
Sparse Analysis Framework

Hakjoo Oh

Programming Research Laboratory
Seoul National University

 18/04/2013 @ Dagstuhl, Germany
Co-work with Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi

Motivation

2

• In 2007, we commercialized

• memory-bug-finding tool for full C

• non domain-specific, flow-sensitive analysis for int & ptrs

• sound(y) in design, unsound yet scalable in reality

• Realistic workbench available

• “let’s try to scale-up its sound & global analysis version”

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

Scalability Improvement

3

• < 1.4M in 10hr
with intervals

• < 0.14M in 20hrs
with octagons

2008.09 2009.03 2009.09 2010.03 2010.09 2011.03 2011.09

2008.09 2009.03 2009.09 2010.03 2010.09 2011.03 2011.09

2008.09 2009.03 2009.09 2010.03 2010.09 2011.03 2011.09

2008.09 2009.03 2009.09 2010.03 2010.09 2011.03 2011.09
��������
�
���
��
���	�

���(��)

���(�
�)

���(�
�)

20 35 55 75 105 290 1364

10 17.5 27.5 37.5 52.5 145 682

1 4 25 60 150 350 600

1 0.95 0.90 0.90 0.80 0.80 0.40

1 4 25 60 150 350 600

10 18 28 38 53 145 682

1 2 3 4 5 15 68

APLAS’09 SPE’10 VMCAI’11

PLDI’12 (submitted)

2008.09 2009.03 2009.09 2010.03 2010.09 2011.03 2011.09
��������
��
���	�

27 35 50 75 105 210 1364

0.2 1 4 12 30 58 100

100 90 85 83 81 70 35

Scalability

#False Alarms

VMCAI’12

APLAS’11

Efficacy
(Scalability / #False Alarms)

1 4 28
67

188

438

1500

1312

1050

APLAS’09 SPE’10 VMCAI’11

PLDI’12 (submitted)

Speed

#False Alarms

VMCAI’12

APLAS’11

Efficacy
(Speed / #False Alarms)

1 4 28
67

188

438

1500

1312

1050

Scalability

APLAS’09

SPE’10

VM
CAI’11

PLDI’12
APLAS’11

Scalability (speed)

1x
4x 25x 60x

150x

350x

600x

460x

Scalability (LOC)

35K
40K 50K 80K

100K

300K

900K

1.3MCatching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

sound & global analysis version

This Talk: How we achieved
Key: Sparse Analysis

4

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x

x

y

y

z

z

v

v

a
b

Needs for Sparse Analysis Theory

• abstract interpretation

• design theory for provably correct static analysis

• the resulting analysis is “dense” and unscalable

• sparse analysis

• algorithmic technique for achieving scalability*

• no design theory like abstract interpretation

5

* Hardekopf and Lin. Semi-sparse flow-sensitive pointer analysis. POPL’09
 Hardekopf and Lin. Flow-sensitive pointer-analysis for millions of lines of code. CGO’11

Sparse Analysis Framework
design theory for sparse analysis

6

baseline analysis “sparse” version

still

sparsify

PLDI’12

The Framework is General

• arbitrary programming languages

• imperative, functional, oo, etc

• arbitrary trace partitioning strategies

• flow-/context-/path-sensitivity, etc

7

Sparse Analysis Framework

for simplicity, assume
- C-like programs
- flow-sensitive & context-insensitive analysis

Program

9

• : set of program points

• : control flow relation

X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple ⌅C, �⇤⇧ where C is a finite set of control points and �⇤⇥ C�C
is a relation that denotes control dependencies of the program; c� �⇤ c indicates

that c is a next control point of c�. Each control point c is associated with com-

mand cmd(c). Command c has one of the following five types:

assign(lv , e) | alloc(lv , a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined

as follows:
expression e ⇤ n | e + e | lv | &lv

l-value lv ⇤ x | *e | e[e] | e.x
allocation a ⇤ [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-

value expression (lv), or an address-of expression (&lv). An l-value may be a vari-

able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).

Expressions and l-value expressions have no side-e�ects. All program variables, in-

cluding formal parameters, have unique names. Command assign(lv , e) assigns the

value of e into the location of lv . Command alloc(lv , a) allocates an array [e]l or

a structure {x}l, where e is the size of the array, x is the field name, and the sub-

script l is the label for the allocation site. For simplicity, we consider structures

with one field only. Each call-site for a procedure is represented by two control

points: a call-point and its corresponding return-point. A call-point is associated

with command call(fx, e), which indicates that procedure f , whose formal param-

eter is x, is called with actual parameter e. When c is a call-point (resp., return-

point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-

8

2. Sparse Analysis Framework
2.1 Notation
Given function f A � B, we write f |C for the restriction
of function f to the domain dom(f) � C. We write f\C for the
restriction of f to the domain dom(f)� C. We abuse the notation
f |a and f\a for the domain restrictions on singleton set {a}. We
write f [a ↵� b] for the function got from function f by changing
the value for a to b. We write f [a1 ↵� b1, · · · , an ↵� bn] for
f [a1 ↵� b1] · · · [an ↵� bn]. We write f [{a1, · · · , an} w↵� b] for
f [a1 ↵� f(a1) ✓ b, · · · , an ↵� f(an) ✓ b] (weak update).

2.2 Program
A program is a tuple ⇣C, ⌅�⌘ where C is a finite set of con-
trol points and ⌅�⌃ C ⇥ C is a relation that denotes control
flows of the program; c⇥ ⌅� c indicates that c is a next control
point of c⇥. Each control point is associated with a command, de-
noted cmd(c). A path p = p0p1 . . . pn is a sequence of control
points such that p0 ⌅� p1 ⌅� · · · ⌅� pn. We write Paths =
lfp⇤P.{c0c1 | c0 ⌅� c1}�{p0 . . . pnc | p P ✏ pn ⌅� c} for the
set of all paths in the program.

Collecting Semantics Collecting semantics of program P is an
invariant [[P]] C � 2S that represents a set of reachable states
at each control point, where the concrete domain of states, S =
L � V, maps concrete locations (L) to concrete values (V).
The collecting semantics is characterized by the least fixpoint of
semantic function F (C� 2S)� (C� 2S) such that,

F (X) = ⇤c C.fc(
⇥

c0⇤�c

X(c⇥)). (1)

where fc 2S � 2S is a semantic function at control point c.
Because our framework is independent from target languages, we
leave out the definition of the concrete semantic function fc.

2.3 Baseline Abstraction
We abstract the collecting semantics of program P by the following
Galois connection

C� 2S ���⌥��
�

⇥
C� Ŝ (2)

where � and ⇥ are pointwise liftings of abstract and concretization
function �S and ⇥S (such that 2S ����⌥���

�S

⇥S Ŝ), respectively.
We consider a particular, yet general, family of abstract domains

where abstract state Ŝ is map L̂ � V̂ where L̂ is a finite set of
abstract locations, and V̂ is a (potentially infinite) set of abstract
values. All non-relational abstract domains, such as intervals [9],
are members of this family. Furthermore, the family covers some
numerical, relational domains. Practical relational analyses exploit
packed relationality [4, 13, 34, 43]; the abstract domain is of form
Packs � R̂ where Packs is a set of variable groups selected to be
related together. R̂ denotes numerical constraints among variables
in those groups. In such packed relational analysis, each variable
pack is treated as an abstract location (L̂) and numerical constraints
amount to abstract values (V̂). Examples of the numerical con-
straints are domain of octagons [34] and polyhedrons [12]. In prac-
tice, relational analyses are necessarily packed relational [4, 13]
because of otherwise unacceptable costs.

Abstract semantics is characterized as a least fixpoint of abstract
semantic function F̂ (C� Ŝ)� (C� Ŝ) defined as,

F̂ (X̂) = ⇤c C.f̂c(
�

c0⇤�c

X̂(c⇥)). (3)

where f̂c Ŝ � Ŝ is a monotone abstract semantic function for
control point c. We assume that F̂ is sound with respect to F , i.e.,

�⇧F ◆ F̂ ⇧�, then the soundness of abstract semantics is followed
by the fixpoint transfer theorem [11].

2.4 Sparse Analysis by Eliminating Unnecessary Propagation
The abstract semantic function given in (3) propagates some ab-
stract values unnecessarily. For example, suppose that we analyze
statement x := y using a non-relational domain, like interval do-
main [9]. We know for sure that the abstract semantic function for
the statement defines a new abstract value only at variable x and
uses only the abstract value of variable y. Thus, it is unnecessary to
propagate the whole abstract states. However, the function given in
(3) blindly propagates the whole abstract states of all predecessors
c⇥ to control point c.

