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We present a new machine-learning algorithm with disjunctive model for data-driven program analysis.

One major challenge in static program analysis is a substantial amount of manual effort required for tuning

the analysis performance. Recently, data-driven program analysis has emerged to address this challenge

by automatically adjusting the analysis based on data through a learning algorithm. Although this new

approach has proven promising for various program analysis tasks, its effectiveness has been limited due

to simple-minded learning models and algorithms that are unable to capture sophisticated, in particular

disjunctive, program properties. To overcome this shortcoming, this article presents a new disjunctive model

for data-driven program analysis as well as a learning algorithm to find the model parameters. Our model uses

boolean formulas over atomic features and therefore is able to express nonlinear combinations of program

properties. Key technical challenge is efficiently determine a set of good boolean formulas as brute-force

search would simply be impractical. We present a stepwise and greedy algorithm that efficiently learns

boolean formulas. We show the effectiveness and generality of our algorithm with two static analyzers:

context-sensitive points-to analysis for Java and flow-sensitive interval analysis for C. Experimental results

show that our automated technique significantly improves the performance of the state-of-the-art techniques

including ones hand-crafted by human experts.
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1 INTRODUCTION
One major challenge in static program analysis is a substantial amount of manual effort required

for tuning the analysis performance for real-world applications. Practical static analysis tools use a

variety of heuristics to optimize their performance. For example, context-sensitivity is essential

for analyzing object-oriented programs, as it distinguishes method’s local variables and objects in

different calling-contexts. However, applying context-sensitivity to all methods in the program

does not scale and therefore real-world static analyzers apply context-sensitivity only to profitable

methods determined by some heuristic rules [Smaragdakis et al. 2014]. Another example is a

relational analysis such as ones with Octagons [Miné 2006]. Because it is impractical to keep track

of all variable relationships in the program, static analyzers employ variable-clustering heuristics

∗
The first and second authors contributed equally to this work

†
Corresponding author

Authors’ address: Minseok Jeon, minseok_jeon@korea.ac.kr; Sehun Jeong, gifaranga@korea.ac.kr; Sungdeok Cha, scha@

korea.ac.kr; Hakjoo Oh, hakjoo_oh@korea.ac.kr, Department of Computer Science and Engineering, Korea University, 145,

Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea.

2009. 0164-0925/2017/12-ART39 $15.00

https://doi.org/0000001.0000001

ACM Trans. Program. Lang. Syst., Vol. 9, No. 4, Article 39. Publication date: December 2017.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001


39:2 Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh

to apply Octagons only to small sets of program variables [Blanchet et al. 2003; Miné 2006]. Other

examples include heuristics for trace partitioning (e.g. when to split and merge traces) [Rival and

Mauborgne 2007] and heuristics for clumping abstract states in disjunctive analysis [Li et al. 2017],

to name a few. In practice, the qualities of these heuristics determine the final benefit of static

analysis tools. However, manually-designing such heuristics is nontrivial and requires a huge

amount of laborious work and expert knowledge.

Recently data-driven program analysis has emerged to address this challenge of manually tuning

program analysis tools [Cha et al. 2016; Chae et al. 2017; Heo et al. 2016, 2017b; Jeong et al.

2017; Oh et al. 2015]. In this approach, program-analysis heuristics are automatically generated

from codebases through learning algorithms with little reliance on analysis designers. Instead

of manually developing a fixed heuristic from scratch, it employs parametric heuristic rules and

learning algorithms to find the parameter values that maximize the analysis performance over the

codebases. This data-driven approach has proven effective at generating various analysis heuristics

automatically: e.g., heuristics for applying flow-sensitivity [Oh et al. 2015], variable clustering [Heo

et al. 2016], widening thresholds [Cha et al. 2016], and unsoundness [Heo et al. 2017b].

However, current techniques for data-driven program analysis are limited to rather simple

machine-learning models and algorithms, which are inherently short of capturing sophisticated

program properties that are especially hard to find manually. For example, Oh et al. [2015] proposed

a machine-learning model and algorithm based on the linear combination of feature vectors and

numeric parameters, akin to a linear regression in typical machine learning applications. While

the method is simple and generalizing well to unseen programs, the algorithm based on the linear

model cannot capture nontrivial, in particular disjunctive, program features, which is often needed

to generate high-quality analysis heuristics. For example, as we demonstrate in this article, learning

a cost-effective heuristic for context-sensitive points-to analysis for Java is beyond the capability of

the previous linear algorithms.

In this article, we present a novel learning algorithm that overcomes the existing limitation. Our

algorithm is based on a parameterized heuristic that is able to express disjunctive properties of

program elements. Our algorithm is generally applicable to any program analysis based on k-limited

abstractions (e.g. k-CFA). Let us describe our algorithm with k-CFA-based context-sensitive analysis.
When k (i.e. the maximum context depth to maintain) is given, we use a set of k boolean formulas:

{ f1, f2, . . . , fk } where fi is a boolean combination of the atomic features that captures complex

and high-level properties of a method. Each atomic feature describes a low-level property such

as whether a method has an allocation statement or not. Context-sensitivity of depth i is applied
only to the methods whose properties are described by the formula fi . This way, the analysis

applies context-sensitivity selectively and the selection is determined by the k boolean formulas.

Key technical challenge in this approach is to efficiently determine a good set of boolean formulas

as brute-force search would simply be impractical. We demonstrate that it is possible to reduce

the problem of simultaneously learning k boolean formulas into a set of k sub-problems of finding

each formula, drastically reducing the search space. We use a greedy algorithm to solve each

sub-problem, which produces accurate yet general formulas by iteratively refining the formulas

while keeping them in disjunctive normal form.

Experimental results show that our learning algorithm produces highly cost-effective program-

analysis heuristics for two instance analyses: context-sensitive points-to analysis for Java and flow-

sensitive interval analysis for C. On top of the Doop framework [Bravenboer and Smaragdakis 2009],

we applied our algorithm to three context-sensitive analyses: selective object-sensitivity [Kastrinis

and Smaragdakis 2013b], object-sensitivity [Milanova et al. 2005], and type-sensitivity [Smaragdakis

et al. 2011]. In all analyses, the results show that our approach strikes a good balance between
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precision and scalability trade-offs. For instance, whenwe applied our technique to selective 2-object-

sensitivity (S2objH), the resulting analysis has virtually the same scalability of the context-insensitive

analysis while enjoying most of the precision benefits of the most precise analysis. In particular, our

data-driven points-to analysis excels the performance of the existing manually-crafted state-of-the-

art, namely introspective analyses [Smaragdakis et al. 2014], in terms of precision and speed while

the prior algorithm based on linear model by Oh et al. [2015] only generated heuristics that lag

behind the manually-written heuristics. We also implemented our approach in Sparrow [Oh et al.

2012] and confirmed that it generates heuristics that outperform for controlling flow-sensitivity of

interval analysis for C.

Contributions. In summary, our key contributions are as follows:

• We present a new learning algorithm for data-driven program analysis. Although the idea of

data-driven program analysis itself is not new [Cha et al. 2016; Heo et al. 2016, 2017b; Oh

et al. 2015], we make two novel contributions: use of nonlinear model for program-analysis

heuristics (Section 4.1) and efficient learning algorithm (Section 4). On the other hand, existing

data-driven program analyses rely on simple linear models [Cha et al. 2016; Oh et al. 2015]

or off-the-shelf models in the presence of labelled data [Heo et al. 2016, 2017b].

• We demonstrate the effectiveness of our approach with two instance analyses: context-

sensitive points-to analysis for Java and flow-sensitive interval analysis for C. We also

demonstrate that use of nonlinear model is a key to success; without it, the analysis becomes

significantly less precise and costly (Section 7.2).

Comparison with Previous Version. This article supersedes its previous version [Jeong et al. 2017]

presented at ACM Conference on Object-Oriented Programming, Languages, Systems, and Applications
2017 (OOPSLA 2017). In comparison, this article makes the following extensions:

• It presents our learning algorithm in a general setting (Sections 3, 4.1, 4). The previous

paper has focused on context-sensitivity for points-to analysis and the algorithm was tightly

coupled with the analysis. We generalized the presentation so that the algorithm is applicable

to any static analyses with k-limited abstractions.

• It shows the generality of the algorithm with a new instance analysis. We describe how

to apply the algorithm to a flow-sensitive interval analysis for C (Section 6) and provide

experimental evaluation with the analysis (Section 7.4).

• It provides an overview section with a running example to give a high-level ideas underlying

our approach and learning algorithm (Section 2).

• It elaborates on the instance analysis of points-to analysis for Java (Section 5). The previous

paper has omitted descriptions on the details of Datalog-based points-to analysis for Java.

2 OVERVIEW
We illustrate our approach using a context-sensitive points-to analysis for Java.

2.1 Selective Context-Sensitivity
Suppose we analyze the example program in Fig. 1 with a flow-insensitive and context-sensitive

subset-based points-to analysis. In this section, we consider call-site-sensitivity (k-CFA) and fix k
to 2. However, our approach is not limited to this particular analysis; for example, it also applies to

object-sensitivity and type-sensitivity with any k . The example program consists of five classes: A,
B, C, D, and E. The class C has three methods hakjoo-Super-Server(dummy, id1, and id2). Methods

id1 and dummy are called from B.m. In main, B.m is called twice. With the analysis, we would
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1 class D {} class E {}

2 class C {

3 void dummy(){}

4 Object id1(Object v){ return id2(v); }

5 Object id2(Object v){ return v; }

6 }

7 class B {

8 void m (){

9 C c = new C();

10 D d = (D)c.id1(new D()); //Query 1

11 E e = (E)c.id1(new E()); //Query 2

12 c.dummy();

13 }

14 }

15 public class A {

16 public static void main(String[] args){

17 B b = new B();

18 b.m();

19 b.m();

20 }

21 }

Fig. 1. Example program

like to prove that the two type-casting operations at lines 10 and 11 are safe; they perform safe

down-casting at runtime.

Note that context-insensitive points-to analysis cannot prove any of the queries. Because it is

insensitive to its calling contexts, the objects from allocation-sites at lines 10 and 11 get conflated

and therefore the argument (v) of method id1 points to objects of classes D and E. Eventually,
these two types of objects get propagated back to the results of the method calls at lines 10 and 11,

making the analysis concludes that the subsequent type-casts are potentially unsafe.

On the other hand, the conventional 2-call-site-sensitive analysis is able to prove the safety of the

queries as the methods id1 and id2 are analyzed separately for their calling-contexts. For example,

method id2 is analyzed separately for the calling contexts 4 · 10 and 4 · 11, where a · b denotes a

sequence of call-sites a and b (a is the most recent call-site) and we use line numbers as call-sites.

However, the 2-call-site-sensitive points-to analysis is typically too expensive to scale up to large

Java programs.

To achieve both precision and scalability, practical static analysis tools often apply context-

sensitivity selectively. For instance, to prove the queries in the example program, it is sufficient to

use 2-call-site-sensitivity only for C.id2, 1-call-site-sensitivity for C.id1, and context-insensitivity

for other methods (B.m and C.dummy). That is, the analysis uses the following information

{C.id2 7→ 2, C.id1 7→ 1, B.m 7→ 0, C.dummy 7→ 0}

that maps methods to their appropriate context-depths (k = 0, 1, or 2). The main challenge in this

approach is to determine the amount of context-sensitivity required for each method. Typically this

kind of decisions has been made by hand-crafted heuristics, e.g., [Smaragdakis et al. 2014]. Our goal

is to automate this process and generate such heuristics from data through a learning algorithm.
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Parametric

Static Analyzer

Training Data

(Programs)

Atomic Features

{a1,a2, . . . ,a25}

Our Learning Algorithm

Learned heuristic for selective 2-object-sensitive points-to analysis

f2 : 1 ∧ ¬3 ∧ ¬6 ∧ 8 ∧ ¬9 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25

f1 : (1 ∧ ¬3 ∧ ¬4 ∧ ¬7 ∧ ¬8 ∧ 6 ∧ ¬9 ∧ ¬15 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)∨
(¬3 ∧ ¬4 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ 10 ∧ 11 ∧ 12 ∧ 13 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)∨
(¬3 ∧ ¬9 ∧ 13 ∧ 14 ∧ 15 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)∨
(1 ∧ 2 ∧ ¬3 ∧ 4 ∧ ¬5 ∧ ¬6 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ ¬10 ∧ ¬13 ∧ ¬15 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22∧

¬23 ∧ ¬24 ∧ ¬25)

Fig. 2. Overview of our approach. Our algorithm takes static analyzer, training programs, and atomic features.

When we learn context-sensitivity heuristics for points-to analysis, we used 25 atomic features of methods.

As output, our algorithm produces boolean formulas over the atomic features. f1 and f2 above show the

formulas that are actually found by our learning algorithm for selective 2-object-sensitivity (S2objH ).

2.2 Approach Overview
Fig. 2 shows input and output of our algorithm. As input, our learning algorithm takes three

components: parametric static analyzer, training data, and atomic features. The static analyzer is a

parametric one that is able to assign different context-depths to each method, the training data

is just a collection of programs (without any labeled data), and atomic features are predicates on

methods that describe syntactic/semantic properties of methods, e.g., methods having invocation

statement in their body, methods that return strings, etc. For example, suppose we have five atomic

features:

A = {a1,a2,a3,a4,a5}.

and assume that the methods in Fig. 1 have the features as follows:

C.id2 : {a1,a3,a5}
C.id1 : {a3,a5}
B.m : {a1,a2,a3}

B.dummy : {a2,a3,a4}

(1)

The method C.id2 has features a1,a3,a5, method C.id1 has a3,a5, and so on.

Given the three components as input, our learning algorithm produces as output two boolean

formulas f1 and f2 over the atomic features, e.g.,

f1 = ¬a4 ∧ a5, f2 = (a1 ∧ a5) ∨ (a2 ∧ ¬a3).

The formulas f1 and f2 describe the methods that are determined by our algorithm to receive 1-CFA

and 2-CFA, respectively. In this case, the formula f1 describes the set of methods that have the

feature a5 but not a4. The formula f2 denotes the set of methods that have the conjunctive features

a1 ∧ a5 or a2 ∧¬a3. Therefore, with the method features in (1), the formulas f1 and f2 represent the
following sets of methods:

f1 : {C.id1, C.id2}, f2 : {C.id2}
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The learned formulas f1 and f2 are used for analyzing new unseen programs. For example, when

analyzing the program in Fig. 1, our analysis performs a selectively context-sensitive analysis by

applying 2-call-site-sensitivity to C.id2, 1-call-site-sensitivity to C.id1, and context-insensitivity

to the remaining methods. Note that we assign the greater context-depth 2 to C.id2when it belongs
to both f1 and f2.
Fig. 2 shows the formulas f1 and f2 that are actually found by our algorithm for selective 2-

object-sensitive points-to analysis for Java. For example, the learned formula f2 describes the set of
methods that have the atomic feature a1, does not have a3, does not have a6, does have a8, and so

on. The formula f1 is a disjunction of four different conjunctive formulas. In practice the heuristic

with these formulas performs extremely well compared to the existing heuristics manually-tuned

by analysis experts (Section 7). Note that the learned formulas are too complex to be discovered

manually. The main strength of our approach is to find such a nontrivial heuristic automatically

from data.

