
Access-based Localization
with Bypassing

Hakjoo Oh and Kwangkeun Yi

Seoul National University

APLAS 2011 @ Kenting, Taiwan

Challenge in Static Analysis

Precise, sound, scalable yet global static analyzers

2

Reality

Compromise either soundness or scalability

“verifiers”“bug-finders”

scalable
unsound

sound
unscalable

3

Our Long-term Goal

Achieving scalable global static analyzers
without compromising precision and soundness

4

Overall Approach

• Design static analyzers by abstract interpretation

• sound, precise, and global but unscalable

• Apply a set of cost-reduction techniques

• scalable, preserving the precision and soundness

5

Localization

• Spatial localization [VMCAI’11]

• Temporal localization (submitted)

• Contextual localization [APLAS’09, SPE’10]

“local reasoning”
“framing” in separation logic

6

Localization

• Spatial localization [VMCAI’11, APLAS’11]

• Temporal localization (submitted)

• Contextual localization [APLAS’09, SPE’10]

7

improved

“local reasoning”
“framing” in separation logic

Performance of

Program LOC Baseline Localize Spd↑ Mem↓
Time Mem Time Mem

gzip-1.2.4a 7 K 772 240 3 63 257 x 74 %

bc-1.06 13 K 1,270 276 7 75 181 x 73 %

less-382 23 K 9,561 1,113 33 127 289 x 86 %

make-3.76.1 27 K 24,240 1,391 21 114 1,154 x 92 %

wget-1.9 35 K 44,092 2,546 11 85 4,008 x 97 %

a2ps-4.14 64 K ∞ N/A 40 353 N/A N/A

sendmail-8.13.6 130 K ∞ N/A 744 678 N/A N/A

nethack-3.3.0 211 K ∞ N/A 16,373 5,298 N/A N/A

emacs-22.1 399 K ∞ N/A 37,830 7,795 N/A N/A

python-2.5.1 435 K ∞ N/A 11,039 5,535 N/A N/A

linux-3.0 710 K ∞ N/A 33,618 20,529 N/A N/A

gimp-2.6 959 K ∞ N/A 3,874 3,602 N/A N/A

ghostscript-9.00 1,363 K ∞ N/A 14,814 6,384 N/A N/A

Table 1.1: Effectiveness of the proposed techniques on various open-source bench-

marks: time (in seconds) and peak memory consumption (in megabytes) of the

baseline analyzer (Baseline) and its localized version (Localize). ∞ means the

analysis ran out of time (exceeded 24 hour time limit). Spd↑ is the speed-up

of Localize over Baseline. Mem↓ shows the memory savings of Localize over

Baseline. All experiments were done on a Linux 2.6 system running on a single

core of Intel 3.07 GHz box with 24 GB of main memory.

4

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

8

Performance of

Program LOC Baseline Localize Spd↑ Mem↓
Time Mem Time Mem

gzip-1.2.4a 7 K 772 240 3 63 257 x 74 %

bc-1.06 13 K 1,270 276 7 75 181 x 73 %

less-382 23 K 9,561 1,113 33 127 289 x 86 %

make-3.76.1 27 K 24,240 1,391 21 114 1,154 x 92 %

wget-1.9 35 K 44,092 2,546 11 85 4,008 x 97 %

a2ps-4.14 64 K ∞ N/A 40 353 N/A N/A

sendmail-8.13.6 130 K ∞ N/A 744 678 N/A N/A

nethack-3.3.0 211 K ∞ N/A 16,373 5,298 N/A N/A

emacs-22.1 399 K ∞ N/A 37,830 7,795 N/A N/A

python-2.5.1 435 K ∞ N/A 11,039 5,535 N/A N/A

linux-3.0 710 K ∞ N/A 33,618 20,529 N/A N/A

gimp-2.6 959 K ∞ N/A 3,874 3,602 N/A N/A

ghostscript-9.00 1,363 K ∞ N/A 14,814 6,384 N/A N/A

Table 1.1: Effectiveness of the proposed techniques on various open-source bench-

marks: time (in seconds) and peak memory consumption (in megabytes) of the

baseline analyzer (Baseline) and its localized version (Localize). ∞ means the

analysis ran out of time (exceeded 24 hour time limit). Spd↑ is the speed-up

of Localize over Baseline. Mem↓ shows the memory savings of Localize over

Baseline. All experiments were done on a Linux 2.6 system running on a single

core of Intel 3.07 GHz box with 24 GB of main memory.

