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Abstract. We present a technique for devising a progress indicator of
static analyzers. Progress indicator is a useful user interface that shows
how close a static analysis has progressed so far to its completion. Be-
cause static analysis’ progress depends on the semantic complexity, not
on the code size, of the target software, devising an accurate progress-
indicator is not obvious. Our technique first combines a semantic-based
pre-analysis and a statistical method to approximate how a main anal-
ysis progresses in terms of lattice height of the abstract domain. Then,
we use this information during the main analysis and estimate the anal-
ysis’ current progress. We apply the technique to three existing analyses
(interval, octagon, and pointer analyses) for C and show the technique
estimates the actual analysis progress for various benchmarks.

1 Introduction

We aim to develop a progress bar for static analyzers. Realistic semantic-based
static analyzers usually take a long time to analyze real-world software. For
instance, Sparrow [1], our static analyzer for full C, takes more than 4 hours
to analyze one million lines of C code [14]. Astrée [2] has also been reported to
take over 20 hours to analyze programs of size over 500KLOC [5]. Nonetheless,
such static analyzers are silent during their operation and users cannot but wait
several hours without any progress information.

Estimating static analysis progress at real-time is challenging in general.
Static analyzers take most of their time in fixpoint computation, but estimating
the progress of fixpoint algorithms has been unknown. One challenge is that the
analysis time is generally not proportional to the size of the program to analyze.
For instance, Sparrow [14] takes 4 hours in analyzing one million lines but
require 10 hours to analyze programs of sizes around 400KLOC. Similar obser-
vations have been made for Astrée as well: Astrée takes 1.5 hours for 70KLOC
but takes 40 minutes for 120KLOC [5].

In this paper, we present an idea for estimating static analysis progress.
Our basic approach is to measure the progress by calculating lattice heights of
intermediate analysis results and comparing them with the height of the final
analysis result. To this end, we employ a semantic-based pre-analysis and a
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statistical regression technique. First, we use the pre-analysis to approximate
the height of the fixpoint. This estimated height is then fine-tuned with the
statistical method. Second, because this height progress usually does not indicate
the actual progress (speed), we normalize the progress using the pre-analysis.

We show that our technique effectively estimates static analysis progress in
a realistic setting. We have implemented our idea on top of Sparrow [1]. In
our experiments with various open-source benchmarks, the proposed technique
is found to be useful to estimate the progress of interval, octagon, and pointer
analyses. The pre-analysis overheads are 3.8%, 7.3%, and 36.6% on average in
interval, pointer, and octagon analysis, respectively.

Contributions This paper makes the following contributions:

– We present a technique for estimating static analysis progress. To our knowl-
edge, our work is the first attempt to estimate static analysis progress.

– We show its applicability for numerical analyses (with intervals and oc-
tagons) and a pointer analysis on a suite of real C benchmarks.

Related Work Though progress estimation techniques have been extensively
studied in other fields [12, 7, 4, 8, 10, 11], there have been no research for static
analyzers. For instance, a varaiety of progress estimation techniques have been
proposed for long-running software systems such as databases [7, 4, 8] and par-
allel data processing systems [11, 10]. Static analyzers are also a long-running
software system but there are no progress estimation techniques for them. Fur-
thermore, our method is different from existing techniques. Existing progress
estimators [10, 8, 11, 4] and algorithm runtime prediction [6] are based solely on
statistics or machine learning. By contrast, we propose a technique that combines
a semantics-based pre-analysis with machine learning.

Outline Section 2 describes the overall approach to our progress estimation and
the remaining sections fill the details. Section 3 defines a class of non-relational
static analyses and Section 4 gives the details on how we develop a progress bar
for these analyses. Section 5 experimentally evaluates the proposed technique.
Section 6 discusses the application to relational analyses. Section 7 concludes.

2 Overall Approach to Progress Estimation

In this section, we describe the high-level idea of our progress estimation tech-
nique. In Section 4, we give details that we used in our experiments.

2.1 Static Analysis

We consider a static analysis designed by abstract interpretation. In abstract
interpretation, a static analysis is specified with an abstract domain D and se-
mantic function F : D → D, where D is a cpo (complete partial order).The
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analysis’ job is to compute the following sequence until stabilized:⊔
i∈N

F i(⊥) = F 0(⊥) t F 1(⊥) t F 2(⊥) t · · · (1)

where F 0(⊥) = ⊥ and F i+1(⊥) = F (F i(⊥)). When the chain is infinitely long,
we can use a widening operator

`
: D× D→ D to accelerate the sequence.