2.3 Our Learning Algorithm
Now we illustrate how our algorithm finds the formulas from an existing codebase. For simplicity,

we assume that the codebase consists of the single program in Fig. 1. In practice, we use exclusive

sets of programs for training and testing. We also assume that the maximum context-depth is 2 (i.e.

k = 2). Thus, our goal is to learn formulas f1 and f2.
Informally, the learning problem is formulated as the following optimization problem:

Find f1 and f2 that minimize the analysis cost while maintaining the analysis precision.

That is, we would like to find boolean formulas f1 and f2 such that the selective context-sensitive

analysis with f1 and f2 satisfies some precision constraint while minimizing the analysis cost.

The desired constraint on precision is given by users. In this section, we consider the precision

constraint that prescribes the analysis to prove both queries in the example program, i.e., having

the same precision as 2-CFA.

Our algorithm learns f1 and f2 in a stepwise fashion. We begin with learning f2 while fixing f1 to
true; that is, we apply 2-CFA to the methods described by f2 and 1-CFA to all the remaining methods

(i.e. methods that satisfy the formula true). The intuition is that we first identify the methods whose

precision improves with 2-CFA but not with 1-CFA. After that, we continue to learn the methods

that require 1-CFA to improve the precision. Below, we illustrate how to learn f2. Learning f1 can
be done with the same procedure.

Our algorithm learns f2 by iteratively running the analysis on the training program at different

precision levels. Initially, it analyzes the programwith full precision; that is, the algorithmmaintains

the formula in disjunctive normal form (DNF) and initially sets f2 to the most general formula:

f2 = a1 ∨ ¬a1 ∨ a2 ∨ ¬a2 ∨ · · · ∨ a5 ∨ ¬a5

Note that this formula is equivalent to true (i.e. denoting all methods in the program) and therefore

the analysis satisfies the given precision constraint (i.e. proving both queries). The algorithm

iteratively strengthens each (conjunctive) clause until it finds a formula with a minimal cost while

still proving the queries. At any iteration, the formula is a disjunction of conjunctions of literals:

f2 = c1 ∨ c2 ∨ · · · ∨ cm

where ci is a conjunction of literals (i.e. atomic features or their negations). One iteration of the

algorithm consists of the following steps:

(1) Choose the most expensive clause ci from f2 (i.e., the clause ci that makes the analysis

slowest). The individual cost of each conjunction ci can be obtained by analyzing the example
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program with f1 = true and f2 = ci . Thus, we choose the clause ci such that the analysis with

f2 = ci and f1 = true is more expensive than those with f2 = c j and f1 = true for all j , i .
Here, our algorithm is greedy and picks the most expensive clause to reduce the analysis

cost as much as possible in a single step of refinement.

(2) Strengthen the chosen clause. We conjoin the chosen clause ci with an atomic feature ak ∈ A
(or ¬ak ) that does not appear in ci :

f ′
2
= c1 ∨ c2 ∨ · · · (ci ∧ ak ) · · · ∨ cm .

This refinement is likely to reduce analysis cost but it decreases precision as well. In order

not to lose too much precision, we conservatively choose ak such that the resulting formula

decreases the analysis precision as least as possible. That is, among the formulas

f ′
2,a1 = c1 ∨ c2 ∨ · · · (ci ∧ a1) · · · ∨ cm

f ′
2,¬a1 = c1 ∨ c2 ∨ · · · (ci ∧ ¬a1) · · · ∨ cm

...
f ′
2,ak

= c1 ∨ c2 ∨ · · · (ci ∧ ak ) · · · ∨ cm (ak < ci )

f ′
2,¬ak

= c1 ∨ c2 ∨ · · · (ci ∧ ¬ak ) · · · ∨ cm (¬ak < ci )
...

f ′
2,an = c1 ∨ c2 ∨ · · · (ci ∧ an ) · · · ∨ cm

f ′
2,¬an = c1 ∨ c2 ∨ · · · (ci ∧ ¬an ) · · · ∨ cm

we choose one that leads to the most precise analysis.

(3) Check whether the formula f ′
2
still satisfies the desired precision (e.g. proving both queries).

• If f ′
2
satisfies the condition, we further check whether the refined clause ci ∧ ak is semanti-

cally subsumed by other clauses in f ′
2
. If so, we drop the clause ci ∧ ak from f ′

2
. Next, we

go back to step (2) and continue to strengthen f ′
2
further.

• If f ′
2
does not satisfy the precision condition, we rollback the latest change to f ′

2
and go

back to step (1) to pick another clause (other than ci ) to refine.

(4) The above procedure terminates when no longer clauses remain to refine. The formula f2 on
termination is returned.

For example, suppose at some iteration the formula f2 is given as follows:

f2 = a1 ∨ (a2 ∧ ¬a3)

At this point, we choose the most expensive conjunction in f2. Suppose that the analysis with
f2 = a1 is more expensive than that with f2 = a2 ∧ ¬a3. Then, our algorithm chooses the clause a1
and attempts to refine it.

To refine a1, we choose an atom ak ∈ A such that ak , a1, the analysis with f2 = a1 ∧ ak
satisfies the precision constraint (i.e. proving the two queries), and the precision loss due to the

new conjunct gets minimized. If no such atomic feature exists, we do not refine a1 and move on to

the next conjunction. Suppose a5 is the atom that satisfies the three conditions. Then, the formula

f2 gets strengthened as follows:

f ′
2
= (a1 ∧ a5) ∨ (a2 ∧ ¬a3)

Now the algorithm goes for another round of refinement of f ′
2
. The algorithm terminates when

every conjunction in f ′
2
fails to be refined.

3 SETTING
In this section, we define the class of static program analyses to which our approach is applicable.
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3.1 Parametric Program Analysis
Let P ∈ P be a program to analyze. Let JP be an index set of program components that represent parts

of P . For example, in a partially context-sensitive analysis, JP may represent the set of procedures,

methods, or call-sites in the program. In a partially flow-sensitive analysis, JP may represent the set

of program variables. Let k be a fixed non-negative integer that indicates the degree of abstraction.

Then, we define the set AP of abstractions for P as follows:

a ∈ AP = {0, 1, . . . ,k }
JP .

Abstractions are vectors of natural numbers in {0, 1, . . . ,k } with indices in JP , and are ordered

pointwise:

a ⊑ a′ ⇐⇒ ∀m ∈ JP . am ≤ a′m .

Intuitively, am = i means that we analyze the program partm at the level of the abstraction i . For
example, in a partially context-sensitive analysis, this means that the procedurem is analyzed with

context-sensitivity of depth i (i.e. the analysis distinguishing the last i context elements of the

procedure).

Note that this family of abstractions is general enough to cover commonly-used abstractions in

program analysis. For example, the parametric frameworks for k-call-site/object sensitivity [Mi-

lanova et al. 2005] and numerical analysis [Cha et al. 2016; Oh et al. 2015] belong to this family.

We can regard an abstraction a ∈ AP as a function from JP to {0, 1, . . . ,k }:

a ∈ AP = JP → {0, 1, . . . ,k }.

We write k and 0 for the most precise and least precise abstractions, respectively:

k = λm ∈ JP . k, 0 = λm ∈ JP . 0

For instance, in a partially context-sensitive analysis, the analysis with k represents the standard

k-limiting analysis while 0 means the context-insensitive analysis.

We assume that a set QP of assertions is given together with P . For instance, QP is the set of

all type casts in P and the analysis attempts to prove that they do not fail at runtime. We model

program analysis for P by the function:

FP : AP → ℘(QP ) × N.

Given a program P , the analysis takes an abstraction a ∈ AP of the program and returns a pair

(Q,n) of the set Q ⊆ QP of assertions proved by the analysis and the natural number n ∈ N that

represents the cost (e.g., time) of the analysis with the abstraction a. For instance,Q denotes the set

of type casts proved to be safe by the analysis. We define two projection functions: proved(FP (a))
and cost(FP (a)) denote the set of proved assertions (Q) and the cost (n) of the analysis FP (a),
respectively.

In this section, we assume that the analysis is monotone in the following sense:

Definition 3.1 (Monotonicity of Analysis). Let P ∈ P be a program and a, a′ ∈ AP be abstractions

of P . We say the analysis FP is monotone if the following condition holds:

a ⊑ a′ =⇒ proved(FP (a)) ⊆ proved(FP (a′)).

That is, we assume that more precise abstractions lead to proving more assertions. This condition

is required for our learning algorithm to guarantee precision. In this paper, we also generally

assume that the analysis cost monotonically increases with respect to the order of the abstraction.

Our algorithm does not strictly enforce this property (which is not always true in static analysis [Oh

2009]) but it is designed with this property in mind. Therefore, our approach may not be directly
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applicable to static analysis of JavaScript programs, where the analysis with the least precise

abstraction is usually not the cheapest one.

3.2 Goal
Suppose we have a codebase P = {P1, P2, . . . , Pm }, which is a collection of programs. Our goal is to

automatically learn from P a abstraction-selection heuristicH :

H (P ) : JP → {0, 1, . . . ,k }

which takes a program P and returns an abstraction (i.e., an assignment of abstraction levels to each

program component) of the program. OnceH is learned from the codebase, it is used to analyze

previously unseen program P as follows:

FP (H (P )).

Our aim is to learn from P a good heuristicH such that the precision of the analysis FP (H (P ))
is close to that of the most precise analysis FP (k) while its cost is comparable to that of the least

precise analysis FP (0).

4 OUR LEARNING ALGORITHM
In this section, we present our learning algorithm. We present our parameterized heuristic based on

boolean formulas (Section 4.1), define the learning objective (Section 4.2), and present our learning

algorithm (Section 4.3).

4.1 A Disjunctive Parameterized Heuristic
To enable learning, we first need to define a hypothesis space of the heuristics, which is called model

or inductive bias in the machine learning community. That is, we need to choose and represent a

model which is a restricted subset of the entire selection heuristics. We use a nonlinear, disjunctive

model that combines atomic features with boolean formulas.

We assume that a set of atomic features is given: A = {a1,a2, . . . ,an }. An atomic feature ai
describes a property of program components; it is a function from programs to predicates on

program components:

ai (P ) : JP → {true, false}.

Next, we define the following set of boolean formulas over the atomic features:

f → true | false | ai ∈ A | ¬f | f1 ∧ f2 | f1 ∨ f2

Given a program P , a boolean formula f means a set of program components, denoted [[f ]]P :

[[true]]P = JP [[¬f ]]P = JP \ [[f ]]P
[[false]]P = ∅ [[f1 ∧ f2]]P = [[f1]]P ∩ [[f2]]P

[[ai ]]P = {m ∈ JP | ai (P ) (m) = true} [[f1 ∨ f2]]P = [[f1]]P ∪ [[f2]]P

Suppose we are given a vector Π of k boolean formulas:

Π = ⟨f1, . . . , fk ⟩.
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This vector will become the parameter of our model. Given a parameter Π = ⟨f1, . . . , fk ⟩, we define
the model (i.e., parameterized heuristic), denotedHΠ , as follows:

HΠ (P ) = λm ∈ JP .




k ifm ∈ [[fk ]]P
k − 1 ifm ∈ [[fk−1]]P ∧m < [[fk ]]P

· · ·

k − i ifm ∈ [[fk−i ]]P ∧m <
⋃

k≥j>k−i [[fj ]]P
· · ·

1 ifm ∈ [[f1]]P ∧m <
⋃

k≥j>1[[fj ]]P
0 otherwise

Given P , the parameterized heuristic assigns an abstraction level j to each program component,

where the level j is determined according to the model parameter Π. A program componentm is

assigned the level j if the j-th boolean formula fj of Π includes the componentm, i.e.,m ∈ [[fj ]]P ,
and m is not implied by any other formulas fj+1, fj+2, . . . , fk at higher levels. That is, when m
belongs to both fi and fj (i > j), we favor assigning the greater abstraction level i tom.

4.2 The Optimization Problem
Once we define a modelHΠ , learning a good abstraction-selection heuristic corresponds to finding

a good model parameter Π. Given a codebase P = {P1, . . . , Pm } and the modelHΠ , we define the

learning problem as the following optimization problem:

Find Π that minimizes

∑
P∈P

cost(FP (HΠ (P ))) while satisfying
∑
P∈P |proved(FP (HΠ (P ))) |∑

P∈P |proved(FP (k)) |
≥ γ . (2)

That is, we aim to find a parameter Π that minimizes the cost of the analysis over the codebase

while satisfying the precision constraint,

∑
P∈P |proved(FP (HΠ (P ))) |∑

P∈P |proved(FP (k)) |
≥ γ , which asserts that the ratio of

the number of assertions proved by the analysis with Π to the number of assertions proved by the

most precise analysis must be higher than a predefined threshold γ ∈ [0, 1]. For instance, setting γ
to 0.9 means that we would like to ensure 90% of the full precision.

Although we assume a single client (e.g. safety of type casts) for presentation brevity, the

optimization problem can be defined for multiple clients. Suppose we have n clients, each of which

is accompanied with the corresponding projection function provedi (1 ≤ i ≤ n). Then, we can

redefine the precision constraint by, for example,
1

n
∑n

j=1

∑
P∈P |provedj (FP (HΠ (P ))) |∑

P∈P |provedj (FP (k)) |
≥ γ , where we

evaluate the overall performance by averaging the results.

4.3 The Learning Algorithm
Note that solving the optimization problem in Equation (2) is extremely challenging. This is mainly

because the space of parameters is intractably large. A model parameter Π consists of k boolean

formulas. Assuming that S is the space of possible boolean formulas over which we learn, searching

for k formulas simultaneously poses the huge search space of size |S|k . This space is typically too

large to enable effective learning even for small k .

Overall Algorithm. We present a learning algorithm that systematically searches for the best

solution. To do so, we first decompose the optimization problem in Equation (2) into k sub-problems:

Ψk ,Ψk−1, . . . ,Ψ1, which reduces the size of the search space from |S|
k
to k · |S|. Note that the solution

of the original problem is a vector of k boolean formulas: Π = ⟨f1, . . . , fk ⟩. In our approach, solving

the sub-problem Ψi (1 ≤ i ≤ k) produces the i-th boolean formula fi of Π. Therefore, we solve
the problems Ψi (1 ≤ i ≤ k) separately and combine their solutions fi (1 ≤ i ≤ k) to form

Π = ⟨f1, . . . , fk ⟩.
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The solution fi for the problem Ψi is defined in terms of fi+1, fi+2, . . . , fk , i.e., the solutions

of the problems Ψi+1,Ψi+2, . . . ,Ψk at higher levels. Suppose we already solved the problems

Ψi+1,Ψi+2, . . . ,Ψk and have their solutions fi+1, fi+2, . . . , fk . Then, the problem Ψi is defined as

follows:

Ψi ≡ Find f that minimizes

∑
P∈P

cost(FP (HΠi (P ))) while satisfying

∑
P∈P
|proved(FP (HΠi (P ))) |∑
P∈P
|proved(FP (k)) |

≥ γ . (3)

where Πi = ⟨true, . . . , true, f , fi+1, fi+2, . . . , fk ⟩. That is, when we solve the problem Ψi , we fix

the currently available solutions fi+1, fi+2, . . . , fk and attempt to find a formula f that achieves

the best performance with respect to fi+1, fi+2, . . . , fk . Note that the first i − 1 formulas of Πi are

true; according to the definition ofHΠ , this means that we apply the abstraction level i − 1 to all

remaining methods that are not selected by f , fi+1, fi+2, . . . , fk .
Since solving the problem Ψi requires to solve the higher-level problems Ψj (j > i), we proceed

in decreasing order from k to 1: We first solve the problem Ψk and use the result when we solve

the problem Ψk−1, and so on. Let fi be the solution of the problem Ψi (1 ≤ i ≤ k). Then, the
solution Π of the original problem in Equation (2) is simply obtained by combining the solutions fi :
Π = ⟨f1, f2, . . . , fk ⟩.
Algorithm 1 presents the learning algorithm. It takes as input static analyzer F , codebase P, the

degree of abstraction k , and atomic features A. A vector ⟨f1, f2, . . . , fk ⟩ of boolean formulas is

returned. At line 2, the formulas are initialized with true. At lines 3–5, it iterates the abstraction
degrees k,k − 1, . . . , 1 in decreasing order and updates the boolean formula fi of the current depth i .
The update is done by invoking the function LearnBooleanFormula, which we describe shortly.