4

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

9

Performance of

Program LOC Baseline Localize Spd↑ Mem↓
Time Mem Time Mem

gzip-1.2.4a 7 K 772 240 3 63 257 x 74 %

bc-1.06 13 K 1,270 276 7 75 181 x 73 %

less-382 23 K 9,561 1,113 33 127 289 x 86 %

make-3.76.1 27 K 24,240 1,391 21 114 1,154 x 92 %

wget-1.9 35 K 44,092 2,546 11 85 4,008 x 97 %

a2ps-4.14 64 K ∞ N/A 40 353 N/A N/A

sendmail-8.13.6 130 K ∞ N/A 744 678 N/A N/A

nethack-3.3.0 211 K ∞ N/A 16,373 5,298 N/A N/A

emacs-22.1 399 K ∞ N/A 37,830 7,795 N/A N/A

python-2.5.1 435 K ∞ N/A 11,039 5,535 N/A N/A

linux-3.0 710 K ∞ N/A 33,618 20,529 N/A N/A

gimp-2.6 959 K ∞ N/A 3,874 3,602 N/A N/A

ghostscript-9.00 1,363 K ∞ N/A 14,814 6,384 N/A N/A

Table 1.1: Effectiveness of the proposed techniques on various open-source bench-

marks: time (in seconds) and peak memory consumption (in megabytes) of the

baseline analyzer (Baseline) and its localized version (Localize). ∞ means the

analysis ran out of time (exceeded 24 hour time limit). Spd↑ is the speed-up

of Localize over Baseline. Mem↓ shows the memory savings of Localize over

Baseline. All experiments were done on a Linux 2.6 system running on a single

core of Intel 3.07 GHz box with 24 GB of main memory.

4

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

10

Memory Localization
(spatial localization)

11

f

call f

local (accessible)

return

global
(non-accessible)

VMCAI’11

Benefits of Localization

12

int g;

int f() {...}

int main() {
 g = 0;
 f();

 g = 1;
 f();
}

f does not access g

Localization Is Vital
less-382 (23,822 LOC)

13

Localization Is Vital
less-382 (23,822 LOC)

14

On average 755 re-analyses
per procedure

Challenge

15

Analysis Localization

The optimal localization is impossible

Reachability-based Localization
(abstract garbage collection)

16

• Remove the unreachable from params and globals

f
call f

reachable

unreachable

Reachability is Too Conservative

17

2 Hakjoo Oh and Kwangkeun Yi

Table 1. Reachability-based Approach Is Too Conservative.

Program LOC accessed memory

/ reachable memory

spell-1.0 2,213 5 / 453 (1.1%)
barcode-0.96 4,460 19 / 1175 (1.6%)
httptunnel-3.3 6,174 10 / 673 (1.5%)
gzip-1.2.4a 7,327 22 / 1002 (2.2%)
jwhois-3.0.1 9,344 28 / 830 (3.4%)
parser 10,900 75 / 1787 (4.2%)
bc-1.06 13,093 24 / 824 (2.9%)
less-290 18,449 86 / 1546 (5.6%)

the called procedure bodies. Table 1 shows, given a reachability-based localized
input state to a procedure, how much is actually accessed inside the (directly or
transitively) called procedures.1 For each a/b (r%) in the table, a is the average
number of memory entries accessed in the called procedures, b is the average size
of the reachable input state, and r is their ratio. The results show that only a
few reachable memory entries were actually accessed: procedures accessed only
1.1%–5.6% of reachable memory states. Nonetheless, the reachability-based ap-
proach propagates all the reachable parts to procedures. So, it’s possible for
a procedure body to be needlessly recomputed for input memory states whose
only differences lie in the reachable-but-unaccessed portions. This means that
the reachability-based approach is too conservative for real C programs and
hence is inefficient both in time and memory cost. This finding originates from
the difficulty of having a fast enough industrial-strength static analyzers [10–12,
16] that uses the reachability-based localization.

In this paper we present a new memory localization technique that localizes
the input memory states more aggressively than the reachability-based approach.
In our approach, in addition to excluding unreachable memory entries from the
localized state, we also exclude memory entries that are reachable but unac-
cessed. The main problem is finding the memory parts that will be needed to
analyze a procedure before actually analyzing the procedure. We solve the prob-
lem by staging: (1) the set of memory cells that are accessed by a procedure is
conservatively estimated by a pre-analysis before the actual analysis; (2) then,
the actual analysis uses the accessed-cells-information and filters out memory
cells that will definitely not be accessed by called procedures. The pre-analysis
aggressively applies a conservative abstraction to the abstract semantics of the
original analysis and runs with a small cost. By reducing the sizes of localized

1 The reachable- and accessed-memory ratio is an average over the procedures. We
ran the reachability-based analysis and recorded, for every analysis of procedures,
the sizes of localized memory and its accessed portion. We average the size ratio over
the total number of analyses of procedures.

average : 4%

Access-based Localization*

18

pre-analysis
conservative

access information
actual analysis

f
{a,b,c}Over-approximation of

actual access info.

{a,b}

∪

actual access info.

* Hakjoo Oh, Lucas Brutschy, Kwangkeun Yi, Access analysis-based tight localization of abstract memories, VMCAI’11

VMCAI’11

Access-based Localization

19

pre-analysis
conservative

access information
actual analysis

f
call f

non-accessible

{a,b,c}

Performance

20

0

25

50

75

100

spell barcodehttptunnel gzip jwhois parser bc twolf tar less make AVERAGE

8
13

19

2452

21

32
10

5

100100100100100100100100100100100100

Reachability
Access

5x~50x speed-up over reachability

VMCAI’11

Motivation

• Access-based localization is sometimes not much
effective.

