Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 78, issue 9 1 September 2013 ISSN 0167-6423

hniques and Applications

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights

Science of Computer Programming 78 (2013) 1701-1727

Contents lists available at SciVerse ScienceDirect B cience of Computer
rogramming

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

PN

Access-based abstract memory localization in static analysis” @CMk

Hakjoo Oh*, Kwangkeun Yi

Seoul National University, Republic of Korea

HIGHLIGHTS

The conventional reachability-based localization is too conservative in practice.

We propose access-based localization technique and show that it is much more effective than the reachability-based localization.
Access-based localization is effectively realizable by employing a conservative pre-analysis.

Access-based localization is effectively applicable to arbitrary code blocks rather than procedures.

ARTICLE INFO

ABSTRACT

Article history:

Received 4 August 2011

Received in revised form 14 March 2013
Accepted 15 April 2013

Available online 29 April 2013

Keywords:

Static analysis
Abstract interpretation
Localization

On-the-fly localization of abstract memory states is vital for economical abstract
interpretation of imperative programs. Such localization is sometimes called “abstract
garbage collection” or “framing”. In this article we present a new memory localization
technique that is more effective than the conventional reachability-based approach. Our
technique is based on a key observation that collecting the reachable memory parts is too
conservative and the accessed parts are usually tiny subsets of the reachable part. Our
technique first estimates, by an efficient pre-analysis, which parts of input states will be
accessed during the analysis of each code block. Then the main analysis uses the access-set
results to trim the memory entries before analyzing code blocks. In experiments with an
industrial-strength global C static analyzer, the technique is applied right before analyzing
each procedure’s body and reduces the average analysis time and memory by 92.1% and
71.2%, respectively, without sacrificing the analysis precision.

In addition, we present three extensions of access-based localization: (1) we generalize
the idea and apply the localization more frequently such as at loop bodies and basic blocks
as well as procedure bodies, additionally reducing analysis time by an average of 31.8%;
(2) we present a technique to mitigate a performance problem of localization in handling
recursive procedures, and show that this extension improves the average analysis time by
42%; (3) we show how to incorporate the access-based localization into relational numeric
analyses.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In global abstract interpretation of imperative programs, memory localization (sometimes called “abstract garbage
collection” or “framing”) is vital for reducing analysis cost [8,15,22,24,37] (we confine our claim to a family of static analyses
described in Section 2). Localization, when analyzing a code block, attempts to remove the irrelevant parts of input memory

* This work was supported by the Engineering Research Center of Excellence Program of Korea Ministry of Education, Science and Technology
(MEST)/National Research Foundation of Korea (NRF) (Grant 2012-0000468) and Brain Korea 21 Project, School of Electrical Engineering and Computer

Science, Seoul National University in 2012.

* Corresponding author. Tel.: +82 1091719547.

E-mail addresses: pronto@ropas.snu.ac.kr, hakjoo.oh@gmail.com (H. Oh).

0167-6423/$ - see front matter © 2013 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2013.04.002

1702 H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727

Table 1
Reachability-based approach is too conservative.

Program LOC accessed abstract memory
/ reachable abstract memory

spell-1.0 2,213 5 453 (1.1%)
httptunnel-3.3 6,174 10 |/ 673 (1.5%)
gzip-1.2.4a 7,327 22 [1002 @ (2.2%)
jwhois-3.0.1 9,344 28 |/ 830 (3.4%)
parser 10,900 75 | 1787 (4.2%)
bc-1.06 13,093 24 | 824 (2.9%)
less-290 18,449 86 | 1546 (5.6%)

states, which will not be used during the analysis of the block. Not to mention the immediate benefit of the reduced memory
footprint, localization has another important impact on cost reduction. In flow-sensitive global abstract interpretation, code
blocks such as procedure bodies are repeatedly analyzed (often needlessly) with different input memory states. Localization
makes input memory states smaller, which results in more general summaries for the blocks. More general summaries
reduce re-analysis of blocks by increasing the chance of reusing the previously computed analysis results. For example,
consider a code x=0;f () ;x=1;f () ; and assume that x is not used inside £. Without localization, £ is analyzed twice
because the input state to f is changed at the second call. If x is removed from the input state (localization), the analysis
result of £ for the first call can be reused for the second call without re-analyzing the procedure.

Realization of effective localization is not trivial. Suppose we analyze a procedure with an input memory state.
Localization tries to remove, from the input state, all the parts that will not be used during the analysis of the procedure.
The problem is that it is not always possible to know in advance the to-be-used parts of the input state unless we actually
analyze the procedure. For example, we cannot exactly determine the access information for indirect reference *p before
starting the analysis. Hence, any localization technique estimates the usable memory parts conservatively: the localized
state is guaranteed to contain all the parts that will be used but may contain spurious entities (that will not actually be
used) as well.

The conventional estimation methods are reachability-based [8,36,37,15,32,31,22,24]. They collect memory parts that are
reachable (by pointer chains) from the current environment, and the memory parts that can no longer be reached (hence,
obviously cannot be used anymore) are removed from the current states. When applied to procedure bodies, the technique
allows a procedure to be analyzed with only memory portions that are reachable from actual parameters or global variables.
Because the reachable is often smaller than the entire state, the method is popular in various kinds of program analysis:
for example, in shape analysis [36,15,32,22,9] and higher-order flow analysis [24,8]. In this article, we assume the sorts of
analyses with allocation-site heap abstraction, where all the memory locations allocated at an allocation site are collectively
represented by a single abstract location.

However, reachability is just a crude approximation and sometimes too conservative in practice. This is mainly because
large parts of the reachable portion of input states are not actually accessed, i.e. the values are neither read nor written
during the analysis. For example, Table 1 shows, given a reachability-based localized input state to a procedure, how much
is actually accessed inside the (directly or transitively) called procedures. For each a/b (r%), a is the average number of
abstract locations accessed in the called procedures, b is the average size of the reachable input state, and r is their ratio.!
The results show that only few reachable memory entries were actually accessed: procedures accessed only 1.1%-5.6% of
reachable memory states. Nonetheless, the reachability-based approach propagates all the reachable parts to procedures. It
is therefore possible for a procedure body to be needlessly recomputed for input memory states whose only differences lie in
the reachable-but-non-accessed portions. This means that the reachability-based approach can be too conservative for real C
programs and hence is inefficient in both time and memory cost. This observation was made while investigating the reasons
for the inefficiency of an industrial-strength static analyzer [19-21,26-29] that uses the reachability-based localization.

In this article, we present a localization technique that is more aggressive than reachability-based approach. In addition
to excluding unreachable memory entries from the localized state, we also exclude some memory entries that are reachable
but will not be accessed. We attack the problem of localization by staging: (1) the set of abstract locations that will be
used during the analysis of a code block is conservatively estimated by a pre-analysis; (2) then, the actual analysis uses the
information and trims input memories before analyzing each block. The pre-analysis is derived by applying conservative
abstractions to the abstract semantics of the original analysis and quickly finds an over-approximation of resources that
the actual analysis requires. By reducing the sizes of localized memory states, our technique saves more analysis time and
memory than the reachability-based approach does.

The time savings by our new localization method are significant: when applied to each procedure’s body, our access-
based localization reduces the analysis time by on average 92.1% over reachability-based localization. We implemented
our approach inside an industrial-strength interval-domain-based abstract interpreter [19-21,26-29]. In experiments, the

1 The reachable- and accessed-memory ratio is an average over all procedures. We ran the reachability-based analysis and recorded, for every analysis
of procedures, the sizes of localized memory and its accessed portion. We averaged the size ratio over the total number of analyses of procedures.

H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727 1703

struct S { int a; int b; }
int g = 0;

void £ (8% p) { p->a = 0; }
void main() {

0 ~NO O WN =

S *s = (S*)malloc(sizeof S);
s->a = 0;
s->b = 0; f(s); // first call to f
s->b = 1; £f(s); } // second call to f
S = <157 {av b}) p = (157 {av b}) p = <I57 {a7 b})
p +— (5{ab}) (ls,a) +— [0,0] (,a) +— [0,0]
(s,a) +— [0,0] (s,b) +— [0,0]
(Is,b) +— [0,0] g — [0,0]
g ~ [0,0]
(a) Non-localized memory. (b) Reachability-based localization. (c) Access-based localization.

Fig. 1. Example code and abstract memories right before calling procedure £ at line 7.

technique reduces analysis time by 78.5%-98.5%, on average 92.1%, and peak memory consumption by 33.0%-81.2%, on
average 71.2%, over the reachability-based approach for a variety of open-source C benchmarks (2K-105KLOC). Moreover,
our technique enables the largest four programs of our benchmarks to be analyzed, which could not be analyzed with the
reachability-based approach because of the analysis running out of memory.

In addition, we generalize the idea of access-based localization in three ways.

e We apply the technique even to arbitrary code blocks other than procedure bodies. When applying localization to such
smaller code blocks, we have to carefully select localization targets because localizing operations introduce performance
overhead. We present a block selection strategy that is flexible to balance actual cost reduction against the overhead.
The generalized localization reduces the analysis time by 8.5%-53.7%, on average 31.8%, on top of the procedure-level
localization.

e We extend the access-based localization to support efficient handling of large recursive call cycles. We show that
real C programs often have large recursive call cycles and localization is ineffective for such programs. Our extension,
called bypassing, aims to alleviate the problem and shows 9%-79%, on average 42%, improved performance in analyzing
recursive procedures.

e We adapt access-based localization to some relational numeric analyses. Though localizing relational analysis in general
is complicated, we show that the packed relational analysis [25], a popular form of practical relational analysis, naturally
fits to our technique. We define a simple localizing relational analysis and show that access-based localization improves
the analysis performance by more than 80%.

Contributions. This paper, which is an extended version of [27,29], makes the following contributions.

e We introduce a new approach to localization in global static analysis. Compared to the conventional reachability-based
approach, our access-based approach considers only the memory locations that will actually be accessed during the
analysis. As far as we know, published program analyzers do not perform access-based localization: previous analyses
use pure reachability-based techniques (e.g., [24,15,31]) or their variants (e.g., [8,23]).

e We report a real problem and solution. In fact, access-based localization is theoretically a simple extension of the
reachability-based localization. However, we show, for the first time, that such simple extension has a significant impact
in practice. The necessity of access-based approach has been mostly ignored in the literature.

e We evaluate our localization technique on top of a realistic C analyzer, Airac. Airac is an industrial-strength static
analyzer [19-21,26-29] using intervals- and allocation-site-based abstractions of numeric and pointer values.

e We present three extensions of access-based localization: the block-level localization, access-based localization with
bypassing, and localizing relational numeric analysis. These extensions of localization are all new and have not been
addressed in the literature.

Example. We illustrate our localization technique and compare it with the reachability-based localization approach.
Consider the C code in Fig. 1 and an interval analysis of the code. The analysis begins with an empty memory state (Ax.L).
The abstract memory state right before calling f at line 7 (after the parameter is bound) is represented by Fig. 1(a). Here, s
denotes a structure with fields {a, b} allocated at line 5. The abstract locations of each field are represented by (Is, a) and
(Is, b}, which initially have bottom values. p is a parameter of £ and g is a global variable.

Reachability-based localization collects all reachable memory entries: global variable g, parameter p, and structure fields
(Is, a) and (Is, b) that are reachable by dereferencing p. Fig. 1(b) shows the resulting localized memory.

Our approach additionally filters the memory entries for (Is, b) and g. Our pre-analysis infers that only the abstract
locations {p, (Is, a)} could be accessed during actual analysis of £. The actual analysis uses the results and trims memory
entries, resulting in the memory state shown in Fig. 1(c). Note that, because the localized memory (Fig. 1(c)) does not contain

1704 H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727

(Is, b, the update to location (Is, b) at line 8 does not cause f to be re-analyzed at the subsequent call to f (line 8). On the
other hand, with reachability-based localization, £ will be analyzed again at the second call.

Outline.Section 2 presents the baseline analyzer on top of which we will develop our localization techniques. Section 3
defines the conventional reachability-based localization. Section 4 develops our access-based localization. Section 5 extends
the localization for arbitrary code blocks. Section 6 extends the localization to efficiently handle recursive call cycles.
Section 7 extends the localization to relational analysis. Section 8 evaluates the proposed techniques. Section 9 presents
related work and discussion. Section 10 concludes the paper.

Notation. Throughout this paper, we use the following notations. Given a set X, £ (X) denotes the powerset of X. Given a
functionf : A — Band aset X C A, f|x denotes function restriction: f|x(x) = f(x) if x € X, otherwise f|x(x) = L. We
abuse the notation f |, for the domain restrictions on singleton set {a}. We write f[a + b] to mean the function we get from
function f by changing the value for a to b. For all of the domains, we assume an implicit and appropriate C, T, and _L for

domains that need them. We write f[a; — by, ..., a, — b,] for fla; — bq]:--[a, — b,]. We write f[{aq, ..., a,} e b]
forfla; — f(a;) ub, ..., a, — f(a,) U b] (weak update). When X is a tuple, X.n indicates the nth component of the tuple.
Finally, N represents the set of natural numbers {0, 1, 2, .. .}.

