
Semantic Metamorphic Testing
for Finding Bugs in SMT Solvers

Jongwook Kim, Sunbeom So, and Hakjoo Oh
Korea University

June 13, 2025
Dagstuhl Seminar 25242

Correctness of SMT Solvers is Critical

7

Program
Synthesis

Program
Repair

Program
Verification

Symbolic
Execution

SMT Solver: Keystone of Many SE Tools

dReal4

SMT Solvers

• SMT solvers are the keystone of many SE applications

• Bugs in SMT solvers break the correctness of these SE tools

Correctness of SMT Solvers is Critical

7

Program
Synthesis

Program
Repair

Program
Verification

Symbolic
Execution

SMT Solver: Keystone of Many SE Tools

dReal4

SMT Solvers

• SMT solvers are the keystone of many SE applications

• Bugs in SMT solvers break the correctness of these SE tools

9

Correctness of SMT Solver is critical

Program
Repair

Symbolic
Execution

Program
Synthesis

Program
Verification

Goal: Finding Bugs in SMT Solvers
• (Refutational) Soundness bug

SMT
Solver

• Main target bugs

- Refutational Soundness Bug: UNSAT instead of SAT.

Goal: Find Bugs in SMT Solvers

11

- Invalid Model Bug: Produce an unsatisfying model.

(x ≤ 10) ∧ (y ≤ 5)
UNSAT

{x ↦ 10, y ↦ 3} ≥ F
SMT

SolverF : (x ≤ 10) ∧ (y ≤ 5)
SAT with Incorrect ModelStatus: SAT

Status: SAT

 Wrong
 verification results!

Unintended
Test-cases!

• Invalid model bug

SMT
Solver

• Main target bugs

- Refutational Soundness Bug: UNSAT instead of SAT.

Goal: Find Bugs in SMT Solvers

10

- Invalid Model Bug: Produce an unsatisfying model.

(x ≤ 10) ∧ (y ≤ 5)
UNSAT

{x ↦ 10, y ↦ 3} ≥ F
SMT

SolverF : (x ≤ 10) ∧ (y ≤ 5)
SAT with Incorrect ModelStatus: SAT

Status: SAT

• Differential testing: TypeFuzz [OOPSLA’21], OpFuzz [OOPSLA’21]

Existing Approaches

• Metamorphic testing: Storm [FSE’20], Fusion [PLDI’20]

F

Solver1

Solver2

SAT

UNSAT

F

Solver

F’

SAT

UNSAT

SAT

SAT

SAT-preserving
mutation

• Differential testing: TypeFuzz [OOPSLA’21], OpFuzz [OOPSLA’21]

Existing Approaches

• Metamorphic testing: Storm [FSE’20], Fusion [PLDI’20]

F

Solver1

Solver2

SAT

UNSAT

F

Solver

F’

SAT

UNSAT

SAT

SAT

• Strength: Unrestricted random mutations diverse test inputs

• Weakness: Limited to testing features shared by multiple solvers

→

SAT-preserving
mutation

• Differential testing: TypeFuzz [OOPSLA’21], OpFuzz [OOPSLA’21]

Existing Approaches

• Metamorphic testing: Storm [FSE’20], Fusion [PLDI’20]

F

Solver1

Solver2

SAT

UNSAT

F

Solver

F’

SAT

UNSAT

SAT

SAT

• Strength: Unrestricted random mutations diverse test inputs

• Weakness: Limited to testing features shared by multiple solvers

→

SAT-preserving
mutation

• Strength: Can be applied when multiple solvers are unavailable

• Weakness: Restricted, SAT-preserving mutations (e.g., x x+0)→

• Differential testing: TypeFuzz [OOPSLA’21], OpFuzz [OOPSLA’21]

Existing Approaches

• Metamorphic testing: Storm [FSE’20], Fusion [PLDI’20]

F

Solver1

Solver2

SAT

UNSAT

F

Solver

F’

SAT

UNSAT

SAT

SAT

• Strength: Unrestricted random mutations diverse test inputs

• Weakness: Limited to testing features shared by multiple solvers

→

Our approach aims to combine both strengths

SAT-preserving
mutation

• Strength: Can be applied when multiple solvers are unavailable

• Weakness: Restricted, SAT-preserving mutations (e.g., x x+0)→

• “Semantic” model-based metamorphic testing without
syntactic mutation rules

Our Approach

FSAT M ⊧

model of F

• “Semantic” model-based metamorphic testing without
syntactic mutation rules

Our Approach

FSAT M ⊧

F’

unrestricted
random mutation

model of F

• “Semantic” model-based metamorphic testing without
syntactic mutation rules

Our Approach

FSAT M ⊧

SAT M ⊧ F’

unrestricted
random mutation

model of F

• “Semantic” model-based metamorphic testing without
syntactic mutation rules

Our Approach

Solver

SAT

UNSAT

FSAT M ⊧

SAT M ⊧ F’

