Al-based Software Analysis
and Testing

Hakjoo Oh

Korea University

9 July 2019 @Suresoft

Software Analysis Research@KU

® Research areas: programming Ianguages software englneerlng,
software security - |

® program analysis and testing
® program synthesis and repair

® Publication: top-venues in PL, SE,
Security, and Al:

e PLDI(12;14),00PSLA(15;17a;17b;18a.18b.19),TOPLAS(14.16.17;
8/19), ICSE('17,18;19), FSE('18,19),ASE’ 18, S&P’17, ||CAI(17;18), etc

http://prl.korea.ac.kr

http://prl.korea.ac.kr

A BFESACIT?
e A) AIZEQN XIF &M 1jix|, e 7|z
H= M3
/ OO oo
1= —
T \ o= =mx -

F =8I

A

Challenge in Program Analysis

® Practical program analysis tools rely on a variety of
heuristics to optimize their performance

® FE.g., context/flow-sensitivity, variable clustering, unsoundness,
path selection/pruning, state merging, etc

® Manuallly designing a heuristic does not pay-off

® Nontrivial and laborious, but suboptimal and unstable

&0

Y7 Automatically Generating
Analysis Heuristics from Data

® Use data to make heuristic decisions in program
analysis

GitHub % ﬁ

Al, machine learning,
data mining, etc

context-sensitivity heuristics
flow-sensitivity heuristics
unsoundness heuristics
path-selection heuristics

® Automatic: little reliance on analysis designers
® Powerful: machine-tuning outperforms hand-tuning

® Stable: can be tuned for target programs

Example: Context-Sensitivity

cl:

c2:

c3:

c4:
c5:

int h(n) {ret n;}

void f(a) {

}

x = h(a);
assert(x > 0)
y = h(input()

);

void g() {f(8);}

void m() {

}

f(4);

g();
g();

// Query <@mm holds always

Context-Insensitive Analysis

® Merge calling contexts into single abstract context

int h(n) {ret n;}

void f(a) {
x = h(a);

cl:

c2:

c3:

}

void m() {

c4:
c5:

}

assert(x > 0);
y = h(input());

void g() {f(8);}

f(4);
g();
g();

c3

c5,c6 ‘I”

cheap but imprecise

c4 ‘li.\\\££:f2

k-Context-Sensitive Analysis

® Analyze functions separately for each calling context

int h(n) {ret n;}

void f(a) {

cl:

c2:

c3:

}

X = h(a);
assert(x > 0);
y = h(input());

void g() {f(8);}

void m() {

c4:
c5:

}

f(4);
g();
g();

precise but expensive

cl S8

(k=3)
c2

c4
cl

C2

cl

>Q

g I

c3

Selective Context-Sensitivity

cl:

c2:

c3:

c4:
c5:
Cco:

® Selectively differentiate contexts only when necessary

int h(n) {ret n;}

Apply 2-ctx-sens: {h}

void f(a) { Apply |-ctx-sens: {f}

x = h(a); Apply 0-ctx-sens: {g, m}

assert(x > 0);

y = h(input()); c1 @
} o
void g() {f(8);} y }A
void m() { 6\‘

f(4);

’ cl
g(); c5,cb e—> “
g();

' cheap and precise

Selective Context-Sensitivity

cl:

c2:

c3:

c4
c5

. cl
: g(0); c5,cb6 eﬁ —
:g();

b Cc2

® Selectively differentiate contexts only when necessary

int h(n) {ret n;}

Apply 2-ctx-sens: {h}
void f(a) { Apply |-ctx-sens: {f}
x = h(a); Apply 0-ctx-sens: {g, m}
assert(x > 0);

y = h(inpu Challenge: how to design a

; good selection heuristic?

void g() {f(8);}

void m() {
f(4);

@ 9

cheap and precise

Hard Search Problem

® |Intractably large and sparse search space, if not infinite
® e.g,S¥choices where S = 2IProcl for k-context-sensitivity
® Real programs are complex to reason about

® e.g.,typical call-graph of real program:

A fundamental problem in program analysis

o
O

<’ Learning Algorithm Overview

Parametric Training data Atomic features
program analyzer (programs w/o labels) (al,a2,...,a25)

\ l e.g., procedures have

invocation stmt,
Leal‘ning Algo r|thm procec!ures return
strings, etc

l

Learned heuristic for applying context-sensitivity:

f2: procedures to apply 2-context-sensitivity
IAN=-3A-6A88AN-9A=16 17 A=18 A =19 A =20 A =21 A =22 N =23 A =24 A =25
fl: procedures to apply |-context-sensitivity

(IA-3A-4A=TA=8A6A=TIA=I5A=16 A=17 A =18 A =19 A =20 A =21 A =22 A =23 A =24 A =25)V
(-3A=4AN=TA-8A-9IAI0ANTLIALI2A13A=16 A =17 A =18 A =19 A =20 A =21 A =22 A =23 A =24 A =25)V
(-3A=9A13A14A15A =16 A =17 A =18 A =19 A =20 A =21 A =22 A =23 A =24 A =25)V
(IA2A=3AN4A-5AN=6A=TA=8A=9A-10A-13A=15A =16 A =17 A =18 A =19 A =20 A =21 A =22
A=23 A =24 A =25)

cf) Atomic Features

Signature features

(19 »

CCe

#1 “java® #3 “sun” #5 ‘“void” #7 “int” #9 “String”

#2 “lang” #4 () #6 “security” #8 “util” #10 “init”
Statement features

#11 AssignStmt #16 BreakpointStmt #21 LookupStmt

#12 IdentityStmt #17 EnterMonitorStmt #22 NopStmt

#13 InvokeStmt #18 ExitMonitorStmt #23 RetStmt

#14 ReturnStmt #19 GotoStmt #24 ReturnVoidStmt

#15 ThrowStmt #20 IfStmt #25 TableSwitchStmt

OO

2

CD
<

?~
& A

high scalability

Effectiveness

® Applied to context-sensitive pointer analysis for Java

® Trained with 5 small programs from the DaCapo benchmark
and tested with 5 remaining large programs

analysis time(s)

2500}

2000}

=

U1

o

o
T

=

o

o

o
T

500

bloat
S2o0bjH
[]
S2objH+Data(Ours) S20bjH+IntroB Insensitive

N = O
S2objH+IntroA

1200 1400 1600 1800 2000
of may-fail casts

high precision

analysis time(s)

1200

jython

1000

8001

6001

400

200}

S2objH+IntroB(12,372)
[

S20bjH+IntroA
[]

Insensitive

S2o0bjH+Data(Ours)
O 0

0
1600

1700 1800 1900 2000 2100 2200 2300
of may-fail casts

2

?s
&
s

high scalability

Effectiveness

® Applied to context-sensitive pointer analysis for Java

® Trained with 5 small programs from the DaCapo benchmark
and tested with 5 remaining large programs

analysis time(s)

2500}

2000}

=

U1

o

o
T

=

o

o

o
T

500

Iﬂqat

S2objH

S2objH+Data(Ours)
|

manual approaches
(PLDI’14b)

\

S20bjH+IntroB

Insensitive

]

L]
S2objH+IntroA

1200 1400

1600
of may-fail casts

1800 2000

high precision

analysis time(s)

1200

jython

1000

8001

6001

400

200}

S2objH+IntroB(12,372)
[

S20bjH+IntroA
[]

S2o0bjH+Data(Ours)
|

Insensitive

]

0
1600

1700 1800 1900 2000 2100 2200 2300
of may-fail casts

Concolic Testing
(Dynamic Symbolic Execution)

® Concolic testing is an effective software testing
method based on symbolic execution

KAA, — S2E

Pex

P>

® Key challenge: path explosion

TRILON

® Our solution: mitigate the problem with good

search heuristics

Limitation of Random Testing

int double (int v) < Probability of the error? (0 < x,y < 100)
return 2xv;

5

void testme(int x, int y) {
z := double (y);
if (z==x) {

if (x>y+10) {
Error;
¥
I3
¥

Limitation of Random Testing

int double (int v) < Probability of the error? (0 < x,y < 100)
return 2xv;

: < 0.4%

void testme(int x, int y) {
z := double (y);
if (z==x) {

if (x>y+10) {
Error;
¥
I3
¥

Limitation of Random Testing

int double (int v) < Probability of the error? (0 < x,y < 100)
return 2xv;

