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   Membership Query

5. Conclusion
* Novel approach to invariants generation.
* Plentiful of invariants are the reason why this 
  approach is working with random answers.
* We are currently working on its extension supporting
  quantified invariants.

   Equivalence Query
    1. Check that the guess meets the three conditions to be 
      an invariant.
     2. If not, try to find a counter example.

3. Solutions
3.1. Predicate Abstraction
To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.

Example:

3.2. Query Resolution
Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .

Deriving Invariants in Propositional Logic 
by Algorithmic Learning, Decision Procedure, and Predicate Abstraction

Yungbum Jung,  Soonho Kong,  Bow-Yaw Wang,  and Kwangkeun Yi

1. Problem : Find an invariant    for the Loop

Invariant must satisfy the following conditions:
       

Example:

             
             Invariant : 

{δ} while ρ do S end {�}

� = (i = 10 ∧ ret)

δ = (i = 0)

ρ

2. Idea : Using the CDNF Algorithm
Exact Learning Algorithm for Boolean formula    
Asks two types of queries:

    1. 

    2. 

λ

Membership Query                 asks
if the truth assignment     satisfies   . µ

MEM (µ)
λ

MEM (µ) = Yes if µ |= λ

MEM (µ) = No if µ �|= λ

Equivalence Query             asks 
if the Boolean formula     is equivalent to   ,  
If not, the teacher returns a truth assignment as 
a counterexample.

EQ(β)
β λ

EQ(β) = Yes
EQ(β) = No

if β ≡ λ

Programming
Research Laboratory

A.
B.
C.

δ ∧ ρ ⇒ I

I ∧ ρ ⇒ Pre(I , S)

I ∧ ¬ρ ⇒ �

I

while  i < 10 do

   r := random();

   if r != 0 then i := i + 1

end

S

i < 10 ∨ (i = 10 ∧ ret)

bi<10 ∨ (bi=10 ∧ bret)i < 10 ∨ (i = 10 ∧ ret)

be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −→←−

α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f ]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f ]]0P σ = [[f ]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[, e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP to VP̂ = 2P →
2P by establishing the Galois connection VP −→←−

α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f ]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = [[e1]]

0
P̂ σ ∪ [[e2]]

0
P̂ σ

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.[[e1]]
0
P̂ σ ∪ [[e2]]

0
P̂ (σ[x �→ k])])

[[‘f ]]0P̂ σ = [[f ]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[, e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

Abstract semantic function [[·]]0
P̂

is used to check whether gen-
erated codes conform to the grammar. For the given program e, we
compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
main should satisfy. Then we define semantic function on the ab-
stract parsing domain.

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions.

1. �D�,�,�,⊥D�� is a CPO.

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P ), t)

δ ρ �

Over Approximation ρ ∨ �

4. Experiment Results
For some Linux device drivers and SPEC2000 benchmarks.

Program LOC AP MEM EQ Random Restart Time (sec)
] ide-ide-tape 16 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 9 6 216.1 111.8 47.2 9.9 0.602
parser 37 20 6694.5 819.4 990.3 12.5 32.120

usb-message 18 10 20.1 6.8 1.0 1.0 0.128
vpr 8 7 14.5 8.9 11.8 2.9 0.055

Under Approximation δ

{

Restart!
Cannot find a counter example.

No, 
with found a counter example.

No

No

Random answer does not break soundness, because we always 
check the three conditions when we resolve equivalence 
query.

Yes / No

No

Yes

Unknown

Random Answer

if β �≡ λ ∧ (µ |= β ⊕ λ)

GuessGuess
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An extension of the classical call-strings approach
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Conventional context-sensitive 
analysis, distinguishing the last k call-
sites to each procedure (k-limiting).

k
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Normalk
A performance problem is 

identified and solved. 
time ↓ precision ↑
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To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.

Example:

3.2. Query Resolution
Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .
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1. Problem : Find an invariant    for the Loop

Invariant must satisfy the following conditions:
       

Example:

             
             Invariant : 

{δ} while ρ do S end {�}

� = (i = 10 ∧ ret)

δ = (i = 0)

ρ

2. Idea : Using the CDNF Algorithm
Exact Learning Algorithm for Boolean formula    
Asks two types of queries:

    1. 

    2. 

λ

Membership Query                 asks
if the truth assignment     satisfies   . µ

MEM (µ)
λ

MEM (µ) = Yes if µ |= λ

MEM (µ) = No if µ �|= λ

Equivalence Query             asks 
if the Boolean formula     is equivalent to   ,  
If not, the teacher returns a truth assignment as 
a counterexample.