2. A parametric non-relational static analysis for C-like languages

In this section, we define a parametric static analysis for imperative programs, on top of which we develop our
localization technique in the next section. The analysis is parametric in that its abstract numeric domain is parameterized
so we can instantiate the analysis to obtain any non-relational analysis for imperative programs. We present the program
representation (Section 2.1), collecting semantics (Section 2.2), and abstract semantics (Section 2.3).

In this article, we assume the sorts of static analyses with the following assumptions. We suppose that the analysis is
context-insensitive and the set of concrete memory locations are abstracted by a finite set of abstract locations. Specifically,
the analysis uses allocation site-based heap abstraction where all the memory locations allocated at an allocation site are
collectively represented by a single abstract location.

2.1. Programs

We define the program and language our static analyzer considers. We assume that a program is represented by a tuple
(C, =) where C is a finite set of control points (or program points) and < C C x C is the control flow relation of the
program; ¢’ <> c indicates that c is a successor control point of ¢’. Each control point c is associated with command cmd(c).
Command c has one of the following five types:

assign(lv, e) | alloc(lv, a) | assume(x < n) | call(fy, e) | returng

where expression e, I-value expression lv, and allocation expression a are defined as follows:

expression e — nle+e|lv| &lv
l-value Ilv — x| *xe|ele] |e.x
allocation a — [el; | {x}

An expression may be a constant integer (n), a binary operation (e + e), an I-value expression (Iv), or an address-of expression
(&Iv). An l-value may be a variable (x), a pointer dereference (*e), an array access (e [e]), or a field access (e . x). Expressions
and l-value expressions have no side-effects. (We assume that all memory accesses are valid within expressions and I-value
expressions). All program variables, including formal parameters, have unique names. Command assign(lv, e) assigns the
value of e into the location of lv. Command alloc(lv, a) allocates an array [e]; or a structure {x}, where e is the size of the
array, x is the field name, and the subscript [is the label for the allocation site. Multidimensional arrays are represented
by nested allocation commands: in order to allocate a two dimensional array a[e;][e,], we first allocate a with size e; and
allocate each a[i](0 < i < eq) with arrays of size e;. An assume command assume(x < n) makes the program continue
only when the condition evaluates to true. For simplicity, we consider structures with one field only but generalizing it to
multiple fields is immediate (our abstract domain covers the general case). Each call-site for a procedure is represented
by two control points: a call-point and its corresponding return-point. A call-point is associated with command call(f,, e),
which indicates that procedure f, whose formal parameter is x, is called with actual parameter e. For simplicity, we assume
that there are no function pointers? and consider procedures with one parameter only. Command retu rny denotes the return
statement of procedure f.

2.2. Collecting semantics

The collecting semantics of program P is an invariant [P]] € C — £(S) that represents the set of reachable states
at each control point, where the concrete domain of states, S, is defined as S = L. — V: concrete state s € S is a map

2 n implementation, we resolve all function pointers a priori with a pre-analysis.

H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727 1705

from locations (IL) to values (V). The collecting semantics is characterized by the least fixpoint of the semantic function
F € (C— £(S)) — (C — £(S)) such that,

F(X) =xceC. | foX(c))

where f. € P(S) — £ (S) is a semantic function at control point ¢, which transfers the input state of ¢ into its output state
depending on the commands associated with c. We leave out the standard definition of the concrete semantic function.

2.3. Abstract semantics

Abstract domain. We abstract the collecting semantics of program P by the following Galois connection:
¥ X
C— 2(S) (T’— C—S

e N . ¥s A .
where « and y are pointwise liftings of abstract and concretization function as and y5 (such that £ (S) ___% S), respectively.
S
That is, we abstract the set of reachable states by a single abstract state. An abstract memory state
S=L—V

A A

denotes a finite map from abstract locations (IL) to abstract values (V).

A

L. = Var + AllocSite + AllocSite x FieldName

¥ = 72 x £(L) x P(AllocSite x 7 x 7) x P (AllocSite x P (FieldName))

An abstract location may be a program variable (Var), an allocation site (AllocSite), or a structure field (AllocSite x FieldName).
All the elements of an array allocated at allocation site I are collectively represented by L. The abstract location for field x of
a structure allocated at [is represented by (I, x). An abstract value is a quadruple. Numeric values are tracked by the first
component, abstract numerical value 7. The analysis is parametric so we can choose any non-relational numeric domains
for Z, such as the lattice of intervals ({[l,u] | ,u € Z U {—o0, 400} Al < u} U {L}) or the constant propagation lattice
(zU{L, T}).Points-to information is kept by the second component ({P(Iﬂ)): itindicates pointer targets an abstract location
may point to. Allocated arrays of memory locations are represented by array blocks (2 (AllocSite x Z x 7)): an array block
(I, 0, s) consists of an abstract base address (1), offset (0), and size (s). A structure block (I, {x}) € £ (AllocSite x P (FieldName))
abstracts structure values that are allocated at I and have a set of fields {x}.> Note that all the domains (such as L) are finite

except that the abstract numerics (2) could be infinite. When Z is infinite, we apply a widening operation [14] to ensure the
termination of the analysis.

Abstract semantic function. Abstract semantics is characterized by the least fixpoint of abstract semantic function Fe (C—
S) — (C — S) defined as,

FX)=AcecC. |_| fo X (1

/¢

where fc € § — Sis a semantic function at control point c:

LG > V() ®)] cmd(c) = assign(lv,)

§[f(lv)(§) s (L, L, {{l, a5 (0), 'Q(e)(§).l)}, 1] ecmd(c) = alloc(lv, [el))
£&) = { LG H (L L L {{L (x)))] emd(c) = alloc(lv, {x})

S[x > (3(x).1M5 a5({z € Z | z < n}), 5(x).2, 5(x).3, 5(x).4)] cmd(c) = assume(x < n)

SIx > V(e)®)] emd(c) = call(fy, e)

$ cmd(c) = returny

Auxiliary functions Y (e)(5) and £ (Iv)(s) compute abstract values for e and abstract locations for Iv, respectively, under S.The
effect of node assign(lv, e) is to (weakly) update the abstract value of e into abstract locations £ (Iv) (§).# The array allocation
command alloc(lv, [e],) creates a new array block with offset 0 and size e. The structure block command alloc(lv, {x};)
creates a new structure block. In both cases, we use the allocation site [as the base address (that is, we use the allocation-site
abstraction), by which many (possibly unbounded/infinite) concrete locations are summarized by finite abstract locations.

3 We could also design a structure block by & (AllocSite x FieldName), which has the same expressive power as & (AllocSite x & (FieldName)). However,
we have chosen the latter to remove redundancies in representing base addresses. For example, suppose a structure with two fields x and y is allocated at
allocation-site I. We represent the structure by {(l, {x, y})}, not by {(I, x), (I, y)}.

4 For brevity, we consider only weak updates. Applying strong updates is orthogonal to our localization techniques.

1706 H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727

Our abstract semantics sets the initial contents of the newly allocated location I to be bottom, which will be changed to
actual initial values by the programs.> Command assume(x < n) confines the value of x so that the resulting memory state
satisfies the condition. The call command call(fy,) binds the formal parameter x to the value of actual parameter e. Note
that the output of the call node is the memory state that flows into the body of the called procedure, not the memory state
returned from the call. The abstract semantics for procedure calls show that our analysis is context-insensitive: it ignores
the calling context in which procedures are invoked.

We now define v and £, which compute abstract values and locations, respectively. Given expression e and abstract
state S, V(e)(S) evaluates the abstract value of e under s.

V) e SV
V)©) = (azn), L, L, 1)
Vier+e)) = V(en®+V(e)®)
V)G = LIBOD [1e LAv)B)
V(@&IV)(E) = (L, L)), L, L)

v is inductively defined for each type of expression. Integer n evaluates to its corresponding interval value [n, n]. Expressions
involving binary operators are inductively evaluated. For 1-values lv, we first find the abstract locations that Iv denotes and
then look up the abstract values associated with the locations. &Iv evaluates to the abstract locations that Iv denotes. Note
that the analysis is parameterized by abstract binary (—T—Z), join (1), and meet (5) operations for abstract numeric domain
7, from which those operators for abstract values are defined in a standard way.

Similarly, given l-value expression Iv and abstract memory state S, .£(Iv) (5) evaluates the set of abstract locations that [v
denotes under S.

L(v) € § > 2@)
L6 = {x)
L(*xe)8) = V(©e)(B).2U{l]| (I,0,5) € V(e)3).3} U{(Lx) | (I,X) € V(e)5E).4Ax € X}
Lle1[e:1)B) = {I] {Lo,s) € V(en)().3)
L. x)6) = {(I,x) | (LX) € V(Ee)5).4Ax € X}

The abstract location for variable x is represented by x. When *e is used as an I-value, it denotes all the abstract locations
that e evaluates to, including arrays and structure fields. Array access e; [e,] refers to the location of arrays e; denotes. In
our analysis, all of the array elements are smashed into a single element, and hence, the definition of f(e1 [e,]) does not
involve e,. As expected, the abstract location for structure field e . x is represented by a pair of allocation site and field name.

Our abstract domain and semantics are rather conventional, similar to those used in other abstract interpretations for C
programs or executable codes (e.g., [2,3]). Our abstract semantics estimate numeric and pointer values within a monolithic
abstract interpretation. A benefit of combining the two analyses is that information about numeric values can improve the
pointer analysis, and pointers information can improve the numeric analysis, as studied in [30].

Notes on soundness. In practice, it is difficult to design an abstract semantics that is sound with respect to the C language
because, for example, there is no formal definition of C semantics and C allows random memory accesses via arbitrary
pointer values. Thus, static analyzers for C are usually designed on top of their own intermediate language (IL) and the
soundness is guaranteed with respect to the IL. We can also claim that our abstract semantics is sound with respect to the
semantics of our intermediate language (a variant of our soundness proof is available at [33]) but not with respect to the
C language. In practice, we try to close the gap between the semantics of C and IL when translating C into IL. For instance,
in our intermediate language, we assume that there is no expressions like *&*&x. So, during the translation, we simplify
&&x into x. When we cannot translate it correctly, we ignore the expression and replace it with the top value.

2.4. Fixpoint algorithm

Worklist algorithm. We compute the least fixpoint of abstract semantic function given in (1) by a worklist-based fixpoint
algorithm (Fig. 2). Unlike the naive fixpoint algorithm, which would directly iterate Fi, the worklist algorithm evaluates
only the program points whose abstract states has changed. The worklist, W, consists of those control points whose abstract
states are not yet stabilized. For each iteration of the loop, a control point is selected (choose) and evaluated. When the new
output memory state $ is changed, next control points of ¢ are added to the worklist and the updated information is stored.
We use weak topological ordering for worklist management [6].

51 programs, structures are allocated with their fields immediately initialized. Otherwise, we translate the program so that uninitialized locations are
explicitly initialized to “top” values in our intermediate language.

H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727 1707

W € Worklist = #(C)

XeC—§
fre§—>$§
W :.=C
X:=xc.L
repeat
¢ := choose(W)
W =W —{c}

Sin = Loe Jo (@)
if Sin Z X(c)
if c is a head of a flow cycle

Sin := X(C)VSin

X(c) := $in
W:=WU{c|c— '}
until W = ¢

Fig. 2. The worklist-based fixpoint computation algorithm. The algorithm uses the widening operation (v), which is necessary for analysis’ termination.

The performance of the worklist algorithm is sensitive to the iteration strategy (that is, the actual implementation of
choose). There is a large body of related works on worklist ordering strategy, and there is no best solution to the problem.
In experiments, we used the so-called nested reverse topological ordering [28]. In this ordering, the order between control
points is defined as a reverse topological order between procedures on the call graph: a control point n of a procedure f
precedes a control point m of a procedure g if f precedes g in the reverse topological order in the call graph. If f and g are
the same procedure, the order between the nodes is defined by the reverse topological order of the control flow graph of
that procedure. Strongly connected components are considered as single entities. Note that there can be two or more nodes
that have the highest order, for example of each branch of conditional statements. In this case, the algorithm arbitrarily
chooses a node among them. The ordering consistently shows better performance than naive worklist management scheme
(BFS/DFS) or simple “wait-at-join” techniques (e.g., [20]).

Widening. When the abstract domain is of infinite height, we need to apply a widening operator during the fixpoint
computation. Widening [14] is a speed-up technique designed to safely approximate least fixpoints of semantic function. In
abstract-interpretation-based static analysis, program invariants are characterized as least fixpoints of (abstract) semantic
functions over an abstract domain. For finite height domains, the fixpoints can be computed (in finite time) by using a
classical iterative algorithm. But the iterative algorithm does not terminate or has unacceptable costs for domains with
infinite height or very large height. For infinite or very large height domains such as the lattice of intervals, the widening
technique [14] is used to guarantee and accelerate the analysis’ termination. With widening, the iterative algorithm does
not necessarily compute least fixpoints but finds a safe (upper) approximation of the least fixpoint. In our abstract domain,

only the numerical domain (Z) requires widening (if it has an infinite height); the other domains are all finite. For example,
our static analyzer Airac uses the lattice of intervals and we use the following widening operation v for intervals [12]:

1vX =X
Xvl =X
[lo,Uo]V[l1,U1] = [0511 <10?OZ(11 <lo? —OOII()),
02u1>u0?0:(u0<u1? +OOIUO)]

In Fig. 2, we abuse the notation v for the widening operations between abstract states, which is a pointwise lifting of the
interval-widening operation. In the analysis, the widening is applied only to loop heads of flow graphs represented by <.