To make the analysis sparse, we need to eliminate this un-
necessary propagation by making the semantic function propagate
abstract values along data dependency, not control flows; that is,
we make the semantic function propagate only the abstract values
newly computed at one control point to the other where they are
actually used. In the rest of this section, we explain how to make
abstract semantic function (3) sparse while preserving its precision
and soundness.

2.5 Definition and Use Set
We first need to precisely define what are “definitions” and “uses”.
They are defined in terms of abstract semantics, i.e., abstract se-
mantic function f̂c, not concrete semantics.

Definition 1 (Definition set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Definition set D(c) at control point c
is a set of abstract locations that are assigned a new abstract value
by abstract semantic function f̂c, i.e.

D(c) � {l L̂ | �ŝ ◆
�

c0⇤�c

S(c⇥).f̂c(ŝ)(l) ⌦= ŝ(l)}.

Definition 2 (Use set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Use set U(c) at control point c is a
set of abstract locations that are used by abstract semantic function
f̂c, i.e.

U(c) � {l L̂ | �ŝ ◆
�

c0⇤�c

S(c⇥).f̂c(ŝ)|D(c) ⌦= f̂c(ŝ\l)|D(c)}.

Example 1. Consider the following simple subset of C:

cmd � x := e | ⇤x := e
e � x | &x | ⇤x.

The meaning of each statement and each expression is fairly stan-
dard. We design a pointer analysis for this as follows:

ŝ ⌅ Ŝ = Var ⇤ 2Var

f̂c(ŝ) =

8
>><

>>:

ŝ[x ⇧⇤ Ê(e)(ŝ)] cmd(c) = x := e
ŝ[y ⇧⇤ Ê(e)(ŝ)] cmd(c) = �x := e

and ŝ(x) = {y}
ŝ[ŝ(x)

w⇧⇤ Ê(e)(ŝ)] cmd(c) = �x := e

Ê(e)(ŝ) =

8
<

:

ŝ(x) e = x
{x} e = &xS

y⇤ŝ(x) ŝ(y) e = �x

Now suppose that we analyze program 10⌅x := &y; 11⌅⇤p := &z;
12⌅y := x; (superscripts are control points). Suppose that points-
to set of pointer p is {x, y} at control point 11⌅ according to the
fixpoint. Definition set and use set at each control point are as
follows.

D(10⇥) = {x} U(10⇥) = �
D(11⇥) = {x, y} U(11⇥) = {p, x, y}
D(12⇥) = {y} U(12⇥) = {x}

X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple ⌅C, �⇤⇧ where C is a finite set of control points and �⇤⇥ C�C
is a relation that denotes control dependencies of the program; c� �⇤ c indicates

that c is a next control point of c�. Each control point c is associated with com-

mand cmd(c). Command c has one of the following five types:

assign(lv , e) | alloc(lv , a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined

as follows:
expression e ⇤ n | e + e | lv | &lv

l-value lv ⇤ x | *e | e[e] | e.x
allocation a ⇤ [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-

value expression (lv), or an address-of expression (&lv). An l-value may be a vari-

able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).

Expressions and l-value expressions have no side-e�ects. All program variables, in-

cluding formal parameters, have unique names. Command assign(lv , e) assigns the

value of e into the location of lv . Command alloc(lv , a) allocates an array [e]l or

a structure {x}l, where e is the size of the array, x is the field name, and the sub-

script l is the label for the allocation site. For simplicity, we consider structures

with one field only. Each call-site for a procedure is represented by two control

points: a call-point and its corresponding return-point. A call-point is associated

with command call(fx, e), which indicates that procedure f , whose formal param-

eter is x, is called with actual parameter e. When c is a call-point (resp., return-

point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-

8

(c is the next program point to c’)

X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple ⌅C, �⇤⇧ where C is a finite set of control points and �⇤⇥ C�C
is a relation that denotes control dependencies of the program; c� �⇤ c indicates

that c is a next control point of c�. Each control point c is associated with com-

mand cmd(c). Command c has one of the following five types:

assign(lv , e) | alloc(lv , a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined

as follows:
expression e ⇤ n | e + e | lv | &lv

l-value lv ⇤ x | *e | e[e] | e.x
allocation a ⇤ [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-

value expression (lv), or an address-of expression (&lv). An l-value may be a vari-

able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).

Expressions and l-value expressions have no side-e�ects. All program variables, in-

cluding formal parameters, have unique names. Command assign(lv , e) assigns the

value of e into the location of lv . Command alloc(lv , a) allocates an array [e]l or

a structure {x}l, where e is the size of the array, x is the field name, and the sub-

script l is the label for the allocation site. For simplicity, we consider structures

with one field only. Each call-site for a procedure is represented by two control

points: a call-point and its corresponding return-point. A call-point is associated

with command call(fx, e), which indicates that procedure f , whose formal param-

eter is x, is called with actual parameter e. When c is a call-point (resp., return-

point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-

8

Baseline Analysis

10

• Abstract semantic function

• Abstract domain

: abstract semantics at point c

c

c0c0

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite ⇥ FieldName

V̂ = Ẑ⇥ 2L̂ ⇥ 2AllocSite�Ẑ�Ẑ ⇥ 2AllocSite�2FieldName

Ẑ = {[l, u] | l, u ⌥ Z {�⌃,+⌃} ⌦ l ⇤ u} {�}

An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10

11

Direct Implementation (convention)
 Too Weak To Scale

less-382 (24KLoC)

12

nethack-3.3.0 (211KLoC)

Towards Sparse Version

 Analyzer computes the fixpoint of

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite ⇥ FieldName

V̂ = Ẑ⇥ 2L̂ ⇥ 2AllocSite�Ẑ�Ẑ ⇥ 2AllocSite�2FieldName

Ẑ = {[l, u] | l, u ⌥ Z {�⌃,+⌃} ⌦ l ⇤ u} {�}

An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite ⇥ FieldName

V̂ = Ẑ⇥ 2L̂ ⇥ 2AllocSite�Ẑ�Ẑ ⇥ 2AllocSite�2FieldName

Ẑ = {[l, u] | l, u ⌥ Z {�⌃,+⌃} ⌦ l ⇤ u} {�}

An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10

• baseline non-sparse one

-

14

Towards Sparse Version

 Analyzer computes the fixpoint of

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite ⇥ FieldName

V̂ = Ẑ⇥ 2L̂ ⇥ 2AllocSite�Ẑ�Ẑ ⇥ 2AllocSite�2FieldName

Ẑ = {[l, u] | l, u ⌥ Z {�⌃,+⌃} ⌦ l ⇤ u} {�}

An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite ⇥ FieldName

V̂ = Ẑ⇥ 2L̂ ⇥ 2AllocSite�Ẑ�Ẑ ⇥ 2AllocSite�2FieldName

Ẑ = {[l, u] | l, u ⌥ Z {�⌃,+⌃} ⌦ l ⇤ u} {�}

An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10

• baseline non-sparse one

• unrealizable sparse version

-

Note that U(11⇥) contains D(11⇥) because of the weak update (w⌥⌅):
the semantics of weak update ŝ[l

w⌥⌅ v] = ŝ[l ⌥⌅ ŝ(l) � v] is
defined to use the target location l. This implicit use information,
which does not explicitly appear in the program text, is naturally
captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we
can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of
abstract location l defined at control point c0 is used at control
point cn, there is a data dependency between c0 and cn on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-
tion ⇤ C� L̂� C defined as follows:

c0
l cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at
cn, and there is no intermediate control point ci that may change the
value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency
excludes not only a path that always kills the definition but also a
path that might, but not always, kill the definition. In the latter case,
the definition that might be killed is, by Definition 2, included in the
use set of the definition point.

Example 2. In the program presented in Example 1, we can find
two data dependencies, 10⇥ x 11⇥ and 11⇥ x 12⇥.

Comparison with Def-use Chains Our notion of data depen-
dency is different from the conventional notion of def-use chains. If
we want to conservatively collect all the possible def-use chains, we
should exclude only the paths from definition points to use points
when there exists a point that always kills the definition. We can
slightly modify Definition 3 to express def-use chain relation du

as follows:

c0
l du cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-
ways killed at control point c.

Example 3. We can find three def-use chains, 10⇥ x du 11⇥, 10⇥ x du

12⇥, and 11⇥ x du 12⇥ in Example 1.

The reason why we use our notion of data dependencies instead
of def-use chains is that our data dependencies preserve the preci-
sion of the analysis even when approximations are involved. On the
other hand, sparse analysis with approximated def-use chains may
lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function
sparse, which propagates between control points only the abstract
values that participate in the fixpoint computation. Sparse abstract
function F̂s, whose definition is given below, is the same as the
original except that it propagates abstract values along to the data
dependency, not along to control flows:

F̂s(X̂) = �c ⇧ C.f̂c(
�

c0 l c

X̂(c�)|l).

