report produced by Infer is given
below:
Memory dynamically allocated at line 2007 by call
to sdp_seq_alloc(), is not freed after the last
access at line 2008, column 3.

The (simplified) code for lines 2007 and 2008 is as follows:
p = sdp_seq_alloc(...); // line 2007
sdp_attr_replace(rec, ..., p); // line 2008

where the pointer variable rec is an argument of the enclosing
function, and it refers to a memory block accessible from the
outside. The local variable p temporarily stores the result of
sdp_seq_alloc, is passed to sdp_attr_replace as an
argument, and is not used anymore after line 2008.

Executing the two lines above involves 14 different function
calls, but for the sake of brevity, let us consider the following
core executions related to the memory leak:

• When the function sdp_seq_alloc is called, it allo-
cates a new memory block and returns the address of the
block. This address is then assigned to the local variable
p (Figure ??).

• When the function sdp_attr_replace is called, it
allocates a new linked-list memory block. It then assigns
the address of the memory block pointed to by p to
the data field of the newly allocated linked-list block,
and inserts the block into the linked list designated by
rec->attrlist (Figure ??).

When sdp_attr_replace fails to allocate a memory
block, the program state remains as Figure ?? and hence
results in a memory leak. the local variable p is not used
later and its referenced memory block is not freed.

Difficulty of Finding the Bug. To detect this bug, Infer needs
to employ a carefully-tuned state-selection heuristic. Analyz-
ing the above two lines of code path-sensitively produces more
than two million distinct cases. The execution of the function
sdp_attr_replace involves 8 different function calls,

Fig. 2: Overview of our approach

each of which has multiple branches; analyzing a series of
function calls results in a combinatorial explosion of the num-
ber of possible execution cases, yielding more than 2,000 dis-
junctive summaries for the function sdp_attr_replace.
Similarly, the analysis produces more than 1,000 summaries
for the function sdp_seq_alloc. Among those two million
(2, 000⇥ 1, 000) execution paths, only 7% of them are buggy
paths that produce a memory leak. Our data-driven Infer could
accurately prioritize these paths and succeeded to report the
bug while the original Infer failed to do so.

B. Overall Workflow of Our Approach
Figure 2 provides an overview of our approach, which

is divided into two main stages: the training stage and the
analysis stage. The training stage generates a collection of
models for state-selection heuristics. First, it collects alarm
and non-alarm triggering traces from programs in the training
set. For this step, we use an extended analysis producing
a set of traces instead of summaries. Then, an off-the-shelf
learning algorithm trains a collection of models that predict
the probability of a state contributing to an alarm from the
collected traces. Finally, we select M models that collectively
perform the best in the validation set. The analysis stage first
selects the best model for each target program from the M
models, where we use a lightweight pre-analysis with a limited
Kpre to identify the model that best fits the target program.
Then, we proceed with the main analysis using Kmain with
the selected model.

III. PRELIMINARIES

A. Disjunctive Bug-Finding Static Analysis
In this section, we describe a generic algorithm for dis-

junctive static bug-finders, which forms the core of industrial
static analyzers such as Infer [1]. We note that soundness
is not a primary concern of such an analyzer; instead, the
analysis is designed with a focus on scalability and precision.
For scalability, the analysis is designed to be summary-based
and works in a bottom-up fashion [1], [10]. For precision,
it is designed to be disjunctive, among others, separately
maintaining program states along different execution paths.

Buggy execution (memory leak)

Memory Leak: memory unreachable
when the enclosing function returns

fails to allocate new memory

7: p = sdp_seq_alloc();
8: sdp_attr_replace(rec, p);

Example 2: Balancing Soundness and
Scalability in Unsound Bug-Finders

Challenge: Path Explosion

11

7: p = sdp_seq_alloc();
8: sdp_attr_replace(rec, p);

Challenge: Path Explosion

11

involves 6 different function calls, producing
more than 1000 execution paths

7: p = sdp_seq_alloc();
8: sdp_attr_replace(rec, p);

