

Automatically Generating Features for Learning
Program Analysis Heuristics for C-like Languages

Kwonsoo Chae (KU), Hakjoo Oh (KU), Kihong Heo (SNU), Hongseok Yang (Oxford)

1. Problem

● Common limitations of existing data-driven approaches

 → manual feature engineering:

 Time-comsuming Domain knowledge Analysis-dependent

codebase

ML

analysis

What people expect

codebase

feature
engineering

ML

analysis

Reality

codebase

automatically
generated
features

ML

analysis

Our goal

3. Automatic Feature Generation

2. Learning Analysis Heuristics

4. Results 5. Takeaways

x = 0; y = 0; z = input (); w = 0;
y = x; y++;
assert (y > 0); // Query 1 Apply FS!
assert (z > 0); // Query 2 FI
assert (w == 0); // Query 3 FI

1

2

3

4

5

● Learn a classifier that selects Query 1 only. Then,

(1) Collect queries that predicts positively.

(2) Collect program parts that are required to prove the queries.

Our goal: Automatically generate features to automatically

 represent each query as a feature vector ().

a = 0;
while (1) {

b = unknown ();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}

1
2
3
4
5
6
7
8

a = 0;
while (1) {

if (a < 3)
assert (a < 5);

a++;
}

1
2
3
4
5
6

x := x + c

x cx := c Q(x c)

(a) Original program (b) Feature program (c) Abstract data flow graph (Feature)

● Synthesize a small program that describes the key

 aspect of FS-effectiveness using a program reducer.

● Generalize the program text (commands are abstracted).

● Proper abstraction level ?: generalization vs. preservation

 → search via iterative cross validation

Inst-
ance

Query
prediction

Analysis Manual

Precision Recall Prove Cost Prove Cost

ITV 74.5 % 75.8 % 80.2 % 2.0x 55.1 % 2.3x

PTR 76.7 % 77.4 % 81.2 % 2.4x none

REL 79.0 % 79.9 % 81.1 % 1.4x 96.2 % 1.8 x

● Query prediction & final analysis

● Generated feature programs

 (Top 2 in partially-FS interval analysis)

int buf [10];
for (i = 0; i < 7; i++) {

buf[i] = 0; // Query 1
}

k = 255; p = malloc (k);
while (k > 0) {

*(p + k) = 0; // Query 2
k - - ;

}

Feature program 1 Feature program 2

6. Conclusion

● A framework for automatically generating

 features for learning program analysis heuristics

● A method that uses a program reducer for generating

 feature programs, which capture important behaviors of

 static analysis

● The notion of abstract data flow graphs as generic features

 in data-driven static anaylsis

● Experimental evaluations with three different kinds of

 static analyses.

● We have identified and solved the problem of manual

 feature engineering in data-driven static analysis.

● Example: partially flow-sensitive interval analysis

● Data-driven static analysis

codebase

✔ context-sensitivity heuristics
✔ relation tracking heuristics
✔ unsoundness heuristics
✔ etc.