EQ(β)
β λ

EQ(β) = Yes
EQ(β) = No

if β ≡ λ
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δ ∧ ρ ⇒ I

I ∧ ρ ⇒ Pre(I , S)

I ∧ ¬ρ ⇒ �

I

while  i < 10 do

   r := random();

   if r != 0 then i := i + 1

end

S

i < 10 ∨ (i = 10 ∧ ret)

bi<10 ∨ (bi=10 ∧ bret)i < 10 ∨ (i = 10 ∧ ret)

be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −→←−

α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f ]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f ]]0P σ = [[f ]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[, e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP to VP̂ = 2P →
2P by establishing the Galois connection VP −→←−

α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f ]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = [[e1]]

0
P̂ σ ∪ [[e2]]

0
P̂ σ

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.[[e1]]
0
P̂ σ ∪ [[e2]]

0
P̂ (σ[x �→ k])])

[[‘f ]]0P̂ σ = [[f ]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[, e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

Abstract semantic function [[·]]0
P̂

is used to check whether gen-
erated codes conform to the grammar. For the given program e, we
compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
main should satisfy. Then we define semantic function on the ab-
stract parsing domain.

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions.

1. �D�,�,�,⊥D�� is a CPO.

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P ), t)

δ ρ �

Over Approximation ρ ∨ �

4. Experiment Results
For some Linux device drivers and SPEC2000 benchmarks.

Program LOC AP MEM EQ Random Restart Time (sec)
] ide-ide-tape 16 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 9 6 216.1 111.8 47.2 9.9 0.602
parser 37 20 6694.5 819.4 990.3 12.5 32.120

usb-message 18 10 20.1 6.8 1.0 1.0 0.128
vpr 8 7 14.5 8.9 11.8 2.9 0.055

Under Approximation δ

{

Restart!
Cannot find a counter example.

No, 
with found a counter example.

No

No

Random answer does not break soundness, because we always 
check the three conditions when we resolve equivalence 
query.

Yes / No

No

Yes

Unknown

Random Answer

if β �≡ λ ∧ (µ |= β ⊕ λ)
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Spurious Cycle in Static Analysis
Title Suppressed Due to Excessive Length 3

call5

call1

entry

exit

return4

return6

(1)

(2)

(3)

(4)

(5)

(6)

f call1 = · · · · · · (1)
entry = call1 � call5 · · · (2)
exit = F̂bodyf (entry) · · · (3)
return4 = exit · · · (4)
call5 = return4 · · · (5)
return6 = exit · · · (6)

Fig. 1. Spurious cycles because of abstract procedure calls and returns. The right-hand
side is a system of equations and the left-hand side shows the dependences between
the equations. Note a dependence cycle (2)→ (3)→ (4)→ (5)→ (2)→ · · ·

effectively relieve the performance degradation caused by spurious interprocedu-
ral cycles in both context-sensitive (k > 0) and -insensitive (k = 0) analysis.

While solving flow equations, the algorithmic technique simply forces pro-
cedures to return to their corresponding called site, in order not to follow the
last edge (edge (3) → (4) in Fig. ??) of the “butterfly” cycles. In order to en-
force this, we control the equation-solving orders so that each called procedure
is analyzed exclusively for its one particular call-site. To be safe, we apply our
algorithm to only non-recursive procedures.

Consider the equation system in Fig. ?? again and think of a middle of the
analysis (equation-solving) sequence, · · · → (5) → (2) → (3), which indicates
that the analysis of procedure f is invoked from (5) and is now finished. After
the evaluation of (3), a classical worklist algorithm inserts all the equations,
(4) and (6), that depend on (3). But, if we remember the fact that f has been
invoked from (5) and the other call-site (1) has not invoked the procedure until
the analysis of f finishes, we can know that continuing with (4) is useless, because
the current analysis of f is only related to (5), but not to other calls like (1). So,
we process only (6), pruning the spurious sequence (3)→ (4)→ · · · .

We integrated the algorithm inside an industrialized abstract-interpretation-
based C static analyzer [?,?] and measured performance gains derived from
avoiding spurious cycles. We have saved 7%-96% of the analysis time for context-
insensitive or -sensitive global analysis for open-source benchmarks.

1.3 Contributions

– We present a simple extension of the classical call-strings approach, which
effectively reduces the inefficiency caused by large, inevitable, spurious in-
terprocedural cycles.
We prove the effectiveness of the technique by experiments with an industrial-
strength C static analyzer [?,?] in globally analyzing medium-scale open-
source programs.

• Spurious cycles degrade both precision and time

• Spurious information flows

• Fake cyclic dependence cycle

3

int f() {...}
int main()
{

f();
f();

}
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5. Conclusion
* Novel approach to invariants generation.
* Plentiful of invariants are the reason why this 
  approach is working with random answers.
* We are currently working on its extension supporting
  quantified invariants.

   Equivalence Query
    1. Check that the guess meets the three conditions to be 
      an invariant.
     2. If not, try to find a counter example.