Challenge: Path Explosion

11

involves 6 different function calls, producing
more than 1000 execution paths

involves 8 different function calls, producing
more than 2000 execution paths

7: p = sdp_seq_alloc();
8: sdp_attr_replace(rec, p);

Challenge: Path Explosion

11

involves 6 different function calls, producing
more than 1000 execution paths

involves 8 different function calls, producing
more than 2000 execution paths

• Path sensitivity is essential for precise/explainable bug-finding

• Analyzing all of them separately does not scale

7: p = sdp_seq_alloc();
8: sdp_attr_replace(rec, p);

State-Selection Heuristic

12

• Static bug-finders like Infer use a state-selection heuristic
to maintain only a small number (K) of states at a time

State-Selection Heuristic

12

• Static bug-finders like Infer use a state-selection heuristic
to maintain only a small number (K) of states at a time

if

if

{S1, S2, S3} K = 3

State-Selection Heuristic

12

• Static bug-finders like Infer use a state-selection heuristic
to maintain only a small number (K) of states at a time

if

if

{S1, S2, S3} K = 3

{S1, S2, S3, S4, S5, S6}

doubled

State-Selection Heuristic

12

• Static bug-finders like Infer use a state-selection heuristic
to maintain only a small number (K) of states at a time

if

if

{S1, S2, S3} K = 3

{S1, S3, S6}
select K paths {S1, S2, S3, S4, S5, S6}

doubled

State-Selection Heuristic

12

• Static bug-finders like Infer use a state-selection heuristic
to maintain only a small number (K) of states at a time

if

if

{S1, S2, S3} K = 3

{S1, S3, S6}
select K paths {S1, S2, S3, S4, S5, S6}

doubled

{S1, S3, S6, S7, S8, S9}

doubled

State-Selection Heuristic

12

• Static bug-finders like Infer use a state-selection heuristic
to maintain only a small number (K) of states at a time

if

if

{S1, S2, S3} K = 3

{S1, S3, S6}
select K paths

{S3, S7, S9}
select K paths

{S1, S2, S3, S4, S5, S6}

doubled

{S1, S3, S6, S7, S8, S9}

doubled

State-Selection Heuristic

12

• Static bug-finders like Infer use a state-selection heuristic
to maintain only a small number (K) of states at a time

if

if

{S1, S2, S3} K = 3

{S1, S3, S6}
select K paths

{S3, S7, S9}
select K paths

Our method: Using machine learning to select “promising” states

{S1, S2, S3, S4, S5, S6}

doubled

{S1, S3, S6, S7, S8, S9}

doubled

13

Analysis
Heuristic

Static
AnalyzerProgram Results

set of functions to
apply context sensitivity

…

Our Data-Driven Approach

13

Analysis
Heuristic

Static
AnalyzerProgram Results

set of functions to
apply context sensitivity

…

Our Data-Driven Approach

Traditionally, analysis heuristics developed manually by human experts:

… …

PLDI’14 POPL’17 PLDI’17 OOPSLA’18 FSE’18 OOPSLA’19 OOPSLA’21

=> nontrivial, time-consuming, and suboptimal

14

Our Data-Driven Approach

Our Goal

• Our goal is to automate the heuristic designing process.

program
pre-analysis 2obj: {m1,m2,…}

1obj: {m7,m9,…}
insens: {m3,m4,…}

main analysis
results

Graph Analysis strategy

Our framework

machine-learning techniques
specially designed for static analysis

• Automatic: little reliance on analysis designers

• Powerful: machine-tuning outperforms hand-tuning

Analysis
Heuristic

Static
AnalyzerProgram Results

set of functions to
apply context sensitivity

…

15

Effectiveness: Context Sensitivity
• Implemented in Doop, a sound pointer analysis for Java

• Trained with 4 and evaluated on 6 programs from DaCapo

of alarms

analysis time

insensitive

2-context-sensitive

1200 2000
0

2500 bloat

15

Effectiveness: Context Sensitivity
• Implemented in Doop, a sound pointer analysis for Java

• Trained with 4 and evaluated on 6 programs from DaCapo

of alarms

analysis time

insensitive

2-context-sensitive

1200 2000
0

2500 bloat

manual heuristic [PLDI’14]

15

Effectiveness: Context Sensitivity
• Implemented in Doop, a sound pointer analysis for Java

• Trained with 4 and evaluated on 6 programs from DaCapo

of alarms

analysis time

insensitive

2-context-sensitive

1200 2000
0

2500

Ours

bloat

manual heuristic [PLDI’14]

Effectiveness: State Selection

16

TABLE I: Performance of original Infer(Pulse). Analysis time in seconds. Kmain: the number of disjuncts to be maintained
during the main analysis.

