
AI-based Software Analysis
and Testing

9 July 2019 @Suresoft

Hakjoo Oh
Korea University

Software Analysis Research@KU

• Research areas: programming languages, software engineering,
software security

• program analysis and testing

• program synthesis and repair

• Publication: top-venues in PL, SE,  
Security, and AI:

• PLDI(’12,’14),OOPSLA(’15,’17a,’17b,’18a,’18b,’19),TOPLAS(’14,’16,’17,’1
8,’19), ICSE(’17,’18,’19), FSE(’18,’19), ASE’18, S&P’17, IJCAI(’17,’18), etc

http://prl.korea.ac.kr

http://prl.korea.ac.kr

 3

Research Direction
• Q) 어떻게 안전한 소프트웨어를 손쉽게 만들것인가?

• A) 소프트웨어 자동 분석, 패치, 합성 기술

코드

오류 목록

검증 성공

코드 분석기
패치

오류 수정기

명세

코드 합성기

 3

Research Direction
• Q) 어떻게 안전한 소프트웨어를 손쉽게 만들것인가?

• A) 소프트웨어 자동 분석, 패치, 합성 기술

코드

오류 목록

검증 성공

코드 분석기
패치

오류 수정기

명세

코드 합성기 AI-based Analysis and Testing

Challenge in Program Analysis

• Practical program analysis tools rely on a variety of
heuristics to optimize their performance

• E.g., context/flow-sensitivity, variable clustering, unsoundness,
path selection/pruning, state merging, etc

• Manuallly designing a heuristic does not pay-off

• Nontrivial and laborious, but suboptimal and unstable

 4

Astrée

our pointer analysis framework 11

• datalog-based pointer analysis framework for java

• declarative: what, not how

easier to express sophisticated analyses

correctness more clear

clear variation points

eases exploration of approximations

enables aggressive optimization

• sophisticated
subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-

sensitivity, call-site sensitive, object sensitive, thread sensitive, context-sensitive heap

abstraction, type filtering, precise exception analysis

• support for full semantic complexity of java
jvm initialization, reflection analysis, threads, reference queues, nativemethods, class

initialization, finalization, cast checking, assignment compatibility

• enables precision and performance

comparison

SAFE

Automatically Generating
Analysis Heuristics from Data
• Use data to make heuristic decisions in program

analysis

 5

Visio
n

AI, machine learning,
data mining, etc

context-sensitivity heuristics
flow-sensitivity heuristics
unsoundness heuristics
path-selection heuristics

…

• Automatic: little reliance on analysis designers

• Powerful: machine-tuning outperforms hand-tuning

• Stable: can be tuned for target programs

Example: Context-Sensitivity

 6

holds always

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 0); // Query
 y = h(input());
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

Context-Insensitive Analysis

 7

g

h

f

m

cheap but imprecise

c5,c6

c4

c3

c1,c2

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 0);
 y = h(input());
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

• Merge calling contexts into single abstract context

k-Context-Sensitive Analysis

 8

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

precise but expensive

• Analyze functions separately for each calling context

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 0);
 y = h(input());
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

(k=3)

Selective Context-Sensitivity

 9

h

h

m

c4

c5,c6
c3

c1

c1
fg

h

f

c2

c2 h

Apply 2-ctx-sens: {h}
Apply 1-ctx-sens: {f}
Apply 0-ctx-sens: {g, m}

cheap and precise

• Selectively differentiate contexts only when necessary

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 0);
 y = h(input());
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

Selective Context-Sensitivity

 9

h

h

m

c4

c5,c6
c3

c1

c1
fg

h

f

c2

c2 h

Apply 2-ctx-sens: {h}
Apply 1-ctx-sens: {f}
Apply 0-ctx-sens: {g, m}

cheap and precise

• Selectively differentiate contexts only when necessary

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 0);
 y = h(input());
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

Challenge: how to design a
good selection heuristic?

Hard Search Problem

 10

• Intractably large and sparse search space, if not infinite

• e.g., Sk choices where S = 2|Proc| for k-context-sensitivity

• Real programs are complex to reason about

• e.g., typical call-graph of real program:

A fundamental problem in program analysis
=> New data-driven approach

Learning Algorithm Overview

 11

Learning Algorithm

Training data
(programs w/o labels)

Parametric
program analyzer

Atomic features
(a1,a2,…,a25)

e.g., procedures have
invocation stmt,

procedures return
strings, etc

Data-Driven Context-Sensitivity for Points-to Analysis 1:27

From (12), (13), De�nition 3.3, and the assumption that fj�1 is a minimal solution of the
problem �k , we have

8P 2 P.H�00j�1
(P) = H�j�1 (P). (14)

From (14), (9), we conclude
8P 2 P.H�j�1 (P) = H�0j�1

(P).

B LEARNED BOOLEAN FORMULAS
We list the boolean formulas learned by our approach. �e numbers in the formulas represent the
atomic feature in Tables 1. �e formulas for each analysis and context depth are as follows. Table 8
presents them by and-or tables.

• Selective object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ ¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ 6 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬9 ^ 13 ^ 14 ^ 15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(1 ^ 2 ^ ¬3 ^ 4 ^ ¬5 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬10 ^ ¬13 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22
^¬23 ^ ¬24 ^ ¬25)

• Object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬1 ^ ¬2 ^ 5 ^ 8 ^ ¬9 ^ 11 ^ 12 ^ ¬14 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

• Type-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

• Call-site-sensitivity:
– Depth-2 formula (f2):

1 ^ ¬6 ^ ¬7 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬7 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Learned heuristic for applying context-sensitivity:

f2: procedures to apply 2-context-sensitivity

f1: procedures to apply 1-context-sensitivity

Data-Driven Context-Sensitivity for Points-to Analysis 1:27

From (12), (13), De�nition 3.3, and the assumption that fj�1 is a minimal solution of the
problem �k , we have

8P 2 P.H�00j�1
(P) = H�j�1 (P). (14)

From (14), (9), we conclude
8P 2 P.H�j�1 (P) = H�0j�1

(P).

B LEARNED BOOLEAN FORMULAS
We list the boolean formulas learned by our approach. �e numbers in the formulas represent the
atomic feature in Tables 1. �e formulas for each analysis and context depth are as follows. Table 8
presents them by and-or tables.

• Selective object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ ¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ 6 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬9 ^ 13 ^ 14 ^ 15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(1 ^ 2 ^ ¬3 ^ 4 ^ ¬5 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬10 ^ ¬13 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22
^¬23 ^ ¬24 ^ ¬25)

• Object-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬1 ^ ¬2 ^ 5 ^ 8 ^ ¬9 ^ 11 ^ 12 ^ ¬14 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)_
(¬3 ^ ¬4 ^ ¬7 ^ ¬8 ^ ¬9 ^ 10 ^ 11 ^ 12 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

• Type-sensitivity:
– Depth-2 formula (f2):
1 ^ ¬3 ^ ¬6 ^ 8 ^ ¬9 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
1 ^ 2 ^ ¬3 ^ ¬6 ^ ¬7 ^ ¬8 ^ ¬9 ^ ¬15 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

• Call-site-sensitivity:
– Depth-2 formula (f2):

1 ^ ¬6 ^ ¬7 ^ 11 ^ 12 ^ 13 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25

– Depth-1 formula (f1):
(1 ^ 2 ^ ¬7 ^ ¬16 ^ ¬17 ^ ¬18 ^ ¬19 ^ ¬20 ^ ¬21 ^ ¬22 ^ ¬23 ^ ¬24 ^ ¬25)

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

OOPS
LA

’17
a

TO
PL

AS’1
9

cf) Atomic Features

 12

100:14 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh

Table 1. Atomic features

Signature features

#1 “java” #3 “sun” #5 “void” #7 “int” #9 “String”
#2 “lang” #4 “()” #6 “security” #8 “util” #10 “init”

Statement features

#11 AssignStmt #16 BreakpointStmt #21 LookupStmt
#12 IdentityStmt #17 EnterMonitorStmt #22 NopStmt
#13 InvokeStmt #18 ExitMonitorStmt #23 RetStmt
#14 ReturnStmt #19 GotoStmt #24 ReturnVoidStmt
#15 ThrowStmt #20 IfStmt #25 TableSwitchStmt

• Effectiveness and Generalization: How well does our data-driven approach performs
compared to the existing approaches? Does our learning approach generalize well on unseen
data?

• Adequacy of Our Learning Algorithm: Is the disjunctive model essential for learning
cost-effective context-sensitivity? How much is it better than the simpler non-disjunctive
model?

• Learned Features: What are the interesting findings on learned boolean formulas?

We implemented our approach on top of the Doop framework used by Smaragdakis et al.
[2014]. We used the DaCapo benchmark suite [Blackburn et al. 2006] to evaluate our approach. All
experiments were done on a machine with Intel i5 CPU and 16 GB RAM running on Ubuntu 14.04
64bit operating system and JDK 1.6.0_24.

4.1 Effectiveness and Generalization

Setting. We applied our data-driven approach to three existing context-sensitive points-to anal-
yses: selective 2-object-sensitive (S2objH), 2-object-sensitive (2objH), and 2-type-sensitive (2typeH)
analyses, all with 1-context-sensitive heap. All of these analyses are readily available in Doop.
S2objH and 2objH are known to be the state-of-the-art points-to analyses for Java with good pre-
cision/cost trade-offs [Kastrinis and Smaragdakis 2013b; Milanova et al. 2005]. 2typeH is another
good alternative for precise yet scalable points-to analysis [Smaragdakis et al. 2011]. Following
our approach in Sections 2 and 3, we made data-driven versions of these analyses: S2objH+Data,
2objH+Data, and 2typeH+Data. In addition, we also made the introspective versions [Smarag-
dakis et al. 2014] of the three analyses: S2objH+IntroA, S2objH+IntroB, 2objH+IntroA, 2objH+IntroB,
2typeH+IntroA, and 2typeH+IntroB. The introspective versions are available in Doop, except for
S2objH+IntroA and S2objH+IntroB. We implemented these two analyses by reusing the code of
introspective analysis in Doop.

In summary, we compared the performance of the following context-sensitive analyses:

• Selective object-sensitivity:
– S2objH: selective 2-object-sensitivity with 1 context-sensitive heap hybrid [Kastrinis and
Smaragdakis 2013b]

– S2objH+Data: our data-driven version of S2objH.
– S2objH+IntroA: introspective version of S2objH with the Heuristic A [Smaragdakis et al.
2014]

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 100. Publication date: October 2017.

1:18 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh

Fig. 3. Precision and cost comparisons of among selective object-sensitive class. We purposely made an
exception in the case of S2objH+IntroB on jython benchmark, which is marked as timeout in Table 2, to
provide readers broader performance spectrum.

jython. �e results show that inclusion of speci�c features makes the analysis much more e�cient
without signi�cant trade-o� on precision.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

high precision

Effectiveness

 13

• Applied to context-sensitive pointer analysis for Java

• Trained with 5 small programs from the DaCapo benchmark
and tested with 5 remaining large programs

OOPS
LA

’17
a

hi
gh

 s
ca

la
bi

lit
y

1:18 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh

Fig. 3. Precision and cost comparisons of among selective object-sensitive class. We purposely made an
exception in the case of S2objH+IntroB on jython benchmark, which is marked as timeout in Table 2, to
provide readers broader performance spectrum.

jython. �e results show that inclusion of speci�c features makes the analysis much more e�cient
without signi�cant trade-o� on precision.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:18 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh

Fig. 3. Precision and cost comparisons of among selective object-sensitive class. We purposely made an
exception in the case of S2objH+IntroB on jython benchmark, which is marked as timeout in Table 2, to
provide readers broader performance spectrum.

jython. �e results show that inclusion of speci�c features makes the analysis much more e�cient
without signi�cant trade-o� on precision.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

manual approaches
(PLDI’14b)

high precision

Effectiveness

 13

• Applied to context-sensitive pointer analysis for Java

• Trained with 5 small programs from the DaCapo benchmark
and tested with 5 remaining large programs

OOPS
LA

’17
a

hi
gh

 s
ca

la
bi

lit
y

1:18 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh

Fig. 3. Precision and cost comparisons of among selective object-sensitive class. We purposely made an
exception in the case of S2objH+IntroB on jython benchmark, which is marked as timeout in Table 2, to
provide readers broader performance spectrum.

jython. �e results show that inclusion of speci�c features makes the analysis much more e�cient
without signi�cant trade-o� on precision.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Concolic Testing
(Dynamic Symbolic Execution)

• Concolic testing is an effective software testing
method based on symbolic execution

 14

• Key challenge: path explosion

• Our solution: mitigate the problem with good
search heuristics

Limitation of Random Testing

 15

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

Probability of the error? (0 ≤ x,y ≤ 100)

Limitation of Random Testing

 15

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

Probability of the error?