Program LOC Baseline Localized Speed-Up

twolf 19,700 27,230s 509s 53x

less-382 23,822 137,827s 14,720s 9x

make-3.76 27,304 126,908s 14,681s 8x

bash-2.05a 105,174 oo 391s n/a

21

APLAS’11

4 hours

Reason: Recursive Call Cycles

• They contain lots of recursive procedures.

• In particular, large recursive call cycles.

Program LOC Speed-Up #procs LRC

twolf 19,700 53x 192 1

less-382 23,822 9x 382 46

make-3.76 27,304 8x 191 61

bash-2.05a 105,174 n/a 959 4

1

2
3

k

Sizes of the Largest Recursive call Cycles

22

A Source of Inefficiency

f g h

{a} {b} {c}

a b c

23

A Source of Inefficiency

f g h

{a} {b} {c}

a b c

a b ca b c

localized memory for f

24

A Source of Inefficiency

f g h

{a} {b} {c}

a b c

a b c

b c

b ca b c

localized memory for g

c

25

A Source of Inefficiency

f g h

{a} {b} {c}

a b c

a b c

b c

b c

c

a b c

Not directly accessed by f

26

Recursive Call Cycle

Localization does not work inside recursive cycles!

f g h

a b c

a b c

a b c

a b c

27

Efficient call cycle analysis is a key

Program LOC Functions Statements Blocks maxSCC AbsLocs

gzip-1.2.4a 7K 132 6,446 4,152 2 1,784
bc-1.06 13K 132 10,368 4,731 1 1,619
tar-1.13 20K 221 12,199 8,586 13 3,245
less-382 23K 382 23,367 9,207 46 3,658
make-3.76.1 27K 190 14,010 9,094 57 4,527
wget-1.9 35K 433 28,958 14,537 13 6,675
screen-4.0.2 45K 588 39,693 29,498 65 12,566
a2ps-4.14 64K 980 86,867 27,565 6 17,684
bash-2.05a 105K 955 107,774 27,669 4 17,443
lsh-2.0.4 111K 1,524 137,511 27,896 13 31,164
sendmail-8.13.6 130K 756 76,630 52,505 60 19,135
nethack-3.3.0 211K 2,207 237,427 157,645 997 54,989
vim60 227K 2,770 150,950 107,629 1,668 40,979
emacs-22.1 399K 3,388 204,865 161,118 1,554 66,413
python-2.5.1 435K 2,996 241,511 99,014 723 51,859
linux-3.0 710K 13,856 345,407 300,203 493 139,667
gimp-2.6 959K 11,728 1,482,230 286,588 2 190,806
ghostscript-9.00 1,363K 12,993 2,891,500 342,293 39 201,161

Table 1: Benchmarks: lines of code (LOC) is obtained by running wc on the source before preprocessing and macro expansion. Functions reports the number of functions in source
code. Statements and Blocks report the number of statements and basic blocks in our intermediate representation of programs (after preprocessing). maxSCC reports the size of the
largest strongly connected component in the callgraph. AbsLocs reports the number of abstract locations that are generated during the analysis.

Programs Intervalvanilla Intervalbase Spd↑1 Mem↓1 Intervalsparse Spd↑2 Mem↓2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 772 240 14 65 55 x 73 % 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 1,270 276 96 126 13 x 54 % 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 12,947 881 338 177 38 x 80 % 6 2 8 93 2.9 2.9 42 x 47 %
less-382 9,561 1,113 1,211 378 8 x 66 % 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 24,240 1,391 1,893 443 13 x 68 % 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 44,092 2,546 1,214 378 36 x 85 % 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 ∞ N/A 31,324 3,996 N/A N/A 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 ∞ N/A 3,200 1,392 N/A N/A 31 9 40 353 2.6 2.8 80 x 75 %
bash-2.05a ∞ N/A 1,683 1,386 N/A N/A 45 22 67 220 3.0 3.0 25 x 84 %
lsh-2.0.4 ∞ N/A 45,522 5,266 N/A N/A 391 80 471 577 21.1 21.2 97 x 89 %
sendmail-8.13.6 ∞ N/A ∞ N/A N/A N/A 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 ∞ N/A ∞ N/A N/A N/A 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 ∞ N/A ∞ N/A N/A N/A 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 ∞ N/A ∞ N/A N/A N/A 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 ∞ N/A ∞ N/A N/A N/A 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 ∞ N/A ∞ N/A N/A N/A 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 ∞ N/A ∞ N/A N/A N/A 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 ∞ N/A ∞ N/A N/A N/A 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

Table 2: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. ∞ means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd↑1 is
the speed-up of Intervalbase over Intervalvanilla. Mem↓1 shows the memory savings of Intervalbase over Intervalvanilla. Spd↑2 is the speed-up of Intervalsparse over Intervalbase.
Mem↓2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

The results show that Intervalbase already has a competitive
performance: it is faster than Intervalvanilla by 8–55x, saving
peak memory consumption by 54–85%. Intervalvanilla scales to
35 KLOC before running out of time limit (24 hours). In con-
trast, Intervalbase scales to 111 KLOC. For the first six benchmarks
that they both complete, Intervalbase is on average 27x faster than
Intervalvanilla, and uses on average 71% less memory.