Program KLOC Kmain = 5 Kmain = 10 Kmain = 20 Kmain = 40 Kmain = 60
alarms time alarms time alarms time alarms time alarms time

gawk 57 68 9 67 22 67 67 68 294 69 497
redis 74 4 25 4 73 4 196 2 585 2 1,042
nasm 103 55 13 76 16 80 27 99 49 93 86
sqlite 117 2 42 2 232 2 835 2 3,178 8 3,237
gnucobol 123 10 28 10 68 11 201 12 666 11 1,717
gnuastro 151 47 48 51 56 52 78 63 201 66 320
DyLP 157 11 25 17 56 18 158 21 567 19 1,018
httpd 207 373 64 435 167 473 554 466 2,091 506 5,190
git 238 5 42 4 97 6 278 5 1,116 5 2,047
freeipmi 318 10 36 12 77 13 197 16 674 16 1,178
vim 342 1 67 1 187 1 926 1 3,725 1 7,448
bluez 366 59 24 98 55 113 164 130 508 158 880
cpython 367 10 97 10 207 12 645 12 2,595 12 5,200
openssl 414 412 99 422 238 425 841 468 3,767 492 7,314
gettext 701 93 39 96 92 138 277 161 1,408 179 2,510
TOTAL 3,735 1,160 659 1,305 1,642 1,415 5,444 1,526 21,425 1,637 39,684

TABLE II: Performance of data-driven Infer(Pulse). M : the number of learned models (from which the best one is used for
each program). Kmain: the number of disjuncts to be maintained during the main analysis. Kpre: the number of disjuncts to be
maintained during the pre-analysis. Total: total analysis time including pre- and main-analyse. Pre: pre-analysis time.

Program

M = 1
M = 3

Kpre = 1 Kpre = 3
Kmain = 5 Kmain = 20 Kmain = 5 Kmain = 5 Kmain = 10

alarms time alarms time alarms time alarms time alarms time
Total Pre Total Pre Total Pre

gawk 76 24 82 205 75 33 15 75 47 30 78 70 29
redis 4 33 4 347 4 64 31 5 82 53 5 136 59
nasm 46 19 72 73 64 53 37 65 60 43 90 73 47
sqlite 8 66 8 649 8 98 42 8 156 99 8 256 92
gnucobol 10 27 12 400 10 73 33 10 108 72 10 182 78
gnuastro 54 52 68 182 54 200 137 64 225 159 71 281 166
DyLP 21 35 22 245 21 68 32 17 98 65 20 144 66
httpd 286 107 397 1,234 609 167 65 609 262 159 617 419 176
git 5 62 6 568 69 102 44 69 160 102 61 255 103
freeipmi 11 32 16 276 32 83 36 32 104 59 201 191 66
vim 167 101 398 1,005 167 166 67 525 232 151 535 403 162
bluez 139 40 167 243 77 73 39 113 94 63 148 148 69
cpython 16 131 17 853 15 259 142 15 336 228 17 498 254
openssl 669 80 842 495 968 198 74 968 296 170 757 439 177
gettext 156 67 182 431 156 141 75 165 184 123 186 268 132
TOTAL 1,668 875 2,293 7,208 2,329 1,777 870 2,740 2,443 1,576 2,804 3,764 1,674

0 400 800 1200 1600 2000 2400 2800 3200
0

5000
10000
15000
20000
25000
30000
35000
40000

number of alarms

tim
e

(s
ec

)

Original Infer
Data-Driven Infer

Fig. 3: Comparison of the cost/bug-finding efficiency between original and data-driven Infer.