} < 0.4%

void testme(int x, int y) {

- random testing requires 250 runs

z := double (y); . . .
d - concolic testing finds it in 3 runs

if (z==x) {

if (x>y+10) {
Error;
¥
I3
¥

Concolic Testing

Concrete

int double (int v) { State

}

return 2xv;

void testme(int x, int y) {
— x=22,y=7
z := double (y);

}

if (z==x) {

}

if (x>y+10) {

}

Error;

| st iteration

Symbolic
State

x=a, y=_3

true

Concolic Testing

Concrete Symbolic
int double (int v) { State State
return 2xv;
I
void testme(int x, int y) {
z := double (y), X=22,)'=7, X=Q,)’=B,Z=2*B
if (z==x) { z=14 true
if (x>y+10) {
Error;
¥

}
}

| st iteration

Concolic Testing

Concrete Symbolic

int double (int v) { State State

return 2xv;
I3
void testme(int x, int y) {

z := double (y);

if (z==x) {

if (x>y+10) {
Error;

L x=22,y=7, | x=a,y=B,z=2"B

| — z=14 2*B £ a
| st iteration

Concolic Testing

Concrete Symbolic

int double (int v) { State State
return 2xv;

}

void testme(int x, int y) {

z := double (y); Solve: 25 = a
Solution: a=2,3=1
if (z==x) {
if (x>y+10) {
Error;
L x=22,y=7, | x=a,y=B,z=2"B
S — z=14 2*B % a

| st iteration

Concolic Testing

Concrete Symbolic

int double (int v) { State State
return 2xv;

}

void testme(int x, int y) {
-— - x=2,y=| x=a, y=[3
z := double (y);
true

if (z==x) {

if (x>y+10) {
Error;
¥
I3
¥

2nd iteration .

Concolic Testing

Concrete Symbolic
int double (int v) { State State
return 2xv;
I
void testme(int x, int y) {
z := double (y), X=2,)’=|, X=Q,)’=B,Z=2*B
if (z==x) { 2=2 true

if (x>y+10) {
Error;
¥
I3
¥

2nd iteration N

Concolic Testing

Concrete Symbolic
int double (int v) { State State
return 2xv;
I
void testme(int x, int y) {
z := double (y);
1f (Z==X) { X=2,)’=|, X=Q’Y=Bsz=2*B
—— _
if (x>y+10) { z=2 2" =qa
Error;
¥
s
I
2nd iteration

22

Concolic Testing

Concrete Symbolic
int double (int v) { State State
return 2xv;
I3
void testme(int x, int y) {
z := double (y);
if (z==x) {
if (x>y+10) {
Error;
} x=2,y=I, x=q, y=8,z=2"3
} =2
e § 2*B=aA
a<p+10
2nd iteration

23

Concolic Testing

int double (int v) {
return 2xv;

5

void testme(int x, int y) {
z := double (y);
if (z==x) {

if (x>y+10) {
Error;
¥

D,
}

2nd iteration

Concrete Symbolic
State State

Solve:2*"B=a A a>(+10

Solution: a=30, =15

x=2,y=1, x=a, y=[,z=2"3
=2
- 2" B =aA
a<p+10

24

Concolic Testing

Concrete

int double (int v) { State

}

return 2xv;

void testme(int x, int y) {
4————— x=30,y=15
z := double (y);

}

if (z==x) {

}

if (x>y+10) {

}

Error;

3rd iteration

Symbolic
State

x=a, y=_3

true

25

Concolic Testing

Concrete Symbolic
int double (int v) { State State
return 2xv;
I
void testme(int x, int y) {
z := double (y), X=30,)’=|5, X=Q,)’=B,Z=2*B
if (z==x) { z=30 true

if (x>y+10) {
Error;
¥
I3
¥

3rd iteration N

Concolic Testing

Concrete Symbolic
int double (int v) { State State
return 2xv;
I
void testme(int x, int y) {
z := double (y);
if (z==x) { x=30, y=15, x=a, y=3,z=2"f3
if (x>y+10) { z=30 2" =qa
Error;
¥
s
I
3rd iteration

27

Concolic Testing

Concrete Symbolic

int double (int v) { State State
return 2xv;

}

void testme(int x, int y) {

error-triggering

z := double (y); input
if (z==x) {
if (x>y+10) 1 x=30, y=15, x=a, y=[3,z=2"
Error; <—— =30
}} 2" B =aA
1 Q>B+15

3rd iteration .

Concolic Testing

b1: (X==Y)

b2: (X >y+10)

execution tree

29

Concolic Testing

b1: (X==y

b2:(x>y+10)

execution tree

29

Concolic Testing

b1: (X==y

b2 : 1
21 (x>y+10) solve (b1A—b?)

execution tree

29

Concolic Testing

execution tree

30

Concolic Testing

choose a branch

execution tree

30

Concolic Testing

choose a branch

b1

solve (—bi)

execution tree

30

Concolic Testing

execution tree

31

Concolic Testing Algorithm

Input :Program P, initial input vector vy, budget N
Output: The number of branches covered
1: T « <>
2: U < Vg
3: form=1to N do
4. ®, < RunProgram(P,v)
5 T—T- -0,
6: repeat
7: (P, ¢p;) <« Choose(T) (D=1 A Adp)
8 until SAT(/\J-<1- gbj A —¢;)
9: v« model(Aj<; ¢j A i)
10: end for
11: return |Branches(T)|

Concolic Testing Algorithm

Input :Program P, initial input vector vy, budget N
Output: The number of branches covered
1: T « <>
2: U <
3: form=1to N do
4: P, < RunProgram(P, Search

50 T« T-®y Heuristic

6: repeat

7: (®, ¢;) « Choose(T) (P =d1 A---Adp)
8 until SAT(Aj<; ¢j A Qi)

9: v« model(Aj<;i §j A —¢i)
10: end for

11: return |Branches(T)]

Existing Search Heuristics

® Exissting search heuristics have been hand-tuned:

® e.g.,CGS [FSE'I4], CarFast [FSE’|2], CFDS [ASE’08],
Generational [NDSS’08], DFS [PLDI'05], ...

® Suboptimal and unstable

vim-5.7
7000 |
/./
6000 | e
(o) /
S 5000} v
[7)]
S 1o
5 4000} 1/ :
]
4*7
3000 :
E - = CFDS _ *_ +_Gen _ _.
N CGS Random
2000} " DFS |
500 1000 1500 2000 2500 3000 3500 4000

iterations

expat-2.1.0
1200}
1100}
g
2 1000})
e -
. / i . -
c —o— '
Y 900} R " /-
800 |':
o — -+ CFDS * * Gen
700 | A-A CGS Random |
--- DFS

500 1000 1500 2000 2500 3000 3500 4000

iterations

Data-Driven Symbolic Execution

® Goal:Automatically generating heuristics for symbolic
execution heuristics

® Application: search heuristic, path pruning heuristic, state
merging heuristic, symbolization heuristic, etc

Automatically Generating Search Heuristics for Concolic Testing Template-Guided Concolic Testing via Online Learning Concolic Testing with Adaptively Changing Search Heuris

Sooyoung Cha Seongjoon Hong Junhee Lee Hakjoo Oh Sooyoung Cha Seonho Lee Hakjoo Oh* Sooyoung Cha Hakjoo Oh*
Korea University Korea University Korea Umversny Korea University Korea University Korea University Korea University Korea University Korea University
@koreaack @koreaack junhee_lee@k hakjoo_oh@ Republic of Korea Republic of Korea Republic of Korea Republic of Korea Republic of Korea
sconho_lee@korea.acke hakjoo_oh@korea.ackr sooyoungcha@korea.ackr hakjoo_oh@korea.ackr

ABSTRACT

We present a technique to automatically generate search heuristics

for concolic testing. A key challenge in concolic testing is how to

effectively explore the program’s exccution paths to achieve high

code coverage in a limited time budget. Concolic testing employs a

search heuristic to address this challenge, which favors exploring
¢ the final

particular types of paths that are most likely to maxin
coverage. However, manually designing a good search heuristic
is nontrivial and typically ends up with suboptimal and unstable
outcomes. The goal of this paper is to overcome this shortcoming of
concolic testing by automatically generating search heuristics. We
define a class of scarch heuristics, namely a parameterized heuristic,
and present an algorithm that fficintly finds an optimal hearistic
for each subject program. Experimental results with open-source C
programs show that our technique successfully generates search
heuristes that significantly outperform existing manually-crafted
heuristics in terms of branch coverage and bug-finding

CCS CONCEPTS

- Software and its engineering — Software testing and de-
bugging;

ACM Referse Format

Sooyou: congjoon Hong, Junhee Lee, and Hakjoo Oh. 2015. Auto
‘matically Gen 5
CSE 1. 40th nertional Confrence on Software Engincrig My 27
June 3, 2015, Gothenburg, Sweden. ACM, New York, NY, USA, 11 pages.
itpss/doi.org/10.1145/3180155 3150166

ting Search Heuristis for Concolic Testing. In ICSE '

1 RODUCTION
Concolic testing (15, 28] has emerged as an effective software-
testing method with diverse applications [1,7, 21, 30, 33). The idea
mbolically exccute a program alongside
the concrete execution, where the main job of the symbolic execu-
tion is to collect path conditions. Initiall, the program is executed
with a random input. After the program finishes, a branch of the
current path is selected and negated to find an input that drives
the next program execution to follow a previously unexplored path
“This way concolic testing systematically explores the exccution
paths of the program, greatly improving rando testing.