Property of Our Algorithm. Before explaining how LearnBooleanFormula works, we point

out that while our learning approach reduces the search space significantly, it does not lose a

chance of finding good solutions. Specifically, our algorithm guarantees to preserve a minimal
solution of the original problem (2). Let us first define the notion of minimal solutions.

Definition 4.1. Let P be a codebase and Π = ⟨f1, f2, . . . , fk ⟩ be a parameter. We say Π is a minimal

solution of the problem (2) if

(1) Π meets the precision constraint:

∑
P∈P |proved(FP (HΠ (P ))) |∑

P∈P |proved(FP (k)) |
≥ γ , and

(2) there exists no solution smaller thanΠ: ifΠ′ is a parameter that meets the precision constraint,

i.e.,

∑
P∈P |proved(FP (HΠ′ (P ))) |∑

P∈P |proved(FP (k)) |
≥ γ , and Π′ is smaller than Π, i.e., ∀P ∈ P. HΠ′ (P ) ⊑ HΠ (P ), then

Π′ and Π are equivalent:

∀P ∈ P. HΠ′ (P ) = HΠ (P ).

In a similar way, we can define the notion of minimal solutions for the sub-problems as follows:

Definition 4.2. Let P be a codebase and fi be the solution of the problem Ψi . Let Πi be the vector

⟨true, . . . , true, fi , fi+1, . . . , fk ⟩

where fi+1, . . . , fk are solutions of problems Ψi+1, . . . ,Ψk , respectively. We say fi is minimal if

(1) Πi meets the precision constraint:

∑
P∈P |proved(FP (HΠi (P ))) |∑

P∈P |proved(FP (k)) |
≥ γ , and

(2) Πi is minimal: if Π′i = ⟨true, . . . , true, f
′
i , fi+1, . . . , fk ⟩ is a parameter that meets the precision

constraint, i.e.,

∑
P∈P |proved(FP (HΠ′i

(P ))) |∑
P∈P |proved(FP (k)) |

≥ γ , and Π′i is smaller than Πi , i.e., ∀P ∈ P. HΠ′i
(P ) ⊑

HΠi (P ), then Π′i and Πi are equivalent:

∀P ∈ P. HΠ′i
(P ) = HΠi (P ).
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Algorithm 1 Our Learning Algorithm

Input: Static analyzer F , codebase P, abstraction degree k , atomic features A
Output: A vector ⟨f1, f2, . . . , fk ⟩ of k boolean formulas

1: procedure Learn(F , P,k)
2: ⟨f1, f2, . . . , fk ⟩ ← ⟨true, true, . . . , true⟩ ▷ initialize f1, f2, . . . , fk with true
3: for i = k to 1 do

4: fi ← LearnBooleanFormula(i, ⟨f1, f2, . . . , fk ⟩, F , P,A) ▷ update fi
5: end for

6: return ⟨f1, f2, . . . , fk ⟩
7: end procedure

Theorem 4.3 below states that our stepwise learning algorithm is able to produce a minimal

solution of the original problem if each formula fi is a minimal solution of the problem Ψi .

Theorem 4.3. Let f1, . . . , fk be minimal solutions of the problems Ψ1, . . . ,Ψk . Then, ⟨f1, . . . , fk ⟩ is
a minimal solution of the original problem (2).

Proof. See Appendix A.1. □

Learning Boolean Formulas. Now we explain LearnBooleanFormula, which is used to solve

each sub-problem Ψi . Note that the search space of the sub-problem Ψi is still huge; there are

2
2
n
semantically different boolean functions over n boolean variables (i.e., the number of atomic

features A = {a1, . . . ,an }). Therefore, it is intractable to exhaustively search for a good solution.

To address this challenge, we developed a greedy search algorithm that produces good-enough

solutions in practice.

Algorithm 2 presents our algorithm for learning a boolean formula fi for each problem Ψi . The
algorithm takes as input the current abstraction level i , current formulas ⟨f1, . . . , fk ⟩, static analyzer
F , codebase P, and atomic featuresA = {a1, . . . ,an }. When the algorithm is used for solving the i-th
problem (i.e., Ψi ), we assume that the solutions fi+1, fi+2, . . . , fk of the problems Ψi+1,Ψi+2, . . . ,Ψk
are already computed (this is ensured by Algorithm 1).

Given these inputs, the algorithm produces as output a boolean formula f in disjunctive normal

form (DNF); f is a disjunction of conjunctions of literals:

f =
∨
x

∧
y

lx,y

where a literal lx,y includes boolean constants, atomic features aj ∈ A, and their negations ¬aj . In
the algorithm, we represent a conjunctive clause (i.e., a conjunction of literals) by a set of literals,

and a disjunction by a set of clauses.

At line 3, the algorithm initializes the formula f with a disjunction of all atomic features and

their negations:

f = a1 ∨ a2 ∨ · · · ∨ an ∨ ¬a1 ∨ ¬a2 ∨ · · · ∨ ¬an

Note that this formula denotes the set of all program components in the program, and therefore

the initial formula leads to the most precise analysis that assigns the abstraction level i to every
component (except for the those already selected by fi+1, . . . , fk ). Beginning with this formula f ,
the goal of our algorithm is to refine each clause of f and obtain a boolean formula that minimizes

the analysis cost while preserving the precision constraint (e.g., achieving 90% of the full precision).

To do so, the algorithm maintains a worksetW which is a set of clauses to refine further. The

workset initially contains all atomic clauses (line 4). The algorithm iterates while the workset is
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Algorithm 2 Algorithm for Learning a Boolean Formula

Input: Abstraction level i , current formulas ⟨f1, f2, . . . , fk ⟩, static analyzer F , codebase P, atomic

features A
Output: Boolean formula fi in disjunctive normal form

1: procedure LearnBooleanFormula(i, ⟨f1, f2, . . . , fk ⟩, F , P,A)
2: A′ ← A ∪ {¬aj | aj ∈ A} ▷ atomic features and their negations

3: f ← {{aj } | aj ∈ A
′} ▷ initial formula

4: W ← f ▷ initial workset (the set of all clauses in f )
5: bestCost ← ∞ ▷ initial best cost
6: whileW , ∅ do
7: c ← ChooseClause(W , F , P) ▷ choose the most expensive clause fromW
8: W ←W \ {c}
9: a ← ChooseAtom(A′, c, F , P) ▷ choose an atom from A′

10: c ′ ← c ∪ {a} ▷ refined clause

11: f ′ ← ( f \ {c}) ∪ {c ′} ▷ refined formula

12: Π ← ⟨f1, . . . , fi−1, f
′, fi+1, fi+2, . . . , fk ⟩ ▷ current parameter setting

13: (proved, cost) ← Analyze(Π, F , P)
14: if cost ≤ bestCost ∧ |proved |∑

P∈P |proved(FP (k)) |
≥ γ then ▷ cheaper parameter found

15: bestCost ← cost ▷ update the best cost
16: if (f ′ ⇐⇒ f \ {c}) then ▷ check if f ′ is semantically refined

17: f ← f ′ \ {c ′} ▷ remove chosen clause from f
18: continue

19: else

20: W ←W ∪ {c ′} ▷ c ′ can be refined further

21: f ← f ′ ▷ update the formula

22: end if

23: end if

24: end while

25: return f
26: end procedure

non-empty. At lines 7 and 8, a clause is selected and removed from the workset. Our algorithm is

greedy in a sense that the ChooseClause function chooses the most expensive clause c fromW :

ChooseClause(W , F , P) = argmax

c ∈W

∑
P ∈P

cost(FP (HΠc (P )))

where Πc = ⟨f1, . . . , fi−1, c, fi+1, fi+2, . . . , fk ⟩. The heuristic,HΠc , with Πc assigns the abstraction

level i to the components for which c is true (except for those for which some of fi+1, . . . , fk are

true). All the other components are assigned the depth i − 1, because LearnBooleanFormula is

invoked with f1, . . . , fi−1 being true.
The next step is to refine the clause c by conjoining an atom a ∈ A′ to c (lines 9 and 10): i.e.,

c ′ = c ∧ a. The refined clause c ′ represents a smaller set of components than c , which decreases

the precision of the analysis. When refining the clause, our algorithm is conservative and chooses

the atom a ∈ A′ with which refining c decreases the analysis precision as little as possible. More
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precisely, the ChooseAtom function is defined as follows:

ChooseAtom(A′, c, F , P) =
{

argmaxa∈A′\c
∑

P ∈P |proved(FP (HΠa∧c (P ))) | if A′ \ c , ∅
false otherwise

where Πa∧c = ⟨f1, . . . , fi−1,a ∧ c, fi+1, fi+2, . . . , fk ⟩. When there exists an atom to choose (i.e.,

A′ \ c , ∅), we conservatively choose the atom a with the greatest precision. Otherwise, there is no

atom to refine with and false is returned so that the clause c does not get refined further. In the

latter case, the algorithm eventually goes to line 18 (because f ′ ⇐⇒ f \ {c} is valid) and attempts

to choose another clause to refine. When an atom a is successfully chosen, we refine the clause

(line 10) and the formula (line 11).

At lines 12–13, the refined formula is evaluated. We first construct the parameter setting Π with

the current formula f ′ (line 12):

Π = ⟨f1, . . . , fi−1, f
′, fi+1, fi+2, . . . , fk ⟩.

Next, we analyze the programs in the codebase with Π. The Analyze function returns the set of

queries proved and the cost spent with the parameter Π:

Analyze(Π, F , P) = (
∑
P ∈P

proved(FP (HΠ (P ))),
∑
P ∈P

cost(FP (HΠ (P )))).

At line 14, we check whether the cost is actually reduced while ensuring the precision constraint.

If so, bestCost is updated with the current cost. At line 16, we check if the rest clauses of the old

formula (f \ {c}) cover the refined clause c ′. If so, we remove the clause c ′ from the formula (line

17) and try to refine another clause. For instance, suppose f is a1 ∨ a2 ∨ a3 and it is refined to

f ′ = a1 ∨ (a1 ∧ a2) ∨ a3. We remove the refined clause a1 ∧ a2 because a1 ∧ a2 =⇒ a1. If the
condition at line 16 is false, we update the workset with the refined clause c ′ (i.e., c ′ can be refined

further) and f gets replaced by f ′. If the performance is not improved or the precision constraint

is violated, we do not add the refined clause c ′ to the workset and f does not get updated.

Termination and Complexity. Note that the algorithm is guaranteed to terminate. First of

all, the worksetW never grows in each iteration of the loop. After a clause is removed from the

workset at line 8, the algorithm either goes into the next iteration (line 18) or refines the clause and

pushes it back to the workset (line 20). Furthermore, a clause never gets endlessly refined during

the algorithm. Once a clause becomes a conjunction of all atoms, the ChooseAtom function returns

false which makes the condition at line 16 true and that clause is permanently removed from the

workset. Therefore, the workset eventually becomes empty in finite steps. The algorithm has the

asymptotic upper bound of O (k × |A|2), where k is the maximally allowed context depth and A is

the set of atomic features.

5 APPLICATION TO CONTEXT-SENSITIVE POINTS-TO ANALYSIS FOR JAVA
In this article, we apply our data-driven approach to two program analyses: context-sensitive

points-to analysis for Java and flow-sensitive interval analysis for C. In this section, we describe

the first instance analysis.

To use our approach, we need to define a parametric static analysis and atomic features. Section 5.2

defines our parametric context-sensitive analysis and Section 5.3 presents the atomic features we

used. We build on the previous work [Kastrinis and Smaragdakis 2013c] that defines a generic

context-sensitive points-to analysis in Datalog (Section 5.1). We incrementally extend the analysis to

allow different context depths for each method. This section will use the same notations introduced

by Kastrinis and Smaragdakis [2013c].
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Input Relations

Alloc (var: V , heap: H , inMeth:M) FormalArg(meth : M, i : N, arg : V )

Move(to : V , from : V ) ActualArg(invo : I , i : N, arg : V )

Load(to : V , base : V ,fld : F ) FormalReturn(meth : M, ret : V )

Store(base : V ,fld : F , from : V ) ActualReturn(invo : I , var : V )

VCall(base : V , sig : S, invo : I , inMeth : M) ThisVar(meth : M, this : V )

SCall(meth : M, invo : I , inMeth : M) HeapType(heap : H , type : T )
LookUp(type : T , sig : S,meth : M)

Output Relations

VarPointsTo(var : V , ctx : C, heap : H , hctx : HC)
CallGraph(invo : I , callerCtx : C,meth : M, calleeCtx : C)
FldPointsTo(baseH : H , baseHCtx : HC,fld : F , heap : H , hctx : HC)
InterProcAssign(to : V , toCtx : C, from : V , fromCtx : C)
Reachable(meth : M, ctx : C)

Fig. 3. Input and output relations of points-to analysis from [Kastrinis and Smaragdakis 2013c]

5.1 Points-to Analysis by Kastrinis and Smaragdakis [2013c]
We summarize the parametric points-to analysis designed by Kastrinis and Smaragdakis [2013c].

For more details, we refer the readers to prior work [Kastrinis and Smaragdakis 2013c; Smaragdakis

and Balatsouras 2015].

In [Kastrinis and Smaragdakis 2013c], a Java program is represented as Datalog relations shown

in Fig. 3. Input relations are grouped into instructions and auxiliary information. The meaning

of the instructions is straightforward. For instance, Alloc relation models a heap allocation,

where V , H , andM denote the sets of program variables, heap abstractions (i.e., allocation-sites),

and method identifiers, respectively. F , S , and I denote the sets of fields, method signatures, and

instructions, respectively. The auxiliary relations encode the name and type information. For

instance, FormalArg encodes that arg is the i-th formal argument of meth (resp., the method at

invo).
Given the input relations, the analysis derives the output relations listed in the bottom of Fig. 3.

The VarPointsTo and CallGraph relations represent results of the context-sensitive points-to

analysis. The former describes that the variable var in the call context ctx may points to the heap

location heap whose heap context is hctx. Likewise, CallGraph(invo, callerCtx, meth, calleeCtx)
encodes the context-sensitive call graph: the method meth can be invoked at the instruction invo
with respect to the caller and callee contexts: callerCtx and calleeCtx.

Fig. 4(a) shows the points-to analysis rules used by Kastrinis and Smaragdakis [2013c], which

performs a flow-insensitive and context-sensitive points-to analysis with on-the-fly call-graph

construction. The rules specify, for each instruction type, how to derive the output relations from

the input relations. For instance, the fourth rule corresponds to the copy instruction.

The most important feature of the analysis is that context-sensitivity is encapsulated by the

following three constructor functions:

• Record(heap : H , ctx : C ) produces new heap contexts. It is used when allocating heap

objects (i.e., Alloc) and creates new heap contexts for them. Given an allocation-site and a

calling-context, Record returns a new heap context for the heap object.
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InterProcAssign(to, calleeCtx, from, callerCtx)←
CallGraph(invo, callerCtx, meth, calleeCtx), FormalArg(meth, i, to),
ActualArg(invo, i, from).