• Trained with 70 and evaluated on 15 programs:

• Original Infer: 1,637 memory-bug alarms in 39,684s (with K = 60)

• Data-driven Infer: 1,668 memory-bug alarms in 865s (with K = 5)

• Learning algorithm with linear model [OOPSLA’15]

• Learning algorithm with disjunctive model [OOPSLA’17a]

• Learning algorithm with automated feature generation [OOPSLA’17b]

• Learning algorithm for symbolic execution [ICSE’18, FSE’19, FSE’20]

• Learning algorithm for non-monotone analyses [OOPSLA’18]

• Learning algorithm for resource-aware static analysis [ICSE’19]

• Learning algorithm with feature language [OOPSLA’20]

• Learning algorithm for boosting k-CFA [POPL’22]

• Learning algorithm for boosting static bug-finders [ICSE’23]

Remainder of This Talk

17

ML algorithms developed for static analysis:

• Learning algorithm with linear model [OOPSLA’15]

• Learning algorithm with disjunctive model [OOPSLA’17a]

• Learning algorithm with automated feature generation [OOPSLA’17b]

• Learning algorithm for symbolic execution [ICSE’18, FSE’19, FSE’20]

• Learning algorithm for non-monotone analyses [OOPSLA’18]

• Learning algorithm for resource-aware static analysis [ICSE’19]

• Learning algorithm with feature language [OOPSLA’20]

• Learning algorithm for boosting k-CFA [POPL’22]

• Learning algorithm for boosting static bug-finders [ICSE’23]

Remainder of This Talk

17

ML algorithms developed for static analysis:
most successful

Selective Context Sensitivity

18

h

h

m

c4

c5,c6
c3

c1

c1
fg

h

f

c2

c2 h

Apply 2-ctx-sens: {h}
Apply 1-ctx-sens: {f}
Apply 0-ctx-sens: {g, m}

cheap and precise

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 0);
 y = h(input());
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

Learning Algorithm Overview

19

Learning Algorithm

Training data
P = {P1, P2, …, Pm}Static analyzer

Atomic features
(a1,a2,…,a25)

e.g., procedures have
invocation stmt,

procedures return
strings, etc

Data-Driven Context-Sensitivity for Points-to Analysis 1:27

From (12), (13), De�nition 3.3, and the assumption that fj�1 is a minimal solution of the
problem �k , we have

8P 2 P.H�00j�1
(P) = H�j�1 (P). (14)

From (14), (9), we conclude
8P 2 P.H�j�1 (P) = H�0j�1

(P).

B LEARNED BOOLEAN FORMULAS
We list the boolean formulas learned by our approach. �e numbers in the formulas represent the
atomic feature in Tables 1. �e formulas for each analysis and context depth are as follows. Table 8
presents them by and-or tables.

• Selective object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ ¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ 6 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬9 ^ 13 ^ 14 ^ 15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(1 ^ 2 ^ ¬3 ^ 4 ^ ¬5 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬10 ^ ¬13 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22
^¬23 ^ ¬24 ^ ¬25)

• Object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬1 ^ ¬2 ^ 5 ^ 8 ^ ¬9 ^ 11 ^ 12 ^ ¬14 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

• Type-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

• Call-site-sensitivity:
– Depth-2 formula (f2):

1 ^ ¬6 ^ ¬7 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬7 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Learned heuristic for applying context-sensitivity:

f2: procedures to apply 2-context-sensitivity

f1: procedures to apply 1-context-sensitivity

Data-Driven Context-Sensitivity for Points-to Analysis 1:27

From (12), (13), De�nition 3.3, and the assumption that fj�1 is a minimal solution of the
problem �k , we have

8P 2 P.H�00j�1
(P) = H�j�1 (P). (14)

From (14), (9), we conclude
8P 2 P.H�j�1 (P) = H�0j�1

(P).

B LEARNED BOOLEAN FORMULAS
We list the boolean formulas learned by our approach. �e numbers in the formulas represent the
atomic feature in Tables 1. �e formulas for each analysis and context depth are as follows. Table 8
presents them by and-or tables.

