
Introduction Background Problem Solution Experimental Results Conclusion

Conclusion

• Abstract interpretation (or data-flow) analysis performance
problems due to spurious executions are critical.

Real Execution
20%

Spurious Execution
80%

• Spurious Interprocedural Cycles mainly contribute to spurious
executions.

• We present an algorithm that avoids such cycles during
interprocedural analyses.

Avoiding Spurious Interprocedural Cycles
Matters For Scalable Analyses

1. Motivation and Goal

• Abstraction of procedure call induces spurious cycles.
- Motivation: A bottleneck of scalability

- Goal: Reducing spurious executions for efficiency

Introduction Background Problem Solution Experimental Results Conclusion

Statistics

Program Procedures Ratio Nodes Ratio
spell-1.0 24/31(77%) 751/782(95%)
gzip-1.2.4a 100/135(74%) 5,988/6,271(95%)
sed-4.0.8 230/294(78%) 14,559/14,976(97%)
tar-1.13 205/222(92%) 10,194/10,800(94%)
wget-1.9 346/434 (80%) 15,249/16,544 (92%)
bison-1.875 410/832(49%) 12,558/18,110(69%)
proftpd-1.3.1 940/1,096(85%) 35,386/41,062(86%)
apache-2.2.2 1,364/2,075(66%) 71,719/95,179(75%)

Introduction Background Problem Solution Experimental Results Conclusion

Effects on Performance

1. A small change inside a butterfly cycle can make the nearly
entire program re-analyzed.

2. larger cycles ! more dependences ! more repetitions

spell-1.0 sed-4.0.8
(2,213 LOC, > 30 repetitions) (26,807 LOC, > 150 repetitions)

3. Solution
- Idea

- How to detect spurious executions?

4. Experimental Results

• Analysis can spend most of its time analyzing them.
• This is undesirable since they are spurious executions.

return1

return2

call f

call f

entryf

exitf

f

return1

return2

call f

call f

entryf

exitf

f

f

entryf

exitf

α

!"#!$%&%!%'%!(&)"# *+,&$*!&!%'%!(&)"#

• Real C programs often contain large spurious cycles.

• Larger cycles require more repetitions during analysis.

Introduction Background Problem Solution Experimental Results Conclusion

Idea

X

R1

R2

R3

spurious

spurious

current work item

next work item

spurious return

During worklist algorithm, spurious returns are identified and
pruned. Two issues:

• How to detect spurious returns (in a practical manner)?

• Is it correct? (All the real execution paths should be
considered by the algorithm.)

During worklist algorithm, spurious executions are
identified and pruned. Two issues:
• How to detect spurious executions?
• Is it sound? (Some executions are pruned)Introduction Background Problem Solution Experimental Results Conclusion

How To Detect Spurious Returns?

Xg

R1

R2

R3

Eg

C1

C2

C3

R(g) = { R1 }

f

g f

g

Two steps:

• When encountering a call node call f→g
r , the algorithm remembers that g should

return to only r . At the exit, computations to the other returns are pruned.

• Procedure calls are handled in a mutually exclusive manner. Calll-sites lock the

callee and the other calls wait until the lock is released.
• We guarantee mutual exclusion property by defining the computation

order as reverse topological ordering on the call graph.
• Recursion handling

• For each call, its single return site is remembered,
and the callee returns to only that remembered site.
• Procedure calls are handled in a mutual exclusive
manner: each procedure calls lock the callee and the
others wait until the lock is released.
• Recursion handling

 2. Why Are Spurious Cycles Expensive?

Before

After

Analysis Time

Real Execution Spurious Execution

-Nearly entire program should be re-analyzed due to
small changes inside the cycle.

-As programs are getting larger, the inefficiency due
to such cycles is getting more significant.

Hakjoo Oh, Seoul National University

• The amount of computation has been decreased
by, on average, 81.15%.
• Analysis complexity becomes nearly linear.

Cost Reduction for Real C Programs

0

25

50

75

100

sp
el
l

bar
co

de

ht
tp

tu
nn

el
gz

ip

pro
xy

kn
ife se

d ta
r

Normalized analysis time

N
o

rm
a
liz

e
d

 a
n

a
ly

s
is

 t
im

e
 (
p

e
rc

e
n

t)

0

25

50

75

100

sp
el
l

bar
co

de

ht
tp

tu
nn

el
gz

ip

pro
xy

kn
ife se

d ta
r

1311
7

24
19

33

25

Normalized #iterations

N
o

rm
a
liz

e
d

 i
te

ra
ti
o

n
s
 (
p

e
rc

e
n

t)

• The amount of computation(#iterations) has decreased, on
average, 81.15%.

• The analysis time also has decreased, on average, 60%.

Introduction Background Problem Solution Experimental Results Conclusion

Complexity Reduction for Real C Programs

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 2000 4000 6000 8000 10000 12000 14000 16000

Th
e

N
um

be
r O

f I
te

ra
tio

ns
 (#

ite
ra

tio
ns

)

Program Size (#nodes)

RA
RA Fiting

RSS
RSS Fiting

0

75

150

225

300

sp
el
l

bar
co

de

ht
tp

tu
nn

el

pro
xy

kn
ife

gz
ip ta

r
se

d

a
v
e
ra

g
e
 n

u
m

b
e
r

o
f

v
is

it
a
ti
o

n
 p

e
r

n
o

d
e

Original RSS

(a) complexity curve (b) #iterations/#nodes

Conclusion
• Abstract interpretation (or data flow) analysis performance

problems due to spurious executions are critical.
• Spurious interprocedural cycles mainly contribute to

spurious executions.
• Static analysis can be much more efficient by avoiding them.

Programming
Research Laboratory http://ropas.snu.ac.kr