3. Reachability-based localization

In this section, we define the reachability-based localization of abstract memories. We formalize the technique on top
of the parametric static analyzer defined in the previous section. The reachability-based technique will be extended to the
access-based technique in the next section.

3.1. Conventional reachability-based localization

Given an input abstract memory to a procedure, unless we actually analyze the procedure with the input memory, it is
generally impossible to infer the exact set of abstract locations that will be accessed during the analysis of the procedure.
Instead, the conventional localization technique uses a reachability heuristic, which is based on the simple intuition

1708 H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727

that unreachable abstract locations cannot be accessed in the future of the analysis. With reachability-based localization,
procedures are analyzed as follows:

1. Before entering the procedure, the analysis stops and searches the input memory to collect abstract locations that are
reachable from abstract locations for global variables or actual parameters.

2. Then, the input memory is restricted to the collected, reachable abstract locations.

3. The called procedure is analyzed with only the reachable portion of the input memory, not the entire input memory.

Formally, given a call call(fy, €) and its input abstract memory state § (parameter-bound), Airacge.cn COmputes the
following set of abstract locations (let Globals be the set of abstract locations that represent global variables in the program):

R (fx, S) = Reach(Globals, $) U Reach({x}, §)

which is the union of abstract locations that are reachable from global variables (Globals) and those that are reachable from
the parameter (x). We use Reach(X, S) to denote the set of abstract locations in § that are (directly or transitively) reachable
from the location set X.

Reach(X, S) = lfp(LY.X U OneHop(Y, 5))
OneHop(X, 5) is the set of locations that are directly reachable from X:

OneHop(X, §) = U§(x).2 U{l|(lo,s)es®.3VU{LSY|(IF) €5(x).4Af €F}

xeX

Given an input memory $ to a call-point ¢ (such that cmd(c) = call(f;, €)), the definition of the semantic function fc is
changed as follows: (Note that the output from the semantic function is the memory that flows into the body of the called
procedure, not the memory that is returned from the body.)

fe®) =¥|rgs) whered =3[x > V(e)B)]

That is, when a procedure is being analyzed, its input abstract memory is restricted to reachable abstract locations.

We also have to consider procedure returns. Because the analysis is localized, the abstract memory state returned from
the exit of the callee procedure does not have enough information to continue the rest of caller procedure. Thus, at return
point, we combine (via join operation for abstract memories) the non-localized memory parts at the corresponding call
point with the returned memory from the callee. This join operation is sound because every object is represented by a fixed
abstract location in our abstract memories.

4. Access-based localization

This section describes our access-based localization technique. Our technique more tightly localizes abstract memories
than the reachability-based technique does: whereas the reachability-based approach only strips away unreachable abstract
locations, our method additionally filters out the abstract locations that are reachable but definitely not to-be-accessed
during the analysis.

In order to compute such tighter information, we take a “static” approach. That is, with our technique, all the abstract
locations that will be accessed during the analysis are already prepared from the beginning of the analysis. On the other hand,
the reachability-based localization is “dynamic” in a sense that the estimation process, which collects possibly accessed
abstract locations, is simultaneously performed during the analysis. We separate the entire analysis into two phases:

1. Pre-analysis: the set of abstract locations that are accessed during the actual analysis of each procedure are
conservatively estimated.

2. Actual analysis: the actual analysis uses the access-information and filters out memory entries that will definitely not
be accessed by called procedures.

A careful design of pre-analysis is important for both safety and efficiency of our approach. To be safe, the pre-computed
access information should be conservative with respect to the abstract locations that would be accessed during the actual
analysis. To be useful, it should be efficient enough to compensate for the extra burden of running the pre-analysis.

Before discussing the analysis, we need to clarify the meaning of ‘accessed’. In our analysis, the abstract entities that are
accessed during the analysis are abstract locations. We say an abstract location a € L is accessed if an abstract value is read
by referencing the abstract location or an abstract value is written to a.

Example 1. Consider a semantic functionf = A$.5[x > $(y)], where § represents the input memory state and f (§) computes
its output state. When evaluating f (5), the accessed locations are x and y: location x is written, and y is dereferenced.

In Section 4.1, we design a pre-analysis and prove its safety and Section 4.2 describes the actual analysis.

H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727 1709
4.1. Pre-analysis

The pre-analysis aims to compute a map access € C — J’(Iﬁ) that, for each control point, conservatively estimates a set
of abstract locations that are possibly accessed during the actual analysis of the control point. In order to find such a map,
we use the following strategy:

e We define the ‘access function’ that computes access information for each command in the program. The access function
is a summarized version of semantics function fc, focusing only on the read/write behaviors instead of describing full
semantics of fc.

e We define a conservative abstraction of the original analysis, whose analysis results over-approximate input memory
states that occur in the analysis.

e By using the access function and over-approximated analysis results, the accessed abstract locations for each control
point are conservatively estimated.

Access function. We define the access function, A € C — § > :P(]ﬁ), that computes which abstract locations are accessed
during the analysis of a control point on an input memory state. The intuition is that, given control point ¢ and its input
abstract memory $, A(c)(S) computes the set of abstract locations that are accessed during the evaluation of fc (5). Note that
an abstract location a is accessed during the evaluation of fc (5) if a is referenced (i.e., S(a) appears in the definition of fc) or
a value v is written to a (i.e., $S[a — v] appears in the definition) during the evaluation.) . .

In order to define function », we first define two sub-functions AV €e > § > P(L)and AL € Iv — S - P(L).
Given expression e and memory state $, 4V(e)(5) computes abstract locations that are accessed during the evaluation of
V(e)(3). Similarly, AL (V) (5) computes abstract locations that are accessed during the evaluation of ;ﬁ(lv) (5). AV and AL
are defined as follows. (Note that the base cases in the following definitions are not always empty; AV (lv) (5) is defined to
contain .£(Iv) (5) that is mostly not empty.)

AV(e) € § > 2(1) ALMY) € § > 2(I)
AVM)S) = @ ALX)(E) = 0
AV(e1 +€)(B) = AV(e)B) UAV(e)() AL(ke)(S) = AV(e)(©S)
:AAV(IV)G) = A}C(lv)(§) U L) G) A@(gl e,])(5) = A:V(e1)(§)
AV(&IV)(E) = ALIV)(S) ALE.X)E) = AV(e)(©®)

These definitions are naturally derived from the definitions of semantic functions "V and £. Consider AV (defined in the
left column) first. When e = n, we see that the definition of V (in Section 2.3) does not read (nor write to) any location,
and hence there are no accessed locations (AAV (n)(S) = ¥). Whene = e; + ey, accessed locations are collected recursively.
When an I-value Iv is used as an r-value (the third case), from the definition of V(Iv) (5), we see that abstract locations of
Iv and abstract locations that are accessed during the evaluation of .£(Iv)(S) are accessed, which are collected by .£(Iv)(5)
and, AL (Iv) (), respectively. When an l-value Iv is used as an address-of expression (the fourth case), from the definition
of V(&lv)(S), we see that abstract locations that v denotes (L(Iv) (5)) are not accessed during the evaluation of V(&lv) ®)
and hence the fourth case only includes A.L£(Iv)(5). Similarly, the definition of A.£ (defined in the right column) is derived
from the definition of £. AL (x)(3) is @ because £ (x)(5) just produces a location x but does not read (resp., write) any value
from (resp., to) x. The second case holds because computing L(*e) () only accesses locations that are accessed during the
evaluation of e. Likewise, the fourth case holds. Lastly, the third case holds: we collect only the locations accessed during
the evaluation of e; because £(e; [e2]1)(5) does not involve the evaluation of e, (we smash all the array elements into one
memory cell).

Example 2. Consider expression #x and suppose the current abstract memory is § = [x — p, p — v]. The locations that
are accessed during the evaluation of V(xx)(8) are {x, p}, which is derived as follows from the definition of AV and 4.£:

AV (X)(S) = AL*X)(S) U L (x)(5)
= AVX) () U L(*x)(5)
= (ALWE U LE) U L6 6)
= (PU LX) () U L(xx)(3)
= {x} U {p} = {x, p}

As another example, consider expression &p[1] and abstract memory S = [p — (I, 0,s),] — v]. The locations that are
accessed during the evaluation of V(&p[1])(S) are {p}, which is derived as follows:

AV@pITDE) = ALPI1DE)
= AV
= ALP)B) U LP)G)
= PULpP)S)
= {p}

1710 H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727

Formally, the following lemmas show that .4V and A.C are correct and monotone.

Lemma 1. For all expressions e, lv, and input memory s,

a € AV(e)() < ais accessed during the evaluation of V(e)(5)
ae AL (lv)(5) < ais accessed during the evaluation of f(lv))

Proof. By structural induction on e and lv. For example, consider the case fore = e; + e;:

ae AV(e; +e)05)

& ae AV(e)E) UAV(er)(B) ... def. of AV
& ais accessed in V(e;)(5) or V(e;)(S) --- induction hypothesis
& ais accessed in V(eq + e5)(5) .. def. of V(ey + e3)(5)

Other cases are proved similarly. O
Lemma 2. AV and 4.L are monotone. That is, for all expression e, I-value v and abstract memory states s and s’,

= AV(e)(s) T AV(e)(s)

cCs
Cs = ALIV)(S) T ALV ()

S
S
Proof. By structural inductionsone and lv. O

Now we define the access function 4 that computes abstract locations that are accessed during the analysis of each
command:

ALIV)(B) U AV(e)(S) U L(Iv)(5) cmd(c) = assign(lv, e)
ALIV)(B) U AV(e)(S) U L(Iv)(5) ecmd(c) = alloc(lv, [e]))

AQOG) = A:£(lv)(§) U L) (6) cmd(c) = alloc(lv, {x})
AV (e)(S) U {x) cmd(c) = assume(x < e)
AV(e)(5) U {x} cmd(c) = call(fy, e)
0 cmd(c) = returns

Similar to the derivation of AV and A.L, # has a semantic relationship with fc and is thus naturally derived from the
definition of f.. When ecmd(c) is assign(lv, e) or alloc(lv, [el}), the definition of f.(§) = S[£L()() = V(e)(d)] tells us
that abstract locations £(Iv)(5) are written and read (because of the weak update), and those that are accessed during
the evaluation of Iv and e are also accessed (4;6 (Iv) and AV (e), respectively). Thus, 4(c)(5) is defined to be the union of
these sets. When cmd(c) = alloc(lv, {x};), L(Iv)(5) is accessed and locations accessed inside Iv is inductively collected.
When cmd(c) is assume(x < e) or call(fy, €), note that x is accessed in addition to the locations that are accessed inside

e. When cmd(c) = returny, fc does not access anything. Note that we could have factored the above definition of A using
the equivalence AL(IV)(5) U L(Iv)(5) = AV(Iv)(8), but we did not do this in order to emphasize the semantic relationship
between «4 and f;. The following lemmas shows that +4 is indeed correct and monotone.

Lemma 3. Forallc € C,§ € §8,a e,

a € A(c)(S) & ais accessed during the evaluation of fc Q)
Proof. By case analysis on the type of cmd(c). For example, consider the case for cmd(c) = assign(lv, e):

ae A4S

& a e ALIV)E) UAV(e)E) U L(I)E) ... def. of A
& aisaccessed in £(Iv)(8) or V(e)(§) ora € L(Iv)(§) --- Lemma 1
& ais accessed in f, (5) ... def. of f

Other cases are proved similarly. O
Lemma 4. .4 is monotone, i.e., VS, § € Sand Ve € C,
SC§ = A()B) S A()SE)

Proof. By case analysis on type of cmd(c) and Lemma 2. O

H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727 1711

old, new € §
Preliminary (old, new) =
new := lg
repeat

old := new

forallc € Cdo

new := newvfc(new)

until new C old
return new

Fig. 3. The fixpoint algorithm for our pre-analysis. The analysis uses the widening operation in order to ensure the analysis’ termination.

Deriving a further abstraction. Using the access function 4, we can estimate accessed locations. Suppose X is the analysis
results for the original analysis, i.e., X = Ifp(F). Then, because 4 is monotone, all the abstract locations that are accessed
at ¢ throughout the analysis are captured by A(c)(5), where § = | |...,.X(c’) is the input abstract memory at fixpoint.