• Selective object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ ¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ 6 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬9 ^ 13 ^ 14 ^ 15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(1 ^ 2 ^ ¬3 ^ 4 ^ ¬5 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬10 ^ ¬13 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22
^¬23 ^ ¬24 ^ ¬25)

• Object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬1 ^ ¬2 ^ 5 ^ 8 ^ ¬9 ^ 11 ^ 12 ^ ¬14 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

• Type-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

• Call-site-sensitivity:
– Depth-2 formula (f2):

1 ^ ¬6 ^ ¬7 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬7 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

20

Machine Learning: Three Steps

2. Define a learning objective as optimization problem:

1. Define a parameterized heuristic :ℋΠ

ℋΠ : Program → 2Func

“Find that maximizes analysis performance”Π

3. Solve the problem via optimization algorithm

1. Parameterized Heuristics

• The heuristic has boolean formulas:ℋΠ k

21

Π = ⟨ f1, f2⟩

f → true ∣ false ∣ ai ∈ 𝔸 ∣ ¬f ∣ f1 ∧ f2 ∣ f1 ∨ f2

• Atomic features

•
• A feature denotes a set of functions:

𝔸 = {a1, a2, …, an}

ai : Func → {true, false}

[[ai]]P = {m ∈ Func ∣ ai(m) = true}

• Function m is assigned context depth i if m ∈ [[fi]]

ℋΠ(P)(m) = 1 if m ∈ [[f1]]

2 if m ∈ [[f2]]

0 o.w.

Example

22

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 0);
 y = h(input());
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

Example

22

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 0);
 y = h(input());
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

𝔸 = {a1, a2, a3, a4, a5}

𝚑 : {a1, a3, a5} 𝚏 : {a3, a5}
𝚐 : {a1, a2, a3} 𝚖 : {a2, a3, a4}

Example

22

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 0);
 y = h(input());
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

𝔸 = {a1, a2, a3, a4, a5}

𝚑 : {a1, a3, a5} 𝚏 : {a3, a5}
𝚐 : {a1, a2, a3} 𝚖 : {a2, a3, a4}

([[f1]] = {𝚏, 𝚑}, [[f2]] = {𝚑})

Heuristic withℋ⟨ f1, f2⟩

produces the abstraction:

{𝚑 ↦ 2, f ↦ 1, g ↦ 0, m ↦ 0}

f1 = ¬a4 ∧ a5, f2 = (a1 ∧ a5) ∨ (a2 ∧ ¬a3)

2. Optimization Problem

23

Find that minimizes

while ensuring a user-provided precision constraint.

Π ∑
P∈P

𝖼𝗈𝗌𝗍(FP(ℋΠ(P)))

∑P∈P |proved(FP(ℋΠ(P))) |

∑P∈P |proved(FP(k)) |
≥ 0.9

2. Optimization Problem

23

Find that minimizes

while ensuring a user-provided precision constraint.

Π ∑
P∈P

𝖼𝗈𝗌𝗍(FP(ℋΠ(P)))

∑P∈P |proved(FP(ℋΠ(P))) |

∑P∈P |proved(FP(k)) |
≥ 0.9E.g., “maintain 90% precision of 2-CFA”

∑P∈P |𝗉𝗋𝗈𝗏𝖾𝖽(FP(ℋΠ(P))) |

∑P∈P |𝗉𝗋𝗈𝗏𝖾𝖽(FP(λm.2)) |
≥ 0.9

of assertions proved by the
most precise abstraction (2-CFA)