2.2 Progress Estimation

We aim to develop a progress bar that proceeds at a linear rate. That is, the es-
timated progress directly indicates the amount of work that has been completed
so far. Suppose that the sequence in (1) requires n iterations to stabilize, and
assume that computing the abstract semantics F (X) at each iteration takes a
constant time regardless of the input X. Then, the actual progress of the analysis
at ith iteration is defined by i

n . We aim at estimating this progress.

Basically, our method estimates the progress by calculating the lattice heights
of intermediate analysis results. Suppose that we have a function H : D → N
that takes an abstract domain element X ∈ D and computes its height. The
heights of domain elements need not be precisely defined, but we assume that
H satisfies two conditions: 1) the height is initially zero. 2) H is monotone. The
second condition is for building a progress bar that monotonically increases as
the analysis makes progress.

The first job in our progress estimation is to approximate the height of the
final analysis result. Let Hfinal be the height of the final analysis result, i.e.,
Hfinal = H(

⊔
i∈N F

i(⊥)). In Section 4.3, we describe a method for precisely
estimating Hfinal with the aid of statistical regression. This height estimation
method is orthogonal to the rest part of our progress estimation technique. In
this overview, let H]

final be the estimated final height and assume, for simplicity,

that H]
final = Hfinal .

A Naive Approach Given H and H]
final , a simple progress bar could be devel-

oped as follows. At each iteration i, we first compute the height of the current
analysis result:

Hi = H(F i(⊥)).

Then, we show to the users the following height progress of the analysis :

Pi =
Hi

H]
final

Note that we can use Pi as a progress estimation: Pi is initially 0, monotoni-
cally increases as the analysis makes progress, and has 1 when the analysis is
completed.



4 Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei

g
h
t

p
ro

g
re

ss

main
pre

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei

g
h
t

p
ro

g
re

ss

(a) original height-progress (b) normalized height-progress

Fig. 1. The height progress of a main analysis can be normalized using a pre-analysis. In
this program (sendmail-8.14.6), the pre-analysis takes only 6.6% of the main analysis
time.

Problem of the Naive Approach We noticed that this simple method for
progress estimation is, however, unsatisfactory in practice. The main problem
is that the height progress does not necessarily indicate the amount of com-
putation that has been completed. For instance, the solid line in Figure 1(a)
depicts how the height progress increases during our interval analysis of pro-
gram sendmail-8.14.6 (The dotted diagonal line represents the ideal progress
bar). As the figure shows, the height progress rapidly increases during the early
stage of the analysis and after that slowly converges. We found that this progress
bar is not much useful to infer the actual progress nor to predict the remaining
time of the analysis.

Our Approach We overcome this problem by normalizing the height progress
using the relationship between the actual progress and the height progress. Sup-
pose at the moment that we are given a function normalize : [0, 1] → [0, 1]
that maps the height progress into the corresponding actual progress. Indeed,
normalize represents the inverse of the graph (the solid line) shown in Figure
1(a). Given such normalize, the normalized height progress is defined as follows:

P̄i = normalize(Pi) = normalize
( Hi

H]
final

)
(2)

Note that, unlike the original height progress Pi, the normalized progress P̄i
would represent the actual progress, increasing at a linear rate. However, note
also that we cannot compute normalize unless we run the main analysis.

The key insight of our method is that we can predict the normalize function
by using a less precise, but cheaper pre-analysis than the main analysis. Our hy-
pothesis is that if the pre-analysis is semantically related with the main analysis,
it is likely that the pre-analysis’ height-progress behavior is similar to that of
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the main analysis. In this article, we show that this hypothesis is experimentally
true and allows to estimate sufficiently precise normalization functions.