As this definition is only different in that it is defined over data
dependency (), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

�c ⇧ C.�l ⇧ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to
the original result only up to the entries that are defined in every
control point. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition
5).

Definition 4 (Approximated Data Dependency). Approximated
data dependency is ternary relation a⇤ C � L̂ � C defined as
follows:

c0
l a cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D̂(c0) ⌦ Û(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D̂(ci)

The definition is the same except that it is defined over D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = �c ⇧ C.f̂c(
�

c0 l ac

X̂(c�)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.
Example 4. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = �
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.
The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = �
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at
control point 11⇥ is not included in approximated use set Û(11⇥).
With this approximation, abstract value of x at 10⇥ is not propagated
to 12⇥, while it is propagated in the original analysis (10⇥ x 12⇥, but
10⇥ ⌃ x a 12⇥). However, if {x} ⇤ Û(11⇥), then the abstract value

“data dependency”

15

Towards Sparse Version

 Analyzer computes the fixpoint of

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite ⇥ FieldName

V̂ = Ẑ⇥ 2L̂ ⇥ 2AllocSite�Ẑ�Ẑ ⇥ 2AllocSite�2FieldName

Ẑ = {[l, u] | l, u ⌥ Z {�⌃,+⌃} ⌦ l ⇤ u} {�}

An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite ⇥ FieldName

V̂ = Ẑ⇥ 2L̂ ⇥ 2AllocSite�Ẑ�Ẑ ⇥ 2AllocSite�2FieldName

Ẑ = {[l, u] | l, u ⌥ Z {�⌃,+⌃} ⌦ l ⇤ u} {�}

An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10

• baseline non-sparse one

• unrealizable sparse version

• realizable sparse version

-

Note that U(11⇥) contains D(11⇥) because of the weak update (w⌥⌅):
the semantics of weak update ŝ[l

w⌥⌅ v] = ŝ[l ⌥⌅ ŝ(l) � v] is
defined to use the target location l. This implicit use information,
which does not explicitly appear in the program text, is naturally
captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we
can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of
abstract location l defined at control point c0 is used at control
point cn, there is a data dependency between c0 and cn on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-
tion ⇤ C� L̂� C defined as follows:

c0
l cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at
cn, and there is no intermediate control point ci that may change the
value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency
excludes not only a path that always kills the definition but also a
path that might, but not always, kill the definition. In the latter case,
the definition that might be killed is, by Definition 2, included in the
use set of the definition point.

Example 2. In the program presented in Example 1, we can find
two data dependencies, 10⇥ x 11⇥ and 11⇥ x 12⇥.

Comparison with Def-use Chains Our notion of data depen-
dency is different from the conventional notion of def-use chains. If
we want to conservatively collect all the possible def-use chains, we
should exclude only the paths from definition points to use points
when there exists a point that always kills the definition. We can
slightly modify Definition 3 to express def-use chain relation du

as follows:

c0
l du cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-
ways killed at control point c.

Example 3. We can find three def-use chains, 10⇥ x du 11⇥, 10⇥ x du

12⇥, and 11⇥ x du 12⇥ in Example 1.

The reason why we use our notion of data dependencies instead
of def-use chains is that our data dependencies preserve the preci-
sion of the analysis even when approximations are involved. On the
other hand, sparse analysis with approximated def-use chains may
lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function
sparse, which propagates between control points only the abstract
values that participate in the fixpoint computation. Sparse abstract
function F̂s, whose definition is given below, is the same as the
original except that it propagates abstract values along to the data
dependency, not along to control flows:

F̂s(X̂) = �c ⇧ C.f̂c(
�

c0 l c

X̂(c�)|l).

As this definition is only different in that it is defined over data
dependency (), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

�c ⇧ C.�l ⇧ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to
the original result only up to the entries that are defined in every
control point. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition
5).

Definition 4 (Approximated Data Dependency). Approximated
data dependency is ternary relation a⇤ C � L̂ � C defined as
follows:

c0
l a cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D̂(c0) ⌦ Û(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D̂(ci)

The definition is the same except that it is defined over D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = �c ⇧ C.f̂c(
�

c0 l ac

X̂(c�)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.
Example 4. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = �
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.
The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = �
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at
control point 11⇥ is not included in approximated use set Û(11⇥).
With this approximation, abstract value of x at 10⇥ is not propagated
to 12⇥, while it is propagated in the original analysis (10⇥ x 12⇥, but
10⇥ ⌃ x a 12⇥). However, if {x} ⇤ Û(11⇥), then the abstract value

Note that U(11⇥) contains D(11⇥) because of the weak update (w⌥⌅):
the semantics of weak update ŝ[l

w⌥⌅ v] = ŝ[l ⌥⌅ ŝ(l) � v] is
defined to use the target location l. This implicit use information,
which does not explicitly appear in the program text, is naturally
captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we
can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of
abstract location l defined at control point c0 is used at control
point cn, there is a data dependency between c0 and cn on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-
tion ⇤ C� L̂� C defined as follows:

c0
l cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at
cn, and there is no intermediate control point ci that may change the
value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency
excludes not only a path that always kills the definition but also a
path that might, but not always, kill the definition. In the latter case,
the definition that might be killed is, by Definition 2, included in the
use set of the definition point.

Example 2. In the program presented in Example 1, we can find
two data dependencies, 10⇥ x 11⇥ and 11⇥ x 12⇥.

Comparison with Def-use Chains Our notion of data depen-
dency is different from the conventional notion of def-use chains. If
we want to conservatively collect all the possible def-use chains, we
should exclude only the paths from definition points to use points
when there exists a point that always kills the definition. We can
slightly modify Definition 3 to express def-use chain relation du

as follows:

c0
l du cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-
ways killed at control point c.

Example 3. We can find three def-use chains, 10⇥ x du 11⇥, 10⇥ x du

12⇥, and 11⇥ x du 12⇥ in Example 1.

The reason why we use our notion of data dependencies instead
of def-use chains is that our data dependencies preserve the preci-
sion of the analysis even when approximations are involved. On the
other hand, sparse analysis with approximated def-use chains may
lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function
sparse, which propagates between control points only the abstract
values that participate in the fixpoint computation. Sparse abstract
function F̂s, whose definition is given below, is the same as the
original except that it propagates abstract values along to the data
dependency, not along to control flows:

F̂s(X̂) = �c ⇧ C.f̂c(
�

c0 l c

X̂(c�)|l).

As this definition is only different in that it is defined over data
dependency (), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

�c ⇧ C.�l ⇧ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to
the original result only up to the entries that are defined in every
control point. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition
5).

Definition 4 (Approximated Data Dependency). Approximated
data dependency is ternary relation a⇤ C � L̂ � C defined as
follows:

c0
l a cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D̂(c0) ⌦ Û(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D̂(ci)

The definition is the same except that it is defined over D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = �c ⇧ C.f̂c(
�

c0 l ac

X̂(c�)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.
Example 4. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = �
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.
The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = �
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at
control point 11⇥ is not included in approximated use set Û(11⇥).
With this approximation, abstract value of x at 10⇥ is not propagated
to 12⇥, while it is propagated in the original analysis (10⇥ x 12⇥, but
10⇥ ⌃ x a 12⇥). However, if {x} ⇤ Û(11⇥), then the abstract value

“data dependency”

16

Data Dependency

Note that U(11⇥) contains D(11⇥) because of the weak update (w⌥⌅):
the semantics of weak update ŝ[l

w⌥⌅ v] = ŝ[l ⌥⌅ ŝ(l) � v] is
defined to use the target location l. This implicit use information,
which does not explicitly appear in the program text, is naturally
captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we
can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of
abstract location l defined at control point c0 is used at control
point cn, there is a data dependency between c0 and cn on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-
tion ⇤ C� L̂� C defined as follows:

c0
l cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at
cn, and there is no intermediate control point ci that may change the
value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency
excludes not only a path that always kills the definition but also a
path that might, but not always, kill the definition. In the latter case,
the definition that might be killed is, by Definition 2, included in the
use set of the definition point.

Example 2. In the program presented in Example 1, we can find
two data dependencies, 10⇥ x 11⇥ and 11⇥ x 12⇥.

Comparison with Def-use Chains Our notion of data depen-
dency is different from the conventional notion of def-use chains. If
we want to conservatively collect all the possible def-use chains, we
should exclude only the paths from definition points to use points
when there exists a point that always kills the definition. We can
slightly modify Definition 3 to express def-use chain relation du

as follows:

c0
l du cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-
ways killed at control point c.

Example 3. We can find three def-use chains, 10⇥ x du 11⇥, 10⇥ x du

12⇥, and 11⇥ x du 12⇥ in Example 1.