However, because X itself is computed from the original analysis (lfp(ﬁ)), the accessed-locations-estimation phase would
take at least the same time as the actual analysis. We have to find the accessed locations in a more efficient way. We do this

by computing X' that is more approximate than X, ie, X C X'
We define a pre-analysis that computes such a X’(3 X). To this end, we apply a conservative abstraction to the original

analysis. The abstract domain C — § and semantic function F € (C —> S) — (C — §) for the original (actual) analysis
was defined as follows (the following is just a repetition, for convenience, of the definition in Section 2.3) :

FX)=xrcec | |foXc)).
/¢
We apply a simple abstraction that ignores the order of program statements (flow-insensitivity). The abstract domain is
obtained by defining a Galois connection:
C>§<=8
such that,
a=2X.| |X(@©

ceC

y = AS.Ac € C§

The semantic function ﬁp : § — Sis defined as follows:

ﬁp = AS. <L|f6(§)>

ceC

The following lemma shows that the pre-analysis is a conservative approximation of the original analysis.
Lemma 5. Ifp(F) C y (Ifp(F,))
Proof. See Appendix. O

In general, the pre-analysis can be derived using any conservative abstraction of the original analysis. However, we chose
the above abstraction because it is efficient enough in practice and it is precise enough to track reachability among the
dynamically allocated locations and structure fields. In our experiments, filtering out not only unused variables but also
unused allocated locations and fields was found to be vital for the performance of our localization technique.

Fig. 3 shows the fixpoint algorithm for the pre-analysis. It is based on a flow-insensitive fixpoint computation. The
analysis starts with a bottom memory state (_Lg). The state is iteratively updated by flow functions for all control points
in the program until the resulting state is subsumed by the state of the previous iteration. Let 5., be the analysis results
from the pre-analysis.

4.2. Actual analysis

The actual analysis is the same as Airac except that now we use the access information (+) and localize memory states.
Given an input memory state § to a call-point ¢ (such thatemd(c) = call(fy, €)), the semantic function f. for the call statement
is changed as follows:

fe(® =¥ accessy Where ' = 3[x > V(e)(3)]

1712 H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727

After the parameter is bound (§'), the memory state is restricted to the set of accessed locations access(f) that represents
the set of abstract locations that are accessed by procedure f:

access(f) = U < U A(C)(gpre))

gecallees(f) \cecontrol(g)

where callees(f) denotes the set of procedures, including f, that are reachable from f via the call-graph and control(f) the
set of control points in procedure f, and Sy, is the analysis result from the pre-analysis. The following theorem ensures
the safety of the localization. (By correctness, we mean that the precomputed access information is conservative. In this
article, we assume the sorts of static analyses (designed in Section 2) where abstract locations are fixed and abstract values
between different locations are independent of each other. With this particular family of abstractions, from the fact that
all the abstract locations that will be accessed in the actual analysis are included in the pre-analysis results, the soundness
of localizing analysis is immediate up to the accessed locations. For other styles of analyses, the soundness of localizing
analyses was studied in [31,24]).

Theorem 1 (Safety of Access-based Localization). For all procedures f, access(f) conservatively estimates abstract locations that
are accessed during the original (non-localized) analysis of f.

Proof. Abstract location a is accessed inside procedure f if and only if it is accessed either in the body of f or in the bodies
of procedures that are called by (reachable via call-graph from) f, which is the definition of access. Moreover, because
Spre conservatively approximates the abstract memories of all program points (Lemma 5) and s is monotone (Lemma 3),
(1) (Spre) contains all the abstract locations that would be accessed in actual analysis. Thus, access is a safe estimation of
accessed locations. O

Access-based localization can be used in combination with the reachability-based approach to localize memory states
more aggressively. Given an input memory state § to a call point ¢ such that cmd(c) = call(f;, €), reachable locations R (fy, S),

and accessed locations access(f), the semantic function f for the call statement call(fy, e) is changed as follows:

fc(g) = (§/|=R(fx,§/))|access(f) where §' = §[X = {)(e)(g)]

After parameter binding (§') the memory is first restricted to the reachable locations (R (fy, S')) and then the resulting
memory is restricted to access(f). The reason why we restrict the memory to R(fy, §') N access(f) is that access(f) may
have locations that are unreachable, i.e., not contained in R (fy, §'), because S, is computed by the less precise pre-analysis
but R(fy, §') is computed during the more precise actual analysis. Hence, the memory states localized by the combination
of reachability- and access-based approach are never larger than those localized by the reachability-based approach.

Remark. Note that missing entries in the localized memories do not cause problems in practice. For example, suppose there
are two global variables g; and g5, and function f uses g; only in its body. In the original analysis without localization, the
local memory of f involves both values of g; and g;. On the other hand, the analysis with access-based localization does not
put the value of g, in the local memory of f. Thus, it seems that the localizing analysis cannot make any conclusions regarding
g, from the analysis results. However, we believe this limitation is not a real problem in practice because, if necessary, the
original analysis results can be easily reconstructed from the localized results by looking for the most recent definitions of
the values. For example, the missing value for g, can be obtained from the program points where g, was lastly defined. All
we need to do is to compute def-use chains, which is well-known in the literature and is even freely available if the program
is in the SSA form.

5. Extension 1: localization for arbitrary code blocks

Generalizing the idea, we can apply the access-based localization technique for code blocks smaller than procedures.
In the literature, localizations were conventionally performed only at procedure-level [31,37,15]. It is probably because
devising a reachability-based localization technique for arbitrary code blocks is not as simple as the technique for
procedures. For procedures, the initial locations for computing reachability are parameters and globals, but, for arbitrary
code blocks, the initial locations are not explicitly given in the program text. By contrast, applying the access-based
localization for arbitrary code blocks is easier than the reachability-based localization.

Given a code block, it is straightforward to collect accessed locations for the block because our pre-analysis provides
access information () for each control point in the program. We localize the input memories to the block according to the
access information for the block, and analyze the block with the localized memory state, which avoids re-analyses of blocks
and speeds up memory operations. We select localization target blocks before starting the actual analysis.

For effectiveness, we have to carefully select blocks to apply localization. Localization improves the analysis performance,
but at the same time, introduces a performance overhead. At the entry of a selected block, additional set-operations to
localize the input memory state have to be performed and at the exit of the block, non-localized memory portions of the
input memory have to be merged with the output of the block. In order to balance against the localization overhead, we

H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727 1713

B1;

|
ENTRY [
|

Fig. 4. An example for access-based localization for arbitrary code blocks.

select code blocks (entry, exit, B) that consists of one entry node, one exit node, and a selected block B that satisfies the
following properties:

e the entry (respectively, the exit) node strictly dominates (respectively, post-dominates) all nodes in B, and B contains all
nodes that are strictly dominated and post-dominated by the entry and exit, respectively
e code block size |B| > k for parameter k

Using the parameter k, we are able to find a balance between actual reduction and overhead introduced by localizing
operations. The above selection strategy is applied recursively: a block satisfying the requirements can be selected inside
another selected block.

Example 3. Consider the control flow graph of a procedure in Fig. 4 . The dashed nested boxes are the blocks selected by our
algorithm when k = 2. First, the entire body of the procedure is selected (B;). Inside By, the algorithm selects B,, B3, By, Bs
and Bg recursively. As an example, consider block B, whose entry and exit are node 5 and 14, respectively. We localize B,'s
input memory (the output memory of node 5) according to the set of abstract locations accessed by B, (the set of nodes
6,7,8,9, 10, 11, 12, 13). And the non-localized memory portions at the entry (node 5) are merged with output memory of
By at the exit (node 14).

6. Extension 2: access-based localization with bypassing

In this section, we extend the access-based localization to mitigate a substantial inefficiency in handling procedure
calls. Though access-based localization is effective in tightly localizing abstract memories, the technique has a limitation in
handling procedure calls: the localized input memory for a procedure contains not only memory locations accessed by the
procedure but also those accessed by transitively called procedures. This weakness is especially aggravated in the presence
of recursive call cycles, which is common in analysis of realistic programs. In this section, we present a technique, called
bypassing, to alleviate the problem.

6.1. Overview

Any localization technique, including both access-based and reachability-based techniques, has a source of inefficiency
in handling procedure calls. In access-based localization, the localized input state for a procedure involves not only the
abstract locations that are accessed by the called procedure but also those locations that are accessed by transitively called
procedures. For instance, when procedure f calls g, the localized state for f contains abstract locations that are accessed by
g as well as abstract locations accessed by f. Those locations that are exclusively accessed by g are, however, irrelevant to
the analysis of f because they are not used in analyzing f. Even so, those locations are involved in the localized state for f,
which sometimes leads to unnecessary computational cost (due to re-analyses of procedure bodies).®

The inefficiency is exacerbated with recursive call cycles. Consider a recursive call cyclef — g - h — f — ---.
Because of the cyclic dependence among procedures, every procedure receives input memories that contain all abstract
locations accessed by the whole cycle. That is, access-based localization does not work any more inside call cycles. Moreover,
recursive cycles (even large ones) are common in real C programs. For example, in GNU open source programs, we noticed
that a number of programs have large recursive cycles and a single cycle sometimes contains more than 40 procedures.’
This was found to be the main performance bottleneck of access-based localization in practice.

In this section, we extend access-based localization technique to mitigate the aforementioned inefficiency. With our
technique, localized states for a procedure contain only the abstract locations that are accessed by the procedure and do not
contain other locations that are exclusively accessed by transitively called procedures. Those excluded abstract locations are
“bypassed” to the transitively called procedures, instead of passing through the called procedure. In this way, analysis of a

6 In fact, any localization techniques suffers from similar problems. Here, we discuss the problem in the context of access-based localization.

7 One might wonder whether the large recursive call cycles are actual call cycles or spurious ones due to an imprecise analysis of function pointers. For
the benchmark programs in Table 5, we have manually checked and found that the call cycles are actual cycles, not spurious ones added by the analysis.

1714 H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727

int a=0;

void g() { a++; }

void £() { gO; }

int main () {
a=1; £0); // first call to f
a=2; £0); // second call to f

}

Fig. 5. Example code for illustration of bypassing technique.

M

M M, Mo f ?
M M M-

M|rucun Mi|cun Ma|p M|rucun My |Fugun Ma|rucun

(a) Non-recursive call chain. (b) Recursive call cycle.

Fig. 6. Problem of localization. F (respectively, G and H) denotes the set of abstract locations that procedure f (respectively, g and h) directly accesses. M|¢
denotes the memory state M with projected on abstract locations F.

procedure involves only the memory parts that the procedure directly accesses (even inside recursive cycles), which results
in tighter localization and hence reduces analysis cost more than access-based localization does. The following example
illustrates how our technique saves cost.

Example 4. Consider the code in Fig. 5. Procedure main calls £, and £ calls g. Procedure g updates the value of a. Procedure
main calls £ two times with the value of a changed.

e With access-based localization: Both £ and g are analyzed two times. The localized input memory for £ at the first call
(line 5) contains location a because a is (indirectly) accessed in f. The localized state at the second call (line 6) contains
the same location. Because the value of a is changed, £ (as well as g) is re-analyzed at the second call.

e With access-based localization with bypassing: f is analyzed only once (though g is analyzed twice). There is no locations
that are directly accessed by £ and hence is not re-analyzed at the second call. However, procedure g is re-analyzed
because we propagate the changed value of a to the entry of g.

Next, we illustrate how our technique works with examples. Fig. 6 shows example call graphs. There are three procedures:
f, g and h. Suppose F (respectively, G and H) denotes the set of abstract locations that procedure f (respectively, g and h)
directly accesses. We describe how the problem occurs and then how to overcome the problem.

Access-based localization has inefficient aspects in analyzing procedure calls. We first consider the case for non-recursive
call chains (Fig. 6(a)). With the localization, the input memory M to f is localized so that the procedure f is analyzed only
with a subpart M |rugun (M projected on locations set F U G U H) rather than the entire input memory. Similarly, the input
memory M; to g is localized to M|guy, and h’s input memory M, is localized to M, |y. The inefficiency comes because the
entire localized memory is not accessed by each procedure. For example, abstract locations contained in G U H are not
necessary in analyzing the body of f.

The problem becomes severe when analyzing recursive call cycles. Consider Fig. 6(b). As in the previous case, the input
memory M to f is localized to M|ryguy. However, in this case, the input memory M; to g is also projected on F U G U H,
not on G U H, because f can be called from g through the recursive cycle. Similarly, input memory M, to h is localized to
M |rugun. In summary, localization does not work any more inside the cycle.

Fig. 7 illustrates how our technique works. We first consider non-recursive call case (Fig. 7(a)). Instead of restricting f’s
input memory to F U GU H, we localize it with respect to only the directly accessed locations, i.e., F. Thus, f is analyzed with
M|f. The non-localized memory part (M |gc) is directly bypassed (dashed line) to g. Then, the output memory M; from f and
the bypassed memory M|c are joined to prepare input memory M; LI M|gc for procedure g. The input memory is localized
to (M; UM |gc)|c and g is analyzed with the localized memory. Again, the non-localized parts (Myc LIM;)|.c) are bypassed to
the subsequent procedure h. In this way, each procedure is analyzed only with abstract locations that the procedure directly
accesses.

The technique is naturally applicable to recursive cycles (Fig. 7(b)). With our technique, even procedures inside recursive
call cycles are analyzed with memory parts that are directly accessed by each procedure. Hence, in Fig. 7(b), the localized
memory for f (resp., g and h) only contains locations F (resp., G and H).

