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1. Problem

●  Common limitations of existing data-driven approaches

  → manual feature engineering:
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x = 0;  y = 0;  z = input ();  w = 0;
y = x;  y++;
assert (y > 0);  // Query 1  Apply FS!
assert (z > 0);  // Query 2  FI
assert (w == 0); // Query 3  FI
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●  Learn a classifier                                that selects Query 1 only. Then,

(1)  Collect queries that       predicts positively.

(2)  Collect program parts that are required to prove the queries.

Our goal: Automatically generate features to automatically 

                represent each query as a feature vector (      ).

a = 0;
while (1) {

b = unknown ();
if (a > b)

if (a < 3)
assert (a < 5);

a++;
}
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a = 0;
while (1) {

if (a < 3)
assert (a < 5);

a++;
}
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x := x + c

x     cx := c Q(x     c)

(a) Original program (b) Feature program (c) Abstract data flow graph (Feature)

●  Synthesize a small program that describes the key 

  aspect of FS-effectiveness using a program reducer.

●  Generalize the program text (commands are abstracted).

●  Proper abstraction level ?: generalization  vs.  preservation

  → search via iterative cross validation
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Precision Recall Prove Cost Prove Cost

ITV 74.5 % 75.8 % 80.2 % 2.0x 55.1 % 2.3x

PTR 76.7 % 77.4 % 81.2 % 2.4x none

REL 79.0 % 79.9 % 81.1 % 1.4x 96.2 % 1.8 x

●  Query prediction & final analysis

●  Generated feature programs

  (Top 2 in partially-FS interval analysis)

int buf [10];
for (i = 0; i < 7; i++) {

buf[i] = 0;  // Query 1
}

k = 255; p = malloc (k);
while (k > 0) {

*(p + k) = 0; // Query 2
k - - ;

}

Feature program 1 Feature program 2

6. Conclusion

●  A framework for automatically generating

  features for learning program analysis heuristics

●  A method that uses a program reducer for generating

  feature programs, which capture important behaviors of

  static analysis

●  The notion of abstract data flow graphs as generic features

  in data-driven static anaylsis

●  Experimental evaluations with three different kinds of

  static analyses.

●  We have identified and solved the problem of manual 

  feature engineering in data-driven static analysis.

●  Example: partially flow-sensitive interval analysis

●  Data-driven static analysis

codebase

✔ context-sensitivity heuristics
✔ relation tracking heuristics
✔ unsoundness heuristics
✔ etc.