The reason why we use our notion of data dependencies instead
of def-use chains is that our data dependencies preserve the preci-
sion of the analysis even when approximations are involved. On the
other hand, sparse analysis with approximated def-use chains may
lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function
sparse, which propagates between control points only the abstract
values that participate in the fixpoint computation. Sparse abstract
function F̂s, whose definition is given below, is the same as the
original except that it propagates abstract values along to the data
dependency, not along to control flows:

F̂s(X̂) = �c ⇧ C.f̂c(
�

c0 l c

X̂(c�)|l).

As this definition is only different in that it is defined over data
dependency (), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

�c ⇧ C.�l ⇧ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to
the original result only up to the entries that are defined in every
control point. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition
5).

Definition 4 (Approximated Data Dependency). Approximated
data dependency is ternary relation a⇤ C � L̂ � C defined as
follows:

c0
l a cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D̂(c0) ⌦ Û(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D̂(ci)

The definition is the same except that it is defined over D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = �c ⇧ C.f̂c(
�

c0 l ac

X̂(c�)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.
Example 4. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = �
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.
The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = �
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at
control point 11⇥ is not included in approximated use set Û(11⇥).
With this approximation, abstract value of x at 10⇥ is not propagated
to 12⇥, while it is propagated in the original analysis (10⇥ x 12⇥, but
10⇥ ⌃ x a 12⇥). However, if {x} ⇤ Û(11⇥), then the abstract value

c0 cnci

l 2 D(c0) l 2 U(cn)l 62 D(ci)

l

Unrealizable Sparse One

17

Unrealizable Sparse One

Data Dependency

Preserving

Def-Use Sets

2. Sparse Analysis Framework
2.1 Notation
Given function f A � B, we write f |C for the restriction
of function f to the domain dom(f) � C. We write f\C for the
restriction of f to the domain dom(f)� C. We abuse the notation
f |a and f\a for the domain restrictions on singleton set {a}. We
write f [a ↵� b] for the function got from function f by changing
the value for a to b. We write f [a1 ↵� b1, · · · , an ↵� bn] for
f [a1 ↵� b1] · · · [an ↵� bn]. We write f [{a1, · · · , an} w↵� b] for
f [a1 ↵� f(a1) ✓ b, · · · , an ↵� f(an) ✓ b] (weak update).

2.2 Program
A program is a tuple ⇣C, ⌅�⌘ where C is a finite set of con-
trol points and ⌅�⌃ C ⇥ C is a relation that denotes control
flows of the program; c⇥ ⌅� c indicates that c is a next control
point of c⇥. Each control point is associated with a command, de-
noted cmd(c). A path p = p0p1 . . . pn is a sequence of control
points such that p0 ⌅� p1 ⌅� · · · ⌅� pn. We write Paths =
lfp⇤P.{c0c1 | c0 ⌅� c1}�{p0 . . . pnc | p P ✏ pn ⌅� c} for the
set of all paths in the program.

Collecting Semantics Collecting semantics of program P is an
invariant [[P]] C � 2S that represents a set of reachable states
at each control point, where the concrete domain of states, S =
L � V, maps concrete locations (L) to concrete values (V).
The collecting semantics is characterized by the least fixpoint of
semantic function F (C� 2S)� (C� 2S) such that,

F (X) = ⇤c C.fc(
⇥

c0⇤�c

X(c⇥)). (1)

where fc 2S � 2S is a semantic function at control point c.
Because our framework is independent from target languages, we
leave out the definition of the concrete semantic function fc.

2.3 Baseline Abstraction
We abstract the collecting semantics of program P by the following
Galois connection

C� 2S ���⌥��
�

⇥
C� Ŝ (2)

where � and ⇥ are pointwise liftings of abstract and concretization
function �S and ⇥S (such that 2S ����⌥���

�S

⇥S Ŝ), respectively.
We consider a particular, yet general, family of abstract domains

where abstract state Ŝ is map L̂ � V̂ where L̂ is a finite set of
abstract locations, and V̂ is a (potentially infinite) set of abstract
values. All non-relational abstract domains, such as intervals [9],
are members of this family. Furthermore, the family covers some
numerical, relational domains. Practical relational analyses exploit
packed relationality [4, 13, 34, 43]; the abstract domain is of form
Packs � R̂ where Packs is a set of variable groups selected to be
related together. R̂ denotes numerical constraints among variables
in those groups. In such packed relational analysis, each variable
pack is treated as an abstract location (L̂) and numerical constraints
amount to abstract values (V̂). Examples of the numerical con-
straints are domain of octagons [34] and polyhedrons [12]. In prac-
tice, relational analyses are necessarily packed relational [4, 13]
because of otherwise unacceptable costs.

Abstract semantics is characterized as a least fixpoint of abstract
semantic function F̂ (C� Ŝ)� (C� Ŝ) defined as,

F̂ (X̂) = ⇤c C.f̂c(
�

c0⇤�c

X̂(c⇥)). (3)

where f̂c Ŝ � Ŝ is a monotone abstract semantic function for
control point c. We assume that F̂ is sound with respect to F , i.e.,

�⇧F ◆ F̂ ⇧�, then the soundness of abstract semantics is followed
by the fixpoint transfer theorem [11].

2.4 Sparse Analysis by Eliminating Unnecessary Propagation
The abstract semantic function given in (3) propagates some ab-
stract values unnecessarily. For example, suppose that we analyze
statement x := y using a non-relational domain, like interval do-
main [9]. We know for sure that the abstract semantic function for
the statement defines a new abstract value only at variable x and
uses only the abstract value of variable y. Thus, it is unnecessary to
propagate the whole abstract states. However, the function given in
(3) blindly propagates the whole abstract states of all predecessors
c⇥ to control point c.

To make the analysis sparse, we need to eliminate this un-
necessary propagation by making the semantic function propagate
abstract values along data dependency, not control flows; that is,
we make the semantic function propagate only the abstract values
newly computed at one control point to the other where they are
actually used. In the rest of this section, we explain how to make
abstract semantic function (3) sparse while preserving its precision
and soundness.

2.5 Definition and Use Set
We first need to precisely define what are “definitions” and “uses”.
They are defined in terms of abstract semantics, i.e., abstract se-
mantic function f̂c, not concrete semantics.

Definition 1 (Definition set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Definition set D(c) at control point c
is a set of abstract locations that are assigned a new abstract value
by abstract semantic function f̂c, i.e.

D(c) � {l L̂ | �ŝ ◆
�

c0⇤�c

(fixF̂)(c⇥).f̂c(ŝ)(l) ⌦= ŝ(l)}.

Definition 2 (Use set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Use set U(c) at control point c is a
set of abstract locations that are used by abstract semantic function
f̂c, i.e.

U(c) � {l L̂ | �ŝ ◆
�

c0⇤�c

(fixF̂)(c⇥).f̂c(ŝ)|D(c) ⌦= f̂c(ŝ\l)|D(c)}.

Example 1. Consider the following simple subset of C:

cmd � x := e | ⇤x := e
e � x | &x | ⇤x.

The meaning of each statement and each expression is fairly stan-
dard. We design a pointer analysis for this as follows:

ŝ ⌅ Ŝ = Var ⇤ 2Var

f̂c(ŝ) =

8
>><

>>:

ŝ[x ⇧⇤ Ê(e)(ŝ)] cmd(c) = x := e
ŝ[y ⇧⇤ Ê(e)(ŝ)] cmd(c) = �x := e

and ŝ(x) = {y}
ŝ[ŝ(x)

w⇧⇤ Ê(e)(ŝ)] cmd(c) = �x := e

Ê(e)(ŝ) =

8
<

:

ŝ(x) e = x
{x} e = &xS

y⇤ŝ(x) ŝ(y) e = �x

Now suppose that we analyze program 10⌅x := &y; 11⌅⇤p := &z;
12⌅y := x; (superscripts are control points). Suppose that points-
to set of pointer p is {x, y} at control point 11⌅ according to the
fixpoint. Definition set and use set at each control point are as
follows.

D(10⇥) = {x} U(10⇥) = �
D(11⇥) = {x, y} U(11⇥) = {p, x, y}
D(12⇥) = {y} U(12⇥) = {x}

2. Sparse Analysis Framework
2.1 Notation
Given function f A � B, we write f |C for the restriction
of function f to the domain dom(f) � C. We write f\C for the
restriction of f to the domain dom(f)� C. We abuse the notation
f |a and f\a for the domain restrictions on singleton set {a}. We
write f [a ↵� b] for the function got from function f by changing
the value for a to b. We write f [a1 ↵� b1, · · · , an ↵� bn] for
f [a1 ↵� b1] · · · [an ↵� bn]. We write f [{a1, · · · , an} w↵� b] for
f [a1 ↵� f(a1) ✓ b, · · · , an ↵� f(an) ✓ b] (weak update).