6.2. Incorporating bypassing into access-based localization

Before discussion, we introduce some notations. When a procedure f is called from a call-site, we say that f is a directly
called procedure from the call-site, and procedures that are reachable from f via the call-graph are indirectly (or transitively)
called procedures.

H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727 1715

M

M|p (Mlpe UM)lg ((M|pe UM)|ge U Mo g Ml (Mlpe UM)le (Mlpe U Mi)lge U Mz)|u
@ M ! o Mo
—> "
M| pe M|pe U] 7

b My (M| e UM)|ge

1‘{'5.(., o e -

(u|,(m\rl lge ((M|pe U M)|ge U Ma)| e
(a) Non-recursive call chain. (b) Recursive call cycle.

Fig. 7. Illustration of our technique. With our technique, each procedure is analyzed with its respective directly accessed locations, and others are bypassed
(dashed line) to the subsequent procedure.

Example 5. Consider a call chain f — g — h. When f is called from a call-site, f is the directly called procedure, and g and
h are indirectly called procedures.

When a procedure f is called from a call-site, we say that a location is directly accessed by procedure f if the location is
accessed inside the body of f. We say that the location is indirectly accessed by f if the location is not accessed inside f’s
body but accessed by indirectly called procedures.

Example 6. Consider a call chain f — g, and assume that locations [; is accessed inside the body of f and [, is accessed
inside the body of g. We say [; is directly accessed by f and I, is indirectly accessed by f (I, is directly accessed by g).

We need to modify both pre-analysis and actual analysis. Pre-analysis is slightly changed: pre-analysis is exactly the same
as the one used in access-based localization, except that we use its result in a different way. In access-based localization,
we compute access(f), which includes abstract locations directly accessed by f as well as locations indirectly accessed by f.
Instead, here, we computes direct € Procld — (L) that maps each procedure to a set of abstract locations that are directly
accessed by the procedure, excluding indirectly accessed locations. Given + : C — S — £ (L) and the pre-analysis result
Spre, the set direct(f) is defined as follows:

direct(f) = U A(C) (§pre)

cecontrol(f)

The main changes are in actual analysis. In access-based localization, actual analysis performed localization using the
access information from pre-analysis. Now, the actual analysis is changed in two ways: the analysis performs the localization
in a different way, and it additionally performs another technique, called bypassing. When analyzing a procedure, we
localize the input memory state so that only the abstract locations directly accessed by the procedure are passed to the
current procedure. The non-localized parts, which contains indirectly accessed locations, are not passed to the directly called
procedure but bypassed to indirectly called procedures. In this way, every procedure is analyzed with input memory state
that is more tightly localized than access-based localization. In terms of analysis on control flow graphs, these operations
work as follows:

e Localization: Localization is performed at control points where memory states come from other procedures. These
control points include entry and return points: when a procedure is called from a call-site, the input memory from the
call-site flows into entry of the called procedure, and when a procedure returns, the memory state returned from the
procedure flows into its caller via a return point. Hence, the memory states at entry and return points of a procedure are
localized so that the procedure is analyzed with the directly accessed locations. We call such points, where localization
occurs, bypassing sources.

Example 7. Consider the Fig. 8. Fig. 8(a) shows a call-graph, where procedure f calls g, and Fig. 8(b) shows the control
flow graph for f. Let F and G be the set of abstract locations that are directly accessed by procedure f and g, respectively.
There are three bypassing sources: entry, 3, and 9. Control points 3 and 9 are return points. At entry, the input memory
M is restricted to F. Hence, control point 1 is analyzed with the localized memory M |r. At 3 and 9, the memory returned
from procedure g, M; and M, are restricted to the location set F, and hence, the body of procedure f is always analyzed
with the local memory M [¢. By contrast, with access-based localization, f is analyzed with the localized memory M |r g,
which is equal or bigger than M|f.

e Bypassing: Bypassing happens between bypassing sources and targets. The non-localized parts at bypassing sources
(entry or return points) should flow into control points where memory states flow into other procedures. These nodes
include procedure exit and calls: at procedure exit, the output memory state of the procedure is propagated to the caller,
and at call-sites, memory states flow into called procedures. Thus, after performing localization at a bypassing source,
the non-localized parts are bypassed to “immediate” call or exit points that are reachable without passing through other
call-sites. We call such calls and exits bypassing targets.

Example 8. Consider the Fig. 8(b) again. The solid lines represent control flow graphs of procedure f and dashed lines
shows how bypassing happens. There are three bypassing sources: entry, 3, and 9. The bypassing target for entry is the
call-site 2. Another call-site 8 or exit are not bypassing target for entry because they are not reachable from entry without

1716 H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727

M
entry
]V[|Fv \\\]Lﬂpc
\
1 ,‘
/
//
v »
2:g()
M, 9
M |pe 3 :rtn M |pc
7 ’/Ml\F\ _____ \‘\
/ \
N 5 7 '
! 1 -—a
| i N4y
| 8:90) |
' 6 T—a I
l‘ Ajle]\[2 g I’
I\ / ,/
\ 9 : rinf /)
S P N /
M ’ * exit Nl o
: ‘~\\~__,,//]\12‘Fc]\12“’(
1| pe

(a) Call-graph. (b) Control flow graph of f.

Fig. 8. Example: (a) a call-graph, where f is called with input memory state M and g is called from f (b) inside view (control flow graph) of f, where solid
lines represent control flow edges and dashed lines represent bypassing edges.

passing through the call-site 2. The bypassing targets for 3 are 8 and exit. Similarly, bypassing targets for 9 are 8 and exit.
At entry, the non-localized memory parts (M |zc) are bypassed to entry’s bypassing target, control point 2. Similarly, at 3
and 9, the non-localized memory M |zc and M, |zc are bypassed to their bypassing targets, node 8 and exit.

Fig. 9(b) shows our technique integrated in the worklist-based analysis algorithm. In order to incorporate bypassing into
access-based localization, only shaded lines are inserted; other parts remain the same. Predicate bypass_source € C — bool
checks whether a node is a bypass source or not:

true --- cis either entry or return
bypass_source(c) = false - - - otherwise

Function procof € C — Procld gives name of the procedure that encloses the given node. Function project takes a memory
state and a procedure and partitions the input memory into directly accessed and indirectly accessed parts:

project(m, f) = (m|direct(f)a m|access(f)\direct(f))
Function bypass_target € C — £ (C) maps each bypass source to its bypass targets:
bypass_target(c) = {t |c <> ¢c; <> -+ <> ¢, <>t A ciisnotacall A tis either call or exit}

If the current node n is a bypass source (line 9), the memory state m is divided into a local memory m; and the rest part
my (line 10). The local memory m; is propagated to the successors of n as in the case of the normal algorithm (line 15). The
non-localized memory (m;) is updated in the input memories of bypassing targets of n (line 11-14).

6.3. Delivery points optimization

Bypassing operation induces additional join operations, one of the most expensive operation in semantic-based static
analyses [5,20]. At bypassing targets, the bypassed memory from the bypassing source should be joined with the memory
propagated along usual control flows. For example, consider Fig. 8. At control point 2, two input memories, one propagated
from 1 and another bypassed from entry, are joined. Similarly, at the other bypassing targets (point 8 and exit), additional
join operations take place.

We noticed that the number of additional joins is sometimes unbearable. For example, Fig. 10 shows a common
programming pattern: the left-hand shows the code pattern, and the middle shows its control flow graph with bypassing
edges (dashed lines). Procedures £f1, f£2,..., fk are sequentially called after respective condition checks (condl1,
cond?2,..., condk). For this code, bypassing happens as follows (as dashed lines in Fig. 10 show):

H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727 1717

(01) : W € Worklist = £(C) (01) : W € Worklist = £ (C)

(02): XeC—§ (02): XeC—$§

(03):f66§—>§ (03):f56§—>§

04) : W= (C;)A(= AcC.L 04): W :=C; X :=ic.L

(05) : repeat (05) : repeat

(06) : ¢ := choose(W) (06) : ¢ :=choose(W)

07): W:=W —{c} 07): W: =W —{c}

08): 5:=|]u foX(c) 08): 5:=|] forX(c))
(09) : if bypass_source(c) then
(10): (31, 3) = project(f.(5), procof(c))
11) : for all t € bypass_target(c) do
(12) : if$, Z X(t)
(13) : X(t) = X)) usy
(14) : W :=W U {t}
(15) : 5:=5

(16): if$ Z X(c) (16) : if$Z X(c)

17) : if c is a head of a flow cycle (17) : if c is a head of a flow cycle

(18) : 5:=X(c)vs (18) : S:=X(c)vs

(19) : X() =5 (19) : X(c):=5

(20) : W =WU{c|c—c} (20): W:=WU{c|c— ¢}

21): untilW =0 21): untilwW =9

(a) The worklist-based algorithm. (b) The algorithm with bypassing.

Fig. 9. Comparison of the normal analysis algorithm and our bypassing algorithm: bypassing is simply incorporated to the traditional algorithm.

From entry to fi, fo, f3, . .., fi, exit
From f to f, f3, ..., fi, exit

From f} to exit

Thus, the total number of bypassing edges for this code fragment is (k + 1)(k 4+ 2)/2 when k is the number of branches.

We mitigate the overhead by making bypassing pass through some particular points that reduce the total number of
bypassing edges. These points, we call them “delivery points”, include some join points and loop heads. For example, in
Fig. 10, we use {1, 2, ..., k— 1} as delivery points. As a result, bypassing happens as shown in the rightmost graph in Fig. 10.
Bypassing from entry to call; takes place as before, but instead of bypassing from entry to {f,, ..., fi, exit}, we pass through
points 1, 2, ..., k— 1, which reduces the total number of bypassing edges from (k+ 1) (k+2)/2 to 3k. In order to select such
delivery points, we use a simple heuristic that uses join points or loop heads as delivery points when the selection actually
reduces the total number of bypassing edges. This optimization does not degrade the analysis precision because the set of
abstract locations on which join operations are performed are not greater than that in the original method.

7. Extension 3: localizing relational analysis

So far, we described the access-based localization for non-relational analyses. In this section, we show how to apply the
technique to some relational analyses as well.

Relational analyses are more precise than non-relational analyses. While non-relational analysis independently tracks
values of each variable, relational analysis additionally considers relations among the variables. For example, suppose
we analyze statement x:=y and y has value [1, 2] in intervals before the statement. After analyzing the statement non-
relationally, the only information we know is that x also has interval value [1, 2]; thus, we cannot be sure whether the value
of x is always the same as y. By contrast, if we analyze the statement relationally, we get additional constraints that x has
the same value as y after the statement.

Practical relational analyses exploit packed relationality [13,25,34,5], and access-based localization is applicable in this
case. It is well-known that global relational analyses, which keep the relations of all variables, has unacceptable costs
in practice [13,25]. For example, the octagon domain [25], the most popular relational domain, has time complexity
0(n®), where n is the number of program variables. Thus, instead of considering the global relations, practical relational
analyses divide variables into packs and keep each pack’s relations separately. We denote a pack of variables x1, .. ., X, as

(%1, ..., X))

1718 H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727

Example 9. Suppose {a, b, c} are program variables and we want to keep track of relations between variables a and b; we
are not interested in other relations. In this case, we can divide the variable set into the set of variable packs {{{a, b)), {(c))}.
Thus, in packed relational analysis using these packs, variables a and b are related together but they are not related with
variable c.

7.1. Localizing packed relational analysis

We now define a simple relational analysis and show how to apply the access-based localization to the analysis. The
distinguishing feature of localization for packed relational analysis is that the entities that are accessed are defined in terms
of variable packs. For example, at a simple statement x := 1, all the variable packs that contain x may be accessed.

Language. As in Section 2.1, a program is a tuple (C, —) and commands are associated with control points. We consider
the following commands.

cmd — assign(x, e) | assume(x < n) | callf
e—>njlx|le+e

The language is simple, pointer-free, and argument-free; however, extending the language to include other language
features does not require novelty but verbosity. In this section, we focus only on the key differences between non-relational
and relational access-based localizations.

Abstract domain. As before, the abstract domain is a function domain C — S, mapping abstract states to each control point.
In packed relational analyses, the abstract state is defined as follows:

§ = Packs — R

Abstract states (A) maps variable packs (Packs € & (Var) such that _J Packs = Var) to a relational domain (R (). We assume

Packs is given by the user or a pre-analysis [25]. The relational domain (R (R) expresses numerical constraints among variables
in the corresponding pack. Examples of numerical constraints are the domain of octagons [25] or polyhedrons [10].