InterProcAssign(to, callerCtx, from, calleeCtx)←
CallGraph(invo, callerCtx, meth, calleeCtx), FormalReturn(meth, from),

ActualReturn(invo, to).

Record(heap, ctx)=hctx, VarPointsTo(var, ctx, heap, hctx)←
Reachable(meth, ctx), Alloc(var, heap, meth).

VarPointsTo(to, ctx, heap, hctx)←Move(to, from), VarPointsTo(from, ctx, heap, hctx).

VarPointsTo(to, toCtx, heap, hctx)←
InterProcAssign(to, toCtx, from, fromCtx), VarPointsTo(from, fromCtx, heap, hctx).

VarPointsTo(to, ctx, heap, hctx)←
Load(to, base, fld), VarPointsTo(base, ctx, baseH, baseHCtx),
FldPointsTo(baseH, baseHCtx, fld, heap, hctx).

FldPointsTo (baseH, baseHCtx, fld, heap, hctx)←
Store(base, fld, from), VarPointsTo(from, ctx, heap, hctx),
VarPointsTo(base, ctx, baseH, baseHCtx).

Merge (heap, hctx, invo, callerCtx)=calleeCtx,
Reachable (toMeth, calleeCtx),
VarPointsTo (this, calleeCtx, heap, hctx),
CallGraph (invo, callerCtx, toMeth, calleeCtx)←
VCall (base, sig, invo, inMeth),
Reachable (inMeth, callerCtx), VarPointsTo (base, callerCtx, heap, hctx),
HeapType (heap, heapT ), LookUp (heapT, sig, toMeth), ThisVar (toMeth, this).

MergeStatic (invo, callerCtx) = calleeCtx,
Reachable (toMeth, calleeCtx),
CallGraph (invo, callerCtx, toMeth, calleeCtx)←
SCall (toMeth, invo, inMeth), Reachable (inMeth, callerCtx).

(a) Points-to analysis rules taken from [Kastrinis and Smaragdakis 2013c]

Merge (depth, heap, hctx, invo, callerCtx)=calleeCtx,
Reachable (toMeth, calleeCtx),
VarPointsTo (this, calleeCtx, heap, hctx),
CallGraph (invo, callerCtx, toMeth, calleeCtx)←
VCall (base, sig, invo, inMeth), Reachable (inMeth, callerCtx),
VarPointsTo (base, callerCtx, heap, hctx), HeapType (heap, heapT ),
LookUp (heapT, sig, toMeth), ThisVar (toMeth, this), ApplyDepth (toMeth, depth).

MergeStatic (depth, invo, callerCtx) = calleeCtx,
Reachable (toMeth, calleeCtx),
CallGraph (invo, callerCtx, toMeth, calleeCtx)←
SCall (toMeth, invo, inMeth), Reachable (inMeth, callerCtx),
ApplyDepth (toMeth, depth).

(b) Modified rules for our parametric points-to analysis

Fig. 4. Datalog rules for context-sensitive points-to analysis
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• Merge(heap : H , hctx : HC, invo : I , ctx : C ) creates calling contexts for virtual calls. Given

heap object, heap context, call-site, and calling context, it creates a new context for called

functions.

• MergeStatic(invo : I , ctx : C ) is similar to Merge but it is used for static method calls.

Given a method call with a calling context, it creates a new calling context.

Kastrinis and Smaragdakis [2013c] showed that a large class of context-sensitive analyses (in-

cluding k-call-site sensitivity, k-object-sensitivity, k-type-sensitivity, and their variants) can be

obtained by appropriately defining the constructor functions and the domains (HC and C). Below,
we define three types of points-to analyses that we consider in this paper.

• 2-object-sensitive with a 1-context-sensitive heap (2objH). We get this standard object-

sensitivity by using allocation-sites as heap contexts (i.e.,HC = H ) and two allocation-sites as

calling contexts (i.e., C = H × H ). The definitions of the constructor functions are as follows:

Record(heap, ctx) = first (ctx)
Merge(heap, hctx, invo, ctx) = pair (heap, hctx)

MergeStatic(invo, ctx) = ctx

At virtual method calls (Merge), the context is created by appending the receiver object

(heap) and its heap context (hctx). Note that Record uses the first element of ctx; the new
heap context of an object is the receiver object of the allocating method. At static calls

(MergeStatic), the calling context of the caller method is used without changes.

• Selective 2-object-sensitive with 1-object-sensitive heap hybrid (S2objH) [Kastrinis and

Smaragdakis 2013c]. Kastrinis and Smaragdakis [2013c] proposed a variant of object-sensitivity

that selectively uses object-sensitivity for virtual calls and call-site-sensitivity for static calls:

Record(heap, ctx) = first (ctx)
Merge(heap, hctx, invo, ctx) = triple(heap, hctx,⋆)

MergeStatic(invo, ctx) = triple(first (ctx), invo, second (ctx))

where HC = C and C = H × (H ∪ I ) × (H ∪ I ∪ {⋆}). Note that Record and Merge are

essentially the same as those for the standard object-sensitivity. For static calls, the analysis

keeps call-sites (invo) and the partial context information (first(ctx)) of the caller, which makes

the precision incomparable to that of 2objH.
• 2-type-sensitive with a 1-context-sensitive heap (2typeH) [Smaragdakis et al. 2011]. Type-

sensitivity is an abstraction of object-sensitivity. While object-sensitivity uses an allocation-

site as contexts, type-sensitivity uses the name of the class enclosing the allocation-site.

Therefore, the definition of type-sensitivity can be obtained by slightly changing the definition

of object-sensitivity as follows:

Record(heap, ctx) = first (ctx)
Merge(heap, hctx, invo, ctx) = pair (ClassOf (heap), hctx)

MergeStatic(invo, ctx) = ctx

where ClassOf(heap) gets the name of the class that contains the allocation-site heap.

5.2 Extension to Our Parametric Analysis
We extend the analysis rules in Fig. 4(a) to assign different context depths to different methods (in

a similar way to the parametric framework by Milanova et al. [2005]). For this purpose, we extend

the prior analysis in two ways. First, our analysis requires the extra input relation:

ApplyDepth(meth : M, depth : N).
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The ApplyDepth relation maps methods to their context depths; the method (meth) is analyzed
with the given context-sensitivity depth (depth). In this section, we assume that the mapping (i.e., a

set of ApplyDepth relations) is given for the target program. In our approach, the heuristic that

we learn from codebases generates the relations.

Second, we need to modify the context constructorsMerge andMergeStatic so that they

produce new contexts by considering the given context depths as well:

Merge(depth : N, heap : H , hctx : HC, invo : I , ctx : C ) = newCtx : C
MergeStatic(depth : N, invo : I , ctx : C ) = newCtx : C

With these new constructors, we replace the last two rules in Fig. 4(a) by the rules in Fig. 4(b). For

instance, a virtual method call VCall(base, sig, invo, inMeth) is handled as follows:

(1) VarPointsTo figures out a set of heaps that the base can point to.

(2) From each heap, a type identifier heapT is revealed.

(3) Using the identifier and the invocation’s signature, the target method toMeth is found.

(4) ApplyDepth returns depth according to the toMeth, and it is provided to the Merge con-

structor.

MergeStatic is defined in a similar way but, in this case, SCall itself has the toMeth information.

The other seven rules in Fig. 4(a) are used without changes.

All existing context-sensitive analyses expressible by the previous framework [Kastrinis and

Smaragdakis 2013c] can be easily extended to our framework. For instance, consider the 2objH anal-

ysis. We use the same definition for HC while C is modified to allow shallower depths; C =
(H ∪ {⋆}) × (H ∪ {⋆}) is the new context type. With these domains, the constructor functions are

defined as follows:

Record(heap, ctx) = first (ctx),

Merge(depth, heap, hctx, invo, ctx) =



pair (heap, hctx) if depth = 2

pair (heap,⋆) if depth = 1

pair (⋆,⋆) if depth = 0

MergeStatic(depth, invo, ctx) =



pair (first (ctx), second (ctx)) if depth = 2

pair (first (ctx),⋆) if depth = 1

pair (⋆,⋆) if depth = 0

When depth = 2, note that the analysis is identical to 2objH. When depth = 1, the Merge and

MergeStatic truncate the contexts and maintain only the last context element (i.e., 1objH). When

depth is 0, the method is analyzed with context-insensitivity. We can use the same principle to

transform other analyses such as S2objH and 2typeH to our parametric setting.

5.3 Atomic Features
Table 1 shows the atomic features for the context-sensitive points-to analysis for Java. In any

application of machine learning, the success depends heavily on the quality of the features. For

instance, in the existing approach by Oh et al. [2015], authors manually crafted 45 high-level features

for program variables, which are then used for learning to apply flow-sensitivity in interval analysis.

However, coming up with such high-quality features manually is a nontrivial task requiring a large

amount of engineering effort and domain expertise.

In this work, to reduce the feature-engineering burden, we focus on generating only low-level

and easy-to-obtain atomic features and utilize a learning algorithm to synthesize high-level features.

We used features found in signature and body of a method which are readily obtainable from any

Java frontend such as Soot [Vallée-Rai et al. 1999].
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Table 1. Atomic features

Signature features

#1 “java” #3 “sun” #5 “void” #7 “int” #9 “String”

#2 “lang” #4 “()” #6 “security” #8 “util” #10 “init”

Statement features

#11 AssignStmt #16 BreakpointStmt #21 LookupStmt

#12 IdentityStmt #17 EnterMonitorStmt #22 NopStmt

#13 InvokeStmt #18 ExitMonitorStmt #23 RetStmt

#14 ReturnStmt #19 GotoStmt #24 ReturnVoidStmt

#15 ThrowStmt #20 IfStmt #25 TableSwitchStmt

Using Soot, we generated two types of atomic features: features for method signatures and

features for statements. A signature feature describes whether the method’s signature contains a

particular string. For instance, the first feature in Table 1 indicates whether the method contains

string “java” in its signature. From a training program, we generated all words contained in method

signatures and collected the top-10 words that most frequently appear. Features #1–10 show the

signature features generated this way. A statement feature indicates whether the method has a

particular type of statements. We used 15 statement types available in Soot (#11–25 in Table 1). For

instance, the feature #11 indicates whether the method has at least one assignment statement in its

body. Combining the types of features, we generated 25 atomic features.

Regarding signature features, we chose top-10 features because they provide enough frequency

spectrum, both general and specific. For instance, the feature #1 (“java”) appeared 142,097 times over

the training programs, whereas the feature #10 (“init”) appeared 31,984 times. First five features are

general method properties, and the others are specific ones. Both of general and specific features are

needed to generate accurate yet generalizable context-selection heuristics. For example, application

of features #1–#5, without specific features #6–#10, makes our algorithm to fail to find a cost-

effective heuristic. Inclusion of specific features allow our analysis to become more efficient without

significant trade-off on precision on analysis result. Without features #6–#10, timeout would occur

on large programs. In Section 7.1, we provide more detailed discussion with experimental results.

Our learning approach works well without high-level features, mainly because the learning

model (i.e., parameterized heuristic) is powerful and able to automatically generate those features

by combining the atomic features via boolean formulas. On the other hand, the learning model

used by Oh et al. [2015] has limited expressiveness; the model combines the features by simple

linear combination, which cannot express, for instance, disjunctions of atomic features.

6 APPLICATION TO FLOW-SENSITIVE INTERVAL ANALYSIS FOR C
The second application of our approach is an interval analysis for C programs. We build on the

previous work [Oh et al. 2015] that defines a selective flow-sensitive interval analysis based on

sparse analysis [Oh et al. 2012]. This section will use the same notations introduced by Oh et al.

[2015]. Section 6.2 presents the features we used for this analysis instance.

6.1 Selective Flow-Sensitive Analysis
Given a program P , let (C, ↪→) be its control flow graph, where C is the set of nodes (program

points) and (↪→) ⊆ C × C denotes the control flow relation of the program.
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An analysis that we consider uses an abstract domain that maps program points to abstract

states:

D = C→ S.

where an abstract state s ∈ S is a mapping from abstract locations (e.g. program variables, structure

fields, and allocation sites) to values:

S = L→ V.

For each program point c , the analysis comes with a transfer function fc : S→ S that defines the
abstract semantics of the command associated with c .
As in [Oh et al. 2015], we consider an extension of the sparse-analysis framework [Oh et al.

2012]. Let D(c ) ⊆ L and U(c ) ⊆ L be the definition and use sets at program point c ∈ C. Using
these sets, we define a data-dependency relation (⇝) ⊆ C × L × C as follows:

c0
l
⇝ cn = ∃[c0, c1, . . . , cn] ∈ Paths, l ∈ L

l ∈ D(c0) ∩ U(cn ) ∧ ∀0 < i < n. l < D(ci )

where c0
l
⇝ cn reads: program point cn depends on c0 on location l . This dependence relation

holds when there exists a path [c0, c1, . . . , cn] such that l is defined at c0 and used at cn , but it is not
re-defined at any of the intermediate points ci . A sparse analysis is characterized by the following

abstract transfer function F : D→ D:

F (X ) = λc . fc
(
λl .
⊔
c0

l
⇝c

X (c0) (l )
)
.

We say this analysis is fully flow-sensitive because it constructs data dependencies for all abstract

locations and tracks all of these dependencies accurately.

We extend this sparse-analysis into an analysis that is allowed to track data dependencies only

for a subset of abstract locations in some set L ⊆ L, and to be flow-sensitive only for these locations.
The remaining locations (i.e., L\L) are analyzed flow-insensitively; we use results from a quick flow-

insensitive pre-analysis [Oh et al. 2012], which we assume given. The results of this pre-analysis

form a state sI ∈ S, and are stable (i.e., pre-fixpoint) at all program points:

∀c ∈ C. fc (sI ) ⊑ sI

Next, we define the partial data-dependency with respect to L:

c0
l
⇝L cn = ∃[c0, c1, . . . , cn] ∈ Paths, l ∈ L.

l ∈ D(c0) ∩ U(cn ) ∧ ∀0 < i < n. l < D(ci )

In this definition, we require that in order for c0
l
⇝L cn to hold, the location l should be included

in the set L. With this notion of partial data-dependency, we define the abstract transfer function

as follows:

FL (X ) = λc . fc (s
′) where s ′(l ) =




X (c ) (l ) (l < L)⊔
c0

l
⇝Lc

X (c0) (l ) otherwise

This definition says that when we collect an abstract state right before c , we use the flow-insensitive
result sI (l ) for a location not in L, and follow the original treatment for those in L. An analysis in

our extension computes lfpX0

FL , where the initial X0 ∈ D is built by associating the results of the

flow-insensitive analysis (i.e., values of sI ) with all locations not selected by L (i.e., L \ L):

X0 (c ) (l ) =

{
sI (l ) l < L
⊥ otherwise
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In this analysis, the location set L determines the degree of flow-sensitivity. For instance, when

L = L, the analysis denotes an ordinary flow-sensitive analysis. On the other hand, when L = ∅,
the analysis degenerates to a flow-insensitive analysis.

6.2 Atomic Features
We used the same set of 45 features designed for flow-sensitivity by Oh et al. [2015]. Please refer to

Table 14 in Appendix A.3 for more details of them. These features describe syntactic or semantic

properties of abstract locations, namely, program variables, structure fields and allocation sites,

which describe how program locations are used in typical C programs. More details on those

features are available from the prior work [Oh et al. 2015].