3. Solutions
3.1. Predicate Abstraction
To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.

Example:

3.2. Query Resolution
Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .

Deriving Invariants in Propositional Logic 
by Algorithmic Learning, Decision Procedure, and Predicate Abstraction

Yungbum Jung,  Soonho Kong,  Bow-Yaw Wang,  and Kwangkeun Yi

1. Problem : Find an invariant    for the Loop

Invariant must satisfy the following conditions:
       

Example:

             
             Invariant : 

{δ} while ρ do S end {�}

� = (i = 10 ∧ ret)

δ = (i = 0)

ρ

2. Idea : Using the CDNF Algorithm
Exact Learning Algorithm for Boolean formula    
Asks two types of queries:

    1. 

    2. 

λ

Membership Query                 asks
if the truth assignment     satisfies   . µ

MEM (µ)
λ

MEM (µ) = Yes if µ |= λ

MEM (µ) = No if µ �|= λ

Equivalence Query             asks 
if the Boolean formula     is equivalent to   ,  
If not, the teacher returns a truth assignment as 
a counterexample.

EQ(β)
β λ

EQ(β) = Yes
EQ(β) = No

if β ≡ λ

Programming
Research Laboratory

A.
B.
C.

δ ∧ ρ ⇒ I

I ∧ ρ ⇒ Pre(I , S)

I ∧ ¬ρ ⇒ �

I

while  i < 10 do

   r := random();

   if r != 0 then i := i + 1

end

S

i < 10 ∨ (i = 10 ∧ ret)

bi<10 ∨ (bi=10 ∧ bret)i < 10 ∨ (i = 10 ∧ ret)

be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −→←−

α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP
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VP̂ where
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where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

Abstract semantic function [[·]]0
P̂

is used to check whether gen-
erated codes conform to the grammar. For the given program e, we
compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
main should satisfy. Then we define semantic function on the ab-
stract parsing domain.

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the
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tion of Parse action . That is, we have
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4. Experiment Results
For some Linux device drivers and SPEC2000 benchmarks.

Program LOC AP MEM EQ Random Restart Time (sec)
] ide-ide-tape 16 6 18.2 5.2 4.1 1.2 0.055
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be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px
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Abstracting the code c into the parse stack transition function
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Let fx and fy be the parse stack transition functions for code
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5. Conclusion
* Novel approach to invariants generation.
* Plentiful of invariants are the reason why this 
  approach is working with random answers.
* We are currently working on its extension supporting
  quantified invariants.

   Equivalence Query
    1. Check that the guess meets the three conditions to be 
      an invariant.
     2. If not, try to find a counter example.

3. Solutions
3.1. Predicate Abstraction
To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.

Example:

3.2. Query Resolution
Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .

Deriving Invariants in Propositional Logic 
by Algorithmic Learning, Decision Procedure, and Predicate Abstraction

Yungbum Jung,  Soonho Kong,  Bow-Yaw Wang,  and Kwangkeun Yi

1. Problem : Find an invariant    for the Loop

Invariant must satisfy the following conditions:
       

Example:

             
             Invariant : 

{δ} while ρ do S end {�}

� = (i = 10 ∧ ret)

δ = (i = 0)

ρ

2. Idea : Using the CDNF Algorithm
Exact Learning Algorithm for Boolean formula    
Asks two types of queries:

    1. 

    2. 

λ

Membership Query                 asks
if the truth assignment     satisfies   . µ

MEM (µ)
λ

MEM (µ) = Yes if µ |= λ

MEM (µ) = No if µ �|= λ

Equivalence Query             asks 
if the Boolean formula     is equivalent to   ,  
If not, the teacher returns a truth assignment as 
a counterexample.

EQ(β)
β λ

EQ(β) = Yes
EQ(β) = No

if β ≡ λ

Programming
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δ ∧ ρ ⇒ I
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   if r != 0 then i := i + 1
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be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −→←−

α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f ]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
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0
P σ])
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0
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0
P σ ∪ [[e2]]

0
P σ
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0
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0
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0
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0
P (σ[x �→ k])])

[[‘f ]]0P σ = [[f ]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[, e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P
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VP̂ where
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where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

Abstract semantic function [[·]]0
P̂

is used to check whether gen-
erated codes conform to the grammar. For the given program e, we
compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
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Large Spurious Cycles

Motivation Problem Solution Experiments

Spurious Cycles in Reality
In real programs, a single large spurious cycle spans almost all
parts of the program.

Program Procedures in the largest cycle Basic-blocks in the largest cycle
spell-1.0 24/31(77%) 751/782(95%)
gzip-1.2.4a 100/135(74%) 5,988/6,271(95%)
sed-4.0.8 230/294(78%) 14,559/14,976(97%)
tar-1.13 205/222(92%) 10,194/10,800(94%)
wget-1.9 346/434(80%) 15,249/16,544(92%)
bison-1.875 410/832(49%) 12,558/18,110(69%)
proftpd-1.3.1 940/1,096(85%) 35,386/41,062(86%)
apache-2.2.2 1,364/2,075(66%) 71,719/95,179(75%)

k-limiting is not much effective to mitigate the problem.
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is used to check whether gen-
erated codes conform to the grammar. For the given program e, we
compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
main should satisfy. Then we define semantic function on the ab-
stract parsing domain.
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is
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satisfies the

following conditions.
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4. Experiment Results
For some Linux device drivers and SPEC2000 benchmarks.
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5. Conclusion
* Novel approach to invariants generation.
* Plentiful of invariants are the reason why this 
  approach is working with random answers.
* We are currently working on its extension supporting
  quantified invariants.