Intervalsparse is faster than Intervalbase by 5–110x and saves
memory by 3–92%. In particular, the analysis’ scalability has been
remarkably improved: Intervalsparse scales to 1.4M LOC, which is
an order of magnitude larger than that of Intervalbase.

There are some counterintuitive results. First, the analysis time
for Intervalsparse does not strictly depend on program sizes. For ex-
ample, analyzing emacs-22.1 (399 KLOC) requires 10 hours, tak-
ing six times more than analyzing ghostscript-9.00 (1,363 KLOC).
This is mainly due to the fact that some real C programs have un-
expectedly large recursive call cycles [24, 42]. Column maxSCC

in Table 2 reports the sizes of the largest recursive cycle (precisely
speaking, strongly connected component) in programs. Note that
some programs (such as nethack-3.3.0, vim60, and emacs-22.1)
have a large cycle that contains hundreds or even thousands of pro-
cedures. Such non-trivial SCCs markedly increase analysis cost be-
cause the large cyclic dependencies among procedures make data
dependencies much more complex. Thus, the analysis for gimp-2.6

(959 KLOC) or ghostscript-9.00 (1,363 KLOC), which have few re-
cursion, is even faster than python-2.5.1 (435 KLOC) or nethack-
3.3.0 (211 KLOC), which have large recursive cycles.

Second, data dependency generation takes much longer time
than actual fixpoint computation. For example, data dependency
generation for ghostscript-9.00 takes 14,116 s but the fixpoint is
computed in 698 s. In fact, this phenomenon paradoxically shows
the effectiveness of our pre-analysis. Finding data dependencies
of programs is not an easy work but their exact computation re-
quires the full analysis (Intervalbase). Instead, the pre-analysis finds
an approximation with small cost (compared to Intervalbase). Our
pre-analysis is effective because the approximated data dependen-
cies are shown to be precise enough to make our sparse analysis
efficient. On the other hand, the seemingly unbalanced timing re-
sults are partly because of the uses of BDDs in dependency con-
struction. While BDD dramatically saves memory costs, set opera-
tions for BDDs such as addition and removal are noticeably slower
than usual set operations. Especially, large programs are more in-
fluenced by this characteristic because their data dependency gen-
eration is more complex and much more BDD-operations are in-
volved. However, thanks to the space-effectiveness of BDDs, our
sparse analysis does not steeply increase memory consumption as
program sizes increase.

8 2011/11/26

Program LOC Functions Statements Blocks LRC AbsLocs

gzip-1.2.4a 7K 132 6,446 4,152 2 1,784
bc-1.06 13K 132 10,368 4,731 1 1,619
tar-1.13 20K 221 12,199 8,586 13 3,245
less-382 23K 382 23,367 9,207 46 3,658
make-3.76.1 27K 190 14,010 9,094 57 4,527
wget-1.9 35K 433 28,958 14,537 13 6,675
screen-4.0.2 45K 588 39,693 29,498 65 12,566
a2ps-4.14 64K 980 86,867 27,565 6 17,684
bash-2.05a 105K 955 107,774 27,669 4 17,443
lsh-2.0.4 111K 1,524 137,511 27,896 13 31,164
sendmail-8.13.6 130K 756 76,630 52,505 60 19,135
nethack-3.3.0 211K 2,207 237,427 157,645 997 54,989
vim60 227K 2,770 150,950 107,629 1,668 40,979
emacs-22.1 399K 3,388 204,865 161,118 1,554 66,413
python-2.5.1 435K 2,996 241,511 99,014 723 51,859
linux-3.0 710K 13,856 345,407 300,203 493 139,667
gimp-2.6 959K 11,728 1,482,230 286,588 2 190,806
ghostscript-9.00 1,363K 12,993 2,891,500 342,293 39 201,161

Table 1: Benchmarks: lines of code (LOC) is obtained by running wc on the source before preprocessing and macro expansion. Functions reports the number of functions in source
code. Statements and Blocks report the number of statements and basic blocks in our intermediate representation of programs (after preprocessing). maxSCC reports the size of the
largest strongly connected component in the callgraph. AbsLocs reports the number of abstract locations that are generated during the analysis.

Programs Intervalvanilla Intervalbase Spd↑1 Mem↓1 Intervalsparse Spd↑2 Mem↓2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 772 240 14 65 55 x 73 % 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 1,270 276 96 126 13 x 54 % 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 12,947 881 338 177 38 x 80 % 6 2 8 93 2.9 2.9 42 x 47 %
less-382 9,561 1,113 1,211 378 8 x 66 % 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 24,240 1,391 1,893 443 13 x 68 % 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 44,092 2,546 1,214 378 36 x 85 % 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 ∞ N/A 31,324 3,996 N/A N/A 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 ∞ N/A 3,200 1,392 N/A N/A 31 9 40 353 2.6 2.8 80 x 75 %
bash-2.05a ∞ N/A 1,683 1,386 N/A N/A 45 22 67 220 3.0 3.0 25 x 84 %
lsh-2.0.4 ∞ N/A 45,522 5,266 N/A N/A 391 80 471 577 21.1 21.2 97 x 89 %
sendmail-8.13.6 ∞ N/A ∞ N/A N/A N/A 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 ∞ N/A ∞ N/A N/A N/A 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 ∞ N/A ∞ N/A N/A N/A 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 ∞ N/A ∞ N/A N/A N/A 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 ∞ N/A ∞ N/A N/A N/A 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 ∞ N/A ∞ N/A N/A N/A 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 ∞ N/A ∞ N/A N/A N/A 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 ∞ N/A ∞ N/A N/A N/A 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