< 0.4%

 (0 ≤ x,y ≤ 100)

Limitation of Random Testing

 15

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

Probability of the error?

< 0.4%

- random testing requires 250 runs
- concolic testing finds it in 3 runs

 (0 ≤ x,y ≤ 100)

Concolic Testing

 16

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

x=22, y=7 x=α, y=β

Concrete
State

Symbolic
State

true

1st iteration

Concolic Testing

 17

x=22, y=7,  
z=14

x=α, y=β,z=2*β

true

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

1st iteration

Concolic Testing

 18

x=22, y=7,  
z=14

x=α, y=β,z=2*β
2*β ≠ α

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

1st iteration

Concolic Testing

 19

x=22, y=7,  
z=14

x=α, y=β,z=2*β
2*β ≠ α

Concrete
State

Symbolic
State

Solve: 2*β = α
Solution: α=2,β=1

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

1st iteration

Concolic Testing

 20

x=2, y=1 x=α, y=β

Concrete
State

Symbolic
State

true

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

2nd iteration

Concolic Testing

 21

x=2, y=1,  
z=2

x=α, y=β,z=2*β

true

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

2nd iteration

Concolic Testing

 22

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

x=2, y=1,  
z=2

x=α, y=β,z=2*β

2*β = α

2nd iteration

Concolic Testing

 23

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

x=2, y=1,  
z=2

x=α, y=β,z=2*β

2*β = α ∧  
α ≤ β+10

2nd iteration

Concolic Testing

 24

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

x=2, y=1,  
z=2

x=α, y=β,z=2*β

2*β = α ∧  
α ≤ β+10

Solve: 2*β = α ∧ α > β+10
Solution: α=30, β=15

2nd iteration

Concolic Testing

 25

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

x=30, y=15 x=α, y=β

Concrete
State

Symbolic
State

true

3rd iteration

Concolic Testing

 26

x=30, y=15,  
z=30

x=α, y=β,z=2*β

true

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

3rd iteration

Concolic Testing

 27

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

x=30, y=15,  
z=30

x=α, y=β,z=2*β

2*β = α

3rd iteration

Concolic Testing

 28

Concrete
State

Symbolic
Stateint double (int v) {

 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

x=30, y=15,  
z=30

x=α, y=β,z=2*β

2*β = α ∧
α > β+15

3rd iteration

error-triggering
input

Concolic Testing

 29

ɸ1

b1 : (x==y)

execution tree

b2 : (x > y+10)

b3 : (y > z)

Concolic Testing

 29

ɸ1

b1 : (x==y)

execution tree

b2 : (x > y+10)

b3 : (y > z)

choose a branch

Concolic Testing

 29

ɸ1

b1 : (x==y)

execution tree

solve (b1⋀¬b2)
b2 : (x > y+10)

b3 : (y > z)

choose a branch

Concolic Testing

 30

ɸ1

b1

b2

b3

b4

b5

ɸ2

execution tree

Concolic Testing

 30

ɸ1

b1

b2

b3

b4

b5

ɸ2

execution tree

choose a branch

Concolic Testing

 30

ɸ1

b1

b2

b3

b4

b5

ɸ2

execution tree

solve (¬b1)

choose a branch

Concolic Testing

 31

ɸ1

b1

b2

b3

b4

b5

b6

b7

b8

ɸ2 ɸ3

execution tree

Concolic Testing Algorithm

 32

ICSE’18, May 2018, Gothenburg, Sweden Anon.

2 PRELIMINARIES
In Section 2.1, we de�ne a generic concolic testing algorithm. Sec-
tion 2.2 discusses existing search heuristics and their limitations.

2.1 Concolic Testing
Concolic testing is a hybrid software testing technique that com-
bines symbolic [21] and concrete executions to systematically ex-
plore the program’s execution paths.

Concolic testing begins with executing the subject program P
with an initial input �0. During the concrete execution, concolic
testing maintains a symbolic memory state S and a path condition
�. The symbolic memory is a mapping from program variables
to symbolic values. It is used to evaluate the symbolic values of
expressions. For instance, when S is [x 7! � ,� 7! � + 1] (variables
x and � are mapped to symbolic expressions � and � + 1 where �
and � are symbols), the statement z := x +� transfers the symbolic
memory into [x 7! � ,� 7! � + 1, z 7! � + � + 1]. The path
condition represents the sequence of branches taken during the
current execution of the program. It is updated whenever an assume
statement assume(e) is encountered. For instance, when S = [x 7!
�] and e = x < 1, the path condition � gets updated by �^ (� < 1).

Let � = �1 ^ �2 ^ · · · ^ �n be the path condition that results
from the initial execution. To obtain the next input value, concolic
testing chooses a branch condition �i and generates the new path
condition �0 as follows: �0 =

V
j<i � j ^ ¬�i . That is, the new

condition �0 has the same pre�x as � up to the i-th branch with
�i negated, so that input values that satisfy �0 drive the program
execution to follow the opposite branch of �i . Such concrete input
values can be obtained from an SMT solver. This process is repeated
until a �xed testing budget runs out.

Algorithm 1 presents the concolic testing algorithm. The algo-
rithm takes a program P , an initial input vector �0, and a testing
budget N (i.e., the number of executions of the program). The algo-
rithm maintains the execution tree T of the program, which is the
list of previously explored path conditions. The execution tree T
and input vector � are initially empty and the initial input vector,
respectively (lines 1 and 2). At line 4, the program P is executed
with the input � , resulting in the current execution path �m ex-
plored. The path condition is appended to T (line 5). In lines 6–8,
the algorithm chooses a branch to negate. The function Choose
�rst chooses a path condition � from T , then selects a branch, i.e.,
�i , from �. Once a branch �i is chosen, the algorithm generates
the new path condition �0 =

V
j<i � j ^ ¬�i . If �0 is satis�able,

the next input vector is computed (line 9), where SAT(�) returns
true i� � is satis�able and model(�) �nds an input vector � which
is a model of �, i.e., � |= �. Otherwise, if �0 is unsatis�able, the
algorithm repeatedly tries to negate another branch until a satis�-
able path condition is found. This procedure repeats for the given
budget N and the �nal number of covered branches |Branches(T) |
is returned.

The performance of Algorithm 1 varies depending on the choice
of the function Choose, namely a search heuristic. Since the num-
ber of execution paths in a program is usually exponential in the
number of branches, exploring all possible execution paths is infea-
sible. To address this problem, concolic testing relies on the search
heuristic that steers concolic testing in a way to maximize code

Algorithm 1: Concolic Testing
Input :Program P , initial input vector �0, budget N
Output :The number of branches covered
1: T hi
2: � �0
3: form = 1 to N do
4: �m RunProgram(P ,�)
5: T T · �m
6: repeat
7: (�,�i) Choose(T) (� = �1 ^ · · · ^ �n)
8: until SAT(

V
j<i � j ^ ¬�i)

9: � model(
V
j<i � j ^ ¬�i)

10: end for
11: return |Branches(T) |

coverage in a given limited time budget [5]. The goal of this paper is
to automatically generate an e�ective heuristic for a given program.

2.2 Existing Search Heuristics
Before presenting our technique, we describe two notable search
heuristics. These heuristics are known to perform comparatively
better than other heuristics [2, 26].

Control-Flow Directed Search (CFDS) [2]. CFDS is based on
the natural intuition that uncovered branches near the current
execution path would be easier to be exercised in the next execution.
This heuristic �rst picks the last path condition �m , then selects a
branch whose opposite branch is the nearest from any of the unseen
branches. The distance between two branches is calculated by the
number of branches on the path from the source to the destination.
To calculate the distance, CFDS uses control �ow graph of the
program, which is statically constructed before the testing.

Context-Guided Search (CGS) [26]. CGS basically performs
the breath-�rst search (BFS) on the execution tree, while reducing
the search space by excluding branches whose “contexts” are al-
ready explored. Given an execution path, the context of a branch
in the path is de�ned as a sequence of preceding branches. The
search gathers candidate branches at depth d from the execution
tree, picks a branch from the candidates, and the context of the
branch is calculated. If the context has been already considered,
CGS skips that branch and continues to pick the next one. Oth-
erwise, the branch is negated and the context is recorded. When
all the candidate branches at depth d are considered, the search
proceeds to the depth d + 1 of the execution tree and repeats the
process explained above.

Limitations. Existing search heuristics have a key limitation;
they rely on a �xed heuristic and fail to consistently perform well
on a wide range of target programs. Our experience with these
heuristics is that they are unstable and their e�ectiveness signi�-
cantly varies depending on the target programs. For example, CGS
outperforms other existing heuristics for several benchmarks: e.g.,
expat-2.1.0 and grep-2.2 (Figure 1). However, we found that the
CGS heuristic is sometimes inferior even to the random heuristic

Concolic Testing Algorithm

 32

ICSE’18, May 2018, Gothenburg, Sweden Anon.

2 PRELIMINARIES
In Section 2.1, we de�ne a generic concolic testing algorithm. Sec-
tion 2.2 discusses existing search heuristics and their limitations.

2.1 Concolic Testing
Concolic testing is a hybrid software testing technique that com-
bines symbolic [21] and concrete executions to systematically ex-
plore the program’s execution paths.

Concolic testing begins with executing the subject program P
with an initial input �0. During the concrete execution, concolic
testing maintains a symbolic memory state S and a path condition
�. The symbolic memory is a mapping from program variables
to symbolic values. It is used to evaluate the symbolic values of
expressions. For instance, when S is [x 7! � ,� 7! � + 1] (variables
x and � are mapped to symbolic expressions � and � + 1 where �
and � are symbols), the statement z := x +� transfers the symbolic
memory into [x 7! � ,� 7! � + 1, z 7! � + � + 1]. The path
condition represents the sequence of branches taken during the
current execution of the program. It is updated whenever an assume
statement assume(e) is encountered. For instance, when S = [x 7!
�] and e = x < 1, the path condition � gets updated by �^ (� < 1).

Let � = �1 ^ �2 ^ · · · ^ �n be the path condition that results
from the initial execution. To obtain the next input value, concolic
testing chooses a branch condition �i and generates the new path
condition �0 as follows: �0 =

V
j<i � j ^ ¬�i . That is, the new

condition �0 has the same pre�x as � up to the i-th branch with
�i negated, so that input values that satisfy �0 drive the program
execution to follow the opposite branch of �i . Such concrete input
values can be obtained from an SMT solver. This process is repeated
until a �xed testing budget runs out.

Algorithm 1 presents the concolic testing algorithm. The algo-
rithm takes a program P , an initial input vector �0, and a testing
budget N (i.e., the number of executions of the program). The algo-
rithm maintains the execution tree T of the program, which is the
list of previously explored path conditions. The execution tree T
and input vector � are initially empty and the initial input vector,
respectively (lines 1 and 2). At line 4, the program P is executed
with the input � , resulting in the current execution path �m ex-
plored. The path condition is appended to T (line 5). In lines 6–8,
the algorithm chooses a branch to negate. The function Choose
�rst chooses a path condition � from T , then selects a branch, i.e.,
�i , from �. Once a branch �i is chosen, the algorithm generates
the new path condition �0 =

V
j<i � j ^ ¬�i . If �0 is satis�able,

the next input vector is computed (line 9), where SAT(�) returns
true i� � is satis�able and model(�) �nds an input vector � which
is a model of �, i.e., � |= �. Otherwise, if �0 is unsatis�able, the
algorithm repeatedly tries to negate another branch until a satis�-
able path condition is found. This procedure repeats for the given
budget N and the �nal number of covered branches |Branches(T) |
is returned.