   Equivalence Query
    1. Check that the guess meets the three conditions to be 
      an invariant.
     2. If not, try to find a counter example.

3. Solutions
3.1. Predicate Abstraction
To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.

Example:

3.2. Query Resolution
Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .
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is used to check whether gen-
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compute
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where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
main should satisfy. Then we define semantic function on the ab-
stract parsing domain.

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the
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1. �D�,�,�,⊥D�� is a CPO.

2. Powerset domain of concrete parse stack 2P
and its abstract
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are Galois connected via α2P→D� and γD�→2P .
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: D� → Token → D�
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tion of Parse action . That is, we have
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4. Experiment Results
For some Linux device drivers and SPEC2000 benchmarks.
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Fig. 2. Analysis localities. Because of butterfly cycles, similar patterns are repeated
several times during the analysis and each pattern contains almost all parts of the
programs.

to have a spurious cycle created during the first l − k calls. This spurious cycle

traps the last k procedures into a fixpoint cycle by the above reason.

One spurious cycle in real C programs traps as many as 80-90% of basic

blocks of the program into a fixpoint cycle. Fig. ?? shows this phenomenon. In

the figures, the x-axis represents the execution time of the analysis and the y-axis

represents the procedure name, which is mapped to unique integers. During the

analysis, we draw the graph by plotting the point (t, f) if the analysis’ worklist

algorithm visits a node of procedure f at the time t. For brevity, the graph for

sed-4.0.8 is shown only up to 100,000 iterations among more than 3,000,000 total

iterations. From the results, we first observe that similar patterns are repeated

and each pattern contains almost all procedures in the program. And we find

that there are much more repetitions in the case of a large program (sed-4.0.8,

26,807 LOC) than a small one (spell-1.0, 2,213 LOC): more than 150 repeated

iterations were required to analyze sed-4.0.8 whereas spell-1.0 needed about 30

repetitions.

3 Our Algorithmic Mitigation Technique

Our technique is a simple addition to the existing worklist-based fixpoint algo-

rithm to avoid spurious interprocedural returns. The technique does not depend

on the underlying abstract semantics.

We first describe the traditional call-strings-based analysis algorithm (section

??) as well as the representation of programs (section ??). Then we present our
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5. Conclusion
* Novel approach to invariants generation.
* Plentiful of invariants are the reason why this 
  approach is working with random answers.
* We are currently working on its extension supporting
  quantified invariants.

   Equivalence Query
    1. Check that the guess meets the three conditions to be 
      an invariant.
     2. If not, try to find a counter example.

3. Solutions
3.1. Predicate Abstraction
To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.

Example:

3.2. Query Resolution
Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .
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1. Problem : Find an invariant    for the Loop

Invariant must satisfy the following conditions:
       

Example:

             
             Invariant : 

{δ} while ρ do S end {�}

� = (i = 10 ∧ ret)

δ = (i = 0)

ρ

2. Idea : Using the CDNF Algorithm
Exact Learning Algorithm for Boolean formula    
Asks two types of queries:

    1. 

    2. 

λ

Membership Query                 asks
if the truth assignment     satisfies   . µ

MEM (µ)
λ

MEM (µ) = Yes if µ |= λ

MEM (µ) = No if µ �|= λ

Equivalence Query             asks 
if the Boolean formula     is equivalent to   ,  
If not, the teacher returns a truth assignment as 
a counterexample.

EQ(β)
β λ

EQ(β) = Yes
EQ(β) = No

if β ≡ λ
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Research Laboratory
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i < 10 ∨ (i = 10 ∧ ret)
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be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −→←−

α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP
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4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP to VP̂ = 2P →
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γ
VP̂ where

α =λF.λP.
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where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

Abstract semantic function [[·]]0
P̂

is used to check whether gen-
erated codes conform to the grammar. For the given program e, we
compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
main should satisfy. Then we define semantic function on the ab-
stract parsing domain.

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions.

1. �D�,�,�,⊥D�� is a CPO.

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P ), t)

δ ρ �

Over Approximation ρ ∨ �

4. Experiment Results
For some Linux device drivers and SPEC2000 benchmarks.

Program LOC AP MEM EQ Random Restart Time (sec)
] ide-ide-tape 16 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 9 6 216.1 111.8 47.2 9.9 0.602
parser 37 20 6694.5 819.4 990.3 12.5 32.120

usb-message 18 10 20.1 6.8 1.0 1.0 0.128
vpr 8 7 14.5 8.9 11.8 2.9 0.055

Under Approximation δ
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Cannot find a counter example.
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with found a counter example.
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Random answer does not break soundness, because we always 
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be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)
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With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −→←−

α

γ
VP = 2P→P is established as follows.
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is used to check whether gen-
erated codes conform to the grammar. For the given program e, we
compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
main should satisfy. Then we define semantic function on the ab-
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4. Experiment Results
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Program LOC AP MEM EQ Random Restart Time (sec)
] ide-ide-tape 16 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 9 6 216.1 111.8 47.2 9.9 0.602
parser 37 20 6694.5 819.4 990.3 12.5 32.120

usb-message 18 10 20.1 6.8 1.0 1.0 0.128
vpr 8 7 14.5 8.9 11.8 2.9 0.055

Under Approximation δ

{

Restart!
Cannot find a counter example.