Correspanding suthor

A key component of concolic testing is the so-called scarch
heuristic. Because of the path-explosion problem, exploring all exe
cution paths of a nontrivial program is simply impossible. Instead,
concolic testing relics on a search heuristic to maximize code cov.
erage in a limited time budget. A search heuristic has a criterion
and steers concolic testing by choosing the best branch to negate
according to the eriterion. For example, the CFDS (Control-Flow
Directed Search) heuristic [3] picks the branch that is closest to the
uncovered regions of the program and the CGS (Context-Guided
Search) heuristic [29] selects a branch only if it is in a new context
It s well-known that the effectiveness of concolic testing depends
heavily on the choice of the search heuristic [3, 21, 27, 29].

He o enging, Itis

not only nontrivial but also likely to deliver sub-optimal and unsta-
ble results. As we demonstrate in this paper, no manually-designed
existing heuristics consistently achieve good code coverage in prac-
tice. For example, the CGS heuristic i arguably a state-of-the-art

programs [29]
we found that CGSis sometmes brtle and inferior even
heuristic. Furthermore, existing search h came

from a huge amount of engineering effort and domain expertise

“The difficulty of manually coming up with a good search heuristic

is a major remaining challenge in concolic testing,
To address this challenge, this paper presents a new approach
that automatically generates search heuristics for concolic testing.
“To this end, we use two key ideas. First, we define a parameterized
search heuristic, which creates a large class of search heuristics.
‘The parameterized heuristic reduces the problem of designing a
good scarch heuristic into a problem of finding a good parameter
ond, we present a search algorithm specialized to concolic
testing. The search space that the parameterized heuristic poses is
iteactbly g Out algorithn fectvely guies the scrch by
tvely refining the search space based on the fecdback from
previous runs of concolic testing
Experimental results show that automatically-generated heuris-
tics by our approach outperform existing manually-crated heuris-
tics for a range of C programs. We have implemented our technique
in CREST [3] and evaluated it on 10 C programs (0.5-150KLoC),
For every benchmark program, our technique has successfully gen-
erated a search heuristic that achieves considerably higher branch
coverage than the existing state-of-the-art techniques. We also
demonstrate that the increased coverage by our technique leads to

value

o Cor o cmps T Sk oy s o

musthe Focopy

e Reguest permission m,‘,m,menm
i3, 201, Gothenburg, Swrden

”.w.‘.w\‘.‘
Visio...s1500
[

finding of real bugs.
“This paper makes the following contributions:

« We present a new approach for automatically generating
search heuristics for concolic testing. Our work represents a
significant departure from prior work; while existing work
(¢ 3.21,27,29D focuses on manually developing a patiu
lar search heuristic, our goal i to automate the very process
of generating such a heuristic.

ICSE’| 8

sooyoungeha@korea.ac kr

ABSTRACT
We present template-guided concolic testing, a new technique for
effectively reducing the search space in concolic testing. Address-
ing the path-explosion problem has been a significant challenge
in concolic testing. Diverse search heuristics have been proposed
to mitigate this problem but using search heuristics alone is not
sufficient to substantially improve code coverage for real-world pro-
grams. The goal of this paper is to complement existing techniques
and achieve higher coverage by exploiting templates in concolic
testing. In our approach, a template is a partially symbolized input
vector whose job is to reduce the search space. However, choos-
ing a right set of templates is nontrivial and significantly affects

the final performance of our approach. We present an algorithm
that automatically learns useful templates online, based on data
colletedfom previous uns of conclctsting The experimer-
tal results with open-source programs show that our technique
m..ms greater branch coverage and finds bugs more effectively
than conventional concolic festing.

CCS CONCEPTS
« Software and its engineering — Software testing and de-
bugging;

KEYWORDS

Concolic Testing, Online Learning

ACM Reference Format:

Sooyaung Cha, Seonho Lee, and Hakjoo O 2015, Template-Guided Con-
Jic Testing via Online Learning; In Proceedings of the 2015 39rd ACM/IEEE,

IntratonCofrene . At Softare Enierin (1516 -

3,201 MoipllrFane ACM,Now York Y. US. 1 pges.
ot g 10455235147

1 INTRODUCTION

Concolic testing [11, 22] is a popular software testing method that
effectively and systematically achieves high code coverage and
finds bugs. The key idea of concolic testing is to simultancously
execute a program concretely and symbolically, where new test
cases are systematically generated by symbolic execution enhanced

Correspanding author

i ke gl e s ol prt o s work o pron o
oo use i granted without e provided hat copies are ot made or distributed

m. his

on the st page. Copyrights orcomponentsof this work owned by others than ACM

bt A i e Tocory servise o el

e e prmisions o pemisons e

ASE 15, Septeber 37, 015, Monpeli,Fran
1018 Ascociation for Computing Machinery

ACAISEN 9714505 5957515109, 1500

itpsidoorg/10.1143/3238147

with concrete exccution. Recently, concolic testing has been used
in diverse application domains such as operating systems [15],
firmware [5, 16, 31], and binary code [1, 25] among many others.
A major open challenge in concolic testing is how to cffectively
explore the search space. As the number of execution paths in a
realisic program grows exponential, concolic festing must be able
to favor and explore the paths that are most likely to benefit the
final testing results. However, guiding concolic testing effectively
is nontrivial and many different approaches exist with the goal of
migating the pt-splosion roblen: .. i pruning 2. 17

28], search heuristics [4, 5, 19, 23, 9], and so on.

Tn this paper \wp)rwnrlémphlr guided concolic testing, a new

technique for adaptively reducing the search space of concoli test-

ing.The ky idea 1 o guide concolc tsting with tenpltes wich
space by

Unlike conventional concolic tsting that i ,\(k\ a nput values
symbolically, our techn d input values

o aymbolic and fixes unselected tputs with |mrm ular concrete

inputs, thereby reducing the original search space. A challenge,

however, s choosing mput values o rack symbohclly and eplc

ing the remaining inputs with appropriate values. To address this
challenge, we develop an algorithm that performs concolic testing
while automatically generating, using, and refining templates. The
algorithm is based on two key ideas. First, by using the sequential
pattern mining [9], we generate the candidate templates from a set
of efective test-cases, where the fest-cases contribute to improving
code coverage and are collected while conventional concolic test-
ing is performed. Second, we use an algorithm that learns effective
templates from the candidates during concolic testing. Our algo-
ithm iteratively ranks the candidates based on the effectivencss
of templates that were evaluated in the previous runs. Our tech-
nique is orthogonal to the existing techniques and can be fruitfully
combined with them, in particular with the state-of-the-art search
heuristics.