Abstract semantics. Because packed relational analysis does not track all the possible relations between variables, we
sometimes need to know actual values (such as ranges) of variables. For example, suppose we analyze a := b with
Packs = {{a, c)), (b, c))}. Analyzing the statement, we try to update the abstract value for pack {a, c)). However, because
variable b is not contained in the pack, we must obtain the value of b from the other pack {(b, c)). The value for b is obtained
by projecting the relational domain elements for {(b, c)) into a non-relational domain, such as intervals. To this end, we
transform the original program into an internal form with such variables replaced by their actual values. Suppose the actual
value of b in terms of intervals is [1, 2] then code assign(a, b) is transformed into internal code a := =[1,2], where variable
b is replaced with its interval value. Formally, we assume abstract semantic function R € cmd" — R — R for relational
domain R is defined over the following internal language:

cmd” — assign(x, ") | assume(x < 7) | callf
e —> Z|x|e +eé

2 vz > :
where Z is a (non-relational) abstract domain for integers (2% % 7)) such as intervals.

We now define the semantics of the packed relational analysis. The abstract semantics is defined by the least fixpoint of
semantic functionF € (C — S) — (C — S):

FX)=AcecC. |_| for(X()).

c/—c

The abstract semantic function fc € § — §is defined as follows:

fA(g) _ - ecmd(c) = callf
77 slpr > R(emd1)(S(p1)), - .., pk — R(cmdi)(S(pk))] ... otherwise
where
{p1, ..., pk} = pack(x)
pack(x) = {p € Packs | x € p}

emd; = 7(p;)(5)(emd(c))

For both assign(x, e) and assume(x < n), we update only the packs that include x. .7 transforms cmd into cmd": given a
variable pack p, state s, and command cmd, .7 (p)(5) € cmd — cmd" returns the transformed command.

7 (p)(8)(assign(x, e)) = assign(x, Z(p)(5)(e))
Z(p)(8)(assume(x < n)) = assume(x < Z,(p)(5)(n))

H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727 1719

LN . _
entry > fi() 'entry > 10
I WV
1 > £o0) < 1 | f2()
if (condl) f1 QO; g ' ‘7
if (cond2) £2 O; D A ‘2' s
if (condk) fk (); ’ :
* \4 A
E—1 > fk() k-1 > fk()
e '«
e
ewit 3 exit

Fig. 10. Example of common code patterns that increases bypassing overhead. In this figure, for simplicity, we merged the call and return nodes into one
block.

where Z,(p)(S) € e — e" transforms expressions:

Ze(P)®)(n) = az({n})

) R | x ifxep
Z@E)X) =\ 1 @) otherwise

Ze()(B)(e1 +e2) = Ze(p)(5)(er) + Ze(p)(S)(e2)

where 7, € § — Z is a user-defined function that projects a relational domain element onto variable x to obtain its abstract
integer value. To be safe, 77, should satisfy the following soundness condition:

€pack(x)

Vs € S.m(3) oz (} [re@ire y@@(p))})

Abstract semantics with access-based localization. Note that the abstract semantic function fc given in Section 7.1 propagates

the input state for function calls to the called procedures as it is; currently, fc does not localize abstract states. We modify fc
to perform access-based localization at function calls.

We first define access function A € C — £ (Packs). As in non-relational analysis (Section 4.1), + is also naturally derived
from the abstract semantic function f;:

) -+« ecmd(c) = callf
A(C) = {pack(x) U |J pack(l) ... otherwise
leV(e)

where V(e) denotes the set of variables that appear inside expression e. When the command is a call statement, we see that

no locations are accessed from the definition of fc. When the command is an assignment or an assert statement, variable
packs that contain x and those appearing inside expression e are accessed. Unlike the previous access function presented in
Section 4.1, the access function for our relational analysis does not depend on states, because the language does not contain
pointers. With pointers, the access function takes states and the access information is computed from a pre-analysis, as
described before in Section 4.1.

Now, we can incorporate the localization into fC. When calling a procedure, the semantic function is changed as follows:

fC (§) = §|access(f)

where access(f) represents the set of abstract locations that are accessed by procedure f:

access(f) = U < U A(C)>

gecallees(f) \cecontrol(g)

Note that the localization is very similar to the non-relational case (presented in Section 4.2). The only difference is that the
accessed entities are now variable packs rather individual abstract locations.

1720 H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727

Table 2

Properties of the benchmarks and analysis results for Airac. Lines of code (LOC)
are given before preprocessing. The number of procedures (Proc), and basic
blocks in the program (Blocks) are given after preprocessing. Entries with co
mean missing data because the analysis runs out of memory.

Program LOC Proc Blocks Airac (w.o0. localization)
time (s) MB

spell-1.0 2,213 31 782 46.1 29
barcode-0.96 4,460 57 2,634 105.7 291
httptunnel-3.3 6,174 110 2,757 2808.9 284
gzip-1.2.4a 7,327 135 6,271 12,756.2 886
jwhois-3.0.1 9,344 73 5,147 3,4245 633
parser 10,900 325 9,298 196,318.8 2,917
bc-1.06 13,093 134 4924 87,988.5 767
twolf 19,700 222 14610 oo o0
tar-1.13 20,258 222 10,800 157,545.0 2916
less-382 23,822 382 10,056 148,015.7 2445
make-3.76.1 27,304 191 11,061 126,908.8 2757
wget-1.9 35,018 434 16,544 o0 o0
screen-4.0.2 44734 589 31,792 o) o]
bison-2.4 56,361 1203 20,781 [ele) o0
bash-2.05a 105,174 959 28,675 o0 o0

8. Experiments

In this section, we evaluate the performance of the techniques presented in this paper. In Section 8.1, we compare
the performance of the procedure-level access-based localization (presented in Section 4) against the reachability-based
localization (presented in Section 3). In Sections 8.2 and 8.3, we evaluate the block-level localization and bypassing as well.
In Section 8.4, the access-based localization is evaluated for a relational analysis.

We implemented those localization techniques on top of Airac, an interval domain-based abstract interpretation engine
in an industrialized bug-finding analyzer [20,19,26,28,27,29].

8.1. Performance of procedure-level access-based localization

From our baseline analyzer Airac, which does not use any localization technique, we have made two analyzers Airacgeach
and Airacpocace that respectively use reachability-based and access-based localization techniques. Those analyzers differ
from Airac only in their respective localization schemes. Hence, performance differences, if any, are solely attributed to the
different localization methods. The analyzers are written in OCaml.

We have analyzed 15 software packages. Table 2 shows our benchmark programs. parser and twolf are from SPEC2000
benchmarks, and the others from GNU open-source programs. The entire program is analyzed starting from the main
procedure. All experiments were done on a Linux 2.6 system running on a Pentium4 3.2 GHz box with 4 GB of main memory.
We use two performance measures: (1) time is the CPU time spent in seconds; (2) MB is the peak memory consumption in
megabytes.

We compare the performance of Airac, Airacgeach, and Airacp,ocace- The analysis results for Airac is shown in Table 2. The
results for Airacgesch and Airacp,ocace are shown in Table 3.

Airac vs. Airacreach. The results show that the reachability-based localization reduces the analysis time and memory for
most programs. Airacreach COnsistently reduces the analysis time by 36.7% on average. The effectiveness is clear from the
fact that Airacgeach reduces analysis time of Airac more than 50% for programs httptunnel, gzip, jwhois, parser and
bc. And the peak memory consumption is reduced by on average 46.5%, enabling Airacge,c, to analyze twolf that cannot
be analyzed by Airac because of memory cost.

However, the results also show some limitations of the reachability-based localization. First, for two programs (spell
and make), Airacgeach took more time than Airac. This is mainly because of the overhead of localizing operations at procedure
calls. Second, it cannot analyze the largest four programs (wget, screen, bison, bash) because the analysis runs out
of memory. Yang et al. [37,36] report similar observations that shape analysis with reachability-based localization is
insufficient for practical performance, and another technique (in their case, a new join operator) is required for more
scalability.

Airacreach VS. Airacperocace. Overall, Airacprocace Saved 78.5%-98.5%, on average 92.1%, of the analysis time of Airacgeach. FOr
example, for bc, Airacgesch took 13879.2's but Airacprocacc t00k 730.9 s, reducing the analysis time by 94.7%. The analysis
time of Airacprocacc includes pre-analysis time. The pre-analysis takes just a small portion of the total analysis time. For
example, for bc, the total analysis took 730.9 s and pre-analysis just took 8.5 s.

H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727 1721

The big time savings are thanks to the synergy between reduction in the number of fixpoint iterations and improved
speed of memory operations. First, in our experiments, Airacp,cacc Feduced the number of fixpoint iterations by on average
74.3%: more general (weaker) procedural summaries computed by Airacp,ocacc let the analyzer avoid re-computation of
procedure bodies at different call-sites than Airacgeach. Second, Airacp,ocacc improves speed (#iteration/time) by on average
4.0 times: each procedure is analyzed with smaller memory states.

During the experiments, we observed that the improved performance is quite sensitive to the localization ratio (the size
of accessed memory entries/the size of the reachable memory). For example, in Table 3, we see that, analyzing screen,
Airacp,ocace takes much more time than other programs. This is because screen has a bigger localization ratio (on average
38.5%) than other programs (e.g., the ratio for bash was 4.6%). So, we believe that localizing the input memory as much as
we can is important for saving analysis time. This is why we designed a pre-analysis that considers dynamically allocated
locations and structure fields as well as global variables (Section 4).

Moreover, our technique noticeably saves peak memory consumption by on average 71.2%. As an example, for bc,
Airacgeach required 335 MB of peak memory but Airacp,ocacc required 106 MB. The reduction enabled Airacpocace t0 analyze
the largest four programs (wget, screen, bison, bash) that cannot be analyzed by Airacgreach-

Discussion on analysis precision. Airacprocace 1S at least as precise as Airacreacn. IN principle, more aggressive localization
improves the precision of our analysis because unnecessary memory entries are not passed to procedures, avoiding needless
value propagations. In order to simply compare the precision, we first joined all the memories, ignoring flow-sensitivity,
associated with each program point and then counted the number of constant intervals (#const), finite intervals (#finite),
intervals with one infinity (#open), and intervals with two infinities (#top) contained in the joined memory. The constant
interval and top interval indicate the most precise and imprecise values, respectively. The following table shows the results
for some programs. (This result is just to show that our localization technique does not sacrifice (in fact, it increases)
analysis precision, not to show how accurate our analyzer is. For simplicity of the comparison, we turned off many precision-
improving techniques: flow-sensitivity, context pruning, and narrowing.)

Program Analysis #const | #finite | #open | #top
spell-1.0 Airacgeach 665 101 33 142
Airacprocace 665 102 32 142

barcode-0.96 | Airacreach 2343 595 221 515
Airacprocace | 2347 597 218 | 512

Why does the precision improve? Consider analyzing the following code with interval domain and context-insensitive
handling of procedure calls.

1: int g = 0;

2: void £ () { ... } // assume g is not used inside f
3: void main() {

4: g=0; £(0; // first call to f

5: g=1; £(); // second call to f

6:}

Without localization or even with reachability-based localization, the value of g at line 6 is [0, 1] in interval. This is
because the analysis is context-insensitive and the values of g from two call-sites are merged at the entry of procedure £
and the merged value is propagated back to both call-sites.

With access-based localization, the value of g at line 6 is [1, 1] in interval. Because global variable g is not used inside
procedure £, the input memory states for procedure £ does not contain the value for g. Hence, the value [0, 0] from the first
call is not propagated to line 6 via the interprocedurally invalid path.

8.2. Performance of block-level access-based localization

We made Airacgenace from Airaceocace, Which further applies the access-based localization to arbitrary code blocks inside
procedures. Note that Airacgenacc SUbsumes Airacp,ocace: Airacgenacc implements procedure-level localization as well as
block-level localization. We set the minimum block size k to 6 for Airacgenace, Which was shown to be most efficient in
our setting.

Table 4 and Fig. 11 presents the performance of localizing arbitrary code blocks. In the experiments, the block-level
localization (Airacgenacc) additionally saved 8.5%-53.7%, on average 31.8%, of the analysis time of the procedure-level
localization (Airacpocace)- For example, for bash, Airacpocace t00k 2011.3 s but Airacgenacc to0k 1142.7 reducing the analysis
time by 43.2%. Memory costs between them is nearly the same: Airacgenacc reduced peak memory consumption by on
average 1.9%. Memory costs for Airacgenacc SOMetimes increase (e.g., parser), because we cache accessed-locations sets
for each localization block. The pre-analysis time for Airacgenacc iNCreases because of additional computation selecting
localization blocks.

1722

Table 3

H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727

Comparison between Airacgeach, and Airacp,ocace. Analysis time for Airacp,ocace includes pre-analysis time. The pre-
analysis time is shown inside parentheses. Save; shows time savings of Airacgeacn against Airac. Save, shows time
savings of Airacpocacc against Airacgeacnh. MB is peak memory consumption in megabytes. Entries with oo mean
missing data because the analysis runs out of memory.