The performance of Algorithm 1 varies depending on the choice
of the function Choose, namely a search heuristic. Since the num-
ber of execution paths in a program is usually exponential in the
number of branches, exploring all possible execution paths is infea-
sible. To address this problem, concolic testing relies on the search
heuristic that steers concolic testing in a way to maximize code

Algorithm 1: Concolic Testing
Input :Program P , initial input vector �0, budget N
Output :The number of branches covered
1: T hi
2: � �0
3: form = 1 to N do
4: �m RunProgram(P ,�)
5: T T · �m
6: repeat
7: (�,�i) Choose(T) (� = �1 ^ · · · ^ �n)
8: until SAT(

V
j<i � j ^ ¬�i)

9: � model(
V
j<i � j ^ ¬�i)

10: end for
11: return |Branches(T) |

coverage in a given limited time budget [5]. The goal of this paper is
to automatically generate an e�ective heuristic for a given program.

2.2 Existing Search Heuristics
Before presenting our technique, we describe two notable search
heuristics. These heuristics are known to perform comparatively
better than other heuristics [2, 26].

Control-Flow Directed Search (CFDS) [2]. CFDS is based on
the natural intuition that uncovered branches near the current
execution path would be easier to be exercised in the next execution.
This heuristic �rst picks the last path condition �m , then selects a
branch whose opposite branch is the nearest from any of the unseen
branches. The distance between two branches is calculated by the
number of branches on the path from the source to the destination.
To calculate the distance, CFDS uses control �ow graph of the
program, which is statically constructed before the testing.

Context-Guided Search (CGS) [26]. CGS basically performs
the breath-�rst search (BFS) on the execution tree, while reducing
the search space by excluding branches whose “contexts” are al-
ready explored. Given an execution path, the context of a branch
in the path is de�ned as a sequence of preceding branches. The
search gathers candidate branches at depth d from the execution
tree, picks a branch from the candidates, and the context of the
branch is calculated. If the context has been already considered,
CGS skips that branch and continues to pick the next one. Oth-
erwise, the branch is negated and the context is recorded. When
all the candidate branches at depth d are considered, the search
proceeds to the depth d + 1 of the execution tree and repeats the
process explained above.

Limitations. Existing search heuristics have a key limitation;
they rely on a �xed heuristic and fail to consistently perform well
on a wide range of target programs. Our experience with these
heuristics is that they are unstable and their e�ectiveness signi�-
cantly varies depending on the target programs. For example, CGS
outperforms other existing heuristics for several benchmarks: e.g.,
expat-2.1.0 and grep-2.2 (Figure 1). However, we found that the
CGS heuristic is sometimes inferior even to the random heuristic

Search
Heuristic

• Exissting search heuristics have been hand-tuned:

• e.g., CGS [FSE’14], CarFast [FSE’12], CFDS [ASE’08],
Generational [NDSS’08], DFS [PLDI’05], …

• Suboptimal and unstable

 33

Existing Search Heuristics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 1. Average branch coverage achieved by each search heuristic for concolic testing

Fig. 2. Average branch coverage achieved by each search heuristic for execution-generated testing

void foo (i n t x){
i f (x == 20)

a s s e r t (” e r r o r ”) ; }

The initial state for the program above is as follows:

(if (x==20), [x ! ↵], true) (1)

where the first element represents the next instruction to
evaluate, the symbolic state maps the argument x to sym-
bolic value ↵, and the path condition is initially true . At
line 4, using the procedure Choose, the algorithm selects
a state to explore from the set States . At line 6, the algo-
rithm executes the instruction instr of the selected state.
For simplicity, we consider conditional and halt instructions
and omit other cases, e.g., assignment, assertion. If instr

0

is a conditional statement (line 7), the algorithm checks
whether the new path-conditions for the true (line 8) and
false branches (line 10) are satisfiable. If both conditions
are satisfiable, the algorithm forks the state into two states:
(s1,S 0,� ^ e) and (s2,S 0,� ^ ¬e). For instance, the initial
state in (1) is split into the states below:

state1 = (assert(“error”), [x ! ↵],↵ == 20)
state2 = (halt, [x ! ↵],↵ 6= 20)

When instr
0 is the halt statement (e.g., exit), the algorithm

generates a test-case which is a model of � of the state, and

then add it to the set T . The algorithm repeats the process
described above until the time budget N expires or the set
States is empty (line 14). Additionally, at lines 16-18, the
algorithm generates test-cases using the path-conditions of
states States , where the instruction of each state has not
yet finished. Finally, using the test-cases T , the algorithm
returns the number of covered branches (line 18).

2.2.2 Search Heuristic

Like concolic testing, the effectiveness of execution-
generated testing depends on the choice of search heuristic,
i.e., the Choose procedure in Algorithm 2. In this case,
Choose is a function that takes a set of states and selects a
state to explore next. Below, we describe one representative
search heuristic, called RoundRobin, which is the default
search heuristic of KLEE [22] and has been widely used in
prior work (e.g., [22], [29], [30]).

The RoundRobin heuristic combines two search heuris-
tics in a round robin fashion: Random-Path Search
(Random-Path) and Coverage-Optimized Search (CovNew).
The Random-Path heuristic selects a state by randomly
traversing the execution tree on explored instructions of the
subject program from the root. The leaves of the execution
tree correspond to the candidate states to choose from, and
the internal nodes denote the locations where the states

Data-Driven Symbolic Execution

• Goal: Automatically generating heuristics for symbolic
execution heuristics

• Application: search heuristic, path pruning heuristic, state
merging heuristic, symbolization heuristic, etc

 34

Automatically Generating Search Heuristics for Concolic Testing
Sooyoung Cha
Korea University

sooyoungcha@korea.ac.kr

Seongjoon Hong
Korea University

seongjoon@korea.ac.kr

Junhee Lee
Korea University

junhee_lee@korea.ac.kr

Hakjoo Oh∗
Korea University

hakjoo_oh@korea.ac.kr

ABSTRACT
We present a technique to automatically generate search heuristics
for concolic testing. A key challenge in concolic testing is how to
e�ectively explore the program’s execution paths to achieve high
code coverage in a limited time budget. Concolic testing employs a
search heuristic to address this challenge, which favors exploring
particular types of paths that are most likely to maximize the �nal
coverage. However, manually designing a good search heuristic
is nontrivial and typically ends up with suboptimal and unstable
outcomes. The goal of this paper is to overcome this shortcoming of
concolic testing by automatically generating search heuristics. We
de�ne a class of search heuristics, namely a parameterized heuristic,
and present an algorithm that e�ciently �nds an optimal heuristic
for each subject program. Experimental results with open-source C
programs show that our technique successfully generates search
heuristics that signi�cantly outperform existing manually-crafted
heuristics in terms of branch coverage and bug-�nding.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

ACM Reference Format:
Sooyoung Cha, Seongjoon Hong, Junhee Lee, and Hakjoo Oh. 2018. Auto-
matically Generating Search Heuristics for Concolic Testing. In ICSE ’18:
ICSE ’18: 40th International Conference on Software Engineering , May 27-
June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3180155.3180166

1 INTRODUCTION
Concolic testing [15, 28] has emerged as an e�ective software-
testing method with diverse applications [1, 7, 21, 30, 33]. The idea
of concolic testing is to symbolically execute a program alongside
the concrete execution, where the main job of the symbolic execu-
tion is to collect path conditions. Initially, the program is executed
with a random input. After the program �nishes, a branch of the
current path is selected and negated to �nd an input that drives
the next program execution to follow a previously unexplored path.
This way concolic testing systematically explores the execution
paths of the program, greatly improving random testing.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180166

A key component of concolic testing is the so-called search
heuristic. Because of the path-explosion problem, exploring all exe-
cution paths of a nontrivial program is simply impossible. Instead,
concolic testing relies on a search heuristic to maximize code cov-
erage in a limited time budget. A search heuristic has a criterion
and steers concolic testing by choosing the best branch to negate
according to the criterion. For example, the CFDS (Control-Flow
Directed Search) heuristic [3] picks the branch that is closest to the
uncovered regions of the program and the CGS (Context-Guided
Search) heuristic [29] selects a branch only if it is in a new context.
It is well-known that the e�ectiveness of concolic testing depends
heavily on the choice of the search heuristic [3, 21, 27, 29].

However, manually designing such a heuristic is challenging. It is
not only nontrivial but also likely to deliver sub-optimal and unsta-
ble results. As we demonstrate in this paper, no manually-designed
existing heuristics consistently achieve good code coverage in prac-
tice. For example, the CGS heuristic is arguably a state-of-the-art
and outperforms existing approaches for a number of programs [29].
However, we found that CGS is sometimes brittle and inferior even
to a random heuristic. Furthermore, existing search heuristics came
from a huge amount of engineering e�ort and domain expertise.
The di�culty of manually coming up with a good search heuristic
is a major remaining challenge in concolic testing.

To address this challenge, this paper presents a new approach
that automatically generates search heuristics for concolic testing.
To this end, we use two key ideas. First, we de�ne a parameterized
search heuristic, which creates a large class of search heuristics.
The parameterized heuristic reduces the problem of designing a
good search heuristic into a problem of �nding a good parameter
value. Second, we present a search algorithm specialized to concolic
testing. The search space that the parameterized heuristic poses is
intractably large. Our algorithm e�ectively guides the search by
iteratively re�ning the search space based on the feedback from
previous runs of concolic testing.

Experimental results show that automatically-generated heuris-
tics by our approach outperform existing manually-crafted heuris-
tics for a range of C programs. We have implemented our technique
in CREST [3] and evaluated it on 10 C programs (0.5–150KLoC).
For every benchmark program, our technique has successfully gen-
erated a search heuristic that achieves considerably higher branch
coverage than the existing state-of-the-art techniques. We also
demonstrate that the increased coverage by our technique leads to
more e�ective �nding of real bugs.

This paper makes the following contributions:
• We present a new approach for automatically generating
search heuristics for concolic testing. Our work represents a
signi�cant departure from prior work; while existing work
(e.g. [3, 21, 27, 29]) focuses on manually developing a particu-
lar search heuristic, our goal is to automate the very process
of generating such a heuristic.

Template-Guided Concolic Testing via Online Learning
Sooyoung Cha
Korea University
Republic of Korea

sooyoungcha@korea.ac.kr

Seonho Lee
Korea University
Republic of Korea

seonho_lee@korea.ac.kr

Hakjoo Oh∗
Korea University
Republic of Korea

hakjoo_oh@korea.ac.kr

ABSTRACT
We present template-guided concolic testing, a new technique for
e�ectively reducing the search space in concolic testing. Address-
ing the path-explosion problem has been a signi�cant challenge
in concolic testing. Diverse search heuristics have been proposed
to mitigate this problem but using search heuristics alone is not
su�cient to substantially improve code coverage for real-world pro-
grams. The goal of this paper is to complement existing techniques
and achieve higher coverage by exploiting templates in concolic
testing. In our approach, a template is a partially symbolized input
vector whose job is to reduce the search space. However, choos-
ing a right set of templates is nontrivial and signi�cantly a�ects
the �nal performance of our approach. We present an algorithm
that automatically learns useful templates online, based on data
collected from previous runs of concolic testing. The experimen-
tal results with open-source programs show that our technique
achieves greater branch coverage and �nds bugs more e�ectively
than conventional concolic testing.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
Concolic Testing, Online Learning
ACM Reference Format:
Sooyoung Cha, Seonho Lee, and Hakjoo Oh. 2018. Template-Guided Con-
colic Testing via Online Learning. In Proceedings of the 2018 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE ’18), Sep-
tember 3–7, 2018, Montpellier, France. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3238147.3238227

1 INTRODUCTION
Concolic testing [11, 22] is a popular software testing method that
e�ectively and systematically achieves high code coverage and
�nds bugs. The key idea of concolic testing is to simultaneously
execute a program concretely and symbolically, where new test
cases are systematically generated by symbolic execution enhanced
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238227

with concrete execution. Recently, concolic testing has been used
in diverse application domains such as operating systems [18],
�rmware [8, 16, 31], and binary code [1, 25] among many others.