We first design a pre-analysis as a further abstraction of the main analysis.
Let D] and F ] : D] → D] be such abstract domain and semantic function of the
pre-analysis, respectively. In Section 4.2, we give the exact definition of the pre-
analysis design we used. Next, we run this pre-analysis, computing the following
sequence until stabilized:⊔

i∈N
F ]

i
(⊥]) = F ]

0
(⊥]) t F ]

1
(⊥]) t F ]

2
(⊥]) t · · ·

Suppose that the pre-analysis stabilizes in m steps (m is often much smaller
than n, the number of iterations for the main analysis to stabilize). Then, we
collect the following data during the course of the pre-analysis:

(
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0
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m
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)

where H]
i = H(γ(F ]

i
(⊥]))). The second component i

m of each pair represents the
actual progress of the pre-analysis at the ith iteration, and the first represents the
corresponding height progress. Generalizing the data (using a linear interpolation
method), we obtain a normalization function normalize] : [0, 1] → [0, 1] for the
pre-analysis.

The normalization function normalize] of such a pre-analysis can be a good
estimation of the normalization function normalize of the main analysis. For
instance, the dotted curve in Figure 1(a) shows the height progress of our pre-
analysis (defined in Section 4.2), which has a clear resemblance with the height
progress (the solid line) of the main analysis. Thanks to this similarity, it is
acceptable in practice to use the normalization function normalize] for the pre-
analysis instead of normalize in our progress estimation. Thus, we revise (2) as
follows:

P̄ ]i = normalize]
( Hi

Hfinal

)
(3)

That is, at each iteration i of the main analysis, we show the estimated nor-
malized progress P̄ ]i to the users. Figure 1(b) depicts P̄ ]i for sendmail-8.14.6

(on the assumption that H]
final = Hfinal). Note that, unlike the original progress

bar (the solid line in Figure 1(a)), the normalized progress bar progresses at an
almost linear rate.

3 Setting

In this section, we define a class of static analyses on top of which we develop
our progress estimation technique. For presentation brevity, we consider non-
relational analyses. However, our overall approach to progress estimation is also
applicable to relational analyses. In Section 6, we discuss the application to a
relational analysis with the octagon domain.
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Static Analysis A program is a tuple 〈C, ↪→〉 where C is a set of program
points, (↪→) ⊆ C × C is a relation that denotes control flows: c ↪→ c′ indicates
that c′ is a next program point of c. Each program point is associated with a
command: cmd(c) denotes the command associated with program point c.

We consider a class of static analyses whose abstract domain maps program
points to abstract states:

D = C→ S

where the abstract state is a map from abstract locations to abstract values:

S = L→ V

We assume that the set of abstract locations is finite and V is a complete lattice.
The abstract semantics of the program is characterized by the least fixpoint of
abstract semantic function F ∈ (C→ S)→ (C→ S) defined as,

F (X) = λc ∈ C.fc(
⊔
c′↪→c

X(c′)) (4)

where fc ∈ S→ S is the transfer function for control point c.

Example 1 (Interval Analysis). Consider the following imperative language.:

x := e | assume(x < n) where e → n | x | e + e

All basic commands are assignments or assume commands. An expression may
be a constant integer (n), a binary operation (e + e), a variable expression (x).
Let Var be the set of all program variables. We define the abstract state as a
map from program variables to the lattice of intervals:

L = Var V = {[l , u] | l , u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥} (5)

The transfer function fc : S→ S is defines as follows:

fc(s) =

{
s[x 7→ V(e)(s)] cmd(c) = x := e
s[x 7→ s(x) u [−∞, n− 1])] cmd(c) = assume(x < n)

where auxiliary function V(e) ∈ S→ V computes the abstract value for e under
s:

V(n)(s) = [n, n], V(e1 + e2)(s) = V(e1)(s)⊕ V(e2)(s), V(x)(s) = s(x)

where ⊕ denotes the abstract binary operator for the interval domain.

Example 2 (Pointer Analysis). Consider the following imperative language:

x := e | ∗x := e where e → x | &x | ∗x

We design a (flow-sensitive) pointer analysis as follows. The abstract state is a
map from program variables to its points-to set, i.e.,

L = Var V = P(Var) (6)
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The transfer function fc : S→ S is defines as follows:

fc(s) =

{
s[x 7→ V(e)(s)] cmd(c) = x := e
s[l1 7→ s(l1) ∪ V(e)(s)] · · · [ln 7→ s(ln) ∪ V(e)(s)] cmd(c) = ∗x := e

where s(x) = {l1, . . . , ln}. For simplicity, we do not consider strong updates. In
this case, V(e)(s) is defined as follows:

V(x)(s) = s(x), V(&x)(s) = {x}, V(∗x)(s) =
⋃

l∈s(x)

s(l)

Fixpoint Computation with Widening When the domain of abstract values
(V) has infinite height, we need a widening operator

`
: V× V→ V to approx-

imate the least fixpoint of F . In practice, the widening operator is applied at
only headers of flow cycles [3]. Let W ⊆ C be the set of widening points (all loop
headers in the program) in the program.