Table 2: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. ∞ means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd↑1 is
the speed-up of Intervalbase over Intervalvanilla. Mem↓1 shows the memory savings of Intervalbase over Intervalvanilla. Spd↑2 is the speed-up of Intervalsparse over Intervalbase.
Mem↓2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

The results show that Intervalbase already has a competitive
performance: it is faster than Intervalvanilla by 8–55x, saving
peak memory consumption by 54–85%. Intervalvanilla scales to
35 KLOC before running out of time limit (24 hours). In con-
trast, Intervalbase scales to 111 KLOC. For the first six benchmarks
that they both complete, Intervalbase is on average 27x faster than
Intervalvanilla, and uses on average 71% less memory.

Intervalsparse is faster than Intervalbase by 5–110x and saves
memory by 3–92%. In particular, the analysis’ scalability has been
remarkably improved: Intervalsparse scales to 1.4M LOC, which is
an order of magnitude larger than that of Intervalbase.

There are some counterintuitive results. First, the analysis time
for Intervalsparse does not strictly depend on program sizes. For ex-
ample, analyzing emacs-22.1 (399 KLOC) requires 10 hours, tak-
ing six times more than analyzing ghostscript-9.00 (1,363 KLOC).
This is mainly due to the fact that some real C programs have un-
expectedly large recursive call cycles [24, 42]. Column maxSCC

in Table 1 reports the sizes of the largest recursive cycle (precisely
speaking, strongly connected component) in programs. Note that
some programs (such as nethack-3.3.0, vim60, and emacs-22.1)
have a large cycle that contains hundreds or even thousands of pro-
cedures. Such non-trivial SCCs markedly increase analysis cost be-
cause the large cyclic dependencies among procedures make data
dependencies much more complex. Thus, the analysis for gimp-2.6

(959 KLOC) or ghostscript-9.00 (1,363 KLOC), which have few re-
cursion, is even faster than python-2.5.1 (435 KLOC) or nethack-
3.3.0 (211 KLOC), which have large recursive cycles.

Second, data dependency generation takes much longer time
than actual fixpoint computation. For example, data dependency
generation for ghostscript-9.00 takes 14,116 s but the fixpoint is
computed in 698 s. In fact, this phenomenon paradoxically shows
the effectiveness of our pre-analysis. Finding data dependencies
of programs is not an easy work but their exact computation re-
quires the full analysis (Intervalbase). Instead, the pre-analysis finds
an approximation with small cost (compared to Intervalbase). Our
pre-analysis is effective because the approximated data dependen-
cies are shown to be precise enough to make our sparse analysis
efficient. On the other hand, the seemingly unbalanced timing re-
sults are partly because of the uses of BDDs in dependency con-
struction. While BDD dramatically saves memory costs, set opera-
tions for BDDs such as addition and removal are noticeably slower
than usual set operations. Especially, large programs are more in-
fluenced by this characteristic because their data dependency gen-
eration is more complex and much more BDD-operations are in-
volved. However, thanks to the space-effectiveness of BDDs, our
sparse analysis does not steeply increase memory consumption as
program sizes increase.

8 2011/11/28

28

Sizes of the
Largest

Recursive call
Cycles

Localization with Bypassing

f g h

{a} {b} {c}

a b c

29

APLAS’11

Localization with Bypassing

f g h

a

{a} {b} {c}

aa b c

localized memory for f

30

Localization with Bypassing

f g h

a

{a} {b} {c}

b ca

bypass

a b c

31

Localization with Bypassing

f g h

a

{a} {b} {c}

b ca

bypass

b

ba b c

32

Localization with Bypassing

f g h

a

{a} {b} {c}

b ca

bypass

b

b c

bypass

a b c

c

33

Bypassing Call Cycles

f g h

a b c

a b c a b c

a b c

a b c

34

Reason for Cost Reduction

2 Hakjoo Oh and Kwangkeun Yi

only few reachable locations are actually accessed [14]. Access-based technique,

on the other hand, trims input memory states more aggressively: locations that

are reachable but may not be accessed are additionally removed. The access in-

formation is computed by a conservative pre-analysis. Thus, access-based local-

ization more effectively reduces global analysis cost than the reachability-based

technique does [14].

However, the localization has a source of inefficiency in handling procedure

calls. In access-based localization
1
, the localized input state for a procedure

involves not only the abstract locations that are accessed by the called procedure

but also those locations that are accessed by transitively called procedures. For

instance, when procedure f calls g, the localized state for f contains abstract

locations that are accessed by g as well as abstract locations accessed by f .
Those locations that are exclusively accessed by g are, however, irrelevant to the

analysis of f because they are not used in analyzing f . Even so, those locations

are involved in the localized state (for f), which sometimes leads to unnecessary

computational cost (due to re-analyses of procedure body).