A major open challenge in concolic testing is how to e�ectively
explore the search space. As the number of execution paths in a
realistic program grows exponential, concolic testing must be able
to favor and explore the paths that are most likely to bene�t the
�nal testing results. However, guiding concolic testing e�ectively
is nontrivial and many di�erent approaches exist with the goal of
mitigating the path-explosion problem: e.g., path pruning [2, 3, 17,
28], search heuristics [4, 5, 19, 23, 29], and so on.

In this paper, we present template-guided concolic testing, a new
technique for adaptively reducing the search space of concolic test-
ing. The key idea is to guide concolic testing with templates, which
restrict the input space by selectively generating symbolic variables.
Unlike conventional concolic testing that tracks all input values
symbolically, our technique treats a set of selected input values
as symbolic and �xes unselected inputs with particular concrete
inputs, thereby reducing the original search space. A challenge,
however, is choosing input values to track symbolically and replac-
ing the remaining inputs with appropriate values. To address this
challenge, we develop an algorithm that performs concolic testing
while automatically generating, using, and re�ning templates. The
algorithm is based on two key ideas. First, by using the sequential
pattern mining [9], we generate the candidate templates from a set
of e�ective test-cases, where the test-cases contribute to improving
code coverage and are collected while conventional concolic test-
ing is performed. Second, we use an algorithm that learns e�ective
templates from the candidates during concolic testing. Our algo-
rithm iteratively ranks the candidates based on the e�ectiveness
of templates that were evaluated in the previous runs. Our tech-
nique is orthogonal to the existing techniques and can be fruitfully
combined with them, in particular with the state-of-the-art search
heuristics.

Experimental results show that our approach outperforms con-
ventional concolic testing in term of branch coverage and bug-
�nding. We have implemented our approach in CREST [7] and
compared our technique with conventional concolic testing for
open-source C programs of medium size (up to 165K LOC). For all
benchmarks, our technique achieves signi�cantly higher branch
coverage compared to conventional concolic testing. For example,
for vim-5.7, we have performed both techniques for 70 hours, where
our technique exclusively covered 883 branches that conventional
concolic testing failed to reach. Our technique also succeeded in
�nding real bugs that can be triggered in the latest versions of three
open-source C programs: sed-4.4, grep-3.1 and gawk-4.21.

Concolic Testing with Adaptively Changing Search Heuristics
Sooyoung Cha
Korea University
Republic of Korea

sooyoungcha@korea.ac.kr

Hakjoo Oh∗
Korea University
Republic of Korea

hakjoo_oh@korea.ac.kr

ABSTRACT
We present Chameleon, a new approach for adaptively chang-
ing search heuristics during concolic testing. Search heuristics
play a central role in concolic testing as they mitigate the path-
explosion problem by focusing on particular program paths that
are likely to increase code coverage as quickly as possible. A variety
of techniques for search heuristics have been proposed over the
past decade. However, existing approaches are limited in that they
use the same search heuristics throughout the entire testing pro-
cess, which is inherently insufficient to exercise various execution
paths. Chameleon overcomes this limitation by adapting search
heuristics on the fly via an algorithm that learns new search heuris-
tics based on the knowledge accumulated during concolic testing.
Experimental results show that the transition from the traditional
non-adaptive approaches to ours greatly improves the practicality
of concolic testing in terms of both code coverage and bug-finding.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Concolic Testing, Dynamic Symbolic Execution, Online Learning
ACM Reference Format:
Sooyoung Cha and Hakjoo Oh. 2019. Concolic Testing with Adaptively
Changing Search Heuristics. In Proceedings of the 27th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3338906.3338964

1 INTRODUCTION
Concolic testing [11, 27] is a promising software testing technique
popular in both academia and industry [1, 5, 6, 19, 20, 30, 32, 33].
The technique aims to increase code coverage as quickly as possible,
ultimately enabling effective bug-finding in a limited time budget.
To do so, unlike random testing or fuzzing, concolic testing sys-
tematically generates test-cases by repeating the following process:
(1) it concolically executes the subject program to collect the path
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338964

condition, i.e., the sequence of symbolic branch conditions exer-
cised by the current program execution, (2) it produces a new path
condition by selecting and negating a branch of the current path
condition, and (3) it solves the resulting path condition to generate
a new test-case that guides the next program execution towards the
opposite of the selected branch. Because of this systematic nature,
concolic testing is increasingly used in diverse domains, including
operating systems [19], embedded systems [10, 14], and even neural
networks [30], among others.

Concolic testing includes search heuristics as a critical ingredient.
To be practical for real-world applications, concolic testing must
be able to adequately address the path-explosion problem; because
real-world programs exhibit infinitely many different paths, it is
impossible to exercise all of them by testing. To address this chal-
lenge, concolic testing uses a search heuristic, a branch selection
strategy that takes a path condition and selects a branch based on
its own criterion (it is used in the second step of the concolic testing
process described in the preceding paragraph). Search heuristics
allow concolic testing to preferentially explore particular classes
of execution paths that they think are most effective to maximize
code coverage within a given time limit. It has been well-known
that how to choose and use search heuristics is critically important,
and diverse approaches have been proposed to improve concolic
testing in practice over the past decade [3–5, 19, 22, 26, 28].

In this paper, we propose a new approach, called Chameleon,
for effectively employing search heuristics during concolic test-
ing. The key novelty of Chameleon is adaptively changing search
heuristics on the fly, so that the branch-selection criterion changes
as necessary throughout concolic testing in a way that maximizes
the final performance. By contrast, all of the existing approaches
for employing search heuristics [3–5, 19, 22, 26, 28] are not adaptive
as they use the same search heuristics over the whole process of
concolic testing. In this paper, we demonstrate that this is a key lim-
iting factor of the existing approaches, and we can make concolic
testing much more practical for real-world applications by being
adaptive. We illustrate the limitation of existing search heuristics
in more detail in Section 2.

To enable adaptation, we present an algorithm that automatically
learns and switches search heuristics during concolic testing. The
algorithm maintains a set of search heuristics and continuously
changes them during the testing process. To do so, we first define
the space of possible search heuristics using the idea of parametric
search heuristic recently proposed in prior work [5]. A technical
challenge is how to adaptively switch search heuristics in the pre-
defined space.We address this challenge with a new concolic testing
algorithm that (1) accumulates the knowledge about the previously
evaluated search heuristics, (2) learns the probabilistic distributions
of the effective and ineffective search heuristics from the accumu-
lated knowledge, and (3) samples a new set of search heuristics

ICSE’18 ASE’18 FSE’19

Effectiveness
• Improved code coverage

 35

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 3. Average branch coverage achieved by each search heuristic on 6 large benchmarks for concolic testing

Figure 3 compares the average branch coverage achieved
by different search heuristics on 6 large benchmarks in
Table 3. The results show that the search heuristics gener-
ated by our approach (ours) achieve the best coverage on
all programs. In particular, ours significantly increased the
branch coverage on two largest benchmarks: vim and gawk.
For vim, ours covered 8,297 branches in 4,000 executions
while the CFDS heuristic, which took the second place for
vim, covered 7,990 branches. Note that CFDS is already
highly tuned and therefore outperforms the other heuristics
for vim (for instance, CGS covered 6,166 branches only). For

gawk, ours covered 2,684 branches while the CGS heuristic,
the second best one, managed to cover 2,321 branches. For
expat, sed, and tree, our approach improved the existing
heuristics considerably. For example, ours covered 1,327
branches for expat, increasing the branch coverage of CGS
by 50. For grep, ours also performed the best followed by
CGS and CFDS. On small benchmarks, we obtained similar
results; ours (together with CGS) consistently achieved the
highest average coverage (Table 5). In the rest of the paper,
we focus only on the 6 large benchmarks, where existing
manually-crafted heuristics fail to perform well.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 3. Average branch coverage achieved by each search heuristic on 6 large benchmarks for concolic testing

Figure 3 compares the average branch coverage achieved
by different search heuristics on 6 large benchmarks in
Table 3. The results show that the search heuristics gener-
ated by our approach (ours) achieve the best coverage on
all programs. In particular, ours significantly increased the
branch coverage on two largest benchmarks: vim and gawk.
For vim, ours covered 8,297 branches in 4,000 executions
while the CFDS heuristic, which took the second place for
vim, covered 7,990 branches. Note that CFDS is already
highly tuned and therefore outperforms the other heuristics
for vim (for instance, CGS covered 6,166 branches only). For

gawk, ours covered 2,684 branches while the CGS heuristic,
the second best one, managed to cover 2,321 branches. For
expat, sed, and tree, our approach improved the existing
heuristics considerably. For example, ours covered 1,327
branches for expat, increasing the branch coverage of CGS
by 50. For grep, ours also performed the best followed by
CGS and CFDS. On small benchmarks, we obtained similar
results; ours (together with CGS) consistently achieved the
highest average coverage (Table 5). In the rest of the paper,
we focus only on the 6 large benchmarks, where existing
manually-crafted heuristics fail to perform well.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Fig. 5. Average branch coverage achieved by top 6 search heuristics on 6 large benchmarks for execution-generated testing

5.2.3 Branch Coverage in Execution-Generated Testing

ParaDySE succeeds in automatically generating the most
effective search heuristic on each program in Table 4, com-
pared to all 11 existing search heuristics. We calculated the
branch coverage with respect to running time as follows:

1) While running KLEE on a program, we recorded the
creation time of each test-case generated by Algo-
rithm 2. This step produces the data D = {(Ti, ti)}Mi=1,
where Ti is a test-case, ti is its creation time (tj < tk if
j < k), and M is the number of generated test-cases.

2) When the time budget expires, we re-ran the original
binary of the program with each test-case Ti in order.
We computed the accumulated branch coverage ci of
Ti including the branches covered by all preceding test-
cases Tj(j < i). We plotted the data {(ti, ci)}Mi=1 to
depict the coverage graph. To measure the branch cov-
erage, we used gcov, a well-known tool for analyzing
code coverage.

Figure 5 shows the average branch coverage achieved
by top 6 heuristics on 6 large benchmarks. In particular,
our machine-tuned heuristic (ours) significantly increased

CREST

• Increased bug-finding capability

 36

Effectiveness
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Sooyoung Cha and Hakjoo Oh

Table 4: Comparison of bug-finding ability of ours (Chameleon) and existing approaches on 4 large benchmarks.

Benchmarks Versions Error Types Bug-Triggering Inputs OURS Param RR CGS CFDS Gen Random

vim

8.1* Non-termination K1!1000100100111110(✓ ✗ ✗ ✗ ✗ ✗ ✗

5.7
Abnormal-termination H:w>>ˋ"ˋ\ [press ‘Enter’] ✓ ✓ ✗ ✗ ✗ ✓ ✓

Segmentation fault =ipI\-9∼qOqw ✓ ✓ ✓ ✓ ✗ ✗ ✓

Non-termination v(ipaprq&T$T ✓ ✓ ✓ ✗ ✗ ✗ ✓

gawk
4.2.1* Memory-exhaustion '+E_Q$h+w$8==++$6E8#' ✓ ✗ ✗ ✗ ✗ ✗ ✗

3.0.3 Abnormal-termination 'f[][][][][y]^/#[' ✓ ✗ ✓ ✓ ✓ ✓ ✓

Non-termination '$g?E2^=-E-2"?^+$=":/?/#["' ✓ ✓ ✗ ✗ ✓ ✗ ✗

grep
3.1* Abnormal-termination '\(\)\1*?*?\|\W*\1W*' ✓ ✗ ✗ ✗ ✗ ✗ ✗

Segmentation fault '\(\)\1^*@*\?\1*\+*\?' ✓ ✗ ✗ ✓ ✗ ✗ ✗

2.2 Segmentation fault "_^^*9\|^\(\)\'\1*$" ✓ ✓ ✓ ✓ ✓ ✓ ✓

Non-termination '\({**+**\)*\++*\1*\+' ✓ ✓ ✓ ✓ ✓ ✓ ✗

sed 1.17 Segmentation fault '{:};:C;b' ✓ ✗ ✓ ✗ ✓ ✓ ✓

10 cores in parallel. Figure 3 shows the Venn-diagrams that depict
the relationships between the branches covered by each technique,
where we only consider top-3 techniques for each benchmark.