Example 3. We use the following widening operator in our interval analysis:

[l, u]
`

[l′, u′] = [if (l′ < l) then −∞ else l, if (u′ > u) then +∞ else u].

4 Details on Our Progress Estimation

As described in Section 2, our progress estimation is done in two steps: (1) we first
run a pre-analysis to obtain an estimated normalization function normalize] and
an estimated final height H]

final ; (2) using them, at each iteration of the main
analysis, we measure the height progress, convert it to the estimated actual
progress, and show it to users. However, Section 2 has left out a number of
details. In this section, we give the details that we tried:

– In Section 4.1, we define our height function H.

– In Section 4.2, we describe our pre-analysis design.

– In Section 4.3, we present techniques for precise estimation of the final height.

4.1 The Height Function

We first define height function H : (C→ S)→ N that takes an abstract domain
element and computes its height. Since our analysis is non-relational, we assume
that the height of an abstract domain element is computed point-wise as follows:

H(X) =
∑
c∈C

∑
l∈L

h(X(c)(l)) (7)

where h : V→ N is the height function for the abstract value domain (V).
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Example 4. For the interval domain V in (5), we use the following height func-
tion:

h(⊥) = 0

h([a, b]) =


1 a = b ∧ a, b ∈ Z
2 a < b ∧ a, b ∈ Z
3 a ∈ Z ∧ b = +∞
3 a = −∞ ∧ b ∈ Z
4 a = −∞ ∧ b = +∞

We defined this height function based on the actual workings of our interval
analysis. Constant intervals (the first case) have height 1 since they are usually
immediately generated from program texts. The finite intervals (the second case)
are often introduced by joining two constant intervals. Intervals with one infinite
bound (the third and fourth cases) are due to the widening operator. Note that
our widening operator (Example 3) immediately assigns ±∞ to unstable bounds.
[−∞,+∞] is generated with the widening is applied to both bounds.

Example 5. For the pointer domain V in (6), we use the following height function:

h(S) =

{
4 || S ||≥ 4
|| S || otherwise

This definition is based on our observation that, in flow-sensitive pointer analysis
of C programs, most of the points-to sets have sizes less than 4.

4.2 Pre-analysis via Partial Flow-Sensitivity

A key component of our method is the pre-analysis that is used to estimate both
the height-progress behavior and the maximum height of the main analysis.
One natural method for further abstracting static analyses in Section 3 is to
approximate the level of flow-sensitivity. In this subsection, we design a pre-
analysis that was found to be useful in progress estimation.

We consider a class of pre-analyses that is partially flow-sensitive version
of the main analysis. While the main analysis is fully flow-sensitive (i.e., the
orders of program statements are fully respected), our pre-analysis only respects
the orders of some selected program points and regards other program points
flow-insensitively.

In particular, we are interested in a pre-analysis that only distinguishes pro-
gram points around headers of flow cycles. In static analysis, the most interesting
things usually happen in flow cycles. For instance, because of widening and join,
significant changes in abstract states occur at flow cycle headers. Thus, it is
reasonable to pay particular attention to height increases occurred at widen-
ing points (W). To control the level of flow-sensitivity, we also distinguish some
preceding points of widening points.

Formally, the set of distinguished program points is defined as follows. Sup-
pose that a parameter depth is given, which indicates how many preceding points
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of flow cycle headers are separated in our pre-analysis. Then, we decide to dis-
tinguish the following set Φ ⊆ C of program points:

Φ = {c ∈ C | w ∈W ∧ c ↪→depth w}

where c ↪→i c′ means that c′ is reachable from c within i steps of ↪→.
We define the pre-analysis that is flow-sensitive only for Φ as a special in-

stance of the trace partitioning [16]. The set of partitioning indicies ∆ is defined
by ∆ = Φ∪{•}, where • represents all the other program points not included in
Φ. That is, we use the following partitioning function δ : C→ ∆:

δ(c) =

{
c c ∈ Φ
• c 6∈ Φ

With δ, we define the abstract domain (D]) and semantic function (F ]) of the
pre-analysis as follows:

C→ S −−−→←−−−α
γ

∆→ S
where

γ(X) = λc. X(δ(c)).