No, 
with found a counter example.

No

No

Random answer does not break soundness, because we always 
check the three conditions when we resolve equivalence 
query.

Yes / No

No

Yes

Unknown

Random Answer

if β �≡ λ ∧ (µ |= β ⊕ λ)

GuessGuess

Seoul National University          Academia Sinica
1 21 1

1 2

?

   Membership Query

5. Conclusion
* Novel approach to invariants generation.
* Plentiful of invariants are the reason why this 
  approach is working with random answers.
* We are currently working on its extension supporting
  quantified invariants.

   Equivalence Query
    1. Check that the guess meets the three conditions to be 
      an invariant.
     2. If not, try to find a counter example.

3. Solutions
3.1. Predicate Abstraction
To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.
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Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .

Deriving Invariants in Propositional Logic 
by Algorithmic Learning, Decision Procedure, and Predicate Abstraction

Yungbum Jung,  Soonho Kong,  Bow-Yaw Wang,  and Kwangkeun Yi

1. Problem : Find an invariant    for the Loop

Invariant must satisfy the following conditions:
       

Example:

             
             Invariant : 

{δ} while ρ do S end {�}

� = (i = 10 ∧ ret)

δ = (i = 0)

ρ

2. Idea : Using the CDNF Algorithm
Exact Learning Algorithm for Boolean formula    
Asks two types of queries:

    1. 

    2. 

λ

Membership Query                 asks
if the truth assignment     satisfies   . µ

MEM (µ)
λ

MEM (µ) = Yes if µ |= λ

MEM (µ) = No if µ �|= λ

Equivalence Query             asks 
if the Boolean formula     is equivalent to   ,  
If not, the teacher returns a truth assignment as 
a counterexample.

EQ(β)
β λ

EQ(β) = Yes
EQ(β) = No

if β ≡ λ

Programming
Research Laboratory

A.
B.
C.

δ ∧ ρ ⇒ I

I ∧ ρ ⇒ Pre(I , S)

I ∧ ¬ρ ⇒ �

I

while  i < 10 do

   r := random();

   if r != 0 then i := i + 1

end

S

i < 10 ∨ (i = 10 ∧ ret)

bi<10 ∨ (bi=10 ∧ bret)i < 10 ∨ (i = 10 ∧ ret)

be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −→←−

α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f ]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f ]]0P σ = [[f ]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[, e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP to VP̂ = 2P →
2P by establishing the Galois connection VP −→←−

α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f ]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = [[e1]]

0
P̂ σ ∪ [[e2]]

0
P̂ σ

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.[[e1]]
0
P̂ σ ∪ [[e2]]

0
P̂ (σ[x �→ k])])

[[‘f ]]0P̂ σ = [[f ]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[, e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

Abstract semantic function [[·]]0
P̂

is used to check whether gen-
erated codes conform to the grammar. For the given program e, we
compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
main should satisfy. Then we define semantic function on the ab-
stract parsing domain.

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions.

1. �D�,�,�,⊥D�� is a CPO.

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P ), t)

δ ρ �

Over Approximation ρ ∨ �

4. Experiment Results
For some Linux device drivers and SPEC2000 benchmarks.

Program LOC AP MEM EQ Random Restart Time (sec)
] ide-ide-tape 16 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 9 6 216.1 111.8 47.2 9.9 0.602
parser 37 20 6694.5 819.4 990.3 12.5 32.120

usb-message 18 10 20.1 6.8 1.0 1.0 0.128
vpr 8 7 14.5 8.9 11.8 2.9 0.055

Under Approximation δ

{

Restart!
Cannot find a counter example.

No, 
with found a counter example.

No

No

Random answer does not break soundness, because we always 
check the three conditions when we resolve equivalence 
query.

Yes / No

No

Yes

Unknown

Random Answer

if β �≡ λ ∧ (µ |= β ⊕ λ)

GuessGuess

Seoul National University          Academia Sinica
1 21 1

1 2

?

Worklist-based 
Normal0 Algorithm

9

fm
c1 entry

exitc2

⇢ c2 → entry → exit ⇢→ c1 → c2 → ...

cycle



/ 20

   Membership Query

5. Conclusion
* Novel approach to invariants generation.
* Plentiful of invariants are the reason why this 
  approach is working with random answers.
* We are currently working on its extension supporting
  quantified invariants.