4.3 Bug-Finding
Now we compare Chameleon and conventional concolic testing
in terms of bug-finding. In short, Chameleon is highly effective
in finding real-bugs; for the latest versions of vim, gawk, and grep,
Chameleon succeeded to generate bug-triggering inputs while all
the other techniques failed to do so.

Setup. While conducting the experiments in Section 4.2, we
monitored program execution and collected bug-triggering inputs
generated by Chameleon and other six techniques. Specifically, we
considered two types of bugs: program crashes and performance
bugs. First, to collect crashing inputs, we monitored the system
signals (e.g., SIGSEGV) after executing the program with each input
that Chameleon and other techniques generated. Second, we col-
lected the performance bugs by checking if the program execution
with each input would exhaust a time or memory bound. After
collecting the bug-triggering inputs for each technique, we filtered
the genuine bugs that are reproducible on the original binary of
each benchmark program without annotations for concolic testing
and excluded irreproducible ones. Finally, we further classify the
collected bugs into 4 categories: segmentation fault (SIGSEGV),
abnormal-termination (SIGABRT), non-termination, and memory-
exhaustion.

Results. Table 4 shows the results on two versions of each bench-
mark program: the original version used in Section 4.2 (on which
we found bugs) and the latest version at the time of writing. For
each benchmark, the table shows the program version (Versions),
the error type (Error Types), one of the bug-triggering inputs gen-
erated by Chameleon (Bug-Triggering Inputs), and the success (✓)
and failure (✗) results for each technique. The success mark (✓) for
a technique indicates that the technique succeeded to generate at

least one input that causes the corresponding error type, whereas
the failure mark (✗) means the technique totally failed to trigger
the error type.

The results show that Chameleon outperforms the existing
techniques in terms of bug-finding. In particular, Chameleon was
unique in finding bugs that can be triggered in the latest versions of
vim, gawk, and grep. Furthermore, Chameleonwas able to find var-
ious types of errors, including non-termination (vim-8.1), memory-
exhaustion (gawk-4.21), and abnormal termination (grep-3.1). In
total, Chameleon could trigger 12 different types of errors across
all programs and their versions. On the other hand, the other tech-
niquesmanaged to trigger 6 types of errors at best. The performance
of existing techniques varied depending on the benchmark while
Chameleon consistently performed well on 4 large benchmarks.

We found that Chameleon is effective in finding hard-to-find
bugs. For example, the input '\(\)\1*?*?\|\W*\1W*' generated
by Chameleon causes a segmentation fault in grep-3.1. Surpris-
ingly, this bug survived over the last 20 years from grep-2.2 (1998)
to grep-3.1 (2018). Chameleon also found deadly bugs. For ex-
ample, on gawk-4.21, the input '+E_Q$h+w$8==++$6E8#' found
by Chameleon causes a serious performance bug that may con-
sume all the memory of the machine. All the bug-triggering inputs
in Table 4 are easily reproducible. For instance, on grep-3.1, the
command ./grep '\(\)\1*?*?\|\W*\1W*' file (where file is
an arbitrary file) immediately aborts the program execution.

Figure 4 also adds to evidence that Chameleon is good at finding
difficult bugs. The figures show how many bug-triggering inputs
found by each technique in the initial programs survive as programs
evolve, where the hypothesis is that difficult bugs would survive
longer than shallow bugs. In the case of grep, Chameleon consis-
tently achieves the highest number of reproducible bug-triggering
inputs over the subsequent program versions. Meanwhile, all bugs
found by other techniques, except for CGS, did not survive after
grep-2.4, and only a single bug-triggering input found by CGS
remains in grep-2.6. For gawk-3.0.3 (the initial version), note

 37

Research Direction
• Q) 어떻게 안전한 소프트웨어를 손쉽게 만들것인가?

• A) 소프트웨어 자동 분석, 패치, 합성 기술

코드

오류 목록

검증 성공

코드 분석기
패치

오류 수정기

명세

코드 합성기

자동 디버깅 기술의 필요성

• 소프트웨어 개발에서 디버깅은 가장 어렵고 부담스러운 단계

• 상용 소프트웨어 오류 수정에 평균 200일 소요1)

• 다른 개발 단계에 비해 자동화된 도구 지원이 가장 적음

• 소프트웨어 오류 탐지 분야는 지난 30여년간 눈부신 발전을 이룸

• 디버깅은 현재 개발자에 전적으로 의존하는 상황

 38
1) Kim and Whitehead. How long did it take to fix bugs? MSR 2006

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

실제 사례
(Linux Kernel)

 39

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

실제 사례
(Linux Kernel)

 39

double-free

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

실제 사례
(Linux Kernel)

 39

double-free

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

실제 사례
(Linux Kernel)

 40

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

수동 디버깅의 문제 1:
오류가 사라졌는지 확신하기 어려움

실제 사례
(Linux Kernel)

 40

in = malloc(1);
out = malloc(1);
... // use in, out
// removed
free(in);

in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

실제 사례
(Linux Kernel)

 41

in = malloc(1);
out = malloc(1);
... // use in, out
// removed
free(in);

in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

memory leak

수동 디버깅의 문제 2:
고치는 과정에서 새로운 오류가 발생

실제 사례
(Linux Kernel)

 41

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);
out = NULL;
in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}
// removed
out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

실제 사례
(Linux Kernel)

 42

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);
out = NULL;
in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}
// removed
out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

실제 사례
(Linux Kernel)

 42

수동 디버깅의 문제 3: 수정된 코드가 복잡

in = malloc(1);
out = malloc(1);
... // use in, out
// removed
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 // removed

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

패치 자동 생성

소프트웨어 오류 자동 수정기

 43

in = malloc(1);
out = malloc(1);
... // use in, out
// removed
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 // removed

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

패치 자동 생성

소프트웨어 오류 자동 수정기

 43

수동 디버깅의 문제 해결:
1. 대상 오류가 반드시 제거됨
2. 새로운 오류가 발생하지 않음
3. 간결한 패치 (최소한의 변경)

대상: 메모리 해제 오류
• 메모리 관리를 수동으로 해야하는 언어(e.g., C/C++) 발생

• Memory-leak (CWE-401): 메모리를 너무 늦게 해제

• Use-after-free (CWE-416): 메모리를 너무 빨리 해제

• Double-free (CWE-415): 메모리를 여러번 해제

 44

Automated Fixing of Memory Management Errors for C
Anonymous Author(s)

Table 1: Memory management errors are one of the most
common errors in C programs. For each open-source repos-
itory, it shows the number of total commits (#commits) and
the numbers of commits that mention memory leak (ML),
double-free (DF), use-after-free (UAF), and bu�er/integer-
over�ow (OF) errors. ‘Total’ indicates the total number of
memory manangement errors.

Repository #commits ML DF UAF Total *-over�ow
linux 721,119 3,740 821 1,986 6,363 5,092
openssl 21,009 220 36 12 264 61
numpy 17,008 58 2 2 59 53
php 105,613 1,129 148 197 1,449 649
git 49,475 350 19 95 442 258

ABSTRACT
CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability;

KEYWORDS
ACM proceedings, LATEX, text tagging

ACM Reference Format:
Anonymous Author(s). 2017. Automated Fixing of Memory Management
Errors for C. In Proceedings of 11th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Memory-management errors (i.e., memory-leak, double-free, and
use-after-free) are prevalent in C programs. Because the C language
entrusts memory management to developers, all unused objects
must be manually identi�ed and deallocated. This manual approach
to memory management likely leads to three types of errors: a
programmer may not deallocate an object (memory-leak), may
deallocate an object multiple times (double-free), or may deallocate
an object too early even before it is used (use-after-free). These
errors are commonly-found in modern C programs. For example,
Table 1 shows that memory-leak, double-free, and use-after-free
are more common than bu�er/integer-over�ow errors in a number
of popular open-source software projects.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE 2017, 4–8 September, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Manually �xing memory-management errors is error-prone and
time-consuming even for experienced developers.

• 시스템 소프트웨어 결함의 주요 원인

MemFix

• Automatically repairs deallocation errors

• memory-leak, double-free and use-after-free

• Key features

• sound: generated patch is guaranteed to be correct

• safe: no new errors are introduced

• Approach: Static Analysis + Exact Cover Problem

 45

FSE’18

Key Insight

 46

Find a set of free-statements

 1 out = malloc(1);
 2 in = malloc(1);
 3 … // use in, out
 4 free(out);
 5 free(in);
 6
 7 in = malloc(2);
 8 if(in == NULL) {
 9
10 goto err;
11 }
12
13 out = malloc(2);
14 if(out == NULL) {
15 free(in);
16
17 goto err;
18 }
19 … // use in, out
20 err:
21 free(in);
22 free(out);

 1 out = malloc(1);
 2 in = malloc(1);
 3 … // use in, out
 4 // -
 5 free(in);
 6
 7 in = malloc(2);
 8 if(in == NULL) {
 9
10 goto err;
11 }
12 free(out); // +
13 out = malloc(2);
14 if(out == NULL) {
15 // -
16
17 goto err;
18 }
19 … // use in, out
20 err:
21 free(in);
22 free(out);

