Semantic Metamorphic Testing
for Finding Bugs in SMT Solvers

Jongwook Kim, Sunbeom So, and Hakjoo Oh
Korea University

June 13, 2025
Dagstuhl Seminar 25242

Correctness of SMT Solvers is Critical

e SMT solvers are the keystone of many SE applications

 Bugs in SMT solvers break the correctness of these SE tools

o @
Program Symbolic ‘\ =

Synthesis P— Execution /

- -
‘ - e b g
w‘!“ ‘u-
s
"1:“?5'1:
ea A

Program 3
Repair

Program
Verification

Correctness of SMT Solvers is Critical

e SMT solvers are the keystone of many SE applications

 Bugs in SMT solvers break the correctness of these SE tools

Program

Synthesis Cﬁ

Program @
Repair

Symbolic o
Execution

Program

l Verificatior

S

Goal: Finding Bugs in SMT Solvers

e (Refutational) Soundness bug

Status: SAT m
— — UNSAT
(x> 10) A (y 2 5)

* |nvalid model bug

Status: SAT SAT with Incorrect Model

x— 10, y—» 3} F F

—

F:(x>210)A(y =)95)

Existing Approaches

o Differential testing: TypeFuzz [OOPSLA'21], OpFuzz [OOPSLA21]
/Solver1 »SAT
F
\

Solver2 » UNSAT

e Metamorphic testing: Storm [FSE'20], Fusion [PLDI'20]

SAT F

SAT-preserving

mutation Solver

SAT
\ /
v
SAT F’/ \UNSAT

Existing Approaches

o Differential testing: TypeFuzz [OOPSLA'21], OpFuzz [OOPSLA21]

e Strength: Unrestricted random mutations — diverse test inputs

e \Weakness: Limited to testing features shared by multiple solvers

TITVOT 2o T NIT V1

e Metamorphic testing: Storm [FSE'20], Fusion [PLDI'20]

SAT F

SAT-preserving

mutation Solver

AT
\

\
v
SAT F’/ UNSAT

Existing Approaches

o Differential testing: TypeFuzz [OOPSLA'21], OpFuzz [OOPSLA21]

e Strength: Unrestricted random mutations — diverse test inputs

e \Weakness: Limited to testing features shared by multiple solvers

TITVOT 2o T NIT V1

e Metamorphic testing: Storm [FSE'20], Fusion [PLDI'20]

e Strength: Can be applied when multiple solvers are unavailable

e \Weakness: Restricted, SAT-preserving mutations (e.g., x = x+0)

/ T~

SAT F UNSAT

Existing Approaches

o Differential testing: TypeFuzz [OOPSLA'21], OpFuzz [OOPSLA21]

e Strength: Unrestricted random mutations — diverse test inputs

e \Weakness: Limited to testing features shared by multiple solvers

TITVOT 2o T NIT V1

e Metamorphic testing: Storm [FSE'20], Fusion [PLDI'20]

e Strength: Can be applied when multiple solvers are unavailable

e \Weakness: Restricted, SAT-preserving mutations (e.g., x = x+0)

/ T~

SAT F UNSAT

Our approach aims to combine both strengths

Our Approach

e “Semantic” model-based metamorphic testing without
syntactic mutation rules

model of F

4

SAT ME F

Our Approach

e “Semantic” model-based metamorphic testing without
syntactic mutation rules

model of F

4

SAT ME F

unrestricted
random mutation

v

FI

Our Approach

e “Semantic” model-based metamorphic testing without
syntactic mutation rules

model of F

4

SAT ME F

unrestricted
random mutation

SAT MEF

Our Approach

e “Semantic” model-based metamorphic testing without
syntactic mutation rules

model of F

b
T~
_

SAT ME F

unrestricted
random mutation

SAT MEF

Solver

AT
\

UNSAT

Example: A Soundness Bug in CVC5

* The original and mutated formulas are satisfiable
e CVCS5 reports the mutant as unsatisfiable

1 (set-logic QF_SLIA)

2 (declare-fun t () String)

3 (assert (str.prefixof "-" (str.substr t 0 1)))

4 (assert (> (str.len (str.substr t 0 2)) 1))

5 (-)(assert (not (= (- 1) (str.to_int (str.substr t11)))))

5’ (+)(assert (not (str < -0" 0 t) "-0") false)))
6 (-)(assert (>= (+ @0 2) (str.len t))

§
7/

() (assert [Str.suffiof] [str.replace]t “-0* ") "))

(check-sat)

Example: A Soundness Bug in CVC5

* The original and mutated formulas are satisfiable
e CVCS5 reports the mutant as unsatisfiable

1 (set-logic QF_SLIA)

2 (declare-fun t () String)

3 (assert (str.prefixof "-" (str.substr t 0 1)))

4 (assert (> (str.len (str.substr t 0 2)) 1))

5 (-)(assert (not (= (- 1) (str.to_int (str.substr t11)))))
5

6

6

7/

(
' (+)(assert (not [xor](str.< -0" 0 t) "-0") false)))
(=) (assert (>= (+ 0 2) (str.len t))

() (assert [Str.suffiof] [str.replace]t “-0* ") "))

(check-sat) /\

These mutations are beyond the reach of existing
metamorphic testing

Example: A Soundness Bug in CVC5

e The original and mutated formulas are satisfiable

e CVCS5 reports the mutant as unsatisfiable

1 (set-logic QF_SLIA)

2 (declare-fun t () String)

3 (assert (str.prefixof "-" (str.substr t 0 1)))

4 (assert (> (str.len (str.substr t 0 2)) 1))

5 (=)(assert (not (= (- 1) (str.to int (str.substr t 1 1)))))
5

6

6

7/

' (+)(assert (not (xor (str.<|(str.update "-0" @0 t)| "-0") false)))

(-)(assert (>= (+ 0 2) (str.len t)))
" (+)(assert (str.suffixof (str.replace t "-0" "-") "\"))
(check-sat)

$ cvch mutant.smt2 $ z3 mutant.smt2
unsat Error:Unsupported Function

Differential testing is not applicable

Effectiveness

e Found 25 new bugs in Z3, CVC5, and dReal

Bug Type Z3 CVCS dReal Total

Soundness 6 4 2 12
Invalid-Model 2 7 0 9
Crash 0 4 0 4

e Most of these bugs were hard to detect by existing methods
e Seven involved solver-specific features

e Most bug-triggering mutants were substantially different
from the original formulas

Summary

* Proposed a domain-specific, model-based metamorphic testing
technique for SMT solvers

e For more information, see our paper “Diver: Oracle-Guided SMT
Solver Testing with Unrestricted Random Mutations. ICSE 2023

e |n particular, purely random mutations hardly succeed to satisfy the
original seed’s model

* |nthe paper, we proposed a method for weighted mutation to
increase this probability

e Curious whether such “semantic” metamorphic testing can be
applied to other domains

Thank you!