unrestricted
random mutation

model of F

Example: A Soundness Bug in CVC5

23

Diver’s Key Feature:
 Oracle-Guided yet Unrestricted Mutations

• Oracle-Guided: no need to rely on cross-checking

• Unrestricted: can generate diverse mutants

Mutant Generated by
Diver

1 (set-logic QF_SLIA)
2 (declare-fun t () String)
3 (assert (str.prefixof "-" (str.substr t 0 1)))
4 (assert (> (str.len (str.substr t 0 2)) 1))
5 (-)(assert (not (= (- 1) (str.to_int (str.substr t 1 1)))))
5’ (+)(assert (not (xor (str.< (str.update "-0" 0 t) "-0") false)))
6 (-)(assert (>= (+ 0 2) (str.len t)))
6’ (+)(assert (str.suffixof (str.replace t "-0" "-") "-"))
7 (check-sat)

• The original and mutated formulas are satisfiable

• CVC5 reports the mutant as unsatisfiable

Example: A Soundness Bug in CVC5

23

Diver’s Key Feature:
 Oracle-Guided yet Unrestricted Mutations

• Oracle-Guided: no need to rely on cross-checking

• Unrestricted: can generate diverse mutants

Mutant Generated by
Diver

1 (set-logic QF_SLIA)
2 (declare-fun t () String)
3 (assert (str.prefixof "-" (str.substr t 0 1)))
4 (assert (> (str.len (str.substr t 0 2)) 1))
5 (-)(assert (not (= (- 1) (str.to_int (str.substr t 1 1)))))
5’ (+)(assert (not (xor (str.< (str.update "-0" 0 t) "-0") false)))
6 (-)(assert (>= (+ 0 2) (str.len t)))
6’ (+)(assert (str.suffixof (str.replace t "-0" "-") "-"))
7 (check-sat)

• The original and mutated formulas are satisfiable

• CVC5 reports the mutant as unsatisfiable

These mutations are beyond the reach of existing
metamorphic testing

Example: A Soundness Bug in CVC5

23

Diver’s Key Feature:
 Oracle-Guided yet Unrestricted Mutations

• Oracle-Guided: no need to rely on cross-checking

• Unrestricted: can generate diverse mutants

Mutant Generated by
Diver

1 (set-logic QF_SLIA)
2 (declare-fun t () String)
3 (assert (str.prefixof "-" (str.substr t 0 1)))
4 (assert (> (str.len (str.substr t 0 2)) 1))
5 (-)(assert (not (= (- 1) (str.to_int (str.substr t 1 1)))))
5’ (+)(assert (not (xor (str.< (str.update "-0" 0 t) "-0") false)))
6 (-)(assert (>= (+ 0 2) (str.len t)))
6’ (+)(assert (str.suffixof (str.replace t "-0" "-") "-"))
7 (check-sat)

• The original and mutated formulas are satisfiable

• CVC5 reports the mutant as unsatisfiable

These mutations are beyond the reach of existing
metamorphic testing

1 (set-logic QF_SLIA)
2 (declare-fun t () String)
3 (assert (str.prefixof "-" (str.substr t 0 1)))
4 (assert (> (str.len (str.substr t 0 2)) 1))
5 (-)(assert (not (= (- 1) (str.to_int (str.substr t 1 1)))))
5’ (+)(assert (not (xor (str.< (str.update "-0" 0 t) "-0") false)))
6 (-)(assert (>= (+ 0 2) (str.len t)))
6’ (+)(assert (str.suffixof (str.replace t "-0" "-") "-"))
7 (check-sat)

$ cvc5 mutant.smt2
unsat

17

$ z3 mutant.smt2
Error:Unsupported Function

Differential Testing:
Not Applicable when Cross-checking Impossible

Differential testing is not applicable

Effectiveness

TABLE III: Statistics on bugs found by DIVER.

Status Z3 CVC5 dReal Total

Reported 12 15 2 29
Duplicate 4 0 0 4
New 8 15 2 25
-Confirmed 4 15 2 21
-Fixed 0 14 0 14
-Won’t Fix 0 0 0 0

(a) Status of the found bugs. Duplicate: # of bugs that were
confirmed as duplicated ones by developers. New: # of bugs after
excluding duplicated bugs from Reported. Confirmed: # of bugs

that were confirmed to be real by developers out of New. Fixed: #
of bugs fixed by developers out of New. Won’t Fix: # of bugs that

developers won’t fix.

Bug Type Z3 CVC5 dReal Total

Soundness 6 4 2 12
Invalid-Model 2 7 0 9

Crash 0 4 0 4

(b) Statistics on types of 25 new bugs.