Experimental results show that our approach outperforms con-
ventional concolic testing in term of branch coverage and bug.
finding. We have implemented our approach in CREST [7] and
compared our technique with conventional concolic testing for
open-source C programs of medium size (up to 165K LOC). For all
benchmarks, our technique achieves significantly higher branch
coverage compared to conventional concolic testing. For example,
¢ have performed both techniques for 70 hours, where

for vim
our technique exclusively covered 883 branches that conventional
concolic testing failed to reach. Our technique also succeeded in
finding real bugs that can be triggered in the latest versions of three
open-source C programs: sed-4.4, grep-3.1 and gawk-4.21

ASE’18

ABSTRACT
We present CHAMELEON, a new approach for adaptively chang
sting. Search heuristics

ing search heuristics during concolic tes
Play a cntra role in concaic tstng as they mitigate he path.
explosion problen by focusing on particular progran pths ht
are likely to increase code cove quickly as possible. A variety
o techniques for seareh s have been proposed ove the

past decade. However, existing approaches are limited in that they
use the same search heuristics throughout the entire testing pro-
cess, which is inherently insufficient to exercise various execution
paths. CiavELEON overcomes this limitation by adapting search
heuristics on the fly via an algorithm that learns new search heuris.
tics based on the knowledge accumulated during concolic testing
Experimental results show that the transition from the traditional
non-adaptive approaches to ours greatly improves the practicality
of concolic testing in terms of both code coverage and bug-finding

CCS CONCEPTS
+ Software and its engineering — Software testing and de-
bugging

KEYWORDS

Concolic Testing, Dynamic Symbolic Execution, Online Learning

ACM Reference Format

a and Hakjoo Oh. 2019, Concolic Testing with Adaptively

carch Heuristics. In Proceedings o the 27th ACM Joint European

Software Engineering Conference and Sympostum on the Foundations of Soft-
Etonia. ACM,

Sooyouny

Char

are Engineering (ESEC/FSE '19), August 26-30, 201, Tal

New York, NY, USA, 11 pages. htps://dotorg/10.1145/3338906 3338964

1 INTRODUCTION

a promising software testing technique

Concolic testing [

popular in both academia and industry [1, 5, 6, 19, 20, 30, 32, 33
The technique aims to increase code coverage as quickly as possible,
inding in a limited time budget.

ultimately enablin
To do so, unlike random testing
tematically generates test-cases by repeating the following process
(1) it concolically executes the subject program to collect the path

or fuzzing, concolic testing sys:

ok for per

o to make di

far s
oo s s goted witheu "

i age. Copyrights or companents of this work
st b honored. Abarating with reit 4 ermitedTo

st n ervers ot redistebute o s, equiesprios specific prmission nd o
s pnisns e

SRS 18w

it

condition, Le., the sequence of symbolic branch conditions exer-
cised by the current program execution, 2) it produces a new path
ating a branch of the current path

condition b and
condition,and (3 i soves the esling pth conditon to generate

anew test-case that guides the next program exeeution towards the
opposite of the selected branch. Because of this systematic nature,
concolic testing is increasingly used in diverse domains, including
operating systems [19], embedded systems [10, 14], and even neural

networks [30], among others.
heurist critical ingred:

To be practical for real-world applications, concolic testing must
be able to adequately address the path-cxplosion problem; because
real-world programs exhibit infinitely many different paths, it is
impossile {0 exeris all of them by testing. T addres ths chal-
lenge, concolic testing uses a scarch heuristic, a branch sclection
ratey hat akes pth condiion nd 5 branch based on
5w crtrion (5 ssd nthe scand s of e concolic testing
process described in the preceding paragraph). Search heuristics
tially explore particular classes

allow concolic testing to pref
of execution paths that they think are most effectiv
code coverage within a given time limit. It has been well-known

to maximize

that how tochoose and e sarch heuristis i citically important
enproposd 0 improve concol

and diverse approaches have b
testing in practice over the past decade

In this paper, we propose a new ,‘,,,,m.m lled Commaszon
for effectively employing search heuristies during concolic test-
ing. The key novelty of CitameLzow is adaptively changing search
heuristics on the fly, so that the branch-selection eriterion changes

as necessary throughout concolic testing in a way that masimizes
the il performance, By contstll of theeistng aproscc
ing seach heuristics [3-5, 19, 22,26, 28] are not adaptive

as nm use the same scarch heuristcs over the whole process of
concolic testing, In this paper, we demonstrate that this is a key lim-
iting factor of the existing approaches, and we can make concolic
testing much more practical for real-world applications by being
adaptive. e illustrate the limitation of existing search heuristics
in more detail in Section 2.

To enable adaptation, we present an algorithm that automatically
learns and switches search heuristics during concolic testing. The
algorithm mainain a st ofserch heuistcsand continuously
changes them during the testing process. To do so, we first def
e spac of possbl sarch heursticssong the dea of parametrc
search heuristic recently propased in prior work [5). A technical
challenge is how to adaptively switch search heuritics in the pre-
defined space. We address this challenge with a new concolic testing
algorithn that (1) sccumultesthe knowledge about he previously
evaluated search heuristics, (2) s
of the m ctive and inefective scarch heuristes from the aceumus
lated knowledge, and (3) samples a new set of search heuristics

FSE’I9

Effectiveness

® Improved code coverage

CREST

9000

8000

7000

branches covered

3000
2000f "
P

1000

70

60

Branch Coverage(%)
N w
o o

w
o

20

10

6000

5000

4000

vim-5.7

0

500

1000 1500

2000 2500

iterations

3000 3500

P e
e — = — e — —a— —* gl g
S O Rl Gatier sy Tosiw =R - Lo o=l
L ' ‘g 88 B S e o000 0
| _r -BJ o Q
J'/‘
|
I
!
I
I -9 OURS ©-0 CovNew
[o o Random-Path @ @ CallPathinstrCount
It * # Depth @@ RoundRobin
L I I I I I
200 400 600 800 1000
time(s)

branches covered

Branch Coverage(%)

1400

expat-2.1.0

1300

1200

1100

1000

900

800

25
700

— -

A A

CFDS
CGS
DFS

* * Gen
¢ OURS
Random

3
600
0

55

500

1000

1500

2000 2500

iterations

dd

3000

3500 4000

50

IN
[Vl

IN
o

w
(6]

w
o

N
w

N
o

15§

99 OURS
@ @ CallPathinstrCount
e o Random-Path

O0-0 RoundRobin
#- % Depth
V¥ BFS

10
0

1
200

1
400

il
600
time(s)

1
800

il
1000

35

® |ncreased bug-finding capability

Effectiveness

Benchmarks Versions Error Types Bug-Triggering Inputs OURS Param RR CGS CFDS Gen Random
8.1% Non-termination K1!1000100100111110(v X X X X X X
vim Abnormal-termination H:w>>"""\ [press ‘Enter’] v v X X X 4 v
>7 Segmentation fault =ipI\-9~qOqw v v / X X v
Non-termination v(ipapro&Ts$T v v v oo X X X v
4.2.1% Memory-exhaustion '+E_Q$h+w$8==++$6E8#" v X X X X X X
gawk 504 Abnormal-termination 'f[I[I[ILILy1~/#[" v/ X v v v o/ v
Non-termination '$gPE24=-E-2" 20 +$=" /2 /H["" v v X X v X X
31" Abnormal-termination '\ (\)\T*?2*x?2\ | \Wx\TWx' v X X X X X X
grep Segmentation fault "NODNTA*@XN?\T#\+%\?! v X X v X X X
59 Segmentation fault AR ANV NN TR v v / v v v
Non-termination "N ({FxHRR\) R\ HER\ TR+ v v / v v X
sed 1.17 Segmentation fault "{:};:C;b' v X oo X v v v

36

37

|O

AS L E 7=

. AZEQ 0] JHtol A ClZe It ofgm &

— — I
A8 AZEQ0 QF +H0| B 2002 A2

. CH2 74 chAloff BI3) XHS3HE £ K|S

AT ER0 @F BX| E0k= X[300{EH7t =5

CIHZ2 oM ZHEXIO| MH L= O|Est= &

|) Kim and Whitehead. How long did it take to fix bugs? MSR 2006

|.|T|.I

38

X At
(Linux Kernel)

in = malloc(1);
out = malloc(1l);

. // use 1n, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

goto err;

}

out = malloc(2);
if (out == NULL) {
free(in);

goto err;
s
. // use 1n, out
err:
free(in);
free(out);
return;
39

ALR| AR out = maltoc(1)

. ... // use 1in, out
(Linux Kernel) free(in)

in = malloc(2);
if (in == NULL) {

goto err;

}

out = malloc(2);
if (out == NULL) {
free(in);

goto err;
s

. // use 1n, out
err:
free(in);
free(out);
return;

double-free

39

Al At out = matloc1];
. use 1n, Oou

(Linux Ker'n6|) free(out);

free(in);

in = malloc(2);
if (in == NULL) {

goto err;

}

out = malloc(2);
if (out == NULL) {

</free(in);
goto err;

}
.+« // use 1n, out
double-free\ err:

free(in);
free(out);
return;
39

X At
(Linux Kernel)

USB: fix double frees in error code paths of ipaq driver

the error code paths can be enter with buffers to freed buffers.
Serial core would do a kfree() on memory already freed.