7 EXPERIMENTS
In this section, we experimentally evaluate our data-driven approach with application to two

instance analyses. The main application is context-sensitive points-to analysis for Java, where the

objective of the evaluation is to answer the following research questions:

• Effectiveness and Generalization: How well does our data-driven approach perform com-

pared to the existing approaches? Does our learning approach generalize well on unseen

data? (Section 7.1)

• Adequacy of Our Learning Algorithm: Is the disjunctive model essential for learning

cost-effective heuristics? How much is it better than the simpler non-disjunctive model?

(Section 7.2)

• Learned Features: What are the interesting findings on learned boolean formulas? (Sec-

tion 7.3)

In addition, we show the generality of our learning algorithm by applying it to a flow-sensitive

interval analysis for C programs (Section 7.4).

For points-to analysis for Java, we implemented our approach on top of a specific version of

Doop, which was used in the PLDI 2014 paper by Smaragdakis et al. [2014]. This version of Doop

uses an academic version of the LogicBlox engine, which is a single-thread program. For interval

analysis for C, we used Sparrow [Lee et al. 2017; Oh et al. 2014a, 2015], an open-source framework

for static analysis of C programs
1
. We used the DaCapo benchmark suite [Blackburn et al. 2006] and

open-source C programs to evaluate our approach. All experiments were done on a machine with

Intel i5 CPU and 16 GB RAM running on Ubuntu 14.04 64bit operating system and JDK 1.6.0_24.

7.1 Effectiveness and Generalization
Setting. We applied our data-driven approach to three existing context-sensitive points-to

analyses: selective 2-object-sensitive (S2objH), 2-object-sensitive (2objH), and 2-type-sensitive

(2typeH) analyses, all with 1-context-sensitive heap. All of these analyses are readily available

in Doop. S2objH and 2objH are known to be the state-of-the-art points-to analyses for Java with

good precision/cost trade-offs [Kastrinis and Smaragdakis 2013b; Milanova et al. 2005]. 2typeH is

another good alternative for precise yet scalable points-to analysis [Smaragdakis et al. 2011]. With

our approach, we made data-driven versions of these analyses: S2objH+Data, 2objH+Data, and
2typeH+Data. In addition, we also made the introspective versions [Smaragdakis et al. 2014] of

the three analyses: S2objH+IntroA, S2objH+IntroB, 2objH+IntroA, 2objH+IntroB, 2typeH+IntroA, and
2typeH+IntroB. The introspective versions are available in Doop, except for S2objH+IntroA and

S2objH+IntroB. We implemented these two analyses by reusing the code of introspective analysis in

Doop.

1
https://github.com/ropas/sparrow
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Table 2. Comprehensive performance numbers for all analyses against testing and validation (denoted by *) benchmarks: context-insensitivity (Insens),

selective object sensitivity, object-sensitivity, and type-sensitivity. For each analysis, except for Insens, we made four variants: the most precise analyses

(S2objH, 2objH, 2typeH), introspective analyses (IntroA and IntroB), and our data-driven analysis (Ours). In all metrics, lower is better. Entries with dash (-)

means the analysis did not finish within time constraint (5400 sec.). For precision metrics, we have the number of virtual calls that points-to analysis cannot

uniquely resolve the target, the number of reachable methods, and the number of may-fail casts. For cost metrics, we have the number of call-graph edges and

analysis time. The numbers to the right of ‘main-fail casts’ indicate the total number of assertions, which are reachable during a context-insensitive analysis).

Insens

Selective object sensitivity Object-sensitivity Type-sensitivity

S2objH IntroA IntroB Ours 2objH IntroA IntroB Ours 2typeH IntroA IntroB Ours

eclipse

poly v-calls 1,334 979 1,118 1,045 1,066 980 1,118 1,046 1,060 1,031 1,161 1,100 1,119

reachable mthds 8,465 7,910 8,216 8,000 7,971 7,911 8,319 8,001 7,959 7,933 8,336 8,026 7,995

may-fail casts(1,635) 1,139 456 892 676 596 546 977 764 661 665 1,004 850 807

call-graph-edges 45,474 2.9M 0.8M 1.2M 0.1M 3.4M 0.9M 1.2M 0.1M 0.6M 0.2M 0.4M 59,389

analysis time(s) 18 79 41 53 23 91 42 52 23 42 39 44 33

chart

poly v-calls 1,852 1,378 1,612 1,512 1,441 1,378 1,613 1,497 1,435 1,446 1,658 1,541 1,516

reachable mthds 12,064 11,328 11,791 11,589 11,400 11,330 11,952 11,518 11,362 11,439 11,976 11,579 11,474

may-fail casts(2,586) 1,810 757 1,458 1,191 922 883 1,580 1,236 974 1,147 1,656 1,376 1,245

call-graph-edges 63,453 8M 2.4M 3.9M 0.1M 9.3M 1.6M 2.9M 0.1M 0.6M 0.3M 0.5M 86,383

analysis time(s) 34 196 188 213 34 178 91 133 34 60 76 85 62

bloat

poly v-calls 2,014 1,426 1,684 1,521 1,504 1,427 1,690 1,522 1,496 1,626 1,812 1,684 1,680

reachable mthds 8,939 8,469 8,728 8,625 8,526 8,470 8,869 8,626 8,513 8,523 8,885 8,647 8,564

may-fail casts(2,436) 1,924 1,125 1,747 1,555 1,232 1,193 1,809 1,621 1,288 1,485 1,832 1,713 1,564

call-graph-edges 61,150 35M 0.5M 2M 0.2M 35.1M 0.5M 2.0M 0.3M 0.7M 0.1M 0.3M 86,291

analysis time(s) 22 2,184 39 96 30 2,187 43 96 43 53 44 51 42

xalan

poly v-calls 1,898 1,518 1,743 1,575 1,581 1,522 1,765 1,579 1,583 1,565 1,793 1,640 1,658

reachable mthds 9,705 9,043 9,365 9,115 9,155 9,047 9,637 9,119 9,142 9,151 9,655 9,232 9,193

may-fail casts(1,698) 1,182 447 1,055 638 538 533 1,129 723 604 728 1,136 888 812

call-graph-edges 51,302 9M 1.4M 5.6M 0.1M 11.6M 1.6M 6.8M 0.1M 0.9M 0.3M 0.7M 66,206

analysis time(s) 29 414 75 329 35 672 78 484 38 71 75 92 63

jython

poly v-calls 2,778 - 2,616 - 2,500 - 2,632 - 2,481 - 2,665 2,479 2,556

reachable mthds 12,718 - 12,596 - 12,024 - 12,663 - 12,008 - 12,679 12,143 12,048

may-fail casts(2,790) 2,234 - 2,109 - 1,722 - 2,202 - 1,773 - 2,209 1,984 1,913

call-graph-edges 0.1M - 6.6M - 0.3M - 6.2M - 1.1M - 0.5M 9M 0.1M

analysis time(s) 73 - 348 - 105 - 353 - 438 - 171 1,443 132

hsqldb*

poly v-calls 1,592 - 1,390 1,257 1,204 - 1,482 1,260 1,195 1,187 1,495 1,288 1,247

reachable mthds 11,486 - 10,852 10,371 10,395 - 11,367 10,378 10,387 10,333 11,373 10,397 10,438

may-fail casts(2,229) 1,662 - 1,385 953 1,064 - 1,558 1,034 1,053 1,028 1,578 1,180 1,257

call-graph-edges 63,790 - 1.4M 10.7M 0.3M - 1.0M 7.6M 0.7M 1.7M 0.2M 0.5M 0.1M

analysis time(s) 42 - 77 247 43 - 74 203 261 127 79 78 68
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In summary, we compared the performance of the following context-sensitive analyses:

• Selective object-sensitivity:

– S2objH: selective 2-object-sensitivity with 1 context-sensitive heap hybrid [Kastrinis and

Smaragdakis 2013b]

– S2objH+Data: our data-driven version of S2objH.
– S2objH+IntroA: introspective version of S2objH with the Heuristic A [Smaragdakis et al.

2014]

– S2objH+IntroB: introspective version of S2objH with the Heuristic B [Smaragdakis et al.

2014]

• Object-sensitivity:

– 2objH: 2-object-sensitivity with 1 context-sensitive heap [Kastrinis and Smaragdakis 2013b;

Milanova et al. 2005]

– 2objH+Data: our data-driven version of 2objH.
– 2objH+IntroA: introspective version of 2objH with the Heuristic A [Smaragdakis et al. 2014]

– 2objH+IntroB: introspective version of 2objH with the Heuristic B [Smaragdakis et al. 2014]

• Type-sensitivity:

– 2typeH: 2-type-sensitivity with 1 context-sensitive heap [Smaragdakis et al. 2011]

– 2typeH+Data: our data-driven version of 2typeH.
– 2typeH+IntroA: introspective version of 2typeH with the Heuristic A [Smaragdakis et al.

2014]

– 2typeH+IntroB: introspective version of 2typeH with the Heuristic B [Smaragdakis et al.

2014]

As it is done by Smaragdakis et al. [2014], we partitioned the ten programs from the DaCapo suite

into four small (antlr, lusearch, luindex, and pmd) and six large (eclipse, xalan, chart, bloat,
hsqldb, and jython) programs. We used the four small programs as a training set where we learned

context-selection heuristics. We used hsqldb for choosing the value ofγ , i.e., the precision threshold
of the optimization problem in (2). To choose γ , for each of γ between 0.85 and 0.95 with interval

0.01, we learned from the training set a context-selection heuristic, evaluated its performance

on hsqldb, and chose γ that shows best performance according to

#proved assertions

analysis time(s)
. The final

heuristic with the chosen γ was evaluated on the remaining five test programs (eclipse, xalan,
chart, bloat, and jython). The best γ were 0.93, 0.92, and 0.88 for selective object-sensitivity,

object-sensitivity, and type-sensitivity, respectively. We used hsqldb for choosing γ since it is one

of the two most challenging programs (jython and hsqldb) in the DaCapo benchmark suite and is

suitable for a representative benchmark. Our learning algorithm took 30 hours for learning the

depth-2 formula (f2), and 24 hours for the depth-1 formula (f1) on the four training programs.

In all experiments, we measured the precision of the heuristics using the may-fail casts client,

where the assertions can be automatically generated for each casting expression of the program.

Lastly, while introspective analysis selects heap allocations as well, we analyzed all heap allocations

context-sensitively.

Effectiveness. Fig. 5 compares the performance of our approach for selective object-sensitivity.

We discuss the case of selective object-sensitivity in detail, as it is arguably the best context

abstraction available to Java points-to analysis [Kastrinis and Smaragdakis 2013b]. In summary, the

results show that our data-driven version (S2objH+Data) performs remarkably well compared to

the other analyses. Detailed numbers are presented in Table 2.

Crucially, our analysis strikes an unprecedented balance between precision and cost. Notice

that the running time of our analysis is less than 2 minutes for all programs; indeed, it achieves
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Table 3. Statistics on the number of method invocations selected for context-sensitivity. Although our

approach selects method definitions, not method invocations, we present the numbers for the final, selected

invocations, in order to compare with the introspective analyses.

Benchmarks Total Invos.

S2objH+IntroA S2objH+IntroB S2objH+Data(Ours)

Depth-2 % Depth-2 % Depth-1 % Depth-2 %

eclipse 105,045 100,046 95.2 105,045 100.0 11,002 10.5 13,851 13.2

chart 232,794 226,101 97.1 231,129 99.3 32,831 14.1 26,319 11.3

bloat 112,450 100,730 89.6 112,146 99.7 11,030 9.8 16,092 14.3

xalan 211,997 205,430 96.9 211,993 100.0 27,937 13.2 22,695 10.7

jython 232,420 215,078 92.5 230,907 99.3 28,572 12.3 23,975 10.3

Avg. 178,941 169,477 94.3 178,244 99.7 22,274 12.0 20,586 12.0

virtually the same speed of the context-insensitive analysis. In particular, the analysis is able to

analyze jython, the most demanding benchmark, in 105 sec, for which S2objH does not terminate

in a reasonable amount of time. Yet, the precision of our analysis is comparable to that of the

most precise analysis (S2objH); our analysis increases the number of may-fail casts only by 18% on

average while S2objH+IntroA, another analysis who completes all benchmarks within time budget,

increases the number by 85% on average.

Our data-driven points-to analysis far excels the performance of the state-of-the-art hand-tuned

points-to analyses. The introspective analyses [Smaragdakis et al. 2014], which also selectively

assign varying context-depths to different methods based on pre-determined heuristics, do not show

satisfactory performance. S2objH+IntroA scales well across all programs but it does so by sacrificing

the precision significantly. On the other hand, S2objH+IntroB improves the precision but it is at the

expense of the scalability. For chart, S2objH+IntroB even requires more time than S2objHwhile sacri-

ficing the precision. Indeed, our analysis (S2objH+Data) significantly outperforms S2objH+IntroA and

S2objH+IntroB in both precision and cost on the five test programs (eclipse, xalan, chart, bloat,
and jython). Our approach shows similar performance improvements for object-sensitivity and

type-sensitivity as well (Table 2).

Table 3 shows that our approach is very accurate in identifying methods that would benefit from

context-sensitivity. Table 3 compares the number of method invocations selected by our approach

and introspective analyses. Our approach chooses 12% of total method invocations on average for

both context depths. On the other hand, introspective analyses A and B choose 94.3% and 99.7% of

invocations, respectively.
2
Note that our analysis is more precise than introspective analyses, even

though we choose much smaller sets of method invocations for context-sensitivity.

Generalization. The learned heuristics were generalized well to unseen programs, even from

small programs to large programs. Table 7 and 8 show the performance of the learned heuristic for

selective object-sensitivity on the training and test programs. The tables compare three analyses,

context-insensitive, S2objH, and S2objH+Data, using two prime metrics, the number of may-fail

casts and analysis time. We define two quality metrics, qualityprecision and qualitycost , to illustrate
how our approach achieves desirable performance. For both definitions, higher values are better:

qualityprecision =
|unproven

Insens
| − |unprovenS2objH+Data |

|unproven
Insens

| − |unprovenS2objH |
× 100

2
Table 3 shows statistics only for selected method invocations. Introspective analyses also choose the set of heap allocations

that will receive context-sensitivity.
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Fig. 5. Precision and cost comparisons of among selective object-sensitive class. We purposely made an

exception in the case of S2objH+IntroB on jython benchmark, which is marked as timeout in Table 2, to

provide readers broader performance spectrum.

qualitycost =
costS2objH − costS2objH+Data
costS2objH − costInsens

× 100.