2.2 Program
A program is a tuple ⇣C, ⌅�⌘ where C is a finite set of con-
trol points and ⌅�⌃ C ⇥ C is a relation that denotes control
flows of the program; c⇥ ⌅� c indicates that c is a next control
point of c⇥. Each control point is associated with a command, de-
noted cmd(c). A path p = p0p1 . . . pn is a sequence of control
points such that p0 ⌅� p1 ⌅� · · · ⌅� pn. We write Paths =
lfp⇤P.{c0c1 | c0 ⌅� c1}�{p0 . . . pnc | p P ✏ pn ⌅� c} for the
set of all paths in the program.

Collecting Semantics Collecting semantics of program P is an
invariant [[P]] C � 2S that represents a set of reachable states
at each control point, where the concrete domain of states, S =
L � V, maps concrete locations (L) to concrete values (V).
The collecting semantics is characterized by the least fixpoint of
semantic function F (C� 2S)� (C� 2S) such that,

F (X) = ⇤c C.fc(
⇥

c0⇤�c

X(c⇥)). (1)

where fc 2S � 2S is a semantic function at control point c.
Because our framework is independent from target languages, we
leave out the definition of the concrete semantic function fc.

2.3 Baseline Abstraction
We abstract the collecting semantics of program P by the following
Galois connection

C� 2S ���⌥��
�

⇥
C� Ŝ (2)

where � and ⇥ are pointwise liftings of abstract and concretization
function �S and ⇥S (such that 2S ����⌥���

�S

⇥S Ŝ), respectively.
We consider a particular, yet general, family of abstract domains

where abstract state Ŝ is map L̂ � V̂ where L̂ is a finite set of
abstract locations, and V̂ is a (potentially infinite) set of abstract
values. All non-relational abstract domains, such as intervals [9],
are members of this family. Furthermore, the family covers some
numerical, relational domains. Practical relational analyses exploit
packed relationality [4, 13, 34, 43]; the abstract domain is of form
Packs � R̂ where Packs is a set of variable groups selected to be
related together. R̂ denotes numerical constraints among variables
in those groups. In such packed relational analysis, each variable
pack is treated as an abstract location (L̂) and numerical constraints
amount to abstract values (V̂). Examples of the numerical con-
straints are domain of octagons [34] and polyhedrons [12]. In prac-
tice, relational analyses are necessarily packed relational [4, 13]
because of otherwise unacceptable costs.

Abstract semantics is characterized as a least fixpoint of abstract
semantic function F̂ (C� Ŝ)� (C� Ŝ) defined as,

F̂ (X̂) = ⇤c C.f̂c(
�

c0⇤�c

X̂(c⇥)). (3)

where f̂c Ŝ � Ŝ is a monotone abstract semantic function for
control point c. We assume that F̂ is sound with respect to F , i.e.,

�⇧F ◆ F̂ ⇧�, then the soundness of abstract semantics is followed
by the fixpoint transfer theorem [11].

2.4 Sparse Analysis by Eliminating Unnecessary Propagation
The abstract semantic function given in (3) propagates some ab-
stract values unnecessarily. For example, suppose that we analyze
statement x := y using a non-relational domain, like interval do-
main [9]. We know for sure that the abstract semantic function for
the statement defines a new abstract value only at variable x and
uses only the abstract value of variable y. Thus, it is unnecessary to
propagate the whole abstract states. However, the function given in
(3) blindly propagates the whole abstract states of all predecessors
c⇥ to control point c.

To make the analysis sparse, we need to eliminate this un-
necessary propagation by making the semantic function propagate
abstract values along data dependency, not control flows; that is,
we make the semantic function propagate only the abstract values
newly computed at one control point to the other where they are
actually used. In the rest of this section, we explain how to make
abstract semantic function (3) sparse while preserving its precision
and soundness.

2.5 Definition and Use Set
We first need to precisely define what are “definitions” and “uses”.
They are defined in terms of abstract semantics, i.e., abstract se-
mantic function f̂c, not concrete semantics.

Definition 1 (Definition set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Definition set D(c) at control point c
is a set of abstract locations that are assigned a new abstract value
by abstract semantic function f̂c, i.e.

D(c) � {l L̂ | �ŝ ◆
�

c0⇤�c

(fixF̂)(c⇥).f̂c(ŝ)(l) ⌦= ŝ(l)}.

Definition 2 (Use set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Use set U(c) at control point c is a
set of abstract locations that are used by abstract semantic function
f̂c, i.e.

U(c) � {l L̂ | �ŝ ◆
�

c0⇤�c

(fixF̂)(c⇥).f̂c(ŝ)|D(c) ⌦= f̂c(ŝ\l)|D(c)}.

Example 1. Consider the following simple subset of C:

cmd � x := e | ⇤x := e
e � x | &x | ⇤x.

The meaning of each statement and each expression is fairly stan-
dard. We design a pointer analysis for this as follows:

ŝ ⌅ Ŝ = Var ⇤ 2Var

f̂c(ŝ) =

8
>><

>>:

ŝ[x ⇧⇤ Ê(e)(ŝ)] cmd(c) = x := e
ŝ[y ⇧⇤ Ê(e)(ŝ)] cmd(c) = �x := e

and ŝ(x) = {y}
ŝ[ŝ(x)

w⇧⇤ Ê(e)(ŝ)] cmd(c) = �x := e

Ê(e)(ŝ) =

8
<

:

ŝ(x) e = x
{x} e = &xS

y⇤ŝ(x) ŝ(y) e = �x

Now suppose that we analyze program 10⌅x := &y; 11⌅⇤p := &z;
12⌅y := x; (superscripts are control points). Suppose that points-
to set of pointer p is {x, y} at control point 11⌅ according to the
fixpoint. Definition set and use set at each control point are as
follows.

D(10⇥) = {x} U(10⇥) = �
D(11⇥) = {x, y} U(11⇥) = {p, x, y}
D(12⇥) = {y} U(12⇥) = {x}

Note that U(11⇥) contains D(11⇥) because of the weak update (w⌥⌅):
the semantics of weak update ŝ[l

w⌥⌅ v] = ŝ[l ⌥⌅ ŝ(l) � v] is
defined to use the target location l. This implicit use information,
which does not explicitly appear in the program text, is naturally
captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we
can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of
abstract location l defined at control point c0 is used at control
point cn, there is a data dependency between c0 and cn on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-
tion ⇤ C� L̂� C defined as follows:

c0
l cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at
cn, and there is no intermediate control point ci that may change the
value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency
excludes not only a path that always kills the definition but also a
path that might, but not always, kill the definition. In the latter case,
the definition that might be killed is, by Definition 2, included in the
use set of the definition point.

Example 2. In the program presented in Example 1, we can find
two data dependencies, 10⇥ x 11⇥ and 11⇥ x 12⇥.

Comparison with Def-use Chains Our notion of data depen-
dency is different from the conventional notion of def-use chains. If
we want to conservatively collect all the possible def-use chains, we
should exclude only the paths from definition points to use points
when there exists a point that always kills the definition. We can
slightly modify Definition 3 to express def-use chain relation du

as follows:

c0
l du cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-
ways killed at control point c.

Example 3. We can find three def-use chains, 10⇥ x du 11⇥, 10⇥ x du

12⇥, and 11⇥ x du 12⇥ in Example 1.

The reason why we use our notion of data dependencies instead
of def-use chains is that our data dependencies preserve the preci-
sion of the analysis even when approximations are involved. On the
other hand, sparse analysis with approximated def-use chains may
lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function
sparse, which propagates between control points only the abstract
values that participate in the fixpoint computation. Sparse abstract
function F̂s, whose definition is given below, is the same as the
original except that it propagates abstract values along to the data
dependency, not along to control flows:

F̂s(X̂) = �c ⇧ C.f̂c(
�

c0 l c

X̂(c�)|l).

As this definition is only different in that it is defined over data
dependency (), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

�c ⇧ C.�l ⇧ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to
the original result only up to the entries that are defined in every
control point. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition
5).