Program LOC Airacreach Airacprocace
time (s) MB Save, time:total(pre) MB Save,
spell-1.0 2,213 53.0 23 —15.0% 24 (0.2) 5 95.4%
barcode-0.96 4,460 92,6 125 12.4% 94 (0.6) 25 89.8%
httptunnel-3.3 6,174 1383.2 154 50.8% 314 (1.3) 36 97.7%
gzip-1.2.4a 7,327 2,866.6 333 77.5% 94.8 (1.3) 73 96.7%
jwhois-3.0.1 9,344 1,185.4 254 65.4% 94.8 (1.3) 73 96.7%
parser 10,900 60,577.8 1048 69.1% 890.0 (3.8) 224 98.5%
bc-1.06 13,093 13,879.2 335 84.2% 7309 (4.1) 106 94.7%
twolf 19,700 27,230.3 1199 N/A 1,037.7 (7.5) 332 96.2%
tar-1.13 20,258 113,061.4 1797 28.2% 2,5240 (6.0) 338 97.8%
less-382 23,822 137,827.3 1480 6.9% 26,817.6 (40.7) 466 80.5%
make-3.76.1 23,304 1423256 1954 —12.1% 19,0152 (39.4) 580 86.6%
wget-1.9 35018 oo 0o N/A 6,735.8 (20.8) 609 N/A
screen-4.0.2 44,734 o0 0o N/A 340,849.0 (281.5) 2458 N/A
bison-2.4 56,361 oo 00 N/A 2,487.3 (13.1) 301 N/A
bash-2.05a 105,174 oo 00 N/A 2,011.3 (20.2) 439 N/A
Table 4

Performance results for localizing arbitrary code blocks (Airacgenacc)- Analysis time is the total time that includes
pre-analysis time. The pre-analysis time is shown inside parentheses. Save shows time savings of Airacgenace
against Airacprocace- MB is peak memory consumption in megabytes. Entries with co mean missing data because

the analysis runs out of memory.

Program LOC Airacprocace Airacgenacc(k = 6)
time:total(pre) MB time:total(pre) MB Save
spell-1.0 2213 24 (02) 5 21 (03) 5 13.5%
barcode-0.96 4,460 94 (0.6) 25 55 (1.4) 21 41.6%
httptunnel-3.3 6,174 314 (1.3) 36 216 (24) 24 31.0%
gzip-1.2.4a 7,327 948 (1.3) 73 545 (8.0) 67 42.5%
jwhois-3.0.1 9,344 2548 (12) 170 188.1 (18.5) 148 26.2%
parser 10,900 890.0 (3.8) 224 617.0 (9.2 245 30.7%
bc-1.06 13,093 7309 (4.1 106 5427 (8.5) 116 25.8%
twolf 19,700 10377 (7.5) 332 4804 (20.0) 260 53.7%
tar-1.13 20,258 2,5240 (6.0) 338 1,638.3 (15.9) 351 35.1%
less-382 23,822 26,817.6 (40. 7) 466 18,766.7 (95.0) 528 30.0%
make-3.76.1 27,304 19,0152 (394) 580 17,405.7 (75.9) 740 8.5%
wget-1.9 35,018 6,735.8 (20.8) 609 3,823.3 (48)5) 623 43.2%
screen-4.0.2 44,734 340,849.0 (281.5) 2458 274,2803 (667.1) 2958 19.5%
bison-2.4 56,361 2,487.3 (13.1) 301 1,696.6 (37.7) 302 31.8%
bash-2.05a 105,174 2,011.3 (20.2) 439 1,142.7 (59.5) 416 43.2%
Reach ===
ProcAcc ——m
GenAcc mmmmm
100 100 100 100 100 100 100 100 100 100 100 100 100
75
50
% 21 19
10 1 = 1812 s
spell barcode httptunnel gzip jwhois parser bc twolf tar less make AVERAGE

Fig. 11. Performance comparison of reachability-based localization (Airacgeacn), procedure-level access-based localization (Airacpocacc), and block-level
access-based localization (Airacgenacc)- Compared to the reachability-based localization, our access-based procedural localization technique reduces
analysis time by 80.5%-98.5%, on average 92.1%. The generalized, access-based localization for arbitrary code blocks further reduces the analysis time
by 8.5%-53.7%, on average 31.8%, against the procedure-level access-based localization.

H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727 1723

Table 5

Performance of bypassing techniques. Lines of code (LOC) are given before preprocessing. The
number of procedures (Proc) is given after preprocessing. LRC represents the size of largest
recursive call cycle contained in each program. time shows analysis time in seconds. MB shows
peak memory consumption in megabytes. Airacp,ocace USeSs access-based localization for procedure
calls and Airacg,pass Uses our technique. time for Airacpyocacc and Airacgypass are the total time that
includes pre-analysis time. Save shows time savings in percentage of Airacgypass against Airacprocace-
The performance numbers of Airacp,ocace in this table are little bit different from those in Tables 3
and 4, because the analyzer had been more tuned (in a way orthogonal to localization) since the
time when experiments in Tables 3 and 4 were conducted.

Program LOC Proc LRC Airacprocace Airacgypass Save
time (s) MB time (s) MB (time)
spell-1.0 2,213 31 0 24 10 1.6 10 31.6%
gzip-1.2.4a 7,327 135 2 519 65 37.7 64 27.4%
parser 10,900 325 3 571.6 206 3194 245 44.1%
bc-1.06 13,093 134 1 496.9 131 318.4 165 35.9%
twolf 19,700 192 1 509.5 212 389.9 212 23.5%
tar-1.13 20,258 222 13 2,407.9 294 1,503.2 338 37.6%
less-382 23,822 382 46 14,720.8 490 4,906.4 427 66.7%
make-3.76.1 27,304 191 61 14,681.9 695 5,248.0 549 64.3%
wget-1.9 35,018 434 13 6,717.5 544 4,383.4 552 34.7%
screen-4.0.2 44734 589 77 310,788.0 2228 66,9206 1875 78.5%
bash-2.05a 105,174 959 4 1,637.6 272 1,492.4 265 8.9%
AccLoc ===
Bypass ——=
100 100 100 100 100 100 100 100 100 100 100 100 100
91
77
7 68 :
64 62 65
56 60
50 -
a3 36
25 - 22
0
spell gzip parser bc twolf tar less make wget screen bash AVERAGE

Fig. 12. Performance comparison between access-based localization and bypassing. Extending access-based localization with bypassing saves analysis time
by 9%-79%, on average 42%. In particular, bypassing technique is more effective for benchmark programs, such as make and screen, that extensively use
recursion and have large recursive call cycles. For those programs, the average savings are 77%.

8.3. Performance of bypassing

From Airacprocacc, We have made Airacg,p,ss that uses the access-based localization with the bypassing technique.
Airacgypass 1S €xactly the same as Airacprocace €XCePt that Airacg,p,ss additionally performs the bypassing operation. Hence,
performance differences, if any, between them, are solely attributed to the bypassing technique.

Fig. 12 and Table 5 compares the time of Airacprocacc aNd Airacgypass. Overall, Airacgypass saved 8.9%-78.5%, on average
42.1%, of the analysis time of Airacp,ocacc. There are some noteworthy points.

e Some programs contain large recursive call cycles. One common belief for C programs is that it does not largely use
recursion in practice. However, for the benchmark programs in Table 5, we have found that some programs extensively
use recursion and large recursive cycles unexpectedly exist in a number of real C programs. Note that these call cycles are
actual cycles (we have manually checked this), not spurious ones caused by an imprecise analysis of function pointers.
For example, from Table 5, note that program less, make, and screen have recursive cycles (scc) that contain more than
40 procedures.

e Airacp.ocace 1S extremely inefficient for those programs. For other programs that have small (or no) recursive cycles, the
analysis with access-based localization is quite efficient. For example, analyzing bash (the largest one in our benchmark)
takes 1637 s. However, analyzing those programs that have large recursive cycles takes much more time: less and make
take more than 10,000 s and screen takes more than 310,000 s to finish the analysis, even though they are not the largest
programs.

e Airacgypass 1S especially effective for those programs. For programs less, make, and screen that contain large recursive
cycles, our technique reduces the analysis time by 66.7%, 64.3%, and 78.5%, respectively.

1724 H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727

Table 6

Performance of access-based localization for relational analysis. The
access-based localization significantly improves the relational analysis
(based on the octagon domain [25]) by saving both time and memory costs.

Programs LOC OctBase OctLocal Save
Time Mem Time Mem
gzip-1.2.4a 7,327 2078 2832 273 1,072 87%
bc-1.06 13,093 9536 6987 1,065 3,230 89%
tar-1.13 20,258 o0 00 9,566 5963 N/A
less-382 23822 o0 00 16,121 8,410 NJ/A
make-3.76 27304 o0 00 17,724 12,771 NJA
wget-1.9 35018 o0 00 15,998 9363 N/A

o Airacgypass IS also noticeably effective for other programs. For programs, which have small cycles (consisting of less than 20
procedures), Airacgypass Saved 8.9%-44.1% of the analysis time of Airacprocacc. FOr example, in analyzing parser, Airacprocace
took 572 s but Airacgypass t00k 319 s.

The bypassing technique is also likely to reduce peak memory cost. Because the bypassing technique localizes memory
states more aggressively than the original access-based localization, the peak memory consumption must be reduced.
However, in the experiments, memory cost for analyzing smaller programs (gzip, parser, bc, twolf, tar) slightly increased.
This is because Airacgypass additionally keeps bypassing information in memory. But, for larger programs (less, make, wget,
screen, bash), the results show that our technique reduces memory costs. For example, Airacp,ocacc Tequired 2228 MB in
analyzing screen but Airacg,pass required 1875 MB.

8.4. Performance of access-based localization for octagons

We implemented relational static analyzers based on the octagon abstract domain [25]: OctBase and OctLocal. They are
obtained by replacing interval domains of Airac with octagon domains. Non-numerical values (such as pointers, array, and
structures) are handled in the same way as the interval analysis. OctLocal performs the access-based localization in terms of
variable packs, as described in the previous section. OctBase is the same as OctLocal except for the localization. To represent
octagon domain, we used the Apron library [18].

In all experiments, we used a syntax-directed packing strategy. Our packing heuristic is similar to Miné’s approach
[25,13], which groups abstract locations that have syntactic locality within code blocks. For example, abstract locations
involved in the linear expressions or loops are grouped together. Scope of the locality is limited within each of syntactic C
blocks. We also group abstract locations involved in actual and formal parameters, which is necessary to capture relations
across procedure boundaries. Large packs whose sizes exceed a threshold (10) were split down into smaller ones.

We have analyzed 6 programs and the Table 6 shows its results. OctBase requires extremely large amount of time and
memory. For example, it can only analyze the smallest two programs and for others the analysis immediately hit the cost
limit. By contrast, access-based localization makes the analysis much more realistic. For example, OctLocal is able to analyze
35 KLOC within 5 h and 10 GB of memory, which were impossible to analyze without the localization.

9. Related work & discussion

In static program analysis, although localization is a well-known idea for reducing analysis cost, research has been mainly
focused on reachability-based approach. For example, in shape analysis, reachability-based localization has been used to
improve the scalability of interprocedural analyses [9,31,32,22,15,37,36]. Rinetzky et al. [31,32] define a shape analysis in
which called procedures are only passed reachable parts of the heap. Marron et al. [22] reformulate the idea of [31] for
graph-based heap models. In separation-logic-based program verification (both by-hand and automatic checking [4,7]), one
typically reasons about a command with respect to its footprint (memory cells that the command accesses) in isolation.
However, (even) in separation-logic-based program analysis, the framing, which is expressed as accessibility in logic, is
conventionally implemented based on reachability [15,37,36]: Gotsman et al. [15] and Yang et al. [37,36] split states based on
reachability. Similar reachability-based techniques are also popular in higher-order flow analyses [16,17,24]. Jagannathan
et al. [17] use “an abstract form of garbage collection” that removes unreachable bindings.® Might et al. [24] formalize
the abstract-garbage-collecting control-flow analysis and show that removing unreachable cells significantly improves the
analysis performance. However, reachability is, in fact, just one crude but safe approximation method for estimating “live”
abstract resources. In this paper, we present a new non-reachability-based approach, access-based localization.

8 In general, abstract garbage collection in control flow analysis is related to strong updates and hence its main role is to improve the analysis precision.
However, we limit our discussion on its ability to improve analysis speed [24].

H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727 1725

Chen et al. [8] use a mixture of reachability- and access-based localization, but, their approach is more restricted than
ours. During reachability-based localization, they try to infer accessed locations by evaluating expressions twice. However,
because input states are not at a fixpoint during the course of the analysis, the accessed locations cannot be completely
determined. By contrast, our approach makes access-based localization always possible.

Might et al. [23] observe that reachability is overly conservative, and presents a refined localization technique that is
orthogonal to our method. From the reachability-based localized state, they additionally exclude some resources that are
governed by unsatisfiable conditions. The resulting localized state may contain non-accessed resources that are not governed
by such conditions, which could be filtered by our technique. And, since our technique does not consider unsatisfiable
conditions, their technique can improve ours.

Our three extensions of access-based localization are new. Previously, localization was applied only for procedures
[31,22,15,37]. For the first time, we propose to localize the analysis of arbitrary code blocks instead of whole procedures and
show that this fine-grained localization further improves analysis performance in a realistic setting. Our bypassing technique
is also new; previous localization techniques all have a common limitation in handling procedure calls, as described in
Section 6. In this paper, we show that traditional localization is overly conservative particularly for programs with large
cycles of recursive procedures, and provides an analysis algorithm that solves the problem. In addition, we show how to
apply the localization technique to relational numeric analysis via variable packings.