The semantic function F ] : (∆→ S)→ (∆→ S) is defined as,

F ](X) = λi ∈ ∆. (
⊔

c∈δ−1(i)

fc(
⊔
c′↪→c

X(δ(c′))) (8)

where δ−1(i) = {c ∈ C | δ(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity

by adjusting the parameter depth ∈ [0,∞]. A larger depth value yields a more
precise pre-analysis. In our experiments (Section 5), we use 1 for the default
value of depth and show that how the progress estimation quality improves with
higher depth values. It is easy to check that our pre-analysis is sound with respect
to the main analysis regardless of parameter depth.

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of
the final analysis result. Note that Hfinal cannot be computed unless we actually

run the main analysis. Instead, we compute H]
final , an estimation of Hfinal . We

replace the Hfinal in (3) by H]
final as follows:

P̄ ]i = normalize]
( Hi

H]
final

)
(9)

Our goal is to compute H]
final such that |H]

final − Hfinal | is as smaller as
possible, for which we use the pre-analysis and a statistical method. First, we
compute Hpre , the final height of the pre-analysis result, i.e.,

Hpre = H(γ(lfpF ]))



10 Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi

Next, we statistically refine Hpre into H]
final such that |H]

final −Hfinal | is likely
smaller than |Hpre − Hfinal |. The job of the statistical method is to predict

α =
Hfinal

Hpre
(0 ≤ α ≤ 1) for a given program. With α, H]

final is defined as follows:

H]
final = α ·Hpre

We assume that α is defined as a linear combination of a set of program
features in Table 1. We used eight syntactic features and six semantic features.
The features are selected among over 30 features by feature selection for the
purpose of removing redundant or irrelevant ones for better accuracy. We used
L1 based recursive feature elimination to find optimal subset of features using
254 benchmark programs.

The feature values are normalized to real numbers between 0 and 1. The
Post-fixpoint features are about the post-fixpoint property. Since the pre-analysis
result is a post fixpoint of the semantic function F , i.e., γ(lfpF ]) ∈ {x ∈ D |
x w F (x)}, we can refine the result by iteratively applying F to the pre-analysis
result. Instead of doing refinement, we designed simple indicators that show
possibility of the refinement to avoid extra cost. For every traning example, a
feature vector is created with a negligible overhead.

We used the ridge linear regression as the learning algorithm. The ridge linear
regression algorithm is known as a quick and effective technique for numerical
prediction.

Table 1. The feature vector used by linear regression to construct prediction models

Category Feature

# function calls in the program
Inter-procedural # functions in recursive call cycles

(syntactic) # undefined library function calls

the maximum loop size
the average loop sizes

Loop-related the standard deviation of loop sizes
(syntactic) the standard deviation of depths of loops

# loopheads

Numerical analysis # bounded intervals in the pre-analysis result
(semantic) # unbounded intervals in the pre-analysis result

Pointer analysis # points-to sets of cardinality over 4 in the pre-analysis result
(semantic) # points-to sets of cardinality under 4 in the pre-analysis result

Post-fixpoint # program points where applying the transfer function once
(semantic) improves the precision

height decrease when transfer function is applied once

In a way orthogonal to the statistical method, we further reduce |H]
final −

Hfinal | by tuning the height function. We reduce |H]
final −Hfinal | by considering

only subsets of program points and abstract locations. However, it is not the
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best way to choose the smallest subsets of them when computing heights. For
example, we may simply set both of them to be an empty set. Then, |H]

final −
Hfinal | will be zero, but both Hfinal and H]

final will be also zero. Undoubtedly,
that results in a useless progress bar as estimated progress is always zero in that
case.