   Equivalence Query
    1. Check that the guess meets the three conditions to be 
      an invariant.
     2. If not, try to find a counter example.

3. Solutions
3.1. Predicate Abstraction
To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.

Example:

3.2. Query Resolution
Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .

Deriving Invariants in Propositional Logic 
by Algorithmic Learning, Decision Procedure, and Predicate Abstraction

Yungbum Jung,  Soonho Kong,  Bow-Yaw Wang,  and Kwangkeun Yi

1. Problem : Find an invariant    for the Loop

Invariant must satisfy the following conditions:
       

Example:

             
             Invariant : 

{δ} while ρ do S end {�}

� = (i = 10 ∧ ret)

δ = (i = 0)

ρ

2. Idea : Using the CDNF Algorithm
Exact Learning Algorithm for Boolean formula    
Asks two types of queries:

    1. 

    2. 

λ

Membership Query                 asks
if the truth assignment     satisfies   . µ

MEM (µ)
λ

MEM (µ) = Yes if µ |= λ

MEM (µ) = No if µ �|= λ

Equivalence Query             asks 
if the Boolean formula     is equivalent to   ,  
If not, the teacher returns a truth assignment as 
a counterexample.

EQ(β)
β λ

EQ(β) = Yes
EQ(β) = No

if β ≡ λ

Programming
Research Laboratory

A.
B.
C.

δ ∧ ρ ⇒ I

I ∧ ρ ⇒ Pre(I , S)

I ∧ ¬ρ ⇒ �

I

while  i < 10 do

   r := random();

   if r != 0 then i := i + 1

end

S

i < 10 ∨ (i = 10 ∧ ret)

bi<10 ∨ (bi=10 ∧ bret)i < 10 ∨ (i = 10 ∧ ret)

be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −→←−

α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f ]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f ]]0P σ = [[f ]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[, e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP to VP̂ = 2P →
2P by establishing the Galois connection VP −→←−

α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f ]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = [[e1]]

0
P̂ σ ∪ [[e2]]

0
P̂ σ

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.[[e1]]
0
P̂ σ ∪ [[e2]]

0
P̂ (σ[x �→ k])])

[[‘f ]]0P̂ σ = [[f ]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[, e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

Abstract semantic function [[·]]0
P̂

is used to check whether gen-
erated codes conform to the grammar. For the given program e, we
compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
main should satisfy. Then we define semantic function on the ab-
stract parsing domain.

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions.

1. �D�,�,�,⊥D�� is a CPO.

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P ), t)

δ ρ �

Over Approximation ρ ∨ �

4. Experiment Results
For some Linux device drivers and SPEC2000 benchmarks.

Program LOC AP MEM EQ Random Restart Time (sec)
] ide-ide-tape 16 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 9 6 216.1 111.8 47.2 9.9 0.602
parser 37 20 6694.5 819.4 990.3 12.5 32.120

usb-message 18 10 20.1 6.8 1.0 1.0 0.128
vpr 8 7 14.5 8.9 11.8 2.9 0.055

Under Approximation δ

{

Restart!
Cannot find a counter example.

No, 
with found a counter example.

No

No

Random answer does not break soundness, because we always 
check the three conditions when we resolve equivalence 
query.

Yes / No

No

Yes

Unknown

Random Answer

if β �≡ λ ∧ (µ |= β ⊕ λ)

GuessGuess

Seoul National University          Academia Sinica
1 21 1

1 2

?

   Membership Query

5. Conclusion
* Novel approach to invariants generation.
* Plentiful of invariants are the reason why this 
  approach is working with random answers.
* We are currently working on its extension supporting
  quantified invariants.

   Equivalence Query
    1. Check that the guess meets the three conditions to be 
      an invariant.
     2. If not, try to find a counter example.

3. Solutions
3.1. Predicate Abstraction
To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.

Example:

3.2. Query Resolution
Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .

Deriving Invariants in Propositional Logic 
by Algorithmic Learning, Decision Procedure, and Predicate Abstraction

Yungbum Jung,  Soonho Kong,  Bow-Yaw Wang,  and Kwangkeun Yi

1. Problem : Find an invariant    for the Loop

Invariant must satisfy the following conditions:
       

Example:

             
             Invariant : 

{δ} while ρ do S end {�}

� = (i = 10 ∧ ret)

δ = (i = 0)

ρ

2. Idea : Using the CDNF Algorithm
Exact Learning Algorithm for Boolean formula    
Asks two types of queries:

    1. 

    2. 

λ

Membership Query                 asks
if the truth assignment     satisfies   . µ

MEM (µ)
λ

MEM (µ) = Yes if µ |= λ

MEM (µ) = No if µ �|= λ

Equivalence Query             asks 
if the Boolean formula     is equivalent to   ,  
If not, the teacher returns a truth assignment as 
a counterexample.