Scaling an analysis with an efficient pre-analysis has been used in other contexts. For example, flow-insensitive pre-
analysis has been used in dataflow analysis [1] and pointer analysis [35]. Our work is an instance of these lines of research:
we use a pre-analysis to localize memory states in actual analysis. In addition, we show some properties that the pre-analysis
must satisfy, which is necessary for the safety of the localization.

We do not claim that our access-based localization is cost-effective in general. Our abstract domain is non-relational or
packed relational and, consequently, partitioning of the memory states is relatively simple. The partitioning operation will
become costly when analysis’ abstract semantics involves relational information such as in analysis with (global, i.e., non-
packed) relational domain [25] or storeless semantics [31]. In these cases, not only the resources that are directly accessed
by a code block but also resources that are indirectly required to keep relational information should be considered. Hence,
the localizing operation would get more complicated.

Lastly, one noteworthy point is that designing a correct pre-analysis with a right balance of accuracy and cost was
relatively easy in our case because the underlying analysis was designed as an abstract interpretation. Our pre-analysis
was simply a further abstraction of the underlying (actual) abstract interpreter.

10. Conclusion

In this article, we have proven that access-based localization is a decisive key to economical global static analysis
based on interval domain and allocation-site-based heap abstraction. We have shown that the conventional reachability-
based localization is too conservative and proposed a new, access-based technique. We report that the reachability-based
technique does not much help in reducing irrelevant entries of abstract memories: in our case, only 1.1%-5.6% of reachable
memory entries were actually accessed. Our technique aims to more tightly localize abstract memories so that reachable but
not possibly accessed abstract locations are also removed from the localized memories. In a realistic setting, our approach
reduced the average analysis time by 92% over the reachability-based approach.

In addition, we showed that three extensions of the access-based localization further enhance the technique.

e We proposed a fine-grained access-based technique to localize the analysis of arbitrary code blocks instead of whole
procedures (Section 5). This fine-grained extension turned out to further save the analysis time by 31% on average.

e We presented a technique to mitigate the performance problem of localization in handling procedure calls, particularly
for recursive call cycles. This extension was found to be a key to efficient analysis of programs that extensively use
recursion. The performance improvement for recursive programs were on average 72%.

e We showed that the access-based localization is effective for some relational analyses (Section 7). For a packed relational
analysis [25,5], a variant of popular relational approaches, incorporating access-based localization makes the analysis
faster by a factor of eight on average.

As future work, we are interested in applying the access-based localization to other program analysis settings. In this
paper, we showed that access-based localization is effective in two settings (non-relational analysis and packed relational
numerical analyses for C-like imperative languages). It would be interesting if our technique can be effectively applied to
other program analyses and languages, such as “global” relational analysis (without variable packing), higher-order flow
analysis [24], and shape analysis [31,32,15,36].

Acknowledgment

We are grateful to the anonymous reviewers of Science of Computer Programming for their very kind and constructed
feedbacks on earlier draft of this paper.

1726 H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727
Appendix. Proof of Lemma 5

We prove lfp(I:' JE vy (lfp(fp)). By the help of the fixpoint transfer theorem [11], it is enough to prove the following two
properties:

e o and y are related by Galois connection
eaof c F o«

For the first part (Galois connection), we have to show Vx € C — S, y € S.a(x) C Yy xEyQy).

caX)Cy=xCyQy):

a(x) Ey
= Ux@©Ey -+ def. of o
ceC
= VceCx(c) Ty --- Vc e Cx(c) T] x(c")
c’eC
= xC Acy ... def.of ConC — §
= xCyy) -+ def.of y
caX) Cy&=xCy(y):
XEy®)
= xC Ac.y ~-def.ofy
= Vex(c) Ey (= (Ac y)(c)) . def.of ConC — §
= |Jx(c)Cy -+ yis an upper bound of {x(c) | c € C}
ceC
= aXx)Cy -+ def. of

~

Next, we show « o F CFoalie,VdeC — Sa(ﬁ(d)) C ﬁp(a(d)).

a(ﬁ(d))z(|_| (d(c')) --- def.of F

= < L fc’(d(C/))> ... def. of
ceC \(/—c

c iy fc/(d(c’))) ... Ve € Cfeismono.and {¢’ | ¢/ < ¢} € C
ceC \c’eC

= || fe(d(c) -++ V5. || § =5, renaming ¢’ by ¢
ceC ceC

cLf <|_| d(c/))) .-+ ¥c € C.f, ismono. and d(c) T | | d(c)
cec c'eC c’eC

= | fe(a(d)) .+ def. of o
ceC

= Fp(a(d) ... def.of F, O

References

[1] Stephen Adams, Thomas Ball, Manuvir Das, Sorin Lerner, Sriram K. Rajamani, Mark Seigle, Westley Weimer, Speeding up dataflow analysis using
flow-insensitive pointer analysis, in: Proceedings of the International Symposium on Static Analysis, 2002, pp. 230-246.

[2] Xavier Allamigeon, Wenceslas Godard, Charles Hymans, Static analysis of string manipulations in critical embedded C programs, in: Proceedings of
the International Symposium on Static Analysis, 2006, pp. 35-51.

[3] Gogul Balakrishnan, Thomas Reps, Analyzing memory accesses in x86 binary executables, in: Proceedings of the International Conference on Compiler
Construction, 2004, pp. 5-23.

[4] Josh Berdine, Cristiano Calcagno, Peter W. O’Hearn, Symbolic execution with separation logic, in: Proceedings of the Asian Symposium on
Programming Languages and Systems, Springer, 2005, pp. 52-68.

[5] B.Blanchet, P. Cousot, R. Cousot, . Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival, A static analyzer for large safety-critical software, in: Proceedings
of the ACM SIGPLAN-SIGACT Conference on Programming Language Design and Implementation, 2003, pp. 196-207.

[6] Francois Bourdoncle, Efficient chaotic iteration strategies with widenings, in: Proceedings of the International Conference on Formal Methods in
Programming and their Applications, 1993, pp. 128-141.

[7] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, Hongseok Yang, Compositional shape analysis by means of bi-abduction, in: Proceedings of the
36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL '09, New York, NY, USA, ACM, 2009, pp. 289-300.

[8] Li-Ling Chen, Williams Ludwell Harrison IIl, An efficient approach to computing fixpoints for complex program analysis, in: Proceedings of the 8th
international conference on Supercomputing, 1994, pp. 98-106.

[9] Stephen Chong, Radu Rugina, Static analysis of accessed regions in recursive data structures, in: Proceedings of the International Symposium on Static
Analysis, Springer, 2003, pp. 463-482.

[10] P.Cousot, R. Cousot, Static determination of dynamic properties of programs, in: Proceedings of the Second International Symposium on Programming,

Dunod, Paris, France, 1976, pp. 106-130.

H. Oh, K. Yi / Science of Computer Programming 78 (2013) 1701-1727 1727

[11] P.Cousot, R. Cousot, Systematic design of program analysis frameworks, in: Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, San Antonio, Texas, ACM Press, New York, NY, 1979, pp. 269-282.

[12] P. Cousot, R. Cousot, Comparing the Galois connection and widening/narrowing approaches to abstract interpretation, in: Proceedings of the
International Workshop Programming Language Implementation and Logic Programming, PLILP '92, 1992, pp. 269-295.

[13] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, X. Rival, Why does astrée scale up? Formal Methods in System Design 35 (3) (2009) 229-264.

[14] Patrick Cousot, Radhia Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of
fixpoints, in: Proceedings of The ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1977, pp. 238-252.

[15] Alexey Gotsman, Josh Berdine, Byron Cook, Interprocedural shape analysis with separated heap abstractions, in: Proceedings of the International
Symposium on Static Analysis, 2006, pp. 240-260.

[16] Williams L. Harrison III, The interprocedural analysis and automatic parallelization of scheme programs, Ph.D. Thesis, Center for Supercomputing
Research and Development, University of Illinois at Urabana-Champaign, February 1989.

[17] Suresh Jagannathan, Peter Thiemann, Stephen Weeks, Andrew Wright, Single and loving it: must-alias analysis for higher-order languages, in:
Proceedings of The ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1998, pp. 329-341.

[18] B.Jeannet, A. Miné, Apron: a library of numerical abstract domains for static analysis, in: Computer Aided Verification, CAV’2009, 2009, pp. 661-667.

[19] Yongin Jhee, Minsik Jin, Yungbum Jung, Deokhwan Kim, Soonho Kong, Heejong Lee, Hakjoo Oh, Daejun Park, Kwangkeun Yi, Abstract interpretation
+ impure catalysts: Our Sparrow experience. Presentation at the Workshop of the 30 Years of Abstract Interpretation, San Francisco January 2008.
ropas.snu.ac.kr/~kwang/paper/30yai-08.pdf.

[20] Yungbum Jung, Jaechwang Kim, Jaeho Shin, Kwangkeun Yi, Taming false alarms from a domain-unaware C analyzer by a bayesian statistical post
analysis, in: Proceedings of the International Symposium on Static Analysis, 2005, pp. 203-217.

[21] Yungbum Jung, Kwangkeun Yi, Practical memory leak detector based on parameterized procedural summaries, in: Proceedings of the International
Symposium on Memory Management, 2008, pp. 131-140.

[22] Mark Marron, Manuel Hermenegildo, Deepak Kapur, Darko Stefanovic, Efficient context-sensitive shape analysis with graph based heap models,
in: Proceedings of the International Conference on Compiler Construction, 2008, pp. 245-259.

[23] Matthew Might, Benjamin Chambers, Olin Shivers, Model checking via I"CFA, in: Proceedings of the 8th International Conference on Verification,
Model Checking and Abstract Interpretation, VMCAI 2007, Nice, France, January 2007, pp. 59-73.

[24] Matthew Might, Olin Shivers, Improving flow analyses via I"CFA: Abstract garbage collection and counting, in: Proceedings of the ACM SIGPLAN-
SIGACT International Conference on Functional Programming, 2006, pp. 13-25.

[25] A.Miné, The octagon abstract domain, Higher-Order and Symbolic Computation 19 (1) (2006) 31-100.

[26] Hakjoo Oh, Large spurious cycle in global static analyses and its algorithmic mitigation, in: Proceedings of the Asian Symposium on Programming
Languages and Systems, in: Lecture Notes in Computer Science, vol. 5904, Springer-Verlag, December 2009, pp. 14-29.

[27] Hakjoo Oh, Lucas Brutschy, Kwangkeun Yi, Access analysis-based tight localization of abstract memories, in: VMCAI 2011: 12th International
Conference on Verification, Model Checking, and Abstract Interpretation, in: Lecture Notes in Computer Science, vol. 6538, Springer, 2011,
pp. 356-370.

[28] Hakjoo Oh, Kwangkeun Yi, An algorithmic mitigation of large spurious interprocedural cycles in static analysis, Software: Practice and Experience 40
(8)(2010) 585-603.

[29] Hakjoo Oh, Kwangkeun Yi, Access-based localization with bypassing, in: Proceedings of the Asian Symposium on Programming Languages and
Systems, in: Lecture Notes in Computer Science, vol. 7078, Springer-Verlag, December 2011, pp. 50-65.

[30] Anthony Pioli, Michael Hind, Combining interprocedural pointer analysis and conditional constant propagation, Technical Report, IBM T.]. Watson
Research Center, 1999.

[31] Noam Rinetzky, Jérg Bauer, Thomas Reps, Mooly Sagiv, Reinhard Wilhelm, A semantics for procedure local heaps and its abstractions, in: Proceedings
of The ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2005, pp. 296-309.

[32] Noam Rinetzky, Mooly Sagiv, Eran Yahav, Interprocedural shape analysis for cutpoint-free programs, in: Proceedings of the International Symposium
on Static Analysis, 2005, pp. 284-302.

[33] Jaeho Shin, An abstract interpretation with the interval domain for C-like programs, Technical Memorandum ROPAS-2006-32, Programming Research
Laboratory, School of Computer Science & Engineering, Seoul National University, 2006.

[34] Arnaud Venet, Guillaume Brat, Precise and efficient static array bound checking for large embedded C programs, in: Proceedings of the ACM SIGPLAN
2004 Conference on Programming Language Design and Implementation, PLDI '04, New York, NY, USA, ACM, 2004, pp. 231-242.

[35] Guoqing Xu, Atanas Rountev, Manu Sridharan, Scaling CFL-reachability-based points-to analysis using context-sensitive must-not-alias analysis,
in: Proceedings of the European Conference on Object-Oriented Programming, 2009, pp. 98-122.

[36] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter O’Hearn, Scalable shape analysis for systems code,
in: Proceedings of the International Conference on Computer Aided Verification, 2008, pp. 385-398.

[37] Hongseok Yang, Oukseh Lee, Cristiano Calcagno, Dino Distefano, Peter O’'Hearn, On scalable shape analysis, Technical Memorandum RR-07-10, Queen
Mary University of London, Department of Computer Science, November 2007.