⌘<latexit sha1_base64="VieLNOfaImwXivqQfaNGKFDWqYQ=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtKu3WTj7qZQQv+DFw+KePX/ePPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKllqhg2mBRStQOqUfAYG4Ybge1EIY0Cga1gdDurt8aoNJfxg5kk6Ed0EPOQM2qs1eziU8rHvXLFrbpzkVXwcqhArnqv/NXtS5ZGGBsmqNYdz02Mn1FlOBM4LXVTjQllIzrAjsWYRqj9bL7tlJxZp09CqeyLDZm7vycyGmk9iQLbGVEz1Mu1mflfrZOa8NrPeJykBmO2+ChMBTGSzE4nfa6QGTGxQJnidlfChlRRZmxAJRuCt3zyKjQvqp7l+8tK7SaPowgncArn4MEV1OAO6tAABo/wDK/w5kjnxXl3PhatBSefOYY/cj5/AMI9jzw=</latexit><latexit sha1_base64="VieLNOfaImwXivqQfaNGKFDWqYQ=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtKu3WTj7qZQQv+DFw+KePX/ePPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKllqhg2mBRStQOqUfAYG4Ybge1EIY0Cga1gdDurt8aoNJfxg5kk6Ed0EPOQM2qs1eziU8rHvXLFrbpzkVXwcqhArnqv/NXtS5ZGGBsmqNYdz02Mn1FlOBM4LXVTjQllIzrAjsWYRqj9bL7tlJxZp09CqeyLDZm7vycyGmk9iQLbGVEz1Mu1mflfrZOa8NrPeJykBmO2+ChMBTGSzE4nfa6QGTGxQJnidlfChlRRZmxAJRuCt3zyKjQvqp7l+8tK7SaPowgncArn4MEV1OAO6tAABo/wDK/w5kjnxXl3PhatBSefOYY/cj5/AMI9jzw=</latexit><latexit sha1_base64="VieLNOfaImwXivqQfaNGKFDWqYQ=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtKu3WTj7qZQQv+DFw+KePX/ePPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKllqhg2mBRStQOqUfAYG4Ybge1EIY0Cga1gdDurt8aoNJfxg5kk6Ed0EPOQM2qs1eziU8rHvXLFrbpzkVXwcqhArnqv/NXtS5ZGGBsmqNYdz02Mn1FlOBM4LXVTjQllIzrAjsWYRqj9bL7tlJxZp09CqeyLDZm7vycyGmk9iQLbGVEz1Mu1mflfrZOa8NrPeJykBmO2+ChMBTGSzE4nfa6QGTGxQJnidlfChlRRZmxAJRuCt3zyKjQvqp7l+8tK7SaPowgncArn4MEV1OAO6tAABo/wDK/w5kjnxXl3PhatBSefOYY/cj5/AMI9jzw=</latexit><latexit sha1_base64="ck8pdC+ekZH4nUmSP+ZG7r8lEyk=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odOn4MoA7ncAFXEMIN3MEDdKALAhJ4hXdv4r15H6uuat66tDP4I+/zBzjGijg=</latexit><latexit sha1_base64="dMII4dHnspB2EDKeUQH4VGoOZrs=">AAAB4nicbZDNSgMxFIXv1L9aq1a3boJFcFVm3OhScOOygtMW2qFk0jttbCYZk0yhDH0HNy4U8aHc+TamPwttPRD4OCch9544E9xY3//2SlvbO7t75f3KQfXw6Lh2Um0ZlWuGIVNC6U5MDQouMbTcCuxkGmkaC2zH47t53p6gNlzJRzvNMErpUPKEM2qd1erhc84n/Vrdb/gLkU0IVlCHlZr92ldvoFieorRMUGO6gZ/ZqKDaciZwVunlBjPKxnSIXYeSpmiiYjHtjFw4Z0ASpd2Rlizc3y8KmhozTWN3M6V2ZNazuflf1s1tchMVXGa5RcmWHyW5IFaR+epkwDUyK6YOKNPczUrYiGrKrCuo4koI1lfehNZVI3D84EMZzuAcLiGAa7iFe2hCCAye4AXe4N1T3qv3sayr5K16O4U/8j5/AJW9jeQ=</latexit><latexit sha1_base64="dMII4dHnspB2EDKeUQH4VGoOZrs=">AAAB4nicbZDNSgMxFIXv1L9aq1a3boJFcFVm3OhScOOygtMW2qFk0jttbCYZk0yhDH0HNy4U8aHc+TamPwttPRD4OCch9544E9xY3//2SlvbO7t75f3KQfXw6Lh2Um0ZlWuGIVNC6U5MDQouMbTcCuxkGmkaC2zH47t53p6gNlzJRzvNMErpUPKEM2qd1erhc84n/Vrdb/gLkU0IVlCHlZr92ldvoFieorRMUGO6gZ/ZqKDaciZwVunlBjPKxnSIXYeSpmiiYjHtjFw4Z0ASpd2Rlizc3y8KmhozTWN3M6V2ZNazuflf1s1tchMVXGa5RcmWHyW5IFaR+epkwDUyK6YOKNPczUrYiGrKrCuo4koI1lfehNZVI3D84EMZzuAcLiGAa7iFe2hCCAye4AXe4N1T3qv3sayr5K16O4U/8j5/AJW9jeQ=</latexit><latexit sha1_base64="bMaxh7dBbXwk9BWfrXPwPMuvvH0=">AAAB7XicbZBNSwMxEIZn/az1q+rRS7AInsquFz0WvXisYD+gLSWbzrax2WRNsoWy9D948aCIV/+PN/+NabsHbX0h8PDODJl5w0RwY33/21tb39jc2i7sFHf39g8OS0fHDaNSzbDOlFC6FVKDgkusW24FthKNNA4FNsPR7azeHKM2XMkHO0mwG9OB5BFn1Dqr0cGnlI97pbJf8eciqxDkUIZctV7pq9NXLI1RWiaoMe3AT2w3o9pyJnBa7KQGE8pGdIBth5LGaLrZfNspOXdOn0RKuyctmbu/JzIaGzOJQ9cZUzs0y7WZ+V+tndrouptxmaQWJVt8FKWCWEVmp5M+18ismDigTHO3K2FDqimzLqCiCyFYPnkVGpeVwPG9X67e5HEU4BTO4AICuIIq3EEN6sDgEZ7hFd485b14797HonXNy2dO4I+8zx/A/Y84</latexit><latexit sha1_base64="VieLNOfaImwXivqQfaNGKFDWqYQ=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtKu3WTj7qZQQv+DFw+KePX/ePPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKllqhg2mBRStQOqUfAYG4Ybge1EIY0Cga1gdDurt8aoNJfxg5kk6Ed0EPOQM2qs1eziU8rHvXLFrbpzkVXwcqhArnqv/NXtS5ZGGBsmqNYdz02Mn1FlOBM4LXVTjQllIzrAjsWYRqj9bL7tlJxZp09CqeyLDZm7vycyGmk9iQLbGVEz1Mu1mflfrZOa8NrPeJykBmO2+ChMBTGSzE4nfa6QGTGxQJnidlfChlRRZmxAJRuCt3zyKjQvqp7l+8tK7SaPowgncArn4MEV1OAO6tAABo/wDK/w5kjnxXl3PhatBSefOYY/cj5/AMI9jzw=</latexit><latexit sha1_base64="VieLNOfaImwXivqQfaNGKFDWqYQ=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtKu3WTj7qZQQv+DFw+KePX/ePPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKllqhg2mBRStQOqUfAYG4Ybge1EIY0Cga1gdDurt8aoNJfxg5kk6Ed0EPOQM2qs1eziU8rHvXLFrbpzkVXwcqhArnqv/NXtS5ZGGBsmqNYdz02Mn1FlOBM4LXVTjQllIzrAjsWYRqj9bL7tlJxZp09CqeyLDZm7vycyGmk9iQLbGVEz1Mu1mflfrZOa8NrPeJykBmO2+ChMBTGSzE4nfa6QGTGxQJnidlfChlRRZmxAJRuCt3zyKjQvqp7l+8tK7SaPowgncArn4MEV1OAO6tAABo/wDK/w5kjnxXl3PhatBSefOYY/cj5/AMI9jzw=</latexit><latexit sha1_base64="VieLNOfaImwXivqQfaNGKFDWqYQ=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtKu3WTj7qZQQv+DFw+KePX/ePPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKllqhg2mBRStQOqUfAYG4Ybge1EIY0Cga1gdDurt8aoNJfxg5kk6Ed0EPOQM2qs1eziU8rHvXLFrbpzkVXwcqhArnqv/NXtS5ZGGBsmqNYdz02Mn1FlOBM4LXVTjQllIzrAjsWYRqj9bL7tlJxZp09CqeyLDZm7vycyGmk9iQLbGVEz1Mu1mflfrZOa8NrPeJykBmO2+ChMBTGSzE4nfa6QGTGxQJnidlfChlRRZmxAJRuCt3zyKjQvqp7l+8tK7SaPowgncArn4MEV1OAO6tAABo/wDK/w5kjnxXl3PhatBSefOYY/cj5/AMI9jzw=</latexit><latexit sha1_base64="VieLNOfaImwXivqQfaNGKFDWqYQ=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtKu3WTj7qZQQv+DFw+KePX/ePPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKllqhg2mBRStQOqUfAYG4Ybge1EIY0Cga1gdDurt8aoNJfxg5kk6Ed0EPOQM2qs1eziU8rHvXLFrbpzkVXwcqhArnqv/NXtS5ZGGBsmqNYdz02Mn1FlOBM4LXVTjQllIzrAjsWYRqj9bL7tlJxZp09CqeyLDZm7vycyGmk9iQLbGVEz1Mu1mflfrZOa8NrPeJykBmO2+ChMBTGSzE4nfa6QGTGxQJnidlfChlRRZmxAJRuCt3zyKjQvqp7l+8tK7SaPowgncArn4MEV1OAO6tAABo/wDK/w5kjnxXl3PhatBSefOYY/cj5/AMI9jzw=</latexit><latexit sha1_base64="VieLNOfaImwXivqQfaNGKFDWqYQ=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtKu3WTj7qZQQv+DFw+KePX/ePPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKllqhg2mBRStQOqUfAYG4Ybge1EIY0Cga1gdDurt8aoNJfxg5kk6Ed0EPOQM2qs1eziU8rHvXLFrbpzkVXwcqhArnqv/NXtS5ZGGBsmqNYdz02Mn1FlOBM4LXVTjQllIzrAjsWYRqj9bL7tlJxZp09CqeyLDZm7vycyGmk9iQLbGVEz1Mu1mflfrZOa8NrPeJykBmO2+ChMBTGSzE4nfa6QGTGxQJnidlfChlRRZmxAJRuCt3zyKjQvqp7l+8tK7SaPowgncArn4MEV1OAO6tAABo/wDK/w5kjnxXl3PhatBSefOYY/cj5/AMI9jzw=</latexit><latexit sha1_base64="VieLNOfaImwXivqQfaNGKFDWqYQ=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtKu3WTj7qZQQv+DFw+KePX/ePPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKllqhg2mBRStQOqUfAYG4Ybge1EIY0Cga1gdDurt8aoNJfxg5kk6Ed0EPOQM2qs1eziU8rHvXLFrbpzkVXwcqhArnqv/NXtS5ZGGBsmqNYdz02Mn1FlOBM4LXVTjQllIzrAjsWYRqj9bL7tlJxZp09CqeyLDZm7vycyGmk9iQLbGVEz1Mu1mflfrZOa8NrPeJykBmO2+ChMBTGSzE4nfa6QGTGxQJnidlfChlRRZmxAJRuCt3zyKjQvqp7l+8tK7SaPowgncArn4MEV1OAO6tAABo/wDK/w5kjnxXl3PhatBSefOYY/cj5/AMI9jzw=</latexit>

Solve an Exact Cover Problem

Performance

 47

FootPatch SAVER

Projects
TP
FP

Generated Correct Unsafe Generated Correct Unsafe

rappel (2.1 KLoC)

1 1 1 0 1 1 0

0 0 - 0 0 - 0

Swoole (44.5 KLoC)

15 9 7 2 12 12 0

5 2 - 2 0 - 0

lxc (63.0 KLoC)

3 0 0 0 3 3 0

5 1 - 1 0 - 0

Total
19 10 8 2 16 16 0
10 3 - 3 0 - 0

state-of-the-art (ICSE’18) Ours

Application to Intelligent Tutoring System

• 오류 수정 기술을 함수형 프로그래밍 교육에 적용

• 현재 코딩 교육 자동 도구들의 한계: 개인화된 피드백 제공 못함

�48

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Anon.

6 | Sum of aexp list

7
8 let rec diff : aexp * string -> aexp

9 = fun (e, x) ->

10 match e with

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1  E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek) | [E1; . . . ;Ek]
| if E1 E2 E3 | c (E1, . . . ,Ek) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1 (x1) = E1 and . . . and fk (xk) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk] | (p1, . . . ,p2) | c (p1, . . . ,pk) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12
13 let rec deployEnv : env -> int -> aexp list

14 = fun env flag ->

15 match env with

16 | hd::tl ->

17 (

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

제공된 솔루션

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Anon.

6 | Sum of aexp list

7
8 let rec diff : aexp * string -> aexp

9 = fun (e, x) ->

10 match e with

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1  E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek) | [E1; . . . ;Ek]
| if E1 E2 E3 | c (E1, . . . ,Ek) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1 (x1) = E1 and . . . and fk (xk) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk] | (p1, . . . ,p2) | c (p1, . . . ,pk) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12
13 let rec deployEnv : env -> int -> aexp list

14 = fun env flag ->

15 match env with

16 | hd::tl ->

17 (

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Automatic Error Correction for Functional Programming Assignments 1:29

18 match hd with

19 |(x, c, p) ->

20 if (flag = 0 && c = 0) then deployEnv tl flag

21 else if (x = �const� && flag = 1 && c = 1) then deployEnv tl flag

22 else if (p = 0) then (CONST c)::(deployEnv tl flag)

23 else if (c = 1 && p = 1) then (VAR x)::(deployEnv tl flag)

24 else if (p = 1) then TIMES[CONST c; VAR x]::(deployEnv tl flag)

25 else if (c = 1) then POWER(x, p)::(deployEnv tl flag)

26 else TIMES [CONST c; POWER(x, p)]::(deployEnv tl flag)

27)

28 | [] -> []

29 in

30
31 let rec updateEnv : (string * int * int) -> env -> int -> env

32 = fun elem env flag ->

33 match env with

34 | (hd::tl) ->

35 (

36 match hd with

37 | (x, c, p) ->

38 (

39 match elem with

40 |(x2, c2, p2) ->

41 if (flag = 0) then

42 if (x = x2 && p = p2) then (x, (c + c2), p)::tl

43 else hd::(updateEnv elem tl flag)

44 else

45 if (x = x2) then (x, (c*c2), (p + p2))::tl

46 else hd::(updateEnv elem tl flag)

47)

48)

49 | [] -> elem::[]

50 in

51
52 let rec doDiff : aexp * string -> aexp

53 = fun (aexp, x) ->

54 match aexp with

55 | CONST _ -> CONST 0

56 | VAR v ->

57 if (x = v) then CONST 1

58 else CONST 0

59 | POWER (v, p) ->

60 if (p = 0) then CONST 0

61 else if (x = v) then TIMES ((CONST p)::POWER (v, p-1)::[])

62 else CONST 0

63 | TIMES lst ->

64 (

65 match lst with

66 | (hd::[]) -> doDiff (hd, x)

67 | (hd::tl) ->

68 let diff_hd = doDiff(hd, x) in

69 let diff_tl = doDiff((TIMES tl), x) in

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Anon.