of assertions proved by the
current abstraction

3. Optimization Algorithm

24

• Basic method: blackbox exhaustive search

ProgramProgramProgramProgramProgramProgram

training data

Π1 = ⟨ f1
1 , f1

2⟩

Π2 = ⟨ f2
1 , f2

2⟩

Π3 = ⟨ f3
1 , f3

2⟩

Π4 = ⟨ f 4
1 , f 4

2⟩

⋮

1. (Randomly) Generate solution candidates

3. Optimization Algorithm

25

• Basic method: blackbox exhaustive search

ProgramProgramProgramProgramProgramProgram

training data

Π1 = ⟨ f1
1 , f1

2⟩

Π2 = ⟨ f2
1 , f2

2⟩

Π3 = ⟨ f3
1 , f3

2⟩

Π4 = ⟨ f 4
1 , f 4

2⟩

⋮

∑
P∈P

𝖼𝗈𝗌𝗍(FP(ℋΠ(P))) = 100

∑
P∈P

𝖼𝗈𝗌𝗍(FP(ℋΠ(P))) = 130

∑
P∈P

𝖼𝗈𝗌𝗍(FP(ℋΠ(P))) = 80

∑
P∈P

𝖼𝗈𝗌𝗍(FP(ℋΠ(P))) = 190

2. Evaluate the objective function

3. Optimization Algorithm

26

• Basic method: blackbox exhaustive search

ProgramProgramProgramProgramProgramProgram

training data

Π1 = ⟨ f1
1 , f1

2⟩

Π2 = ⟨ f2
1 , f2

2⟩

Π3 = ⟨ f3
1 , f3

2⟩

Π4 = ⟨ f 4
1 , f 4

2⟩

⋮

∑
P∈P

𝖼𝗈𝗌𝗍(FP(ℋΠ(P))) = 100

∑
P∈P

𝖼𝗈𝗌𝗍(FP(ℋΠ(P))) = 130

∑
P∈P

𝖼𝗈𝗌𝗍(FP(ℋΠ(P))) = 80

∑
P∈P

𝖼𝗈𝗌𝗍(FP(ℋΠ(P))) = 190

3. Choose the parameter with minimum cost

3. Optimization Algorithm

1. Initialize to the most general formula in DNF:

2. Repeat the following (until no refinement is possible)

1. Choose the most expensive conjunct, say

2. Refine the conjunct with some feature :

3. Check the precision constraint: If not, revert the last change.

f
f = a1 ∨ ¬a1 ∨ a2 ∨ ¬a2 ∨ … ∨ an ∨ ¬an (≡ true)

ci

aj
f = c1 ∨ c2 ∨ … ∨ (ci ∧ aj) ∨ … ∨ cm

27

We learn each formula via greedy refinement

f = c1 ∨ c2 ∨ … ∨ cm

(details in paper)

Summary

• A general framework for generating analysis heuristics:

28

Data-Driven Static Analysis

Static analyzer

Data (programs)

context-sensitivity heuristics
path-selection heuristics

…

• The idea is not limited to static analysis: e.g.,

• Symbolic execution [ICSE’18, FSE’19, FSE’20, ICSE’22]

• Fuzzing [ISSTA’20, ICSE’23]

• More information available at http://prl.korea.ac.kr

http://prl.korea.ac.kr

Summary

• A general framework for generating analysis heuristics:

28

Data-Driven Static Analysis

Static analyzer

Data (programs)

context-sensitivity heuristics
path-selection heuristics

…

Our Goal

• Our goal is to automate the heuristic designing process.

program
pre-analysis 2obj: {m1,m2,…}

1obj: {m7,m9,…}
insens: {m3,m4,…}

main analysis
results

Graph Analysis strategy

Our framework

• The idea is not limited to static analysis: e.g.,

• Symbolic execution [ICSE’18, FSE’19, FSE’20, ICSE’22]

• Fuzzing [ISSTA’20, ICSE’23]

• More information available at http://prl.korea.ac.kr

http://prl.korea.ac.kr

Summary

• A general framework for generating analysis heuristics:

28

Data-Driven Static Analysis

Static analyzer

Data (programs)

context-sensitivity heuristics
path-selection heuristics

…

Our Goal

• Our goal is to automate the heuristic designing process.

program
pre-analysis 2obj: {m1,m2,…}

1obj: {m7,m9,…}
insens: {m3,m4,…}

main analysis
results

Graph Analysis strategy

Our framework

Thank you!

• The idea is not limited to static analysis: e.g.,

• Symbolic execution [ICSE’18, FSE’19, FSE’20, ICSE’22]

• Fuzzing [ISSTA’20, ICSE’23]

• More information available at http://prl.korea.ac.kr

http://prl.korea.ac.kr