The results show that our approach achieves similar precision gains on both cases. Our approach

shows much better scalability gains on the (large) test programs.
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Table 4. Evaluation on other (non-DaCapo) benchmarks

Benchmarks

S2objH+Data S2objH+IntroA S2objH+IntroB S2objH

alarms time(s) alarms time(s) alarms time(s) alarms time(s)

batik 1,673 66 2,534 389 2,055 1,926 1,463 2,536

checkstyle 587 53 877 74 703 580 500 800

sunflow 1,934 46 2,606 317 2,184 432 1,674 912

findbugs 1,600 48 2,196 139 1,944 296 1,616 1,326

jpc 1,398 36 2,023 213 1,590 260 1,240 411

Table 5. Comparison of fixed points (i.e., points-to sets)

Benchmarks

S2objH S2objH+Data S2objH+IntroB S2objH+IntroA

Var. Pts-to Var. Pts-to ratio Var. Pts-to ratio Var. Pts-to ratio

eclipse 342,657 487,614 1.4 545,564 1.5 1,190,404 3.4

chart 414,340 604,558 1.5 1,965,330 4.7 3,725,829 8.9

bloat 1,036,442 1,175,395 1.1 3,305,504 3.1 3,162,441 3.0

xalan 504,650 804,742 1.6 679,747 1.3 1,925,431 3.8

Average 1.4 2.7 4.8

Evaluation on other open source projects. We also evaluated the performance of the learned

heuristic with other (non-DaCapo) benchmarks. We used five large open-source programs (batik3,
checkstyle4, sunflow5, findbugs6, and jpc7). The results are presented in Table 4 using two

prime metrics, the number of may-fail casts(alarms) and analysis time. The results show that the

heuristic learned from the small DaCapo programs generalizes well for non-DaCapo programs as

well.

Comparison of fixed points. Table 5 compares the results in terms of fixed points (i.e., points-

to sets), rather than the number of proved assertions. It compares the sizes of the points-to sets

computed by each analysis. The results show that our analysis (S2objH+Data) increases the points-to
sets of S2objH by 1.4x on average on four testing benchmarks that S2objH is able to analyze. The

results do not include jython, as S2objH does not terminate.

Sensitivity to Atomic Features. As described in Section 5.3, we performed experiments without

specific signature features #6 through #10. In total, we used 20 features (5 signature features and 15

statement features). The results are presented in Table 6.

Without specific features, our algorithm failed to find a cost-effective heuristic. Exclusion of

specific features increased the analysis precision slightly, because the resulting heuristic selects

more methods for context-sensitivity. For instance, 50.6% of methods were chosen for 2-object-

sensitivity by the heuristic learned without specific features, while 10.6% of methods were chosen

with those features. However, the analysis cost increased substantially and timeout occurred for

3
https://xmlgraphics.apache.org/batik/

4
http://checkstyle.sourceforge.net

5
http://sunflow.sourceforge.net

6
http://findbugs.sourceforge.net

7
http://jpc.sourceforge.net/home_home.html
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Table 6. Performance of our approach (S2objH + Data) without signature features #6 through #10.

eclipse chart bloat xalan jython

poly v-calls 1,043 1,408 1,487 1,554 -

reachable mthds 7,948 11,365 8,502 9,124 -

may fail casts 543 856 1,195 491 -

call-graph-edges 38,555 52,582 53,983 45,412 -

analysis time(s) 59 105 66 273 -

Table 7. Learning performance on training and validation sets

Benchmarks

Context-insensitive S2objH S2objH+Data(Ours)

may-fail casts time(s) may-fail casts time(s) may-fail casts quality time(s) quality

antlr 992 35 360 94 505 77% 48 78%

luindex 734 27 229 48 286 89% 31 81%

lusearch 844 21 231 73 294 90% 24 94%

pmd 1,263 44 585 73 655 90% 50 79%

hsqldb 1,662 42 timeout timeout 1,064 N/A 43 N/A

Total 5,495 169 1,405+ 288+ 2,804 86% 196 83%

jython. The results show that inclusion of specific features makes the analysis much more efficient

without significant trade-off on precision.

Experiments with Soufflé. The latest version of Doop uses Soufflé, an efficient Datalog solver

for program analysis [Antoniadis et al. 2017; Scholz et al. 2016]. With Soufflé, the performance

of points-to analysis has been improved by up to 4x [Antoniadis et al. 2017]. Even with Soufflé,

our approach improves the analysis speed significantly at the small cost of precision. In our

experiments, for example, context-insensitive analysis takes 22s for bloat and reports 2,055 alarms

in the latest version of Doop with Soufflé. S2objH (with Soufflé) reduces the number of alarms

to 1,209 but increases the analysis time significantly to 1,463s (66.5x increase). With Soufflé, our

analysis (S2objH+Data) can analyze bloat in 30s while reporting 1,268 alarms only.

7.2 Adequacy of Our Learning Approach
In this subsection, we motivate our choice of the disjunctive model by comparing the performance

of the non-disjunctive model used in prior work [Oh et al. 2015]. The comparison is done for

selective object-sensitivity (S2objH ).

The idea of the previous method [Oh et al. 2015] is to compute the score of each program element

by a linear combination of the feature vector and a real-valued parameter vector, and to choose a

certain number of top scorers. Learning the vector of real numbers is formulated as an optimization

problem and is solved using Bayesian optimization. To use this learning algorithm in our setting,

we applied the algorithm [Oh et al. 2015] twice, one for selecting the set of methods that require the

depth-2 context-sensitivity and the other for the depth-1 context-sensitivity. All the other methods

are analyzed context-insensitively. We used 24-hour time budget for Bayesian optimization, giving

the same amount of time required by our learning algorithm.We chose the same number of methods

as our approach; we gave depth-2 to 10.6% of the methods and depth-1 to 10.9%. Also, we used the

same set of atomic features and benchmark programs.
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Table 8. Learning performance on testing set

Benchmarks

Context-insensitive S2objH S2objH+Data(Ours)

may-fail casts time(s) may-fail casts time(s) may-fail casts quality time(s) quality

chart 1,810 34 757 196 922 84% 34 100%

bloat 1,924 22 1,125 2,184 1,232 87% 30 100%

eclipse 1,139 18 456 79 596 80% 23 92%

xalan 1,182 29 447 414 538 88% 35 98%

jython 2,234 73 timeout timeout 1,722 N/A 105 N/A

Total 8,289 176 2,785+ 2,873+ 5,010 85% 227 97%

Table 9. Performance comparison between disjunctive and non-disjunctive models.

Benchmarks

Non-disjunctive Disjunctive(Ours)

may-fail casts time(s) may-fail casts time(s)

eclipse 946 25 596 21

chart 1,569 48 937 33

bloat 1,771 46 1,232 27

xalan 996 42 539 33

jython 2069 346 1,738 104

Total 7,352 346 5,042 218

Table 9 compares the performance. The performance of the analysis learned by the linear learning

algorithm is inferior to ours in both precision and cost. The non-disjunctive approach produces

1.5x more may-fail casts and takes 1.5x more time than ours.

Themain reason is the non-disjunctive model fails to capture complex context-selection heuristics

due to its limited expressiveness. A delicate selection of the methods to apply context-sensitivity is

a key to both precision and cost in points-to analysis for Java. For example, consider the following

boolean formula that our learning algorithm has inferred to describe the methods that require

selective 1-object-sensitivity:

(1 ∧ 2 ∧ ¬3 ∧ ¬6 ∧ ¬7 ∧ ¬8 ∧ · · · ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)∨
(¬1 ∧ ¬2 ∧ 8 ∧ 5 ∧ ¬9 ∧ 11 ∧ 12 ∧ · · · ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)∨
(¬3 ∧ ¬4 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ 10 ∧ 11 ∧ · · · ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)

The linear model cannot express such a feature. For example, the above formula shows that the

underlined atomic features 1, 2, and 8 are used as in both positive and negative forms in different

clauses. Non-disjunctive model cannot capture such mixed signals in different contexts due to its

inherent limitations.

7.3 Learned Features
The features learned for each analysis are presented in Appendix A.2. We discuss some interesting

findings from the learned features.
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First, we observed that our approach produces similar features for similar context-abstractions.

For instance, the learned boolean formulas for depth-2 are the same for all object-based context-

sensitivities:

f2 for S2objH+Data : 1 ∧ ¬3 ∧ ¬6 ∧ 8 ∧ ¬9 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ · · · ∧ ¬25

f2 for 2objH+Data : 1 ∧ ¬3 ∧ ¬6 ∧ 8 ∧ ¬9 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ · · · ∧ ¬25

f2 for 2typeH+Data : 1 ∧ ¬3 ∧ ¬6 ∧ 8 ∧ ¬9 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ · · · ∧ ¬25

f2 for call-site-sensitivity : 1 ∧ ¬6 ∧ ¬7 ∧ 11 ∧ 12 ∧ 13 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ · · · ∧ ¬25

Note that the object-based context-sensitive analyses (selective object-sensitivity, object-sensitivity,

and type-sensitivity) share the same formula (f2) for the depth-2 context-sensitivity. We conjecture

that these analyses construct the calling-contexts using a heap context when their context-depth

goes beyond two. Since the three abstractions use similar definitions of the heap contexts, precision

gains from the heap context information are also similar. On the other hand, we obtained a

completely different formula for call-site-sensitivity, which uses different heap abstraction from

other object-based sensitivities.
8

Another unexpected observation was that the learned formulas have orders according to the

theoretical orders of the analysis precision. For example, our learning algorithm produced depth-1

formulas (f1) for object-sensitivity and type-sensitivity as follows:

(1 ∧ 2 ∧ ¬3 ∧ ¬6 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ ¬16 ∧ · · · ∧ ¬23 ∧ ¬24 ∧ ¬25)∨
f1 for 2objH+Data : (¬1 ∧ ¬2 ∧ 8 ∧ 5 ∧ ¬9 ∧ 11 ∧ 12 ∧ · · · ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)∨

(¬3 ∧ ¬4 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ 10 ∧ 11 ∧ · · · ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)

f1 for 2typeH+Data : 1 ∧ 2 ∧ ¬3 ∧ ¬6 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ ¬15 ∧ ¬16 ∧ · · · ∧ ¬23 ∧ ¬24 ∧ ¬25

Note that the formula f1 for object-sensitivity is logically more general than that for type-sensitivity,

as boldfaced clause in f1 for 2typeH+Data is subsumed by the boldfaced clause in f1 for 2objH+Data.
Therefore, f1 for 2objH+Data describes a superset of the methods described by f1 for 2typeH+Data.
Theoretically, since object-sensitivity is more precise than type-sensitivity, the set of methods that

benefit from object-sensitivity must be a superset of the methods that benefit from type-sensitivity.

Interestingly, our learning algorithm automatically discovered this fact from data.

Lastly, we spotted that some atomic features are frequently used as negative forms. Breakpoint(16),

EnterMonitor(17), ExitMonitor(18), Lookup(21), Nop(22), and Ret(23) statements rarely appear in

the programs. Therefore, conjoining a formula with the negation of these features would make

little difference. Methods that return the void type deserve shallower context depths because they

are less likely to jeopardize points-to analysis than ones who return objects. We also found that

some control-flow features also frequently appear in negated forms.

7.4 Application to Flow-Sensitive Interval Analysis for C
We checked the generality of our technique with application to Sparrow, an interval-domain-based

buffer-overrun analyzer for C programs [Oh et al. 2012]. We applied the technique to control

flow-sensitivity of the analysis as done by Oh et al. [2015].

Setting. For evaluation, we used a total of 30 Linux programs. The benchmark programs are

split into 20 small (Table 10) and 10 large (Table 11) programs, where we used the small ones for

learning a flow-sensitivity heuristic and large ones for evaluating the performance of the learned

heuristic. We used the same set of 45 features (Table 14) used by Oh et al. [2015] that describe

properties of variables, fields, and allocation-sites. We fixed the precision criteria γ of our learning

algorithm to 0.9. The learning algorithm took about 17 hours to generate a heuristic (i.e., a boolean

8
Although we do not discuss the performance of our approach for call-site-sensitivity since call-site-sensitivity is less

important than others in points-to analysis for Java, we also evaluated the analysis and obtained similar performance

improvements as in others. We provide the learned features for call-site-sensitivity in Appendix A.2.
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Table 10. Learning performance on training sets (interval analysis for C)

Benchmarks

Flow-insensitive Flow-sensitive Ours

provens time(s) provens time(s) provens quality time(s) quality

bzip2 69 0.14 162 0.64 143 88.27% 0.33 2.37x

archimedes 1,093 0.87 1213 2.14 1202 99.09% 1.42 1.63x

alac-decoder 54 0.07 215 0.18 148 68.84% 0.11 1.5x

ample 179 0.23 367 0.8 256 69.75% 0.33 1.43x

libgsm 520 0.21 735 0.74 732 99.59% 0.36 1.72x

trueprint 683 0.54 788 2.69 750 95.18% 0.96 1.79x

nlkain 38 0.02 136 0.06 71 52.21% 0.05 2.17x

foomatic-db-engine 762 1.1 1,173 2.34 1,245 106.14% 1.21 1.11x

tcs 108 0.19 170 1.69 167 98.24% 0.32 1.67x

tmndec 587 1.74 846 7.18 825 97.52% 3.11 1.78x

gbsplay 259 0.28 380 0.8 371 97.63% 0.44 1.56x

jwhois 253 0.82 322 2.45 284 88.2% 1.24 1.52x

combine 168 1.62 554 3.38 172 31.05% 1.90 1.18x

gzip 103 0.2 226 0.77 185 81.86% 0.42 2.16x

httptunnel 189 0.24 391 0.96 250 63.94% 0.35 1.47x

sed 1,378 1.27 1,439 12.3 1,413 98.19% 2.55 2.01x

stripcc 109 0.23 227 0.53 172 75.77% 0.28 1.19x

gnuchess 644 0.88 961 4.52 958 99.69% 1.77 2.02x

acpi 12 0.06 81 0.12 20 24.69% 0.08 1.36x

twolame 276 1.43 456 2.85 440 96.49% 2.09 1.46x

Total 7,484 12.14 10,842 47.14 9,804 90.43% 19.34 1.59x

formula over the atomic features) from the 20 training programs. We used the number of proven

buffer-overrun queries (which is automatically generated for each buffer access in the program) as

a precision measure.

Results. The results show that our learning model and algorithm can find a good heuristic for

flow-sensitivity. Table 10 and 11 compare the precision and cost of the learned disjunctive heuristics

(the right-most column Ours) with two extremes (column Flow-insensitive and Flow-sensitive). For
the training set, our heuristic proved about 90% of queries that require flow-sensitivity and increased

the cost of flow-insensitive analysis by 1.6x while a fully-flow-sensitive analysis increased the cost

by 4x. The learned heuristic also worked well on unseen programs as we have similar results for

the testing set. The learned boolean formula is shown in Section A.3.

Table 12 shows that our disjunctive learning algorithm is more effective at generating flow-

sensitivity heuristics than the existing linear approach [Oh et al. 2015]. Table 12 compares the

disjunctive heuristics with a non-disjunctive ones that were obtained by running Oh et al. [2015]’s

approach. We used same features, training programs, and time budget to train the non-disjunctive

heuristic. The results show that our heuristic produces a more precise yet cheaper heuristic; ours

proved about 400 more queries than the existing approach within less analysis time.