Definition 4 (Approximated Data Dependency). Approximated
data dependency is ternary relation a⇤ C � L̂ � C defined as
follows:

c0
l a cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D̂(c0) ⌦ Û(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D̂(ci)

The definition is the same except that it is defined over D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = �c ⇧ C.f̂c(
�

c0 l ac

X̂(c�)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.
Example 4. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = �
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.
The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = �
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at
control point 11⇥ is not included in approximated use set Û(11⇥).
With this approximation, abstract value of x at 10⇥ is not propagated
to 12⇥, while it is propagated in the original analysis (10⇥ x 12⇥, but
10⇥ ⌃ x a 12⇥). However, if {x} ⇤ Û(11⇥), then the abstract value

18

Data Dependency Example

x = &y *p = &z y = x

Def

Use

{x}

ɸ

{y}{a, b}

{p, a, b} {x}

x

19

Realizable Sparse One

Realizable Data Dependency

Note that U(11⇥) contains D(11⇥) because of the weak update (w⌥⌅):
the semantics of weak update ŝ[l

w⌥⌅ v] = ŝ[l ⌥⌅ ŝ(l) � v] is
defined to use the target location l. This implicit use information,
which does not explicitly appear in the program text, is naturally
captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we
can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of
abstract location l defined at control point c0 is used at control
point cn, there is a data dependency between c0 and cn on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-
tion ⇤ C� L̂� C defined as follows:

c0
l cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at
cn, and there is no intermediate control point ci that may change the
value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency
excludes not only a path that always kills the definition but also a
path that might, but not always, kill the definition. In the latter case,
the definition that might be killed is, by Definition 2, included in the
use set of the definition point.

Example 2. In the program presented in Example 1, we can find
two data dependencies, 10⇥ x 11⇥ and 11⇥ x 12⇥.

Comparison with Def-use Chains Our notion of data depen-
dency is different from the conventional notion of def-use chains. If
we want to conservatively collect all the possible def-use chains, we
should exclude only the paths from definition points to use points
when there exists a point that always kills the definition. We can
slightly modify Definition 3 to express def-use chain relation du

as follows:

c0
l du cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-
ways killed at control point c.

Example 3. We can find three def-use chains, 10⇥ x du 11⇥, 10⇥ x du

12⇥, and 11⇥ x du 12⇥ in Example 1.

The reason why we use our notion of data dependencies instead
of def-use chains is that our data dependencies preserve the preci-
sion of the analysis even when approximations are involved. On the
other hand, sparse analysis with approximated def-use chains may
lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function
sparse, which propagates between control points only the abstract
values that participate in the fixpoint computation. Sparse abstract
function F̂s, whose definition is given below, is the same as the
original except that it propagates abstract values along to the data
dependency, not along to control flows:

F̂s(X̂) = �c ⇧ C.f̂c(
�

c0 l c

X̂(c�)|l).

As this definition is only different in that it is defined over data
dependency (), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

�c ⇧ C.�l ⇧ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to
the original result only up to the entries that are defined in every
control point. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition
5).

Definition 4 (Approximated Data Dependency). Approximated
data dependency is ternary relation a⇤ C � L̂ � C defined as
follows:

c0
l a cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D̂(c0) ⌦ Û(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D̂(ci)

The definition is the same except that it is defined over D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = �c ⇧ C.f̂c(
�

c0 l ac

X̂(c�)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.
Example 4. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = �
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.
The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = �
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at
control point 11⇥ is not included in approximated use set Û(11⇥).
With this approximation, abstract value of x at 10⇥ is not propagated
to 12⇥, while it is propagated in the original analysis (10⇥ x 12⇥, but
10⇥ ⌃ x a 12⇥). However, if {x} ⇤ Û(11⇥), then the abstract value

Preserving

If the following two conditions hold

still

20

Conditions of &

• over-approximation

• spurious definitions should be also included in uses

spurious definitions

21

Why the Conditions of &

Def

Use

{x}

ɸ

{y}{a, b}

{p, a, b} {x}

x

x = &y *p = &z y = x

22

Why the Conditions of &

Approx. Def

Approx. Use

{x}

ɸ

{y}{a, b, x}

{p, a, b} {x}

x = &y *p = &z y = x

D̂(c)� D(c) 6✓ Û(c)

{x}

x

23

Why the Conditions of &

{x}

ɸ

{y}

{x}

x

{a, b, x}

{p, a, b}

Approx. Def

Approx. Use

x = &y *p = &z y = x

D̂(c)� D(c) 6✓ Û(c)

{x}

24

Why the Conditions of &

{x}

ɸ

{y}

{x}

x

{a, b, x}

{p, a, b, x}

Approx. Def

Approx. Use

x = &y *p = &z y = x

{x}

25

Why the Conditions of &

{x}

ɸ

{y}

{x}

xx

{a, b, x}

{p, a, b, x}

Approx. Def

Approx. Use

x = &y *p = &z y = x

{x}

26

Hurdle: & Before
Analysis?

• Yes, by yet another analysis with further abstraction

• e.g., flow-insensitive abstraction

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c�⇤�c X̂(c⇥) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂)),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more e�cient way. We

do this by computing X̂ ⇥ that is more approximate than X̂, i.e., X̂ ⇧ X̂ ⇥.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ ⇥(⌃ X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C ⇤ Ŝ and semantic function F̂ ⌅ (C ⇤ Ŝ) ⇤ (C ⇤ Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = ⇤c ⌅ C.f̂c(
⇥

c�⇤�c

X̂(c⇥)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C ⇤ Ŝ �⇤⇥�
�

⇥
Ŝ

such that,
� = ⇤X̂.

�
c⇤C X̂(c)

⇥ = ⇤ŝ.⇤c ⌅ C.ŝ

The semantic function F̂p : Ŝ ⇤ Ŝ is defined as follows:

F̂p = ⇤ŝ.(
⇥

c⇤C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂) ⇧ ⇥(lfp(F̂p))

27

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c�⇤�c X̂(c⇥) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂)),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more e�cient way. We

do this by computing X̂ ⇥ that is more approximate than X̂, i.e., X̂ ⇧ X̂ ⇥.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ ⇥(⌃ X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C ⇤ Ŝ and semantic function F̂ ⌅ (C ⇤ Ŝ) ⇤ (C ⇤ Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = ⇤c ⌅ C.f̂c(
⇥

c�⇤�c

X̂(c⇥)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C ⇤ Ŝ �⇤⇥�
�

⇥
Ŝ

such that,
� = ⇤X̂.

�
c⇤C X̂(c)

⇥ = ⇤ŝ.⇤c ⌅ C.ŝ

The semantic function F̂p : Ŝ ⇤ Ŝ is defined as follows:

F̂p = ⇤ŝ.(
⇥

c⇤C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂) ⇧ ⇥(lfp(F̂p))

27

• In implementation, U includes D

For More Details

• details and full correctness proofs

• descriptions in more general setting

• various languages (ftnl, oo, etc)

• arbitrary trace partitioning (ctx-sens, path-sens,
etc)

27

ropas.snu.ac.kr/~pronto/sparse.pdf

See the extended version of our PLDI paper:

http://ropas.snu.ac.kr/~pronto/sparse.pdf
http://ropas.snu.ac.kr/~pronto/sparse.pdf

Experiments

28

• On top of

• Sparse non-relational analysis with interval domain

• Sparse relational analysis with octagon domain

Ŝ = Packs ! Octagon

Ŝ = AbsLoc ! Interval

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

Benchmarks

29

Program LOC Functions Statements Blocks maxSCC AbsLocs
gzip-1.2.4a 7K 132 6,446 4,152 2 1,784
bc-1.06 13K 132 10,368 4,731 1 1,619
tar-1.13 20K 221 12,199 8,586 13 3,245
less-382 23K 382 23,367 9,207 46 3,658
make-3.76.1 27K 190 14,010 9,094 57 4,527
wget-1.9 35K 433 28,958 14,537 13 6,675
screen-4.0.2 45K 588 39,693 29,498 65 12,566
a2ps-4.14 64K 980 86,867 27,565 6 17,684
sendmail-8.13.6 130K 756 76,630 52,505 60 19,135
nethack-3.3.0 211K 2,207 237,427 157,645 997 54,989
vim60 227K 2,770 150,950 107,629 1,668 40,979
emacs-22.1 399K 3,388 204,865 161,118 1,554 66,413
python-2.5.1 435K 2,996 241,511 99,014 723 51,859
linux-3.0 710K 13,856 345,407 300,203 493 139,667
gimp-2.6 959K 11,728 1,482,230 286,588 2 190,806
ghostscript-9.00 1,363K 12,993 2,891,500 342,293 39 201,161

Table 1. Benchmarks: lines of code (LOC) is obtained by running wc on the source before preprocessing and macro expansion. Functions
reports the number of functions in source code. Statements and Blocks report the number of statements and basic blocks in our intermediate
representation of programs (after preprocessing). maxSCC reports the size of the largest strongly connected component in the callgraph.
AbsLocs reports the number of abstract locations that are generated during the interval domain-based analysis .