Bug Type Unique Issues DIVER DIVER
Unique Issues

Soundness 7 4 57.1%
Invalid-Model 18 7 38.9%

Total 25 11 44.0%

(c) Statistics of bugs for CVC5 v.1.0.0 and v.1.0.1 (released on
April and July 2022).

Seed Formulas. As a pool of satisfiable seed formulas, we
used satisfiable formulas from the benchmarks provided by
the SMT-LIB initiative.2 During the test period that ranges
from 4 to 5 months for each tool, we validated the solvers
against more than 9,000 seed formulas in total. We used
the non-incremental benchmarks that contain quantifier-free
formulas over logics for integers, reals, and strings, and their
combinations (the full list is in Section V). To improve the
testing efficiency, we excluded benchmarks if: (1) the size of
a seed formula is too large (> 200KB), or (2) an SMT solver
fails to check the satisfiability of a seed formula within 15
seconds. Before providing seed formulas as inputs to DIVER,
to ease the implementation in the constraint generation step
(Section III-A), we desugared let-binding and invocations
of defined functions, in a way that preserves the original
semantics of a seed formula. For example, given a seed
formula that contains a term let x = f(a) in p(x, y), our
algorithm works on the preprocessed seed formula where the
term is transformed into p(f(a), y).

Bug-Reporting Method. When bugs are found by DIVER,
in order to meaningfully help developers as much as possible,

2https://smtlib.cs.uiowa.edu/benchmarks.shtml

we did our best to report bugs after deduplicating the found
bugs (e.g., deduplicating syntactically different bug-triggering
formulas that result in the same error messages). For example,
even though DIVER generated 223 bug-triggering formulas
during 2 weeks, we reported only 4 bugs after deduplication.

Bug-Finding Results. Table III provides various statistics
on the bugs found by DIVER. As shown in Table III(a), we
reported 29 bugs to the developers of SMT solvers, of which
25 are new bugs after excluding 4 bugs confirmed to be
duplicated by the developers. Out of 25 new bugs, 21 were
confirmed to be real and unique by the developers. Out of 25
new bugs, 8 bugs were detected with default modes, 16 bugs
with one option, and 1 bug with two options, respectively.

Table III(b) shows the distribution of types of the 25 new
bugs in Table III(a). The majority of bugs found by DIVER are
critical ones; 84.0% (2125) are either soundness bugs or invalid-
model bugs.

Notably, as shown in Table III(c), out of the bugs reported
for the very recent versions (v.1.0.0 and v.1.0.1) of CVC5,
DIVER found almost half them (44.0%). Specifically, 7 repu-
tational soundness bugs and 18 invalid-model bugs have been
reported (and fixed) for these versions, of which 4 soundness
bugs (57.1%) and 7 invalid-model bugs (38.9%) were found
by DIVER.

In summary, DIVER demonstrated its usefulness by finding
critical bugs in the three popular SMT solvers. In particular,
considering that CVC5 has been extensively tested in prior
works [22]–[28], [40] and therefore detecting bugs in CVC5 is
becoming increasingly difficult, our result shows that DIVER is
effective at finding bugs potentially missed by existing testing
techniques.

Positive Responses from Developers. We found that the
bugs found by DIVER were highly useful for enhancing the
robustness of the SMT solvers. For example, after fixing the 14
bugs found by DIVER (Table III(a)), all bug-triggering mutant
formulas that were reported together have been added to the
regression test suites of the CVC5 developers.

Moreover, from the CVC5 developer’s comments, we ob-
served that DIVER revealed a fundamental issue and a hard-
to-detect error: “This lemma is unsound, since it assumes the
length of a skolem, which can be introduced for other reasons.
In other words, the original form of the lemma is not valid.”,3
and “This PR fixes a subtle corner case in the generalization
within the coverings solver.”.4 In particular, regarding the first
comment, it is interesting that DIVER was able to detect the
impactful bug, which was not just an implementation error (it
is a logic error) and had lurked in CVC for the past two years.

B. Comparison with Existing Tools
To see whether DIVER indeed complements the major

drawbacks of existing approaches [22]–[28], we conducted a
comparative experiment. Specifically, we would like to check

3https://github.com/cvc5/cvc5/pull/9014
4https://github.com/cvc5/cvc5/pull/8662

• Found 25 new bugs in Z3, CVC5, and dReal

• Most of these bugs were hard to detect by existing methods

• Seven involved solver-specific features

• Most bug-triggering mutants were substantially different
from the original formulas

• Proposed a domain-specific, model-based metamorphic testing
technique for SMT solvers

• For more information, see our paper “Diver: Oracle-Guided SMT
Solver Testing with Unrestricted Random Mutations. ICSE 2023”

• In particular, purely random mutations hardly succeed to satisfy the
original seed’s model

• In the paper, we proposed a method for weighted mutation to
increase this probability

• Curious whether such “semantic” metamorphic testing can be
applied to other domains

Summary

Thank you!