70 (

71 match (hd, diff_hd, tl, diff_tl) with

72 | (CONST p, CONST s, [CONST r], CONST q) -> CONST (p*q + r*s)

73 | (CONST p, _, _, CONST q) ->

74 if (diff_hd = CONST 0 || tl = [CONST 0]) then CONST (p*q)

75 else SUM [CONST(p*q); TIMES(diff_hd::tl)]

76 | (_, CONST s, [CONST r], _) ->

77 if (hd = CONST 0 || diff_tl = CONST 0) then CONST (r*s)

78 else SUM [TIMES [hd; diff_tl]; CONST(r*s)]

79 | _ ->

80 if (hd = CONST 0 || diff_tl = CONST 0) then TIMES(diff_hd::tl)

81 else if (tl = [CONST 0] || diff_hd = CONST 0) then TIMES [hd; diff_tl]

82 else SUM [TIMES [hd; diff_tl]; TIMES (diff_hd::tl)]

83)

84 | [] -> CONST 0

85)

86 | SUM lst -> SUM(List.map (fun aexp -> doDiff(aexp, x)) lst)

87 in

88
89 let rec simplify : aexp -> env -> int -> aexp list

90 = fun aexp env flag ->

91 match aexp with

92 | SUM lst ->

93 (

94 match lst with

95 | (CONST c)::tl -> simplify (SUM tl) (updateEnv (�const�, c, 0) env 0) 0

96 | (VAR x)::tl -> simplify (SUM tl) (updateEnv (x, 1, 1) env 0) 0

97 | (POWER (x, p))::tl -> simplify (SUM tl) (updateEnv (x, 1, p) env 0) 0

98 | (SUM lst)::tl -> simplify (SUM (List.append lst tl)) env 0

99 | (TIMES lst)::tl ->

100 (

101 let l = simplify (TIMES lst) [] 1 in

102 match l with

103 | h::t ->

104 if (t = []) then List.append l (simplify (SUM tl) env 0)

105 else List.append (TIMES l::[]) (simplify (SUM tl) env 0)

106 | [] -> []

107)

108 | [] -> deployEnv env 0

109)

110 | TIMES lst ->

111 (

112 match lst with

113 | (CONST c)::tl -> simplify (TIMES tl) (updateEnv (�const�, c, 0) env 1) 1

114 | (VAR x)::tl -> simplify (TIMES tl) (updateEnv (x, 1, 1) env 1) 1

115 | (POWER (x, p))::tl -> simplify (TIMES tl) (updateEnv (x, 1, p) env 1) 1

116 | (SUM lst)::tl ->

117 (

118 let l = simplify (SUM lst) [] 0 in

119 match l with

120 | h::t ->

121 if (t = []) then List.append l (simplify (TIMES tl) env 1)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Automatic Error Correction for Functional Programming Assignments 1:31

122 else List.append (SUM l::[]) (simplify (TIMES tl) env 1)

123 | [] -> [] (* Feedback : Replace [] by ((Sum lst) :: tl) *)

124)

125 | (TIMES lst)::tl -> simplify (TIMES (List.append lst tl)) env 1

126 | [] -> deployEnv env 1

127)

128 in

129
130 let result = doDiff (aexp, x) in

131 match result with

132 | SUM _ -> SUM (simplify result [] 0)

133 | TIMES _ -> TIMES (simplify result [] 1)

134 | _ -> result

REFERENCES
Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive Program Synthesis. In Proceedings of the 25th

International Conference on Computer Aided Veri�cation (CAV’13). Springer-Verlag, Berlin, Heidelberg, 934–950. DOI:
http://dx.doi.org/10.1007/978-3-642-39799-8_67

Thomas Ball, Mayur Naik, and Sriram K. Rajamani. 2003. From Symptom to Cause: Localizing Errors in Counterexample
Traces. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’03).
ACM, New York, NY, USA, 97–105. DOI:http://dx.doi.org/10.1145/604131.604140

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning
to Write Programs. In ICLR.

Sahil Bhatia and Rishabh Singh. 2016. Automated Correction for Syntax Errors in Programming Assignments using Recurrent
Neural Networks. CoRR abs/1603.06129 (2016). arXiv:1603.06129 http://arxiv.org/abs/1603.06129

Sheng Chen and Martin Erwig. 2014. Counter-factual Typing for Debugging Type Errors. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). ACM, New York, NY, USA, 583–594.
DOI:http://dx.doi.org/10.1145/2535838.2535863

Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program Repair with Quantiative Objectives. (July 2016).
https://www.microsoft.com/en-us/research/publication/qlose-program-repair-with-quantiative-objectives/

Yu Feng, Ruben Martins, Jacob Van Ge�en, Isil Dillig, and Swarat Chaudhuri. 2017a. Component-based Synthesis of
Table Consolidation and Transformation Tasks from Examples. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2017). ACM, New York, NY, USA, 422–436. DOI:http:
//dx.doi.org/10.1145/3062341.3062351

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017b. Component-based Synthesis for Complex
APIs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM,
New York, NY, USA, 599–612. DOI:http://dx.doi.org/10.1145/3009837.3009851

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-output
Examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’15). ACM, New York, NY, USA, 229–239. DOI:http://dx.doi.org/10.1145/2737924.2737977

Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. 2009. A Genetic Programming Approach
to Automated Software Repair. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation
(GECCO ’09). ACM, New York, NY, USA, 947–954. DOI:http://dx.doi.org/10.1145/1569901.1570031

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-directed Synthesis: A Type-
theoretic Interpretation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’16). ACM, New York, NY, USA, 802–815. DOI:http://dx.doi.org/10.1145/2837614.2837629

Andreas Griesmayer, Stefan Staber, and Roderick Bloem. 2007. Automated Fault Localization for C Programs. Electron.
Notes Theor. Comput. Sci. 174, 4 (May 2007), 95–111. DOI:http://dx.doi.org/10.1016/j.entcs.2006.12.032

Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. 2006. Error Explanation with Distance Metrics. Int. J. Softw.
Tools Technol. Transf. 8, 3 (June 2006), 229–247. DOI:http://dx.doi.org/10.1007/s10009-005-0202-0

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-output Examples. In Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM, New York,
NY, USA, 317–330. DOI:http://dx.doi.org/10.1145/1926385.1926423

Sumit Gulwani, Ivan Radicek, and Florian Zuleger. 2018. Automated Clustering and Program Repair for Introductory
Programming Assignments (PLDI ’18). To appear.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

학생 제출 답안

Application to Intelligent Tutoring System

• 오류 수정 기술을 함수형 프로그래밍 교육에 적용

• 현재 코딩 교육 자동 도구들의 한계: 개인화된 피드백 제공 못함

�48

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Anon.

6 | Sum of aexp list

7
8 let rec diff : aexp * string -> aexp

9 = fun (e, x) ->

10 match e with

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1  E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek) | [E1; . . . ;Ek]
| if E1 E2 E3 | c (E1, . . . ,Ek) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1 (x1) = E1 and . . . and fk (xk) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk] | (p1, . . . ,p2) | c (p1, . . . ,pk) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12
13 let rec deployEnv : env -> int -> aexp list

14 = fun env flag ->

15 match env with

16 | hd::tl ->

17 (

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

제공된 솔루션

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Anon.

6 | Sum of aexp list

7
8 let rec diff : aexp * string -> aexp

9 = fun (e, x) ->

10 match e with

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1  E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek) | [E1; . . . ;Ek]
| if E1 E2 E3 | c (E1, . . . ,Ek) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1 (x1) = E1 and . . . and fk (xk) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk] | (p1, . . . ,p2) | c (p1, . . . ,pk) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12
13 let rec deployEnv : env -> int -> aexp list

14 = fun env flag ->

15 match env with

16 | hd::tl ->

17 (

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Automatic Error Correction for Functional Programming Assignments 1:29

18 match hd with

19 |(x, c, p) ->

20 if (flag = 0 && c = 0) then deployEnv tl flag

21 else if (x = �const� && flag = 1 && c = 1) then deployEnv tl flag

22 else if (p = 0) then (CONST c)::(deployEnv tl flag)

23 else if (c = 1 && p = 1) then (VAR x)::(deployEnv tl flag)

24 else if (p = 1) then TIMES[CONST c; VAR x]::(deployEnv tl flag)

25 else if (c = 1) then POWER(x, p)::(deployEnv tl flag)

26 else TIMES [CONST c; POWER(x, p)]::(deployEnv tl flag)

27)

28 | [] -> []

29 in

30
31 let rec updateEnv : (string * int * int) -> env -> int -> env

32 = fun elem env flag ->

33 match env with

34 | (hd::tl) ->

35 (

36 match hd with

37 | (x, c, p) ->

38 (

39 match elem with

40 |(x2, c2, p2) ->

41 if (flag = 0) then

42 if (x = x2 && p = p2) then (x, (c + c2), p)::tl

43 else hd::(updateEnv elem tl flag)

44 else

45 if (x = x2) then (x, (c*c2), (p + p2))::tl

46 else hd::(updateEnv elem tl flag)

47)

48)

49 | [] -> elem::[]

50 in

51
52 let rec doDiff : aexp * string -> aexp

53 = fun (aexp, x) ->

54 match aexp with

55 | CONST _ -> CONST 0

56 | VAR v ->

57 if (x = v) then CONST 1

58 else CONST 0

59 | POWER (v, p) ->

60 if (p = 0) then CONST 0

61 else if (x = v) then TIMES ((CONST p)::POWER (v, p-1)::[])

62 else CONST 0

63 | TIMES lst ->

64 (

65 match lst with

66 | (hd::[]) -> doDiff (hd, x)

67 | (hd::tl) ->

68 let diff_hd = doDiff(hd, x) in

69 let diff_tl = doDiff((TIMES tl), x) in

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Anon.