Programs Intervalvanilla Intervalbase Spd"1 Mem#1 Intervalsparse Spd"2 Mem#2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 772 240 14 65 55 x 73 % 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 1,270 276 96 126 13 x 54 % 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 12,947 881 338 177 38 x 80 % 6 2 8 93 2.9 2.9 42 x 47 %
less-382 9,561 1,113 1,211 378 8 x 66 % 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 24,240 1,391 1,893 443 13 x 68 % 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 44,092 2,546 1,214 378 36 x 85 % 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 1 N/A 31,324 3,996 N/A N/A 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 1 N/A 3,200 1,392 N/A N/A 31 9 40 353 2.6 2.8 80 x 75 %
sendmail-8.13.6 1 N/A 1 N/A N/A N/A 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 1 N/A 1 N/A N/A N/A 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 1 N/A 1 N/A N/A N/A 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 1 N/A 1 N/A N/A N/A 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 1 N/A 1 N/A N/A N/A 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 1 N/A 1 N/A N/A N/A 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 1 N/A 1 N/A N/A N/A 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 1 N/A 1 N/A N/A N/A 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

Table 2. Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of
analyses. 1 means the analysis ran out of time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency
analysis and actual analysis steps, respectively, of the sparse analysis. Spd"1 is the speed-up of Intervalbase over Intervalvanilla. Mem#1 shows
the memory savings of Intervalbase over Intervalvanilla. Spd"2 is the speed-up of Intervalsparse over Intervalbase. Mem#2 shows the memory
savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

such as addition and removal are noticeably slower than usual set
operations.

6.2 Octagon Domain-based Sparse Analysis
Setting We implemented octagon domain-based static analyz-
ers Octagonvanilla, Octagonbase, and Octagonsparse by replac-
ing interval domains of SPARROW with octagon domains. Non-
numerical values (such as pointers, array, and structures) are han-
dled in the same way as the interval analysis. Octagonbase per-
forms the access-based localization [38] in terms of variable packs.
Octagonvanilla is the same except for the localization. Octagonsparse
is the sparse version of Octagonbase. To represent octagon domain,
we used Apron library [22].

In all experiments, we used a syntax-directed packing strategy.
Our packing heuristic is similar to Miné’s approach [13, 34], which
groups abstract locations that have syntactic locality. For examples,
abstract locations involved in the linear expressions or loops are
grouped together. Scope of the locality is limited within each of
syntactic C blocks. We also group abstract locations involved in
actual and formal parameters, which is necessary to capture rela-
tions across procedure boundaries. Large packs whose sizes exceed
a threshold (10) were split down into smaller ones.

Results While Octagonvanilla requires extremely large amount of
time and memory space but Octagonbase makes the analysis re-
alistic by leveraging the access-based localization. Octagonbase is
able to analyze 35 KLOC within 5 hours and 10GB of memory.
With the localization, analysis speed of Octagonbase increases by
8x–9x and memory consumption decreases by 54%–62%. Though
Octagonbase saves a lot of memory, the analysis is still not scalable
at all. For example, tar-1.13 requires 6 times more memory than
gzip-1.2.4a. This memory consumption is not reasonable consider-
ing program size and interval analysis result.

Thanks to sparse analysis technique, Octagonsparse becomes
more practical and scales to 130 KLOC within 18 hours and 29 GB
of memory consumption. Octagonsparse is 13–56x faster than
Octagonbase and saves memory consumption by 75%–95%.

6.3 Discussion
Sparsity We discuss the relation between performance and spar-
sity. Column D̂(c) and Û(c) in Table 2 and Table 3 show how many
abstract locations are defined and used for each basic block on av-
erage. It clearly shows the key observation in sparse analysis for
real programs; only a few abstract locations are defined and used in
each program point. For example, the interval domain-based analy-

GNU open-source C programs

30

Interval & Pointer Analysis

Programs LOC Intervalvanilla Intervalbase Spd"1 Mem#1 Intervalsparse Spd"2 Mem#2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 7K 772 240 14 65 55 x 73 % 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 13K 1,270 276 96 126 13 x 54 % 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 20K 12,947 881 338 177 38 x 80 % 6 2 8 93 2.9 2.9 42 x 47 %
less-382 23K 9,561 1,113 1,211 378 8 x 66 % 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 27K 24,240 1,391 1,893 443 13 x 68 % 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 35K 44,092 2,546 1,214 378 36 x 85 % 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 45K 1 N/A 31,324 3,996 N/A N/A 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 64K 1 N/A 3,200 1,392 N/A N/A 31 9 40 353 2.6 2.8 80 x 75 %
bash-2.05a 105K 1 N/A 1,683 1,386 N/A N/A 45 22 67 220 3.0 3.0 25 x 84 %
lsh-2.0.4 111K 1 N/A 45,522 5,266 N/A N/A 391 80 471 577 21.1 21.2 97 x 89 %
sendmail-8.13.6 130K 1 N/A 1 N/A N/A N/A 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 211K 1 N/A 1 N/A N/A N/A 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 227K 1 N/A 1 N/A N/A N/A 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 399K 1 N/A 1 N/A N/A N/A 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 435K 1 N/A 1 N/A N/A N/A 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 710K 1 N/A 1 N/A N/A N/A 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 959K 1 N/A 1 N/A N/A N/A 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 1,363K 1 N/A 1 N/A N/A N/A 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

Table 3: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. 1 means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd"1 is
the speed-up of Intervalbase over Intervalvanilla. Mem#1 shows the memory savings of Intervalbase over Intervalvanilla. Spd"2 is the speed-up of Intervalsparse over Intervalbase.
Mem#2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

6.2 Octagon Domain-based Sparse Analysis
Setting We implemented octagon domain-based static analyzers
Octagonvanilla, Octagonbase, and Octagonsparse on top of the in-
terval domain-based analysis engine explained in Section 6.1. We
replaced interval-based abstract domain by octagon-based domain
with variable packings. Non-numerical values (such as pointers, ar-
ray, and structures) are handled in the same way as the interval anal-
ysis. Semantic functions are appropriately changed. Besides ab-
stract domain and semantics, exactly the same engineering efforts
have been also put into octagon-based analyzers. Octagonbase per-
forms the access-based localization [33] in terms of variable packs.
Octagonvanilla is same as Octagonbase but does not perform the lo-
calization and Octagonsparse is sparse version of Octagonbase. To
represent octagon domain, we use Apron library [21].

In all experiments, we used a syntax-directed packing strategy.
Given a program, we first run a flow-insensitive interval domain-
based analysis (proposed in Section 3.2) to find the set of ab-
stract locations. Then, by using a syntactic pre-analysis, we collect
groups of abstract locations that are likely to be logically related.
Packs are the set of all such groups. Then, relational analysis for the
program uses the Packs. Our packing heuristic is similar to Miné’s
approach [13, 31], which groups abstract locations that have syn-
tactic locality. For examples, abstract locations involved in the lin-
ear expressions or loops are grouped together. Scope of the locality
is limited within each of syntactic C blocks. We also group abstract
locations involved in actual and formal parameters, which is neces-
sary to capture relations across procedure boundaries. In our pack-
ing, some large packs whose sizes exceed a threshold (10 abstract
locations) are split down into smaller ones. The three analyzers use
the same packing heuristic.

Result We also compared main analysis time and peak memory
consumption of Octagonvanilla, Octagonbase, and Octagonsparse in
the same way as interval analysis. The performance numbers are
described in Table 4.

While Octagonvanilla requires extremely large amount of time
and memory space but Octagonbase makes the analysis realistic
by leveraging the access-based localization. Octagonbase is able
to analyze 20 KLOC within 6 hours and 588MB of memory. With
the localization, analysis speed of Octagonbase increases by 10x–
20x and memory consumption decreases by 50%–76%. Though
Octagonbase saves a lot of memory, the analysis is still not scal-
able at all. For example, bc-1.06 requires 5 times more memory

than gzip-1.2.4a. This memory consumption is not reasonable con-
sidering program size and interval analysis result.

Thanks to sparse analysis technique, Octagonsparse becomes
more practical and scales to 130 KLOC within 25 mins and 9.8 GB
of memory consumption. Octagonsparse is 30–377x faster than
Octagonbase and saves memory consumption by 84%–95%. Note
that the performance gap between sparse and non-sparse versions
is more remarkable than those in interval analysis. It is because
relational analysis has much more computational cost and memory
consumption for each abstract value than non-relational analysis.

6.3 Discussion
Sparsity We discuss the relation between performance and spar-
sity. Column D̂(c) and Û(c) in Table 3 and Table 4 show how many
abstract locations are defined and used for each basic block on av-
erage. It clearly shows the key observation to sparse analysis in
real programs; only a few abstract locations are defined and used in
each program point. In interval domain-based analysis, 2.4–285.3
abstract locations are defined (Avg. D̂(c)) and 2.5–285.5 are used
(Avg. Û(c)) in average.2 For example, a2ps-4.14 defines and uses
only 0.1% of all abstract locations in one program point. Similarly,
2.3–15.9 (resp., 2.5–16.0) variable packs per program point are de-
fined (resp., used) in octagon domain-based analysis. By exploit-
ing this sparsity of analysis, we could achieve orders of magnitude
speed up compared to the baseline possible.