Signed-off-by: Oliver Neukum <oneukum@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>

P master © v4.15-rc1 ... v2.6.24-rc1

Oliver Neukum committed with gregkh on 18 Sep 2007 1 par

T ———

in = malloc(1);
out = malloc(1l);
..« // use 1n, out
free(out);
free(in);

in = malloc(2);

if (in == NULL) {
out = NULL;
goto err;

+

out = malloc(2);
if (out == NULL) {
free(in);
in = NULL;
goto err;
s
... // use in, out
err:
free(in);
free(out);
return;
40

X At
(Linux Kernel)

USB: fix double frees in error code paths of ipaq driver

the error code paths can be enter with buffers to freed buffers.
Serial core would do a kfree() on memory already freed.

Signed-off-by: Oliver Neukum <oneukum@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>

P master © v4.15-rc1 ... v2.6.24-rct
Oliver Neukum committed with gregkh on 18 Sep 2007 1 par
L — S

T LIHZ2 =] 1:
QLFEL AN=R] =iloh| Ol

in = malloc(1);
out = malloc(1l);
..« // use 1n, out
free(out);
free(in);

in = malloc(2);

if (in == NULL) {
out = NULL;
goto err;

}

out = malloc(2);
if (out == NULL) {
free(in);
in = NULL;
goto err;
s
... // use in, out
err:
free(in);
free(out);
return;
40

X At
(Linux Kernel)

USB: fix double kfree in ipaq in error case

in the error case the ipaq driver leaves a dangling pointer to already
freed memory that will be freed again.

Signed-off-by: Oliver Neukum <oneukum@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>

I master © v4.15-rc1 ... v2.6.27-rct
Oliver Neukum committed with gregkh on 30 Jun 2008 1 parent 35
L — —————

in = malloc(1);
out = malloc(1l);
..« // use 1n, out
// removed
free(in);

in = malloc(2);
if (in == NULL) {
out = NULL;
goto err;
I3
free(out);
out = malloc(2);
if (out == NULL) {
free(in);
in = NULL;
goto err;
I3
..« // use 1n, out
err:
free(in);
free(out);
return;
4]

Al At out = matloc1};
" use 1n, Ou

(Linux Kernel) // removed

free(in);

T LIHZL| =X 2:

- in = malloc(2);
UX|= HHUM MER LF7 LD if (in == NULL) {
out = NULL;
memory leak goto err;

}

free(out);

out = malloc(2);
USB: fix double kfree in ipaq in error case l f (ou t —— N U L L) {
in the error case the ipaq driver leaves a dangling pointer to already 'f r‘EEGE (j_r]) ;

freed memory that will be freed again.

in = NULL;

Signed-off-by: Oliver Neukum <oneukum@suse.de>

Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de> g oto err ;
P master © v4.15-rc1 ... v2.6.27-rct }
Oliver Neukum committed with gregkh on 30 Jun 2008 1 parent 35 ..« // use 1n y Out
| err.
T— free(in);
free(out);
return;

41

X At
(Linux Kernel)

fix for a memory leak in an error case introduced by fix for double free
The fix NULLed a pointer without freeing it.
Signed-off-by: Oliver Neukum <oneukum@suse.de>

Reported-by: Juha Motorsportcom <juha_motorsportcom@luukku.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

I» master © v4.15-rc1 ... v2.6.27-rct
Oliver Neukum committed with torvalds on 27 Jul 2008 1 parent 9ee@8c2
L T—

in = malloc(1);
out = malloc(1l);
..« // use 1n, out
free(out);
free(in);
out = NULL;
in = malloc(2);
if (in == NULL) {
out = NULL;
goto err;
I3
// removed
out = malloc(2);
if (out == NULL) {
free(in);
in = NULL;
goto err;
I3
..« // use 1n, out
err:
free(in);
free(out);
return;
42

X At
(Linux Kernel)

fix for a memory leak in an error case introduced by fix for double free
The fix NULLed a pointer without freeing it.

Signed-off-by: Oliver Neukum <oneukum@suse.de>
Reported-by: Juha Motorsportcom <juha_motorsportcom@luukku.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

I» master © v4.15-rc1 ... v2.6.27-rct

Oliver Neukum committed with torvalds on 27 Jul 2008 1 parent 9ee@8c2

in = malloc(1);
out = malloc(1l);
..« // use 1n, out
free(out);
free(in);
out = NULL;
in = malloc(2);
if (in == NULL) {
out = NULL;
goto err;
I3
// removed
out = malloc(2);
if (out == NULL) {
free(in);
in = NULL;
goto err;
I3
..« // use 1n, out
err:
free(in);
free(out);
return;
42

AZELIH F XS

in = malloc(1);
out = malloc(1);
... // use 1n, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

goto err;

}

out = malloc(2);
if (out == NULL) {
free(in);

goto err;
}
. // use 1n, out
err:
free(in);
free(out);
return;

I'Ijl

in = malloc(1);
out = malloc(1);

. // use 1n, out
// removed
free(in);

in = malloc(2);
if (in == NULL) {

goto err;
¥
free(out):
out = malloc(2);
if (out == NULL) {
// removed

goto err;
¥
. // use 1n, out
err:
free(in);
free(out);
return;

43

AZELIH F XS

in = malloc(1);
out = malloc(1);
... // use 1n, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

goto err;

}

out = malloc(2);
if (out == NULL) {
free(in);

goto err;
}
. // use 1n, out
err:
free(in);
free(out);
return;

A=
T O

w N

o x| Xt5 H-

S L2 EH| s &:

CHed QF7EHEA| X7 E
Mz LF7) 26| B
| Zbzs IR| (Rl Asto| HZ)

—

I'Ijl

in = malloc(1);
out = malloc(1);

. // use 1n, out
// removed
free(in);

in = malloc(2);
if (in == NULL) {

goto err;
¥
free(out);
out = malloc(2);
if (out == NULL) {
// removed

goto err;
¥
. // use 1n, out
err:
free(in);
free(out);
return;

43

Che: HIE22 SHA| 2F

HEE| &[S =52 offOFst= 210(e.g., C/C++) E

+ Memory-leak (CWE-401): H|22|E L2 = sliA
. Use-after-free (CWE-416): H|22|Z LT | slix|
+ Double-free (CWE-415): 22| 0{2{tH slix|

Al AR AZEQ0] ZEto] @ RO

— L

Repository #commits ML DF UAF Total *-overtlow

linux 721,119 3,740 821 1986 6,363 5,092
openssl 21,000 220 36 12 264 61
numpy 17,008 58 2 2 59 53
php 105,613 1,129 148 197 1,449 649

git 49,475 350 19 95 442 2538

MemFix

e Automatically repairs deallocation errors
e memory-leak, double-free and use-after-free

o Key features

¢ sound: generated patch is guaranteed to be correct

e safe:no new errors are introduced

e Approach: Static Analysis + Exact Cover Problem

45

out = malloc(1);
in = malloc(1);
... Il use in, out
free(out);
free(in);

in = malloc(2);
if(in == NULL) {

O 0O NONUVT WD —

10 goto err;
1}

12

13 out = malloc(2);
14 if(out == NULL) {
|5 free(in);

|6

|7 goto err;

18 }

19 ... // usein,out
20 err:

21 free(in);

22 free(out);

Key Insight

ﬁ

Find a set of free-statements

Solve an Exact Cover Problem

O O NONULVT D WD —

10
|
12
|3
| 4
|5
|6
|7
|18
19

out = malloc(1);
in = malloc(1);
... I/ use in, out
Il -

free(in);

in = malloc(2);
if(in == NULL) {

goto err;

}

free(out); // +

out = malloc(2);

if(out == NULL) {
Il -

goto err;

}

... I/l use in, out

20 err:

21
22

free(in);

free(out);
46

Performance

state-of-the-art (ICSE’|8)