Such inefficiency is especially exacerbated with recursive call cycles. Consider

a recursive call cycle f → g → h → f → · · · . Because of the cyclic dependence

among procedures, every procedure receives input memories that contain all

abstract locations accessed by the whole cycle. That is, access-based localization

does not help any more inside call cycles. Moreover, recursive cycles (even large

ones) are common in real C programs. For example, in GNU open source code,

we noticed that a number of programs have large recursive cycles and a single

cycle sometimes contains more than 40 procedures. This is the main performance

bottleneck of access-based localization in practice (Section 4.2).

In this paper, we extend access-based localization technique so that the afore-

mentioned inefficiency can be relieved. With our technique, localized states for a

procedure contains only the abstract locations that are accessed by the procedure

and does not contain other locations that are exclusively accessed by transitively

called procedures. Those excluded abstract locations are “bypassed” to the tran-

sitively called procedures, instead of passing through the called procedure. In this

way, analysis of a procedure involves only the memory parts that the procedure

directly accesses (even inside recursive cycles), which results in more tight lo-

calization and hence reduces analysis cost more than access-based localization

does. The following example illustrates how our technique saves cost.

Example 1. Consider the following code.

1: int a=0, b=0;
2: void g() { b++; }
3: void f() { a++; g(); }
4: int main () {
5: b=1; f(); // first call to f
6: b=2; f(); } // second call to f

1 In fact, any localization techniques suffers from similar problems. In this paper, we
discuss the problem in the context of access-based localization.• Localization alone

• both f and g are re-analyzed

• Localization with bypassing

• only g is re-analyzed

35

Even Improve Precision

• In principle, aggressive localization leads to
precision improvements.

int x;

void g() { x++; }

void f () {
 while (...) { ... }
 g ();
}

void main () {
x = 0; f ();
x = 1; f ();

}

x : [0,0] [1,1] = [0,+oo]

x : [0,+oo] vs. [2,2]

f does not
access x

36

Experiments

• Sparrow: an interval domain-based abstract
interpreter

• AccLoc: access-based localization

• Bypass: access-based localization with bypassing

• 10 GNU / SPEC 2000 benchmarks

• 2K~105K lines of code

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

37

Results

Access-based Localization with Bypassing 13

Table 1. Program properties and analysis results. Lines of code (LOC) are given
before preprocessing. The number of procedures (Proc) is given after preprocess-
ing. LRC represents the size of largest recursive call cycle contained in each pro-
gram. time shows analysis time in seconds. MB shows peak memory consumption in
megabytes. AiracAccLoc uses access-based localization for procedure calls and AiracBypass
uses our technique. time for AiracAccLoc and AiracBypass are the total time that in-
cludes pre-analysis time. Save shows time savings in percentage of AiracBypass against
AiracAccLoc.

Program LOC Proc LRC AiracAccLoc AiracBypass Save
time(sec) MB time(sec) MB (time)

spell-1.0 2,213 31 0 2.4 10 1.6 10 31.6%
gzip-1.2.4a 7,327 135 2 51.9 65 37.7 64 27.4%
parser 10,900 325 3 571.6 206 319.4 245 44.1%
bc-1.06 13,093 134 1 496.9 131 318.4 165 35.9%
twolf 19,700 192 1 509.5 212 389.9 212 23.5%
tar-1.13 20,258 222 13 2,407.9 294 1,503.2 338 37.6%
less-382 23,822 382 46 14,720.8 490 4,906.4 427 66.7%
make-3.76.1 27,304 191 61 14,681.9 695 5,248.0 549 64.3%
wget-1.9 35,018 434 13 6,717.5 544 4,383.4 552 34.7%
screen-4.0.2 44,734 589 77 310,788.0 2,228 66,920.6 1,875 78.5%
bash-2.05a 105,174 959 4 1,637.6 272 1,492.4 265 8.9%

– Some programs contain large recursive call cycles. One common belief for C
programs is that it does not largely use recursion in practice. However, our
finding from the benchmark programs is that some programs extensively use
recursion and large recursive cycles unexpectedly exist in a number of real
C programs. For example, from Table 1, note that program less, make, and
screen have recursive cycles (scc) that contain more than 40 procedures.

– AiracAccLoc is extremely inefficient for those programs. For other programs
that have small (or no) recursive cycles, the analysis with access-based lo-
calization is quite efficient. For example, analyzing bash (the largest one in
our benchmark) takes 1,637s. However, analyzing those programs that have
large recursive cycles takes much more time: less and make take more than
10,000s and screen takes more than 310,000s to finish the analysis, even
though they are not the largest programs.

– AiracBypass is especially effective for those programs. For programs less,
make, and screen that contain large recursive cycles, our technique reduces
the analysis time by 66.7%, 64.3%, and 78.5%, respectively.