7.5 Threats to Validity
• Benchmarks: Our experimental evaluation were conducted on open-source benchmark, but

the benchmark programs may not be a reputable material for machine learning purposes.
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Table 11. Learning performance on testing sets (interval analysis for C)

Benchmarks

Flow-insensitive Flow-sensitive Ours

provens time(s) provens time(s) provens quality time(s) quality

icecast-server 494 1.47 560 14.83 496 88.57% 3.97 2.7x

mp3c 760 4.04 1,415 45.98 948 67% 7.62 1.89x

nkf 411 9.06 1,048 18.88 1,046 99.81% 10.78 1.19x

parser 158 74.77 263 288.02 261 99.24% 91.07 1.22x

mpg123 1,388 3.48 1,783 27.94 1,697 95.18% 8.8 2.53x

bison 598 2.06 765 18.8 734 95.95% 5.31 2.57x

tree-puzzle 1,082 2.31 1,359 14.67 1,323 97.35% 4.14 1.79x

wget 757 6.4 838 45.77 816 97.37% 11.84 1.85x

sdop 629 14.13 735 51.1 779 105.99% 18.19 1.29x

a2ps 783 7.86 1,112 82.76 925 83.18% 18.70 2.38x

TOTAL 7,060 125.58 9,878 608.75 9,025 91.36% 180.42 1.44x

Table 12. Performance comparison between disjunctive and non-disjunctive models (interval analysis for C)

Benchmarks

Non-disjunctive Disjunctive(Ours)

provens time(s) provens times(s)

icecast-server 520 2.77 496 3.97

mp3c 865 8.9 948 7.62

nkf 743 9.54 1,046 10.78

parser 263 109.29 261 91.07

mpg123 1,583 5.55 1,697 8.8

bison 691 3.59 734 5.31

tree-puzzle 1,310 2.99 1,323 4.14

wget 823 9.2 816 11.84

sdop 752 19.18 779 18.19

a2ps 1,077 12.66 925 18.70

Total 8,627 183.68 9,025 180.42

• Overlap of training and testing programs: For Java, the learned heuristics might perform well

because of the overlap of training and testing programs, as the applications in the DaCapo

benchmark share the JDK library.

• Generality: The DaCapo benchmark may not represent general Java programs as it is a

collection of specific types of programs, comprising mostly compilers and interpreters. In

experiments, we also assumed that a heuristic learned from smaller programs is likely to

work well for larger programs, which may not be true in other circumstances.

• Overfitting: Our learning algorithm might produce heuristics that overfit to training data, as

it does not have a mechanism to ignore low-signal features.
9
Even though our disjunctive

model generalized well in our evaluation and we were not strongly motivated to make it

9
However, our algorithm ignores features without signal.
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more generalizable, it could overfit to training data in other circumstances. One way to avoid

overfitting is to use what is called regularization in the machine learning community. For

example, we can limit the number of conjunctive clauses in each disjunction, so that only the

top-k clauses are maintained during learning while ignoring low-signal features.

• Features: We evaluated our approach with a fixed set of atomic features: signature and

statement features for points-to analysis and features designed by Oh et al. [2015]. Different

sets of atomic features are likely to produce different results.

8 RELATEDWORK
8.1 Data-Driven Program Analysis
Our new algorithm improves the state-of-the-art data-driven program analysis in several aspects.

Recently, a number of techniques for data-driven program analysis were proposed [Cha et al.

2016; Heo et al. 2016, 2017a,b; Oh et al. 2015; Wei and Ryder 2015]. In this approach, program

analysis is designed with parameterized heuristic rules, and their parameter values are found

automatically from data through learning algorithms. Compared to prior works on data-driven

program analysis, our work provides two novel contributions. First, we propose a new machine-

learning model that is able to describe disjunctive properties of programs with boolean formulas.

On the other hand, existing works [Cha et al. 2016; Oh et al. 2015] rely on simple linear models that

cannot express disjunctive properties, or use off-the-shelf nonlinear models (e.g., decision trees)

that require labeled data [Heo et al. 2016, 2017b; Wei and Ryder 2015]. Second, we present a new

algorithm that efficiently learns good parameters of our boolean-formula model. The use of more

powerful model and learning algorithm enables us not only to solve the problem of describing

complex context-selection heuristic rules precisely (Section 7.2) but also to make our approach less

susceptible to the qualities of atomic features (Section 5.3).

8.2 Points-to Analysis
Context-sensitive points-to analysis has a vast amount of past literature, e.g., [Agesen 1994; Chat-

terjee et al. 1999; Grove et al. 1997; Hind 2001; Lhoták and Hendren 2006, 2008; Liang and Harrold

1999; Liang et al. 2005; Milanova et al. 2005; Ruf 1995, 2000; Wilson and Lam 1995]. In this section,

we discuss prior works that are closely related to ours. In essence, our work differs from prior works

in that our effort is the first attempt to use a data-driven approach for tuning context-sensitivity in

points-to analysis.

Most of the existing techniques for tuning context-sensitivity in points-to analysis are traditional

rule-based techniques [Kastrinis and Smaragdakis 2013a; Oh et al. 2014b; Smaragdakis et al. 2014;

Tripp et al. 2009]. They selectively apply context-sensitivity based on some manually-designed

syntactic or semantic features of the program. For instance, in the approach by Smaragdakis et al.

[2014], a cheap pre-analysis is used to identify when and where context-sensitivity would fail,

and then the main analysis applies context-sensitivity selectively based on the pre-analysis results

and heuristic rules. Although this work provides useful insights about context-sensitivity and

provides good heuristics, the resulting analyses are still not completely satisfactory. We believe

the main reason is that those rules are manually-designed by analysis designers, which is likely

to be suboptimal and unstable. The goal of this paper is to overcome the existing limitations by

automating the process of generating such heuristic rules.

The techniques by Tan et al. [2016, 2017] are orthogonal to our approach. Recently, Tan et al.

[2016] proposed a technique to improve the precision of k-context-sensitive points-to analysis. The
idea is to use k context slots with more informative elements even if they are located beyond the

most recent k contexts. The authors identify such good elements by running a cheap pre-analysis
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using dependency graph among object allocations. As a result, for a given context-depth k , the
resulting analysis is at least as precise as the conventional k-context-sensitive analysis. Tan et al.

[2017] improved the scalability of context-sensitive points-to analysis by running a pre-analysis

and merging type-consistent heap objects. Our approach can be combined with these techniques

as we balance precision and cost by choosing a set of methods that benefit from context-sensitivity.

Demand-driven points-to analyses [Guyer and Lin 2003; Heintze and Tardieu 2001; Sridharan and

Bodík 2006; Sridharan et al. 2005] solve a scalability issue of points-to analysis by concentrating on

a fixed set of queries. For a given program and a query in it, this technique selectively applies costly

but precise analysis only to those who contribute to proving the query. Our technique differs from

this approach as we do not target a specific query but try to capture general features of methods

that contribute to maximizing the number of provable queries in programs.

8.3 Parametric Program Analysis
The techniques in this paper differ from prior parametric program analyses [Liang et al. 2011; Oh

et al. 2014b; Zhang et al. 2014]. For instance, Zhang et al. [2014] proposed a CEGAR-based technique

for context-sensitive points-to analysis for Java. They use CEGAR to find abstractions that only

contain relevant program elements for proving all points-to queries in target programs. Although

this approach guarantees that all queries provable by applying context-sensitivity are eventually

resolved, the technique requires to iteratively analyze the program multiple times, which might be

impractical for large programs (e.g., jython) in practice. Liang et al. [2011] suggested an approach

that finds minimal context-sensitivity of points-to analysis. However, they do not provide how to

find the minimal abstractions before running the analysis. Oh et al. [2014b] proposed a method

that runs a pre-analysis to estimate the impact of context-sensitivity on the main analysis. The idea

has been presented mainly for numeric analysis (e.g., using the interval and octagon domains), and

the method requires the analysis designers to come up with a right abstraction for pre-analysis.

For instance, a sign analysis that distinguishes non-negative integers is shown to be effective for

interval analysis [Oh et al. 2014b]. However, it is not trivial to design an appropriate pre-analysis

for points-to analysis.

9 CONCLUSION
In this paper, we presented a new learning algorithm for data-driven program analysis. Our

approach uses a heuristic rule parameterized by boolean formulas that are able to express complex,

in particular disjunctive, properties of program elements such as methods and variables. The

parameters (i.e., boolean formulas) of the heuristic are learned from codebases through a carefully

designed learning algorithm. We have implemented our approach in two static analyzers: context-

sensitive points-to analysis for Java and flow-sensitive interval analysis for C. Experimental results

confirm that the analyses with the learned heuristics significantly outperform the existing state-of-

the-arts. In particular, we show that the automatically learned heuristics for points-to analysis far

excel the heuristics manually-written by human experts.
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A APPENDIX
A.1 Proof of Theorem 4.3
Let Π = ⟨f1, f2, . . . , fk ⟩ be the output of our learning algorithm. Obviously, Π meets the precision

constraint ∑
P ∈P |proved(FP (HΠ (P ))) |∑

P ∈P |proved(FP (k)) |
≥ γ

because f1 becomes a solution of Ψ1 only if the condition above is true.

Next, we show that there exists no solution smaller than Π. Suppose Π′ = ⟨f ′
1
, f ′

2
, . . . , f ′k ⟩ is a

parameter that meets the precision constraint and Π′ is smaller than Π:

∀P ∈ P. HΠ′ (P ) ⊑ HΠ (P ). (4)

Our goal is to show that the following claim holds:

∀P ∈ P. HΠ′ (P ) = HΠ (P ). (5)

We show the claim by proving the more general statement:

∀i ∈ [1,k]. ∀P ∈ P. HΠ′i
(P ) = HΠi (P ) (6)

where

Πi = ⟨true, . . . , true, fi , fi+1, . . . , fk ⟩
Π′i = ⟨true, . . . , true, f

′
i , f

′
i+1, . . . , f

′
k ⟩
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The claim (5) is a special case of (6) when i = 1. We prove (6) by induction on i in decreasing order.

The proof uses the following fact

∀i ∈ [1,k]. ∀P ∈ P. HΠ′i
(P ) ⊑ HΠi (P ) (7)

which is derived from (4) and the definition ofH .

• (Base case) When i = k , we need to prove that

∀P ∈ P. HΠ′k
(P ) = HΠk (P ).

FromHΠ′ (P ) ⊑ HΠ′k
(P ) for all P and the monotonicity of the analysis (Definition 3.1), we

have

∀P ∈ P.proved(FP (HΠ′ (P ))) ⊆ proved(FP (HΠ′k
(P ))). (8)

From the assumption

∑
P∈P |proved(FP (HΠ′ (P ))) |∑

P∈P |proved(FP (k)) |
≥ γ and (8), we have∑

P ∈P |proved(FP (HΠ′k
(P ))) |∑

P ∈P |proved(FP (k)) |
≥ γ . (9)

From (7), (9), Definition 4.2, and the assumption that fk is a minimal solution of the problem

Ψk , we have
∀P ∈ P.HΠ′k

(P ) = HΠk (P ).

• (Inductive case) When i = j. The induction hypothesis is as follows:

∀P ∈ P. HΠ′j
(P ) = HΠj (P ).

Using the hypothesis, we would like to prove that

∀P ∈ P. HΠ′j−1
(P ) = HΠj−1 (P ).

Let Π′′j−1 = ⟨true, . . . , true, f
′
j−1, fj , . . . , fk ⟩. Since we assume ∀P ∈ P.HΠj (P ) = HΠ′j

(P ) (I.H.),

we have

∀P ∈ P.HΠ′′j−1
(P ) = HΠ′j−1

(P ). (10)

FromHΠ′ (P ) ⊑ HΠ′j−1
(P ) for all P and the monotonicity of the analysis(Definition 3.1), we

have

∀P ∈ P.proved(FP (HΠ′ (P ))) ⊆ proved(FP (HΠ′j−1
(P ))). (11)

From (11) and the assumption

∑
P∈P |proved(FP (HΠ′ (P ))) |∑

P∈P |proved(FP (k)) |
≥ γ , we have∑

P ∈P |proved(FP (HΠ′j−1
(P ))) |∑

P ∈P |proved(FP (k)) |
≥ γ . (12)

From (10) and (12), we have∑
P ∈P |proved(FP (HΠ′′j−1

(P ))) |∑
P ∈P |proved(FP (k)) |

≥ γ . (13)

From (7) and (10), we have

∀P ∈ P.HΠ′′j−1
(P ) ⊑ HΠj−1 (P ). (14)

From (13), (14), Definition 4.2, and the assumption that fj−1 is a minimal solution of the

problem Ψk , we have
∀P ∈ P.HΠ′′j−1

(P ) = HΠj−1 (P ). (15)

From (15), (10), we conclude

∀P ∈ P.HΠj−1 (P ) = HΠ′j−1
(P ).
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A.2 Learned Boolean Formulas for Pointer Analysis
We list the boolean formulas for context-sensitive points-to analysis learned by our approach. The

numbers in the formulas represent the atomic feature in Tables 1. The formulas for each analysis

and context depth are as follows. Table 13 presents them by and-or tables.

• Selective object-sensitivity:

– Depth-2 formula (f2):

1 ∧ ¬3 ∧ ¬6 ∧ 8 ∧ ¬9 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25

– Depth-1 formula (f1):

(1 ∧ ¬3 ∧ ¬4 ∧ ¬7 ∧ ¬8 ∧ 6 ∧ ¬9 ∧ ¬15 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24∧

¬25) ∨ (¬3 ∧ ¬4 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ 10 ∧ 11 ∧ 12 ∧ 13 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22∧

¬23 ∧ ¬24 ∧ ¬25) ∨ (¬3 ∧ ¬9 ∧ 13 ∧ 14 ∧ 15 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23∧

¬24 ∧ ¬25) ∨ (1 ∧ 2 ∧ ¬3 ∧ 4 ∧ ¬5 ∧ ¬6 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ ¬10 ∧ ¬13 ∧ ¬15 ∧ ¬16 ∧ ¬17 ∧ ¬18∧

¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)

• Object-sensitivity:

– Depth-2 formula (f2):

1 ∧ ¬3 ∧ ¬6 ∧ 8 ∧ ¬9 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25

– Depth-1 formula (f1):

(1 ∧ 2 ∧ ¬3 ∧ ¬6 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)∨
(¬1 ∧ ¬2 ∧ 5 ∧ 8 ∧ ¬9 ∧ 11 ∧ 12 ∧ ¬14 ∧ ¬15 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23∧

¬24 ∧ ¬25) ∨ (¬3 ∧ ¬4 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ 10 ∧ 11 ∧ 12 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21∧

¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)

• Type-sensitivity:

– Depth-2 formula (f2):

1 ∧ ¬3 ∧ ¬6 ∧ 8 ∧ ¬9 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25

– Depth-1 formula (f1):

1 ∧ 2 ∧ ¬3 ∧ ¬6 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ ¬15 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23∧

¬24 ∧ ¬25

• Call-site-sensitivity:

– Depth-2 formula (f2):

1 ∧ ¬6 ∧ ¬7 ∧ 11 ∧ 12 ∧ 13 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25

– Depth-1 formula (f1):

(1 ∧ 2 ∧ ¬7 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)
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Table 13. AND-OR table of learned boolean formulas

O R

1 “java" T T T T F T T T T T

2 “lang" T T F T T

3 “sun" F F F F F F F F F F

4 “()" F F T F

5 “void" F T

6 “security" T F F F F F F F

7 “int" F F F F F F F F

8 “util" F F F T F T F T F T

9 “String" F F F F F F F F F F F

10 “init" T F T

11 AssignStmt T T T T

A 12 IdentityStmt T T T T

N 13 InvokeStmt T T F T

D 14 ReturnStmt T F

15 ThrowStmt F T F F F

16 BreakpointStmt F F F F F F F F F F F F F

17 EnterMonitorStmt F F F F F F F F F F F F F

18 ExitMonitorStmt F F F F F F F F F F F F F

19 GotoStmt F F F F F F F F F F F F F

20 IfStmt F F F F F F F F F F F F F

21 LookupStmt F F F F F F F F F F F F F

22 NopStmt F F F F F F F F F F F F F

23 RetStmt F F F F F F F F F F F F F

24 ReturnVoidStmt F F F F F F F F F F F F F

25 TableSwitchStmt F F F F F F F F F F F F F

f1 f2 f1 f2 f1 f2 f1 f2

S2objH+Data 2objH+Data
2typeH
+Data

2callH
+Data
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A.3 Learned Boolean Formulas and Atomic Features for Interval Analysis