FootPatch SAVER
. TP Generated Correct Unsafe |Generated Correct Unsafe
Projects FP

1 1 1 0 1 1 0
rappel (2.1 KLoC) 0 0 0 0 0
15 9 7 2 12 12 0
Swoole (44.5 KLoC)| 5 2 2 0 0
3 0 0 0 3 3 0
Ixc (63.0 KLoC) 5 1 1 0 0
19 10 8 2 16 16 0

Total
10 3 - 3 0 - 0

47

Application to Intelligent Tutoring System

—

Shad T2

i
Al

[T
|O
rol

CodeOnWeb

o 25}
O A

.

let rec diff : aexp * string -> aexp
= fun (e, x) ->
match e with
| Const n -> Const @
| Var a => if (a <> x) then Const @ else Const 1
| Power (a, n) -> if (a <> x) then Const @ else Times [Const n; Power (a, n-1)]
| Times 1 ->
begin
match 1 with
| [] -> Const ©
| hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)1]
end
| Sum 1 -> Sum (List.map (fun e -> diff (e,x)) 1)

type aexp =
|CONST of int

VAR of string

POWER of string int

TIMES of aexp list

SUM of aexp list

type env = (string * int * int) list

let diff : aexp * string -> aexp
= fun (aexp, x) ->

let rec deployEnv : env -> int -> aexp list
= fun env flag >
match env with

| hd::tl ->
(
match hd with
1(x, ¢, p) >
if (flag = 0 8& c = @) then deployEnv tl flag
else if (x = "const" && flag = 1 & c = 1) then deployEnv tl flag
else if (p = @) then (CONST c)::(deployEnv tl flag)
else if (c =1 8& p = 1) then (VAR x)::(deployEnv t1 flag)
else if (p = 1) then TIMES[CONST c; VAR xJ::(deployEnv t1 flag)
else if (c = 1) then POWER(x, p)::(deployEnv tl flag)
else TIMES [CONST c; POWER(x, p)l::(deployEnv tl flag)
)
| 01->10

in

let rec updateEnv : (string * int * int) -> env -> int -> env
= fun elem env flag ->
match env with
| (hd::tl) ->

(

match hd with

I (x, ¢, p) —>

¢

match elem with
[(x2, c2, p2) ->
if (flag = @) then
if (x = x2 8& p = p2) then (x, (c + c2), p)::tl
else hd::(updateEnv elem t1 flag)
else
if (x = x2) then (x, (c*c2), (p + p2))::tl
else hd::(updateEnv elem t1 flag)
)
)
| 1 -> elem::[]

in

let rec doDiff : aexp * string -> aexp
= fun (aexp, x) —>
match aexp with
| CONST _ -> CONST 0
| VAR v ->
if (x = v) then CONST 1
else CONST @
| POWER (v, p) ->
if (p = @) then CONST @
else if (x = v) then TIMES ((CONST p)::POWER (v, p-1)::[1)
else CONST @
| TIMES lst ->
(
match st with

match (hd, diff_hd, t1, diff_tl) with
(CONST p, CONST s, [CONST rJ, CONST q) -> CONST (pxq + rxs)
(CONST p, _, _, CONST g) ->
if (diff_hd = CONST @ || tl = [CONST @1) then CONST (p*q)
else SUM [CONST(p*q); TIMES(diff_hd::t1)]
(_, CONST s, [CONST rl,) ->
if (hd = CONST @ || diff_tl1 = CONST @) then CONST (rs)
else SUM [TIMES [hd; diff_t1]; CONST(rxs)]
| - ->
if (hd = CONST 0 || diff_tl = CONST @) then TIMES(diff_hd::tl)

else if (tl = [CONST @] || diff_hd = CONST @) then TIMES [hd; diff_t1]

else SUM [TIMES [hd; diff_t1]; TIMES (diff_hd::t1)]
)
| [1 -> CONST @

| SUM st -> SUM(List.map (fun aexp -> doDiff(aexp, x)) lst)

in

let rec simplify : aexp -> env -> int -> aexp list

= fun aexp env flag >

match aexp with
| SUM 1st ->

(

match lst with
| (CONST c)::tl -> simplify (SUM t1) (updateEnv ("const", c, @) env @) 0
| (VAR x)::tl -> simplify (SUM t1) (updateEnv (x, 1, 1) env 0) @
| (POWER (x, p))::tl -> simplify (SUM t1) (updateEnv (x, 1, p) env @) @
| (SUM 1st)::tl -> simplify (SUM (List.append lst t1)) env @
| (TIMES 1st)::tl ->
(
let 1 = simplify (TIMES 1st) [11 in
match 1 with
| hi:t =>
if (t = [1) then List.append 1 (simplify (SUM t1) env 0)
else List.append (TIMES 1::[1) (simplify (SUM t1) env @)

1 ->10
)
| [1 -> deployEnv env 0
)
| TIMES 1st ->
(

match 1st with

| (CONST ¢)::tl -> simplify (TIMES t1) (updateEnv ("const”, c, @) env 1) 1
| (VAR x)::tl -> simplify (TIMES t1) (updateEnv (x, 1, 1) env 1) 1

| (POWER (x, p))::tl -> simplify (TIMES tl) (updateEnv (x, 1, p) env 1) 1
| (SUM 1st)::tl —>

let 1 = simplify (SUM 1st) [] @ in
match 1 with
| h:
if (t = [1) then List.append 1 (simplify (TIMES tl) env 1)
else List.append (SUM 1::(]) (simplify (TIMES t1) env 1)
| [1->[1 (* Feedback : Replace [1 by ((Sum lst) t1) *)
)
| (TIMES 1st)::tl -> simplify (TIMES (List.append lst t1)) env 1
| [-> deployEnv env 1

let result = doDiff (aexp, x) in

match result with

| SUM _ -> SUM (simplify result [] @)

| TIMES _ -> TIMES (simplify result [] 1)
| _ -> result

Nzl &F4

1o

M K= Ere 48

Application to Intelligent Tutoring System

il

CodeOnWeb

FixML-generated feedback: ((Sum lst)::tl)

oncoder

-

let rec diff :
= fun (e, x) ->
match e with
Const n -> Const 0

I
| Var a => if (a <> x) then Const @ else Const 1
I
I

aexp * string -> aexp

Power (a, n) -> if (a <> x) then Const @ else Times [Const n; Power (a, n-1)]

Times 1 >
begin

match 1 with

| [] -> Const ©

| hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)1]

end
| Sum 1 -> Sum (List.map (fun e -> diff (e,x)) 1)

0 B35}
O A3

type aexp =

|CONST of int
VAR of string
POWER of string int
TIMES of aexp list
SUM of aexp list

type env = (string * int * int) list

let diff : aexp * string -> aexp
= fun (aexp, x) ->

let rec deployEnv :
= fun env flag ->
match env with

| hd::tl ->

(

match hd with

1(x, ¢, p) >

if (flag = 0 8& c = @) then deployEnv tl flag

else if (x = "const" && flag = 1 & c = 1) then deployEnv tl flag
else if (p = @) then (CONST c)::(deployEnv tl flag)

else if (c =1 8& p = 1) then (VAR x)::(deployEnv t1 flag)

else if (p = 1) then TIMES[CONST c; VAR xJ::(deployEnv t1 flag)
if (c = 1) then POWER(x, p)::(deployEnv t1 flag)

ES [CONST c; POWER(x, p)]::(deployEnv tl flag)

env -> int -> aexp list

)
1 00->0
in

let rec updateEnv : (string * int int)
= fun elem env flag ->

nv -> int -> env

match env with
| (hd::tl) ->
(
match hd with
I (x, ¢, p) —>
¢

match elem with
[(x2, c2, p2) ->
if (flag = @) then
if (x = x2 8& p = p2) then (x, (c + c2), p)::tl
else hd::(updateEnv elem t1 flag)
else
if (x = x2) then (x, (c*c2), (p + p2))::tl
else hd::(updateEnv elem t1 flag)
)
)
| 1 -> elem::[]

in

let rec doDiff : aexp * string -> aexp
= fun (aexp, x) —>
match aexp with
| CONST _ -> CONST 0
| VAR v ->
if (x = v) then CONST 1
else CONST @
| POWER (v, p) ->
if (p = @) then CONST @
else if (x = v) then TIMES ((CONST p)::POWER (v, p-1)::[1)
else CONST @
| TIMES lst ->
(
match st with

match (hd, diff_hd, tl, diff_tl) with

(CONST p, CONST s, [CONST rJ, CONST q) -> CONST (pxq + rxs)