– AiracBypass is also noticeably effective for other programs. For programs,
which have small cycles (consisting of less than 20 procedures), AiracBypass
saved 8.9%–44.1% of the analysis time of AiracAccLoc. For example, in ana-
lyzing parser, AiracAccLoc took 572 seconds but AiracBypass took 319 seconds.

Our technique is also likely to reduce peak memory cost. Because our tech-
nique localizes memory states more aggressively than the access-based local-
ization, the peak memory consumption must be reduced. However, in the ex-

Some programs contain large recursive call cycles.

Sizes of the Largest Recursive call Cycles

38

Results

Access-based Localization with Bypassing 13

Table 1. Program properties and analysis results. Lines of code (LOC) are given
before preprocessing. The number of procedures (Proc) is given after preprocess-
ing. LRC represents the size of largest recursive call cycle contained in each pro-
gram. time shows analysis time in seconds. MB shows peak memory consumption in
megabytes. AiracAccLoc uses access-based localization for procedure calls and AiracBypass
uses our technique. time for AiracAccLoc and AiracBypass are the total time that in-
cludes pre-analysis time. Save shows time savings in percentage of AiracBypass against
AiracAccLoc.

Program LOC Proc LRC AiracAccLoc AiracBypass Save
time(sec) MB time(sec) MB (time)

spell-1.0 2,213 31 0 2.4 10 1.6 10 31.6%
gzip-1.2.4a 7,327 135 2 51.9 65 37.7 64 27.4%
parser 10,900 325 3 571.6 206 319.4 245 44.1%
bc-1.06 13,093 134 1 496.9 131 318.4 165 35.9%
twolf 19,700 192 1 509.5 212 389.9 212 23.5%
tar-1.13 20,258 222 13 2,407.9 294 1,503.2 338 37.6%
less-382 23,822 382 46 14,720.8 490 4,906.4 427 66.7%
make-3.76.1 27,304 191 61 14,681.9 695 5,248.0 549 64.3%
wget-1.9 35,018 434 13 6,717.5 544 4,383.4 552 34.7%
screen-4.0.2 44,734 589 77 310,788.0 2,228 66,920.6 1,875 78.5%
bash-2.05a 105,174 959 4 1,637.6 272 1,492.4 265 8.9%

– Some programs contain large recursive call cycles. One common belief for C
programs is that it does not largely use recursion in practice. However, our
finding from the benchmark programs is that some programs extensively use
recursion and large recursive cycles unexpectedly exist in a number of real
C programs. For example, from Table 1, note that program less, make, and
screen have recursive cycles (scc) that contain more than 40 procedures.

– AiracAccLoc is extremely inefficient for those programs. For other programs
that have small (or no) recursive cycles, the analysis with access-based lo-
calization is quite efficient. For example, analyzing bash (the largest one in
our benchmark) takes 1,637s. However, analyzing those programs that have
large recursive cycles takes much more time: less and make take more than
10,000s and screen takes more than 310,000s to finish the analysis, even
though they are not the largest programs.

– AiracBypass is especially effective for those programs. For programs less,
make, and screen that contain large recursive cycles, our technique reduces
the analysis time by 66.7%, 64.3%, and 78.5%, respectively.

– AiracBypass is also noticeably effective for other programs. For programs,
which have small cycles (consisting of less than 20 procedures), AiracBypass
saved 8.9%–44.1% of the analysis time of AiracAccLoc. For example, in ana-
lyzing parser, AiracAccLoc took 572 seconds but AiracBypass took 319 seconds.

Our technique is also likely to reduce peak memory cost. Because our tech-
nique localizes memory states more aggressively than the access-based local-
ization, the peak memory consumption must be reduced. However, in the ex-

For those programs, AccLoc is inefficient.

39

Results

Access-based Localization with Bypassing 13

Table 1. Program properties and analysis results. Lines of code (LOC) are given
before preprocessing. The number of procedures (Proc) is given after preprocess-
ing. LRC represents the size of largest recursive call cycle contained in each pro-
gram. time shows analysis time in seconds. MB shows peak memory consumption in
megabytes. AiracAccLoc uses access-based localization for procedure calls and AiracBypass
uses our technique. time for AiracAccLoc and AiracBypass are the total time that in-
cludes pre-analysis time. Save shows time savings in percentage of AiracBypass against
AiracAccLoc.

Program LOC Proc LRC AiracAccLoc AiracBypass Save
time(sec) MB time(sec) MB (time)

spell-1.0 2,213 31 0 2.4 10 1.6 10 31.6%
gzip-1.2.4a 7,327 135 2 51.9 65 37.7 64 27.4%
parser 10,900 325 3 571.6 206 319.4 245 44.1%
bc-1.06 13,093 134 1 496.9 131 318.4 165 35.9%
twolf 19,700 192 1 509.5 212 389.9 212 23.5%
tar-1.13 20,258 222 13 2,407.9 294 1,503.2 338 37.6%
less-382 23,822 382 46 14,720.8 490 4,906.4 427 66.7%
make-3.76.1 27,304 191 61 14,681.9 695 5,248.0 549 64.3%
wget-1.9 35,018 434 13 6,717.5 544 4,383.4 552 34.7%
screen-4.0.2 44,734 589 77 310,788.0 2,228 66,920.6 1,875 78.5%
bash-2.05a 105,174 959 4 1,637.6 272 1,492.4 265 8.9%

– Some programs contain large recursive call cycles. One common belief for C
programs is that it does not largely use recursion in practice. However, our
finding from the benchmark programs is that some programs extensively use
recursion and large recursive cycles unexpectedly exist in a number of real
C programs. For example, from Table 1, note that program less, make, and
screen have recursive cycles (scc) that contain more than 40 procedures.