One interesting observation from the experiment results is that
the analysis performance is more dependent on the sparsity than
the program size. As an extreme case, consider two programs,
emacs-22.1 and ghostscript-9.00. Even though ghostscript-9.00 is
3.5 times bigger than emacs-22.1 in terms of LOC, ghostscript-9.00
takes 2.6 times less time to analyze. Behind this phenomenon, there
is a large difference of sparsity; average D̂(c) size (and Û(c) size)
of emacs-22.1 is 30 times bigger than the one of ghostscript-9.00.

Variable Packing For maximal precision, packing strategy should
be more carefully devised for each target program. However, note
that our purpose of experiments is to show relative performance
of Octagonsparse over Octagonbase, and we applied the same pack-
ing strategy for all analyzers. Though our general-purpose packing
strategy is not specialized to each program, the packing strategy
reasonably groups logically related variables. The average size of

2 The average sizes of D̂(c) and Û(c) are quite similar. Because our abstract
semantics considers weak update.

9 2012/1/12

acc
ess

-base
d

locali
zat

ion
none

spars
e a

nalys
is

31

Octagon & Pointer Analysis

Programs Octagonvanilla Octagonbase Spd"1 Mem#1 Octagonsparse Spd"2 Mem#2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 2,078 2,832 273 1,072 8 x 62 % 7 14 21 269 13.8 14.5 13 x 75 %
bc-1.06 9,536 6,987 1,065 3,230 9 x 54 % 20 35 55 358 25.2 31.7 19 x 89 %
tar-1.13 1 N/A 9,566 5,963 N/A N/A 55 133 188 526 38.3 39.3 51 x 91 %
less-382 1 N/A 16,121 8,410 N/A N/A 92 340 432 458 42.6 45.4 37 x 95 %
make-3.76.1 1 N/A 17,724 12,771 N/A N/A 91 240 331 666 51.4 55.7 53 x 95 %
wget-1.9 1 N/A 15,998 9,363 N/A N/A 107 181 288 646 31.9 32.9 56 x 93 %
screen-4.0.2 1 N/A 1 N/A N/A N/A 2,452 13,981 16,433 9,199 372.4 376.1 N/A N/A
a2ps-4.14 1 N/A 1 N/A N/A N/A 296 8,271 8,566 1,996 97.7 99.0 N/A N/A
sendmail-8.13.6 1 N/A 1 N/A N/A N/A 7,256 57,552 64,808 29,658 467.6 492.3 N/A N/A

Table 3. Performance of octagon analysis: all columns are the same as those in Table 2

sis of a2ps-4.14 defines and uses only 0.1% of all abstract locations
in one program point.

One interesting observation from the experiment results is that
the analysis performance is more dependent on the sparsity than
the program size. For instance, even though ghostscript-9.00 is 3.5
times bigger than emacs-22.1 in terms of LOC, ghostscript-9.00
takes 2.6 times less time to analyze. Behind this phenomenon, there
is a large difference on sparsity; average D̂(c) size (and Û(c) size)
of emacs-22.1 is 30 times bigger than the one of ghostscript-9.00.

Variable Packing For maximal precision, packing strategy should
be more carefully devised for each target program. However, note
that our purpose of experiments is to show relative performance
of Octagonsparse over Octagonbase, and we applied the same pack-
ing strategy for all analyzers. Though our general-purpose packing
strategy is not specialized to each program, the packing strategy
reasonably groups logically related variables. The average size of
packs is 5–7 for our benchmarks. Domain-specific packing strate-
gies, such as ones used in Astrée [34] or CGS [43], reports the
similar results: 3–4 [34] or 5 [43].

7. Related Work
Existing sparse analysis techniques are divided into two groups:

• fined-grained sparse analyses in particular settings, e.g., [15, 19,
20, 40, 44], and

• coarse-grained sparse analyses in general settings, e.g., [7, 14,
21, 39].

In this paper, we present a method to obtain fine-grained sparse
analyses in a general setting.

Sparse Pointer Analysis Sparse pointer analysis techniques [19,
20, 29] are not general enough to be used for arbitrarily com-
plicated semantic analysis. Recently, scalability of flow-sensitive
pointer analysis has been greatly improved using sparse analysis;
in 2009, Hardekopf et al. [19] presented a pointer analysis algo-
rithm that scales to large code bases (up to 474 KLOC) for the
first time, and after that, flow-sensitive pointer analysis becomes
scalable even to millions of lines of code via sparse analysis tech-
niques [20, 29]. We already showed that our framework subsumes
two scalable sparse pointer analyses presented in [19, 20]. In addi-
tion, the techniques are tightly coupled with pointer analysis and it
is not obvious how to generalize them and prove their correctness.
We provide a general framework that enables a family of abstract
interpretation to be automatically turned into sparse analysis ver-
sions.

One noteworthy point is that designing a correct sparse analyses
in general was easy in our case because our method is semantics-
based (by abstract interpretation). For example, sparse pointer anal-
ysis [20] relies on � and µ functions [8] to correctly model point-
ers, which is essentially independent of the analysis semantics. In
our case, these extra techniques are unnecessary because we derive

sparse analyses faithfully from the abstract semantics of the origi-
nal analysis.

Sparse Dataflow Analysis Traditional sparse analysis techniques
are in a simpler setting than the one postulated in our frame-
work. Sparse analysis techniques were first pioneered for optimiz-
ing dataflow analysis [15, 40, 44]. Reif and Lewis [40] developed a
sparse analysis algorithm for constant propagation and Wegman et
al. [44] extended it to conditional constant propagation. Dhamdhere
et al. [15] showed how to perform sparse partial redundancy elim-
ination. These algorithms are fully sparse in that precise def-use
chains are syntactically identifiable and values are always propa-
gated along to def-use chains (in an SSA form). However, these
techniques only consider the programs without pointers.

Sparse Evaluation Sparse evaluation techniques [7, 14, 21, 39]
are generally applicable but have limitations in sparseness. The
goal of sparse evaluation [7, 14, 21, 39] is to remove statements
whose abstract semantic functions are identity function. For exam-
ple, in typical pointer analyses, statements for numerical compu-
tation are considered as identity and we can remove those state-
ments before analysis begins. Sparse evaluation techniques are not
effective when the underlying analysis does not have many identity
functions, which is the case for static analyses that consider “full”
semantics, including numbers and pointers (our case).

Localization Localization [32, 38, 41, 45] is used in general set-
tings but not powerful enough. When analyzing code blocks such as
procedure bodies, localization attempts to remove irrelevant parts
of abstract states that will not be used during the analysis. It is
widely used as a key cost-reduction technique in many semantics-
based static analysis, such as shape analysis [41, 45], higher-order
flow analysis [32], and numeric abstract interpretation [38]. How-
ever, localization cannot avoid unnecessary propagation of abstract
values along control flows.

Scalable Global Analyzers Our interval and octagon domain-
based analyzers achieve higher scalability (up to 1 MLOC and
130 KLOC, respectively) than the previous general-purpose global
analyzers. Zitser et al. [47] report that PolySpace C Verifier [31],
a commercial tool for detection of runtime errors, cannot analyze
sendmail because of scalability problem. Both our interval and oc-
tagon domain-based analyzers can analyze sendmail. Airac [26,
35], a general-purpose interval domain-based global static analyzer,
scales only to 30 KLOC in global analysis. Recently, a significant
progress has been reported by Oh et al. [38], but it still does not
scale over 120 KLOC. Other similar (interval domain-based) ana-
lyzers are also not scalable to large code bases [1, 2]. Neverthe-
less, there have been scalable domain-specific static analyzers, like
Astrée [4, 13] and CGS [43], which scale to hundreds of thou-
sands lines of code. However, Astrée targets on programs that do
not have recursion and backward gotos, which enables a very effi-
cient interpretation-based analysis [13], and CGS is not fully flow-
sensitive [43]. There are other summary-based approaches [16, 17]

acc
ess

-base
d

locali
zat

ion
none

spars
e a

nalys
is

Summary
Our Sparse Framework

32

• Define a global safe abstract interpreter

• Make it sparse with our framework

• Resulting sparse one scales with the same precision

A recipe for precise, sound, and scalable static analysis

Thank you

Backup Slides

• Different notion of data dependency

• fail to preserve the original accuracy

vs.

Data Dependency
vs. Def-Use Chains

Existing Sparse Techniques
(developed mostly in dfa/pointer-analysis community)

• Fine-grained sparse techniques in particular settings

• e.g. sparse pointer analysis algorithms

• tightly coupled with particular analyses

• Coarse-grained sparse techniques in general settings

• “sparse evaluation”

• too weak to be useful for detailed analyses

Ours: Fine-grained sparse analysis in general setting
35