Our goal is to choose program points and abstract locations as small as
possible, while maintaining the progress estimation quality. To this end, we used
the following two heuristics:

– We focus only on abstract locations that contribute to increases of heights
during the main analysis. Let D(c) an over-approximation of the set of such
abstract locations at program point c:

D(c) ⊇ {l ∈ L | ∃i ∈ {1 . . . n}.h(Xi(c)(l))− h(Xi−1(c)(l)) > 0}

Note that since we cannot obtain the set a priori, we use an over-approximation.
– We consider only on flow cycle headers in the height calculation. This is be-

cause cycle headers are places where significant operations (join and widen-
ing) happen.

Thus, we revise the height function H : D→ N in (7) as follows:

H(X) =
∑
c∈W

∑
l∈D(c)

h(X(c)(l)) (10)

Because W ⊆ C and ∀c. D(c) ⊆ L, the height approximation error for the new
H is smaller than that of the original H in (7).

We performed 3-fold cross validation using 254 benchmarks including GNU
softwares and linux packages. For interval analysis, we obtained 0.06 as a mean
absolute error of α, and 0.05 for pointer analysis.

5 Experiments

In this section, we evaluate our progress estimation technique described so far.
We show that our technique effectively estimates the progress of an interval
domain–based static analyzer, and a pointer analyzer for C programs.

5.1 Setting

We evaluate our progress estimation technique with Sparrow [1], a realistic C
static analyzer that detects memory errors such as buffer-overruns and null deref-
erences. Sparrow basically performs a flow-sensitive and context-insensitive
analysis with the interval abstract domain. The abstract state is a map from
abstract locations (including program variables, allocation-sites, and structure
fields) to abstract values (including intervals, points-to sets, array and structure
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blocks). Details on Sparrow’s abstract semantics is available at [13]. Spar-
row performs a sparse analysis [14] and the analysis has two phases: data de-
pendency generation and fixpoint computation. Our technique aims to estimate
the progress of the fixpoint computation step and, in this paper, we mean by
analysis time the fixpoint computation time.

We have implemented our technique as described in Section 2 and 4. We used
the height function defined in Example 4 and 5. To estimate numerical, and
pointer analysis progresses, we split the Sparrow into two analyzers so that
each of them may analyze only numeric or pointer-related property respectively.
The pre-analysis is based on the partial flow-sensitivity defined in Section 4.2,
where we set the parameter depth as 1 by default. That is, the pre-analysis is
flow-sensitive only for flow cycle headers and their immediate preceding points.

All our experiments were performed on a machine with a 3.07 GHz Intel Core
i7 processor and 24 GB of memory. For statistical estimation of the final height,
we used the scikit-learn machine learning library [15].

5.2 Results

We tested our progress estimation techniques on 8 GNU software packages for
each of analyses. Table 2 and 3 show our results.

Table 2. Progress estimation results (interval analysis). LOC shows the lines of code
before pre-processing. Main reports the main analysis time. Pre reports the time spent
by our pre-analysis. Linearity indicates the quality of progress estimation (best : 1).
Height-Approx. denotes the precision of our height approximation (best : 1). Err
denotes mean of absolute difference between Height-Approx. and 1 (best : 0).

Time(s) Height-
Program LOC Main Pre Linearity Overhead Approx.

bison-1.875 38841 3.66 0.91 0.73 24.86% 1.03
screen-4.0.2 44745 40.04 2.37 0.86 5.92% 0.96
lighttpd-1.4.25 56518 27.30 1.21 0.89 4.43% 0.92
a2ps-4.14 64590 32.05 11.26 0.51 35.13% 1.06
gnu-cobol-1.1 67404 413.54 99.33 0.54 24.02% 0.91
gnugo 87575 1541.35 7.35 0.89 0.48% 1.12
bash-2.05 102406 16.55 2.26 0.80 13.66% 0.93
sendmail-8.14.6 136146 1348.97 5.81 0.69 0.43% 0.93

TOTAL 686380 3423.46 130.5 0.74 3.81% Err : 0.07

The Linearity column in Table 2, and 3 quantifies the “linearity”, which we
define as follows:

1−
∑

1≤i≤n( in − P̄
]
i )2∑

1≤i≤n( in −
n+1
2n )2

where n is the number of iterations required for the analysis to stabilize and
P̄ ]i is the estimated progress at ith iteration of the analysis. This metric is
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Table 3. Progress estimation results (pointer analysis).