– AiracAccLoc is extremely inefficient for those programs. For other programs
that have small (or no) recursive cycles, the analysis with access-based lo-
calization is quite efficient. For example, analyzing bash (the largest one in
our benchmark) takes 1,637s. However, analyzing those programs that have
large recursive cycles takes much more time: less and make take more than
10,000s and screen takes more than 310,000s to finish the analysis, even
though they are not the largest programs.

– AiracBypass is especially effective for those programs. For programs less,
make, and screen that contain large recursive cycles, our technique reduces
the analysis time by 66.7%, 64.3%, and 78.5%, respectively.

– AiracBypass is also noticeably effective for other programs. For programs,
which have small cycles (consisting of less than 20 procedures), AiracBypass
saved 8.9%–44.1% of the analysis time of AiracAccLoc. For example, in ana-
lyzing parser, AiracAccLoc took 572 seconds but AiracBypass took 319 seconds.

Our technique is also likely to reduce peak memory cost. Because our tech-
nique localizes memory states more aggressively than the access-based local-
ization, the peak memory consumption must be reduced. However, in the ex-

For those programs, Bypass is especially effective.
(time reduction of 64~79%)

40

Results

Access-based Localization with Bypassing 13

Table 1. Program properties and analysis results. Lines of code (LOC) are given
before preprocessing. The number of procedures (Proc) is given after preprocess-
ing. LRC represents the size of largest recursive call cycle contained in each pro-
gram. time shows analysis time in seconds. MB shows peak memory consumption in
megabytes. AiracAccLoc uses access-based localization for procedure calls and AiracBypass
uses our technique. time for AiracAccLoc and AiracBypass are the total time that in-
cludes pre-analysis time. Save shows time savings in percentage of AiracBypass against
AiracAccLoc.

Program LOC Proc LRC AiracAccLoc AiracBypass Save
time(sec) MB time(sec) MB (time)

spell-1.0 2,213 31 0 2.4 10 1.6 10 31.6%
gzip-1.2.4a 7,327 135 2 51.9 65 37.7 64 27.4%
parser 10,900 325 3 571.6 206 319.4 245 44.1%
bc-1.06 13,093 134 1 496.9 131 318.4 165 35.9%
twolf 19,700 192 1 509.5 212 389.9 212 23.5%
tar-1.13 20,258 222 13 2,407.9 294 1,503.2 338 37.6%
less-382 23,822 382 46 14,720.8 490 4,906.4 427 66.7%
make-3.76.1 27,304 191 61 14,681.9 695 5,248.0 549 64.3%
wget-1.9 35,018 434 13 6,717.5 544 4,383.4 552 34.7%
screen-4.0.2 44,734 589 77 310,788.0 2,228 66,920.6 1,875 78.5%
bash-2.05a 105,174 959 4 1,637.6 272 1,492.4 265 8.9%

– Some programs contain large recursive call cycles. One common belief for C
programs is that it does not largely use recursion in practice. However, our
finding from the benchmark programs is that some programs extensively use
recursion and large recursive cycles unexpectedly exist in a number of real
C programs. For example, from Table 1, note that program less, make, and
screen have recursive cycles (scc) that contain more than 40 procedures.

– AiracAccLoc is extremely inefficient for those programs. For other programs
that have small (or no) recursive cycles, the analysis with access-based lo-
calization is quite efficient. For example, analyzing bash (the largest one in
our benchmark) takes 1,637s. However, analyzing those programs that have
large recursive cycles takes much more time: less and make take more than
10,000s and screen takes more than 310,000s to finish the analysis, even
though they are not the largest programs.

– AiracBypass is especially effective for those programs. For programs less,
make, and screen that contain large recursive cycles, our technique reduces
the analysis time by 66.7%, 64.3%, and 78.5%, respectively.

– AiracBypass is also noticeably effective for other programs. For programs,
which have small cycles (consisting of less than 20 procedures), AiracBypass
saved 8.9%–44.1% of the analysis time of AiracAccLoc. For example, in ana-
lyzing parser, AiracAccLoc took 572 seconds but AiracBypass took 319 seconds.

Our technique is also likely to reduce peak memory cost. Because our tech-
nique localizes memory states more aggressively than the access-based local-
ization, the peak memory consumption must be reduced. However, in the ex-

Bypass is also effective for other programs.
(time reduction of 9~44%)

41

Conclusion

Localization has a problem with recursive cycles

Bypassing mitigates the performance problem

42

Key to scalability for real C programs

Conclusion

43

Thank you

Localization has a problem with recursive cycles

Bypassing mitigates the performance problem

Key to scalability for real C programs