(7 ∧ ¬8 ∧ ¬13 ∧ ¬32 ∧ ¬1 ∧ ¬41 ∧ ¬27 ∧ ¬12 ∧ ¬40 ∧ ¬3 ∧ ¬33 ∧ ¬34 ∧ ¬6 ∧ ¬30 ∧ ¬25 ∧ ¬36∧
¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬15 ∧ ¬28 ∧ ¬35 ∧ ¬16 ∧ ¬10 ∧ ¬11 ∧ ¬29)∨

(38 ∧ ¬40 ∧ ¬6 ∧ ¬25 ∧ ¬36 ∧ ¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬35 ∧ ¬29 ∧ ¬15 ∧ ¬14 ∧ ¬16∧
¬13 ∧ ¬1 ∧ ¬28 ∧ ¬4 ∧ ¬30 ∧ ¬18 ∧ ¬19 ∧ ¬33 ∧ ¬34 ∧ 8 ∧ ¬41)∨

(8 ∧ ¬40 ∧ ¬6 ∧ ¬25 ∧ ¬36 ∧ ¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬35 ∧ ¬29 ∧ ¬4 ∧ ¬14 ∧ ¬15 ∧ ¬13∧
¬16 ∧ 38 ∧ ¬28 ∧ ¬1 ∧ ¬30 ∧ ¬18 ∧ ¬19 ∧ ¬33 ∧ ¬34 ∧ ¬41)∨

(32 ∧ ¬40 ∧ ¬6 ∧ ¬25 ∧ ¬36 ∧ ¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬35 ∧ ¬29 ∧ ¬4 ∧ ¬14 ∧ ¬15∧
¬13 ∧ ¬16 ∧ ¬28 ∧ 38 ∧ ¬1)∨

(11 ∧ 10 ∧ ¬7 ∧ ¬4 ∧ ¬40 ∧ ¬17 ∧ ¬14 ∧ ¬6 ∧ ¬21 ∧ ¬25 ∧ ¬18 ∧ ¬37 ∧ ¬26 ∧ ¬19 ∧ ¬31 ∧ ¬9∧

¬24 ∧ ¬35 ∧ ¬13 ∧ ¬29 ∧ ¬36 ∧ ¬15 ∧ ¬16 ∧ ¬22 ∧ ¬23 ∧ ¬20 ∧ 38 ∧ ¬1)∨
(27 ∧ ¬40 ∧ ¬6 ∧ ¬25 ∧ ¬36 ∧ ¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬35 ∧ ¬29 ∧ 32 ∧ ¬4 ∧ ¬14 ∧ ¬15∧

¬13 ∧ ¬16 ∧ 38 ∧ ¬1)∨
(10 ∧ ¬4 ∧ ¬40 ∧ ¬17 ∧ ¬6 ∧ ¬25 ∧ ¬18 ∧ ¬37 ∧ ¬26 ∧ ¬19 ∧ ¬9 ∧ ¬24 ∧ ¬35 ∧ ¬14 ∧ ¬29 ∧ ¬21∧
¬36 ∧ ¬31 ∧ ¬22 ∧ ¬23 ∧ ¬20 ∧ ¬15 ∧ ¬16 ∧ ¬13 ∧ 38 ∧ ¬28 ∧ ¬1 ∧ ¬30 ∧ ¬5 ∧ 2 ∧ 8)∨

(12 ∧ ¬1 ∧ ¬40 ∧ ¬3 ∧ ¬6 ∧ ¬25 ∧ ¬36 ∧ ¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬35 ∧ ¬29 ∧ ¬4)∨
(42 ∧ ¬40 ∧ ¬6 ∧ ¬25 ∧ ¬36 ∧ ¬18 ∧ ¬37 ∧ ¬26 ∧ ¬19 ∧ ¬9 ∧ ¬24 ∧ ¬35 ∧ ¬31 ∧ ¬1 ∧ ¬14 ∧ ¬15∧
¬16 ∧ ¬13 ∧ ¬28 ∧ ¬4 ∧ ¬30 ∧ ¬29 ∧ 43 ∧ ¬33 ∧ ¬34 ∧ ¬7 ∧ ¬12 ∧ ¬5 ∧ 2 ∧ ¬17 ∧ ¬41 ∧ 38)∨

(43 ∧ ¬40 ∧ ¬6 ∧ ¬25 ∧ ¬36 ∧ ¬18 ∧ ¬37 ∧ ¬26 ∧ ¬19 ∧ ¬9 ∧ ¬24 ∧ ¬35 ∧ ¬31 ∧ ¬1 ∧ ¬15 ∧ ¬16∧
¬13 ∧ ¬28 ∧ ¬14 ∧ ¬4 ∧ 42 ∧ ¬29 ∧ ¬30 ∧ ¬33 ∧ ¬34 ∧ ¬7 ∧ ¬12 ∧ ¬5 ∧ 2 ∧ ¬17 ∧ ¬41 ∧ 38)∨

(¬2 ∧ ¬13 ∧ ¬41 ∧ ¬12 ∧ ¬40 ∧ ¬3 ∧ ¬6 ∧ ¬30 ∧ ¬25 ∧ ¬36 ∧ ¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24∧
¬15 ∧ ¬28 ∧ ¬35 ∧ ¬16 ∧ 38 ∧ 8)∨

(29 ∧ ¬8 ∧ ¬13 ∧ ¬32 ∧ ¬1 ∧ ¬27 ∧ ¬12 ∧ ¬40 ∧ ¬3 ∧ ¬33 ∧ ¬34 ∧ ¬6 ∧ ¬30 ∧ ¬25 ∧ ¬36 ∧ ¬37∧
¬26 ∧ ¬9 ∧ ¬24 ∧ ¬15 ∧ ¬28 ∧ ¬35 ∧ ¬16)∨

(22 ∧ ¬8 ∧ ¬32 ∧ ¬1 ∧ ¬27 ∧ ¬12 ∧ ¬40 ∧ ¬3 ∧ ¬33 ∧ ¬34 ∧ ¬6 ∧ ¬30 ∧ ¬25 ∧ ¬36 ∧ ¬37 ∧ ¬26∧
¬31 ∧ ¬9 ∧ ¬24 ∧ ¬28 ∧ ¬35)∨

(3 ∧ 27 ∧ 32 ∧ 38 ∧ 8 ∧ ¬39 ∧ ¬13 ∧ ¬1 ∧ ¬41 ∧ ¬12 ∧ ¬40 ∧ ¬33 ∧ ¬34 ∧ ¬6 ∧ ¬30 ∧ ¬25 ∧ ¬36∧

¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬15 ∧ ¬28 ∧ ¬35 ∧ ¬16)∨
(33 ∧ 38 ∧ ¬40 ∧ ¬3 ∧ ¬6 ∧ ¬30 ∧ ¬25 ∧ ¬36 ∧ ¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬15 ∧ ¬35)∨
(¬10 ∧ ¬11 ∧ ¬13 ∧ ¬12 ∧ ¬40 ∧ ¬3 ∧ ¬33 ∧ ¬34 ∧ ¬6 ∧ ¬30 ∧ ¬25 ∧ ¬36 ∧ ¬37 ∧ ¬26 ∧ ¬9∧
¬24 ∧ ¬28 ∧ ¬35 ∧ ¬32 ∧ ¬27 ∧ ¬31 ∧ ¬18 ∧ ¬19 ∧ ¬15 ∧ ¬16 ∧ ¬1 ∧ ¬8 ∧ ¬5 ∧ ¬4 ∧ 2 ∧ ¬14∧

¬41 ∧ ¬43 ∧ ¬42 ∧ ¬17 ∧ ¬38 ∧ ¬29 ∧ 22)∨
(34 ∧ 33 ∧ 38 ∧ ¬40 ∧ ¬3 ∧ ¬6 ∧ ¬30 ∧ ¬25 ∧ ¬36 ∧ ¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬15 ∧ ¬28 ∧ ¬35)∨
(5 ∧ 38 ∧ 8 ∧ ¬2 ∧ ¬13 ∧ ¬32 ∧ ¬1 ∧ ¬41 ∧ ¬27 ∧ ¬12 ∧ ¬40 ∧ ¬3 ∧ ¬33 ∧ ¬34 ∧ ¬6 ∧ ¬30 ∧ ¬25∧

¬36 ∧ ¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬15 ∧ ¬28 ∧ ¬35 ∧ ¬16)∨
(1 ∧ 27 ∧ 32 ∧ 38 ∧ 8 ∧ ¬2 ∧ ¬39 ∧ ¬13 ∧ ¬41 ∧ ¬12 ∧ ¬40 ∧ ¬3 ∧ ¬6 ∧ ¬30 ∧ ¬25 ∧ ¬36 ∧ ¬37∧

¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬15 ∧ ¬28 ∧ ¬35 ∧ ¬16)∨
(16 ∧ ¬1 ∧ ¬41 ∧ ¬40 ∧ ¬3 ∧ ¬6 ∧ ¬30 ∧ ¬25 ∧ ¬36 ∧ ¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬35)∨
(13 ∧ 38 ∧ ¬39 ∧ ¬1 ∧ ¬41 ∧ ¬40 ∧ ¬3 ∧ ¬6 ∧ ¬30 ∧ ¬25 ∧ ¬36 ∧ ¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24∧

¬15 ∧ ¬28 ∧ ¬35)∨
(30 ∧ 32 ∧ 38 ∧ 8 ∧ ¬13 ∧ ¬1 ∧ ¬40 ∧ ¬3 ∧ ¬6 ∧ ¬25 ∧ ¬36 ∧ ¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬15∧

¬28 ∧ ¬35 ∧ ¬16)∨
(15 ∧ 16 ∧ ¬13 ∧ ¬1 ∧ ¬41 ∧ ¬40 ∧ ¬3 ∧ ¬33 ∧ ¬34 ∧ ¬6 ∧ ¬30 ∧ ¬25 ∧ ¬36 ∧ ¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9∧

¬24 ∧ ¬35)∨
(21 ∧ 22 ∧ ¬8 ∧ ¬13 ∧ ¬32 ∧ ¬1 ∧ ¬41 ∧ ¬27 ∧ ¬12 ∧ ¬40 ∧ ¬3 ∧ ¬33 ∧ ¬34 ∧ ¬6 ∧ ¬30 ∧ ¬25 ∧ ¬36∧

¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬28 ∧ ¬35)∨
(31 ∧ 29 ∧ ¬8 ∧ ¬13 ∧ ¬32 ∧ ¬1 ∧ ¬27 ∧ ¬12 ∧ ¬40 ∧ ¬3 ∧ ¬33 ∧ ¬34 ∧ ¬6 ∧ ¬30 ∧ ¬25 ∧ ¬36 ∧ ¬37∧

¬26 ∧ ¬9 ∧ ¬24 ∧ ¬15 ∧ ¬28 ∧ ¬35 ∧ ¬16)∨
(28 ∧ 27 ∧ 32 ∧ 38 ∧ 8 ∧ ¬39 ∧ ¬13 ∧ ¬1 ∧ ¬41 ∧ ¬40 ∧ ¬3 ∧ ¬34 ∧ ¬6 ∧ ¬30 ∧ ¬25 ∧ ¬36 ∧ ¬37∧

¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬35)∨
(14 ∧ 33 ∧ 12 ∧ 38 ∧ ¬8 ∧ ¬39 ∧ ¬13 ∧ ¬32 ∧ ¬1 ∧ ¬27 ∧ ¬40 ∧ ¬3 ∧ ¬34 ∧ ¬6 ∧ ¬30 ∧ ¬25 ∧ ¬36∧

¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬15 ∧ ¬28 ∧ ¬35 ∧ ¬16)∨
(19 ∧ 15 ∧ 16 ∧ 18 ∧ 21 ∧ 22 ∧ ¬8 ∧ ¬13 ∧ ¬32 ∧ ¬1 ∧ ¬41 ∧ ¬27 ∧ ¬12 ∧ ¬40 ∧ ¬3 ∧ ¬33 ∧ ¬34 ∧ ¬6∧

¬30 ∧ ¬25 ∧ ¬36 ∧ ¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬28 ∧ ¬35)∨
(18 ∧ 15 ∧ 19 ∧ 16 ∧ 21 ∧ 22 ∧ ¬8 ∧ ¬13 ∧ ¬32 ∧ ¬1 ∧ ¬41 ∧ ¬27 ∧ ¬12 ∧ ¬40 ∧ ¬3 ∧ ¬33 ∧ ¬34 ∧ ¬6∧

¬30 ∧ ¬25 ∧ ¬36 ∧ ¬37 ∧ ¬26 ∧ ¬31 ∧ ¬9 ∧ ¬24 ∧ ¬28 ∧ ¬35)

ACM Trans. Program. Lang. Syst., Vol. 9, No. 4, Article 39. Publication date: December 2017.



A Machine-Learning Algorithm with Disjunctive Model for Data-Driven Program Analysis 39:41

Table 14. Features for flow-sensitivity. Copied from [Oh et al. 2015].

# Features

1 local variable

2 global variable

3 structure field

4 location created by dynamic memory allocation

5 defined at one program point

6 location potentially generated in library code

7 assigned a constant expression (e.g., x = c1 + c2)

8 compared with a constant expression (e.g., x < c)

9 compared with an other variable (e.g., x < y)

10 negated in a conditional expression (e.g., if (!x))

11 directly used in malloc (e.g., malloc(x))

12 indirectly used in malloc (e.g., y = x; malloc(y))

13 directly used in realloc (e.g., realloc(x))

14 indirectly used in realloc (e.g., y = x; realloc(y))

15 directly returned from malloc (e.g., x = malloc(e))

16 indirectly returned from malloc

17 directly returned from realloc (e.g., x = realloc(e))

18 indirectly returned from realloc

19 incremented by one (e.g., x = x + 1)

20 incremented by a constant expr. (e.g., x = x + (1+2))

21 incremented by a variable (e.g., x = x + y)

22 decremented by one (e.g., x = x - 1)

23 decremented by a constant expr (e.g., x = x - (1+2))

24 decremented by a variable (e.g., x = x - y)

25 multiplied by a constant (e.g., x = x * 2)

26 multiplied by a variable (e.g., x = x * y)

27 incremented pointer (e.g., p++)

28 used as an array index (e.g., a[x])

29 used in an array expr. (e.g., x[e])

30 returned from an unknown library function

31 modified inside a recursive function

32 modified inside a local loop

33 read inside a local loop

34 1 ∧ 8 ∧ (11 ∨ 12)
35 2 ∧ 8 ∧ (11 ∨ 12)
36 1 ∧ (11 ∨ 12) ∧ (19 ∨ 20)
37 2 ∧ (11 ∨ 12) ∧ (19 ∨ 20)
38 1 ∧ (11 ∨ 12) ∧ (15 ∨ 16)
39 2 ∧ (11 ∨ 12) ∧ (15 ∨ 16)
40 (11 ∨ 12) ∧ 29

41 (15 ∨ 16) ∧ 29

42 1 ∧ (19 ∨ 20) ∧ 33

43 2 ∧ (19 ∨ 20) ∧ 33

44 1 ∧ (19 ∨ 20) ∧ ¬33
45 2 ∧ (19 ∨ 20) ∧ ¬33
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