70 (

71 match (hd, diff_hd, tl, diff_tl) with

72 | (CONST p, CONST s, [CONST r], CONST q) -> CONST (p*q + r*s)

73 | (CONST p, _, _, CONST q) ->

74 if (diff_hd = CONST 0 || tl = [CONST 0]) then CONST (p*q)

75 else SUM [CONST(p*q); TIMES(diff_hd::tl)]

76 | (_, CONST s, [CONST r], _) ->

77 if (hd = CONST 0 || diff_tl = CONST 0) then CONST (r*s)

78 else SUM [TIMES [hd; diff_tl]; CONST(r*s)]

79 | _ ->

80 if (hd = CONST 0 || diff_tl = CONST 0) then TIMES(diff_hd::tl)

81 else if (tl = [CONST 0] || diff_hd = CONST 0) then TIMES [hd; diff_tl]

82 else SUM [TIMES [hd; diff_tl]; TIMES (diff_hd::tl)]

83)

84 | [] -> CONST 0

85)

86 | SUM lst -> SUM(List.map (fun aexp -> doDiff(aexp, x)) lst)

87 in

88
89 let rec simplify : aexp -> env -> int -> aexp list

90 = fun aexp env flag ->

91 match aexp with

92 | SUM lst ->

93 (

94 match lst with

95 | (CONST c)::tl -> simplify (SUM tl) (updateEnv (�const�, c, 0) env 0) 0

96 | (VAR x)::tl -> simplify (SUM tl) (updateEnv (x, 1, 1) env 0) 0

97 | (POWER (x, p))::tl -> simplify (SUM tl) (updateEnv (x, 1, p) env 0) 0

98 | (SUM lst)::tl -> simplify (SUM (List.append lst tl)) env 0

99 | (TIMES lst)::tl ->

100 (

101 let l = simplify (TIMES lst) [] 1 in

102 match l with

103 | h::t ->

104 if (t = []) then List.append l (simplify (SUM tl) env 0)

105 else List.append (TIMES l::[]) (simplify (SUM tl) env 0)

106 | [] -> []

107)

108 | [] -> deployEnv env 0

109)

110 | TIMES lst ->

111 (

112 match lst with

113 | (CONST c)::tl -> simplify (TIMES tl) (updateEnv (�const�, c, 0) env 1) 1

114 | (VAR x)::tl -> simplify (TIMES tl) (updateEnv (x, 1, 1) env 1) 1

115 | (POWER (x, p))::tl -> simplify (TIMES tl) (updateEnv (x, 1, p) env 1) 1

116 | (SUM lst)::tl ->

117 (

118 let l = simplify (SUM lst) [] 0 in

119 match l with

120 | h::t ->

121 if (t = []) then List.append l (simplify (TIMES tl) env 1)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Automatic Error Correction for Functional Programming Assignments 1:31

122 else List.append (SUM l::[]) (simplify (TIMES tl) env 1)

123 | [] -> [] (* Feedback : Replace [] by ((Sum lst) :: tl) *)

124)

125 | (TIMES lst)::tl -> simplify (TIMES (List.append lst tl)) env 1

126 | [] -> deployEnv env 1

127)

128 in

129
130 let result = doDiff (aexp, x) in

131 match result with

132 | SUM _ -> SUM (simplify result [] 0)

133 | TIMES _ -> TIMES (simplify result [] 1)

134 | _ -> result

REFERENCES
Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive Program Synthesis. In Proceedings of the 25th

International Conference on Computer Aided Veri�cation (CAV’13). Springer-Verlag, Berlin, Heidelberg, 934–950. DOI:
http://dx.doi.org/10.1007/978-3-642-39799-8_67

Thomas Ball, Mayur Naik, and Sriram K. Rajamani. 2003. From Symptom to Cause: Localizing Errors in Counterexample
Traces. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’03).
ACM, New York, NY, USA, 97–105. DOI:http://dx.doi.org/10.1145/604131.604140

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning
to Write Programs. In ICLR.

Sahil Bhatia and Rishabh Singh. 2016. Automated Correction for Syntax Errors in Programming Assignments using Recurrent
Neural Networks. CoRR abs/1603.06129 (2016). arXiv:1603.06129 http://arxiv.org/abs/1603.06129

Sheng Chen and Martin Erwig. 2014. Counter-factual Typing for Debugging Type Errors. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). ACM, New York, NY, USA, 583–594.
DOI:http://dx.doi.org/10.1145/2535838.2535863

Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program Repair with Quantiative Objectives. (July 2016).
https://www.microsoft.com/en-us/research/publication/qlose-program-repair-with-quantiative-objectives/

Yu Feng, Ruben Martins, Jacob Van Ge�en, Isil Dillig, and Swarat Chaudhuri. 2017a. Component-based Synthesis of
Table Consolidation and Transformation Tasks from Examples. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2017). ACM, New York, NY, USA, 422–436. DOI:http:
//dx.doi.org/10.1145/3062341.3062351

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017b. Component-based Synthesis for Complex
APIs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM,
New York, NY, USA, 599–612. DOI:http://dx.doi.org/10.1145/3009837.3009851

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-output
Examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’15). ACM, New York, NY, USA, 229–239. DOI:http://dx.doi.org/10.1145/2737924.2737977

Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. 2009. A Genetic Programming Approach
to Automated Software Repair. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation
(GECCO ’09). ACM, New York, NY, USA, 947–954. DOI:http://dx.doi.org/10.1145/1569901.1570031

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-directed Synthesis: A Type-
theoretic Interpretation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’16). ACM, New York, NY, USA, 802–815. DOI:http://dx.doi.org/10.1145/2837614.2837629

Andreas Griesmayer, Stefan Staber, and Roderick Bloem. 2007. Automated Fault Localization for C Programs. Electron.
Notes Theor. Comput. Sci. 174, 4 (May 2007), 95–111. DOI:http://dx.doi.org/10.1016/j.entcs.2006.12.032

Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. 2006. Error Explanation with Distance Metrics. Int. J. Softw.
Tools Technol. Transf. 8, 3 (June 2006), 229–247. DOI:http://dx.doi.org/10.1007/s10009-005-0202-0

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-output Examples. In Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM, New York,
NY, USA, 317–330. DOI:http://dx.doi.org/10.1145/1926385.1926423

Sumit Gulwani, Ivan Radicek, and Florian Zuleger. 2018. Automated Clustering and Program Repair for Introductory
Programming Assignments (PLDI ’18). To appear.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

학생 제출 답안

FixML-generated feedback: ((Sum lst)::tl)

FixML

 49

FixML

• Given solution and test cases, our system automatically fixes
the student submissions.

!14

ML
Correct Program

ML
Incorrect Program

ML
Repaired Program

MLMLMLML

Statistical Fault
Localization

Program Synthesis
Testcases

Component
Reduction

Type-directed
Enumeration

Symbolic
Execution

OOPSLA’18

Examples

let rec sigma f a b =
 if f a != f b then
 let induction = f b in
 induction + sigma f a (b-1)
 else f b

sigma (fun x -> x) 1 10 = 55
sigma (fun x -> x*x) 1 7 = 140
sigma (fun x -> x mod 3) 1 10 = 10

Examples

let rec sigma f a b =
 if f a != f b then
 let induction = f b in
 induction + sigma f a (b-1)
 else f b

sigma (fun x -> x) 1 10 = 55
sigma (fun x -> x*x) 1 7 = 140
sigma (fun x -> x mod 3) 1 10 = 10

a != b

Examples

let rec sigma f a b =
 if f a != f b then
 let induction = f b in
 induction + sigma f a (b-1)
 else f b

sigma (fun x -> x) 1 10 = 55
sigma (fun x -> x*x) 1 7 = 140
sigma (fun x -> x mod 3) 1 10 = 10

a != b

type btree =
 | Empty
 | Node of int * btree * btree

let rec mem n tree =
 match tree with
 | Empty -> false
 | Node (a, b, c) ->
 if a = n then true
 else if a < n then mem n b
 else mem n c

mem 1 (Node(2,Empty,Empty)) = false
mem 2 (Node(3,Node(2,Empty,Empty),Empty)) = true

Examples

let rec sigma f a b =
 if f a != f b then
 let induction = f b in
 induction + sigma f a (b-1)
 else f b

sigma (fun x -> x) 1 10 = 55
sigma (fun x -> x*x) 1 7 = 140
sigma (fun x -> x mod 3) 1 10 = 10

a != b

type btree =
 | Empty
 | Node of int * btree * btree

let rec mem n tree =
 match tree with
 | Empty -> false
 | Node (a, b, c) ->
 if a = n then true
 else if a < n then mem n b
 else mem n c

mem 1 (Node(2,Empty,Empty)) = false
mem 2 (Node(3,Node(2,Empty,Empty),Empty)) = true

mem n b || mem n c

Examples
type exp =
 | Num of int
 | Plus of exp * exp
 | Minus of exp * exp

type formula =
 | True
 | False
 | Not of formula
 | AndAlso of formula * formula
 | OrElse of formula * formula
 | Imply of formula * formula
 | Equal of exp * exp

let rec exp_to_int : exp -> int
= fun e ->
 match e with
 | Num n -> n
 | Plus (n1, n2) -> exp_to_int n1 + exp_to_int n2
 | Minus (n1, n2) -> exp_to_int n1 - exp_to_int n2

let rec eval : formula -> bool
= fun f ->
 match f with
 | True -> true
 | False -> false
 | Not f1 -> not (eval f1)
 | AndAlso (f1, f2) -> eval f1 && eval f2
 | OrElse (f1, f2) -> eval f1 || eval f2
 | Imply (f1, f2) ->
 (match (f1, f2) with
 | (True, False) -> false
 | _ -> true)
 | Equal (e1, e2) -> exp_to_int e1 = exp_to_int e2

eval (Imply(AndAlso(True,False),True)) = true
eval (Equal(Plus(Num 1,Num 2),Num 3)) = true

Examples
type exp =
 | Num of int
 | Plus of exp * exp
 | Minus of exp * exp

type formula =
 | True
 | False
 | Not of formula
 | AndAlso of formula * formula
 | OrElse of formula * formula
 | Imply of formula * formula
 | Equal of exp * exp

let rec exp_to_int : exp -> int
= fun e ->
 match e with
 | Num n -> n
 | Plus (n1, n2) -> exp_to_int n1 + exp_to_int n2
 | Minus (n1, n2) -> exp_to_int n1 - exp_to_int n2

let rec eval : formula -> bool
= fun f ->
 match f with
 | True -> true
 | False -> false
 | Not f1 -> not (eval f1)
 | AndAlso (f1, f2) -> eval f1 && eval f2
 | OrElse (f1, f2) -> eval f1 || eval f2
 | Imply (f1, f2) ->
 (match (f1, f2) with
 | (True, False) -> false
 | _ -> true)
 | Equal (e1, e2) -> exp_to_int e1 = exp_to_int e2

eval (Imply(AndAlso(True,False),True)) = true
eval (Equal(Plus(Num 1,Num 2),Num 3)) = true

 not (eval f1) || eval f2

Examples

let rec find e l =
 match l with
 | [] -> false
 | h::t -> if h = e then true else find e t

let rec help_append_list l1 l2 =
 match l1 with
 | [] -> l2
 | h::t ->
 if find h l2 = false then help_append_list t (l2@[h])
 else help_append_list t l2

let append_list x y = help_append_list x y

Q) Append lists without duplicates

append_list ['d';'e';'f';'g'] ['a';'b';'c';'d']
= ['a'; 'b'; 'c'; 'd'; 'e'; 'f'; ‘g’]

append_list [1;3;5;4;3] [3;5;6;6;4] = [3; 5; 6; 4; 1]

Examples

let rec find e l =
 match l with
 | [] -> false
 | h::t -> if h = e then true else find e t

let rec help_append_list l1 l2 =
 match l1 with
 | [] -> l2
 | h::t ->
 if find h l2 = false then help_append_list t (l2@[h])
 else help_append_list t l2

let append_list x y = help_append_list x y

Q) Append lists without duplicates

append_list ['d';'e';'f';'g'] ['a';'b';'c';'d']
= ['a'; 'b'; 'c'; 'd'; 'e'; 'f'; ‘g’]

append_list [1;3;5;4;3] [3;5;6;6;4] = [3; 5; 6; 4; 1]

(help_append_list y [])

Examples

let rec uniq_help : int list -> int -> int list
= fun l n ->
 match l with
 | [] -> []
 | h::t -> if n = h then uniq_help t n
 else h::(uniq_help t n)

let rec uniq : int list -> int list
= fun x ->
 match x with
 | [] -> []
 | hd::tl -> uniq_help tl hd

Q) Find unique elements

uniq [5;6;5;4] = [5;6;4]
uniq [3;5;7;5;7;4;8] = [3;5;7;4;8]

Examples

let rec uniq_help : int list -> int -> int list
= fun l n ->
 match l with
 | [] -> []
 | h::t -> if n = h then uniq_help t n
 else h::(uniq_help t n)

let rec uniq : int list -> int list
= fun x ->
 match x with
 | [] -> []
 | hd::tl -> uniq_help tl hd

Q) Find unique elements

uniq [5;6;5;4] = [5;6;4]
uniq [3;5;7;5;7;4;8] = [3;5;7;4;8]

hd::(uniq_help (uniq tl) hd)

Thank you!

• Research areas: programming languages, software engineering,
software security

• program analysis and testing

• program synthesis and repair

• Publication: top-venues in PL, SE,  
Security, and AI:

• PLDI(’12,’14),OOPSLA(’15,’17a,’17b,’18a,’18b,’19),TOPLAS(’14,’16,’17,’1
8,’19), ICSE(’17,’18,’19), FSE(’18,’19), ASE’18, S&P’17, IJCAI(’17,’18), etc

http://prl.korea.ac.kr

http://prl.korea.ac.kr