EQ(β)
β λ

EQ(β) = Yes
EQ(β) = No

if β ≡ λ

Programming
Research Laboratory

A.
B.
C.

δ ∧ ρ ⇒ I

I ∧ ρ ⇒ Pre(I , S)

I ∧ ¬ρ ⇒ �

I

while  i < 10 do

   r := random();

   if r != 0 then i := i + 1

end

S

i < 10 ∨ (i = 10 ∧ ret)

bi<10 ∨ (bi=10 ∧ bret)i < 10 ∨ (i = 10 ∧ ret)

be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −→←−

α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f ]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f ]]0P σ = [[f ]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[, e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP to VP̂ = 2P →
2P by establishing the Galois connection VP −→←−

α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f ]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = [[e1]]

0
P̂ σ ∪ [[e2]]

0
P̂ σ

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.[[e1]]
0
P̂ σ ∪ [[e2]]

0
P̂ (σ[x �→ k])])

[[‘f ]]0P̂ σ = [[f ]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[, e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
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is used to check whether gen-
erated codes conform to the grammar. For the given program e, we
compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
main should satisfy. Then we define semantic function on the ab-
stract parsing domain.

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
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2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
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4. Experiment Results
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] ide-ide-tape 16 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 9 6 216.1 111.8 47.2 9.9 0.602
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5. Conclusion
* Novel approach to invariants generation.
* Plentiful of invariants are the reason why this 
  approach is working with random answers.
* We are currently working on its extension supporting
  quantified invariants.

   Equivalence Query
    1. Check that the guess meets the three conditions to be 
      an invariant.
     2. If not, try to find a counter example.

3. Solutions
3.1. Predicate Abstraction
To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.

Example:

3.2. Query Resolution
Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .
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Abstract semantic function [[·]]0
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is used to check whether gen-
erated codes conform to the grammar. For the given program e, we
compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
main should satisfy. Then we define semantic function on the ab-
stract parsing domain.

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions.

1. �D�,�,�,⊥D�� is a CPO.

2. Powerset domain of concrete parse stack 2P
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domain D�
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3. Parse action�
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is a sound approxima-

tion of Parse action . That is, we have
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α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P ), t)
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4. Experiment Results
For some Linux device drivers and SPEC2000 benchmarks.
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5. Conclusion
* Novel approach to invariants generation.
* Plentiful of invariants are the reason why this 
  approach is working with random answers.
* We are currently working on its extension supporting
  quantified invariants.

   Equivalence Query
    1. Check that the guess meets the three conditions to be 
      an invariant.
     2. If not, try to find a counter example.

3. Solutions
3.1. Predicate Abstraction
To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.

Example:

3.2. Query Resolution
Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .
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erated codes conform to the grammar. For the given program e, we
compute
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where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
main should satisfy. Then we define semantic function on the ab-
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Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
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4. Experiment Results
For some Linux device drivers and SPEC2000 benchmarks.

Program LOC AP MEM EQ Random Restart Time (sec)
] ide-ide-tape 16 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 9 6 216.1 111.8 47.2 9.9 0.602
parser 37 20 6694.5 819.4 990.3 12.5 32.120
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Under Approximation δ
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W = {c2, nH}

F G H
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5. Conclusion
* Novel approach to invariants generation.
* Plentiful of invariants are the reason why this 
  approach is working with random answers.
* We are currently working on its extension supporting
  quantified invariants.

   Equivalence Query
    1. Check that the guess meets the three conditions to be 
      an invariant.
     2. If not, try to find a counter example.

3. Solutions
3.1. Predicate Abstraction
To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.

Example:

3.2. Query Resolution
Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .
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Recursion Handling
• Recursive procedures are handled in the same way 
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without considering other calls in it.
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where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

Abstract semantic function [[·]]0
P̂

is used to check whether gen-
erated codes conform to the grammar. For the given program e, we
compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
main should satisfy. Then we define semantic function on the ab-
stract parsing domain.

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions.

1. �D�,�,�,⊥D�� is a CPO.

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P ), t)

δ ρ �

Over Approximation ρ ∨ �

4. Experiment Results
For some Linux device drivers and SPEC2000 benchmarks.

Program LOC AP MEM EQ Random Restart Time (sec)
] ide-ide-tape 16 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 9 6 216.1 111.8 47.2 9.9 0.602
parser 37 20 6694.5 819.4 990.3 12.5 32.120

usb-message 18 10 20.1 6.8 1.0 1.0 0.128
vpr 8 7 14.5 8.9 11.8 2.9 0.055
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5. Conclusion
* Novel approach to invariants generation.
* Plentiful of invariants are the reason why this 
  approach is working with random answers.
* We are currently working on its extension supporting
  quantified invariants.

   Equivalence Query
    1. Check that the guess meets the three conditions to be 
      an invariant.
     2. If not, try to find a counter example.

3. Solutions
3.1. Predicate Abstraction
To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.

Example:

3.2. Query Resolution
Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .
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5. Conclusion
* Novel approach to invariants generation.
* Plentiful of invariants are the reason why this 
  approach is working with random answers.
* We are currently working on its extension supporting
  quantified invariants.