(CONST p, _, _, CONST g) ->

if (diff_hd = CONST @ || t1 = [CONST @]) then CONST (pq)

else SUM [CONST(p*q); TIMES(diff_hd::t1)]

(_, CONST s, [CONST rl,) ->

if (hd = CONST @ || diff_tl = CONST @) then CONST (rxs)

else SUM [TIMES [hd; diff_t1]; CONST(rxs)]

| - ->
if (hd = CONST @ || diff_tl = CONST @) then TIMES(diff_hd::tl)
else if (tl = [CONST @] || diff_hd = CONST @) then TIMES [hd; diff_t1]
else SUM [TIMES [hd; diff_t1]; TIMES (diff_hd::tl1)]

)
| [J -> CONST @

| SUM 1st -> SUM(List.map (fun aexp -> doDiff(aexp, X)) lst)
in
let rec simplify : aexp -> env -> int -> aexp list
= fun aexp env flag ->
match aexp with
| SUM 1st ->
¢
match lst with
| (CONST c)::tl -> simplify (SUM t1) (updateEnv ("const", c, @) env @) @
| (VAR x)::tl -> simplify (SUM t1) (updateEnv (x, 1, 1) env @) @
| (POWER (x, p))::tl -> simplify (SUM t1) (updateEnv (x, 1, p) env @) 0
| (SUM 1st)::tl -> simplify (SUM (List.append st t1)) env 0
| (TIMES 1st)::tl ->
(
let 1 = simplify (TIMES 1st) [1 1 in
match 1 with
->
if (t = []) then List.append 1 (simplify (SUM t1) env @)
nd (TIMES 1::[1) (simplify (SUM tl) env @)

el JprreTT

0

| [1 -> depTOyENv=eEmM o

)

| TIMES 1st ->

(
match 1st with
| (CONST ¢)::tl -> simplify (TIMES tl) (updateEnv ("const”, c, @) env 1) 1
| (VAR x)::tl -> simplify (TIMES t1) (updateEnv (x, 1, 1) env 1) 1
| (POWER (x, p))::tl -> simplify (TIMES t1) (updateEnv (x, 1, p) env 1) 1
| (SUM 1st)::tl ->

let 1 = simplify (SUM 1st) [] @ in
match 1 with
| h::t ->
if (t = [1) then List.append 1 (simplify (TIMES tl) env 1)
else List.append (SUM 1::(]) (simplify (TIMES t1) env 1)
| [1->[1 (* Feedback : Replace [1 by ((Sum lst) t1) *)
)
| (TIMES 1st)::tl -> simplify (TIMES (List.append lst t1)) env 1
| [-> deployEnv env 1

let result = doDiff (aexp, x) in

match result with

| SUM _ -> SUM (simplify result [] @)

| TIMES _ -> TIMES (simplify result [] 1)
| _ -> result

Nzl &F4

FAH

1o

o Jq %;% H

CFO} 48

Testcases

ML
Correct Program

-~

=

ML

Statistical Fault

Qcalization

-

O
OQO

Reduction

~

Component

_

L

Type-directed
Enumeration

- J

ats

Program Synthesis

/

_

A

Symbolic
Execution

§

Y

—

Repaired Program

49

Examples

let rec sigma f a b =

: 2 sigma (fun x -=> x) 1 10 = 55
if f a = f b then _ sigma (fun x -> x*x) 1 7 = 140
let induction = f b 1in sigma (fun x => x mod 3) 1 10 = 10

induction + sigma f a (b-1)
else f b

Examples

a'=»>b

let rec sigman ab=

= sigma (fun x => x) 1 10 = 55
1f| f a.!-'f ? then _ sigma (fun x -> x*x) 1 7 = 140
let induction = f b 1in sigma (fun x -> x mod 3) 1 10 = 10

induction + sigma f a (b-1)
else f b

Examples

a'=»>b

let rec sigman ab=

sigma (fun x -> x) 1 10 = 55
if|f a != f b [then _ sigma ffun X —> xix) 17 = 140
let induction = f b in sigma (fun x -=> x mod 3) 1 10 = 10
induction + sigma f a (b-1)
else f b
type btree =
| Empty

| Node of int * btree * btree

let rec mem n tree =
match tree with
| Empty -> false
| Node (a, b, c) ->
if a = n then true
else if a < n then mem n b
else mem n c

mem 1 (Node(2,Empty,Empty)) = false
mem 2 (Node(3,Node(2,Empty,Empty),Empty)) = true

Examples

a'=»>b

let rec sigman ab=

sigma (fun x -> x) 1 10 = 55
if|f a != f b [then _ sigma ffun X —> xix) 17 = 140
let induction = f b in sigma (fun x -=> x mod 3) 1 10 = 10
induction + sigma f a (b-1)
else f b
type btree =
| Empty

| Node of int * btree * btree

let rec mem n tree =
match tree with
| Empty -> false
| Node (a, b, c) ->
if a = n then true
else|if a < n then mem n b
else mem n c

mem 1 (Node(2,Empty,Empty)) = false
mem 2 (Node(3,Node(2,Empty,Empty),Empty)) = true

» mem n b || mem n c

Examples

type exp =
| Num of int
| Plus of exp * exp
| Minus of exp * exp

tyTeTiﬂgmﬂa - eval (Imply(AndAlso(True,False),True)) = true

False eval (Equal(Plus(Num 1,Num 2),Num 3)) = true

I
| Not of formula

| AndAlso of formula * formula
| OrElse of formula * formula
| Imply of formula * formula

| Equal of exp * exp

let rec exp_to_int : exp -> int
= fun e —>
match e with
| Num n => n
| Plus (nl, n2) —> exp_to_int nl + exp_to_int n2
| Minus (nl, n2) -> exp_to_int nl - exp_to_int n2

let rec eval : formula -> bool
= fun f —>
match f with
| True —> true
| False -> false
| Not f1 -> not (eval fl)
| AndAlso (fl, f2) -> eval fl && eval f2
| OrElse (fl, f2) -> eval fl || eval f2
| Imply (f1, f2) —>
(match (fl1, f2) with
| (True, False) -> false
| _ —> true)
| Equal (el, e2) —> exp_to_int el = exp_to_int e2

Examples

type exp =
| Num of int
| Plus of exp * exp
| Minus of exp * exp

tyTeTiﬂgmﬂa - eval (Imply(AndAlso(True,False),True)) = true

False eval (Equal(Plus(Num 1,Num 2),Num 3)) = true

I
| Not of formula

| AndAlso of formula * formula
| OrElse of formula * formula
| Imply of formula * formula

| Equal of exp * exp

let rec exp_to_int : exp -> int
= fun e —>
match e with
| Num n => n
| Plus (nl, n2) —> exp_to_int nl + exp_to_int n2
| Minus (nl, n2) -> exp_to_int nl - exp_to_int n2

let rec eval : formula -> bool
= fun f —>
match f with
| True —> true
| False -> false
| Not f1 -> not (eval fl)
| AndAlso (fl, f2) -> eval fl && eval f2
| OrElse (fl, f2) -> eval fl || eval f2
| Imply (f1, f2) —>
(match (f1, f2) with
| (True, False) -> false
| _ —> true)
| Equal (eI, eZ) —> exp_to_int el = exp_to_int e2

» not (eval fl) || eval f2

append_1list ['d’

[1 Ei 1 ; 1 l) 1 ; 1 (: 1 ; 1 cl 1 ; 1 (3 1

append_1list [1;3;5;

let rec find e 1 =
match 1 with
| [1 —> false
| h::t —> if h =

let rec help_append_

()

Examples

Q) Append lists without duplicates R
"3 ‘g'] ['a';'b"';'c';'d"] ”
R T < M
4;3] [3;5;6;6;4] = [3; 5; 6; 4; 1]
e then true else find e t
list 11 12

match 11 with

| [1 = 12

| h::t —>
if find h 12
else help_appen

let append_list x y

4

A 4
false then help_append_list t (12@[h]) v
d list t 12

help_append_list x y

stackoverflow Questions Developer Jobs Tags Users Search...

| have a help function in my Ocaml project that helps to append a list to another without element
duplicate. For example, append list x: [d, e, f, g] to list y [a, b, ¢, d], result should
be[a, b, c,d, e, f g]

The function | wrote is like this:

(* helper function checks if list contains element x*)
let rec find e 1 =
match 1 with
[1 — false
[(h::t) —> if (h = e) then true else find e t

(* helper function append 11 to 12 without duplicate *)
let rec help_append_list 11 12 =
match 11 with
[1 - 12
[(h::t) => if (find h 12 = false) then (help_append_list t ([h]@12)) else (F

"

But this dosen't look like working well when | use it, it turns out to be there's still duplicate elements
appear.

Please take a look at the above functions and give me some suggestion on how to correct them...
Thank you=)

list append ocaml

If you use Set , you only need union of two sets for the purpose.
If 12 in help_append_list doesn't have duplication, your function works fine.

Suppose that x and y could have their own duplication, and the order doesn't matter, you could
use:

let append_list x y = help_append_list x (help_append_list y [1)

| have some comments on your functions. First, find is the same as exists function in List
module. You probably want to write it for learning purpose, so if (h = e) then true else ...
should be replaced by || :

let rec find e = function
| [1 — false
| h::tt -=> h=e || find e t

Second, [h]l@l2 is an inefficient way to write h::12:

let rec help_append_list 11 12 =
match 11 with
| [1 > 12
| h:i:t => if find h 12 then help_append_list t 12
else help_append_list t (h::12)

Examples

A\
A d I o t 'th t d I ° t = stackoverflow Questions Developer Jobs Tags Users Search...
P P e n I S S ' ' I O u u P I C a e S A, | have a help function in my Ocaml project that helps to append a list to another without element
duplicate. For example, append list x: [d, e, f, g] to list y [a, b, ¢, d], result should
1 belab,cdefgdl
W The function | wrote is like this:

append_list ['d';'e";" ‘gl

Y [‘a';'b"';'c';'d"]
['a'; 'b'; 'c' 'd'; b ']

f ; lgl

append_list [1;3;5;4;3] [3;5;6;6;4] = [3; 5; 6; 4; 1]

let rec find e 1
match 1 with
| [1 —> false
| h::t —=> if h = e then true else find e t

let rec help_append_list 11 12
match 11 with N
| []1 -> 12 4
| h::t v
if find h 12 = false then help_append_list t (12@[h]) v
else help_append_list t 12

let append_list x y = help_append_list x|y

l

(help_append_list y [1)

(* helper function checks if list contains element x*)
let rec find e 1 =
match 1 with
[1 — false
[(h::t) —> if (h = e) then true else find e t

(* helper function append 11 to 12 without duplicate *)
let rec help_append_list 11 12 =
match 11 with
[1 - 12
[(h::t) => if (find h 12 = false) then (help_append_list t ([h]@12)) else (F

But this dosen't look like working well when | use it, it turns out to be there's still duplicate elements
appear.

Please take a look at the above functions and give me some suggestion on how to correct them...
Thank you=)

list append ocaml

If you use Set , you only need union of two sets for the purpose.
If 12 in help_append_list doesn't have duplication, your function works fine.

Suppose that x and y could have their own duplication, and the order doesn't matter, you could
use:

let append_list x y = help_append_list x (help_append_list y [1)

| have some comments on your functions. First, find is the same as exists function in List
module. You probably want to write it for learning purpose, so if (h = e) then true else ...
should be replaced by || :

let rec find e = function
| [1 — false
| h::tt -=> h=e || find e t

Second, [h]l@l2 is an inefficient way to write h::12:

let rec help_append_list 11 12 =
match 11 with
| [1 > 12
| h:i:t => if find h 12 then help_append_list t 12
else help_append_list t (h::12)

Examples

) Find unique elements

;4] = [5;6;4]
5

let rec unig_help : int list -> int -> int

= fun 1 n ->
match 1 with
| [1 — []

| h::t —> if n = h then uniq_help t n

else h::(uniq_help t n)

let rec unig : int list -> int list
= fun x ->

match x with

| [1 —> [1]

| hd::tl —> uniq_help tl hd

;7:;4;8] = [3;5;7;4;8]

g“’stackoverf[ow Questions Developer Jobs Tags Users Search...

A, |amworking on a project with OCaml and there are some problems regarding to arrays that | am
not sure with. | am not allowed to use the List module, so please give me some idea or suggestion
2 with my works.

v First, | already implemented a function 'a list —> 'a list called uniq that return a list of the
unig elements in an array, for example uniqg [5;6;5;4] => [6;5;4]

1 Here is my implementation:

let rec uniq x =
let rec unigq_help 1L n =

match 1 with

[1 -1

| h::t->unig_help t, n if (n = h) else (h :: (unig_help(t, n)))
match x with

[1 -1
| h::t => uniq_help t, h

| mot sure this is a correct implementation, can someone give me some suggestion or correctness?

. Youfunctions are syntactically incorrect for various reasons:

| |
.l_ 1 S t 6 e unig_help takes two elements so you have to invoke it using uniq_help t n, not
unig_help(t, n) and the like.
v

e an if/else expression should have the form of if cond then exprl else expr2.
J

N e touse uniq_help locallyin uniq, you need an in keyword.
Atter fixing syntax errors, your function looks like:

let rec uniq x =
let rec uniq_help 1L n =
match 1 with
| [1 =11
| h:: t =>if n = h then unig_help t n else h::(uniq_help t n) in
match x with
| 1 =10
| h::t —> uniq_help t h

However, to be sure that each element is unique in the list, you have to check uniqueness for all of
its elements. One quick fix could be:

let rec unig x =
(* unig_help is the same as above)
match x with
| 1 =11
| h::t —> h::(unig_help (unig t) h)

Examples

g“’stackoverf[ow Questions Developer Jobs Tags Users Search...

F . d . I I I I
I n u n I q u e e e e n ts A, |amworking on a project with OCaml and there are some problems regarding to arrays that | am

not sure with. | am not allowed to use the List module, so please give me some idea or suggestion
2 with my works.

v First, | already implemented a function 'a list —> 'a list called uniq that return a list of the
unig elements in an array, for example uniqg [5;6;5;4] => [6;5;4]

1 Here is my implementation:

l4] -_— [5'6'4] let rec uniq x =
1 4 4 1 4 let rec uniq_help L n =
5 match 1 with

; 7 ; 4 ; 8] - [3 ; 5 ; 7 ; 4 ; 8] | tE]::>t[1> unig_help t, n if (n = h) else (h :: (unig_help(t, n)))

match x with
-1
| h::t => uniq_help t, h

| mot sure this is a correct implementation, can someone give me some suggestion or correctness?

. Youfunctions are syntactically incorrect for various reasons:
| |]]] | | n
1 et re c u n 1q h el p : 1 n t .L 1 S t -_—> 1 n t -— 1 n t .l_ 1 S t 6 e uniq_help takes two elemgnts $0 you have to invoke it using unigq_help t n, not
— uniq_help(t, n) and the like.
—_— f u n .L n —> v e an if/else expression should have the form of if cond then exprl else expr2.

v e touse uniq_help locallyin uniq, you need an in keyword.

L]
ma t c h .l' Wlt h After fixing syntax errors, your function looks like:
| [] —> [] let rec uniq x =
let rec uniq_help 1L n =

" u match 1 with
| h : : t _> 1f n - h then unlq—help t n I rlrl::_>t[1> if n = h then uniq_help t n else h::(unig_help t n) in

match x with

else h::(uniq_help t n) B

However, to be sure that each element is unique in the list, you have to check uniqueness for all of
its elements. One quick fix could be:

let rec uniq : int list -> int list a—

= fun x -> g
match x with e
| [1 —= [
| hd::tl -> [uniq_help tl hd » hd::(uniq_help (uniq tl) hd)

Thank you!

® Research areas: programming Ianguages software engineering,
software security — | .

® program analysis and testing
® program synthesis and repair

® Publication: top-venues in PL, SE,
Security, and Al:

e PLDI(12;14),00PSLA(15;17a;17b;18a.18b.19),TOPLAS(14.16.17;
8/19), ICSE('17,18;19), FSE('18,19),ASE’ 18, S&P’17, ||CAI(17;18), etc

http://prl.korea.ac.kr

http://prl.korea.ac.kr