   Equivalence Query
    1. Check that the guess meets the three conditions to be 
      an invariant.
     2. If not, try to find a counter example.

3. Solutions
3.1. Predicate Abstraction
To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.

Example:

3.2. Query Resolution
Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .
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by Algorithmic Learning, Decision Procedure, and Predicate Abstraction
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             Invariant : 
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2. Idea : Using the CDNF Algorithm
Exact Learning Algorithm for Boolean formula    
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if the Boolean formula     is equivalent to   ,  
If not, the teacher returns a truth assignment as 
a counterexample.

EQ(β)
β λ

EQ(β) = Yes
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if β ≡ λ
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be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −→←−

α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f ]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
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0
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0
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[[‘f ]]0P σ = [[f ]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
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1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
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1
P σ}

[[, e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP to VP̂ = 2P →
2P by establishing the Galois connection VP −→←−

α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f ]]1P̂ ∈ Env P̂ → VP̂
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where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

Abstract semantic function [[·]]0
P̂

is used to check whether gen-
erated codes conform to the grammar. For the given program e, we
compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
main should satisfy. Then we define semantic function on the ab-
stract parsing domain.

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions.

1. �D�,�,�,⊥D�� is a CPO.

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P ), t)

δ ρ �

Over Approximation ρ ∨ �

4. Experiment Results
For some Linux device drivers and SPEC2000 benchmarks.
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compute
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5. Conclusion
* Novel approach to invariants generation.
* Plentiful of invariants are the reason why this 
  approach is working with random answers.
* We are currently working on its extension supporting
  quantified invariants.

   Equivalence Query
    1. Check that the guess meets the three conditions to be 
      an invariant.
     2. If not, try to find a counter example.

3. Solutions
3.1. Predicate Abstraction
To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.

Example:

3.2. Query Resolution
Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .
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1. Problem : Find an invariant    for the Loop

Invariant must satisfy the following conditions:
       

Example:

             
             Invariant : 

{δ} while ρ do S end {�}

� = (i = 10 ∧ ret)

δ = (i = 0)

ρ

2. Idea : Using the CDNF Algorithm
Exact Learning Algorithm for Boolean formula    
Asks two types of queries:

    1. 

    2. 
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Membership Query                 asks
if the truth assignment     satisfies   . µ

MEM (µ)
λ

MEM (µ) = Yes if µ |= λ

MEM (µ) = No if µ �|= λ

Equivalence Query             asks 
if the Boolean formula     is equivalent to   ,  
If not, the teacher returns a truth assignment as 
a counterexample.

EQ(β)
β λ

EQ(β) = Yes
EQ(β) = No

if β ≡ λ
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The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have
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With the two parse stack transition functions fx and fy , we con-
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2Code −→←−
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VP = 2P→P is established as follows.
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is used to check whether gen-
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where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
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5. Conclusion
* Novel approach to invariants generation.
* Plentiful of invariants are the reason why this 
  approach is working with random answers.
* We are currently working on its extension supporting
  quantified invariants.

   Equivalence Query
    1. Check that the guess meets the three conditions to be 
      an invariant.
     2. If not, try to find a counter example.

3. Solutions
3.1. Predicate Abstraction
To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.

Example:
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Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .
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α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f ]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = [[e1]]

0
P̂ σ ∪ [[e2]]

0
P̂ σ

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.[[e1]]
0
P̂ σ ∪ [[e2]]

0
P̂ (σ[x �→ k])])

[[‘f ]]0P̂ σ = [[f ]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[, e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

Abstract semantic function [[·]]0
P̂

is used to check whether gen-
erated codes conform to the grammar. For the given program e, we
compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
main should satisfy. Then we define semantic function on the ab-
stract parsing domain.

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions.

1. �D�,�,�,⊥D�� is a CPO.

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P ), t)

δ ρ �

Over Approximation ρ ∨ �

4. Experiment Results
For some Linux device drivers and SPEC2000 benchmarks.

Program LOC AP MEM EQ Random Restart Time (sec)
] ide-ide-tape 16 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 9 6 216.1 111.8 47.2 9.9 0.602
parser 37 20 6694.5 819.4 990.3 12.5 32.120

usb-message 18 10 20.1 6.8 1.0 1.0 0.128
vpr 8 7 14.5 8.9 11.8 2.9 0.055

Under Approximation δ

{

Restart!
Cannot find a counter example.

No, 
with found a counter example.

No

No

Random answer does not break soundness, because we always 
check the three conditions when we resolve equivalence 
query.

Yes / No

No

Yes

Unknown

Random Answer

if β �≡ λ ∧ (µ |= β ⊕ λ)

GuessGuess

Seoul National University          Academia Sinica
1 21 1

1 2

?

Conclusion

• One key reason why less accurate context-
sensitivity makes the analysis very slow.

• A simple algorithm that mitigates the 
problem.

20

Normalk
RSSk+1

time ↓ precision ↑

RSSk



Thank you