Time(s) Height-
Program LOC Main Pre Linearity Overhead Approx.

screen-4.0.2 44745 15.89 1.56 0.90 9.82% 0.98
lighttpd 56518 11.54 0.87 0.76 7.54% 1.03
a2ps-4.14 64590 10.06 3.48 0.65 34.59% 1.04
gnu-cobol-1.1 67404 32.27 12.22 0.91 37.87% 1.03
gnugo 87575 217.77 3.88 0.64 1.78% 0.97
bash-2.05 102406 3.68 0.78 0.56 21.20% 1.04
proftpd-1.3.2 126996 74.64 11.14 0.82 14.92% 1.03
sendmail-8.14.6 136146 145.62 3.15 0.58 2.16% 0.98

TOTAL 686380 511.47 37.08 0.73 7.25% Err : 0.03

just a simple application of the coefficient of determination in statistics, i.e.,
R2, which presents how well P̄ ] fits the actual progress rate i

n . The closer to 1

linearity is, the more similar to the ideal progress bar P̄ ]i is. Figure 3 in appendix
presents the resulting progress bars for each of benchmark programs providing
graphical descriptions of the linearity. In particular, the progress bar proceeds
almost linearly for programs of the linearity close to 0.9 (lighttpd-1.4.25,
gnugo-3.8 in interval analysis, gnu-cobol-1.1, bash-2.05 in pointer analysis).
For some programs of relatively low linearity (gnu-cobol-1.1, bash-2.05 in
interval analysis, gnugo-3.8, proftpd-1.3.2 in pointer analysis), the progress
estimation is comparatively rough but still useful.

The Height-Approx. column stands for the accuracy of final height approx-
imation

Hfinal

H]
final

where H]
final is estimated final height via the statistical technique

described in section 4.3. Err denotes an average of absolute errors |Height-
Approx. −1|. To prove our statistical method avoids overfitting problem, we
performed 3-fold cross validation using 254 benchmarks including GNU soft-
wares and linux packages. For interval analysis, we obtained 0.063 Err with
0.007 standard deviation. For pointer analysis, 0.053 Err with 0.001 standard
deviation. These results show our method avoids overfitting, evenly yielding pre-
cise estimations at the same time.

The Overhead column shows the total overhead of our method, which in-
cludes the pre-analysis running time (Section 4.2). The average performance
overheads of our method are 3.8% in interval analysis, and 7.3% in pointer anal-
ysis respectively.

5.3 Discussion

Linearity vs. Overhead In our progress estimation method, we can make
tradeoffs between the linearity and overhead. Table 2, 3 show our progress esti-
mations when we use the default parameter value (depth = 1) in the pre-analysis.
By using a higher depth value, we can improve the precision of the pre-analysis
and hence the quality of the resulting progress estimation at the cost of extra
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Fig. 2. Our method is also applicable to octagon domain–based static analyses.

overhead. For two programs, the following table shows the changes in linearity
and overhead when we change depth from 1 to 3:

Program Linearity change Overhead change

bash-2.05 (pointer) 0.56 → 0.70 21.2% → 37.5%
sendmail-8.14.6 (interval) 0.69 → 0.95 0.4% → 18.4%

Height Approximation Error In our experiments, we noticed that our progress
estimation method is sensitive to the height approximation error (H]

final−Hfinal).
Although we precisely estimate heights of the fixpoints, there are cases where
even small error sometimes leads to unsatisfactory results. For instance, the
reason why the progress for gnu-cobol-1.1 is under-estimated is the height
approximation error(0.09).

We believe enhancing the precision will be achieved by increasing training
examples and relevant features.

6 Application to Relational Analyses

The overall approach of our progress estimation technique may adapt easily to
relational analyses as well. In this section, we check the possibility of applying
our technique to the octagon domain–based static analysis [9].

We have implemented a prototype progress estimator for the octagon analysis
as follows. For pre-analysis, we used the same partial flow-sensitive abstraction
described in Section 4.2 with depth = 1. Regarding the height function H, we also
used that of the interval analysis. Note that, since an octagon domain element
is a collection of intervals denoting ranges of program variables such as x and y,
their sum x+ y, and their difference x− y, we can use the same height function
in Example 4. In this prototype implementation, we assumed that we are given
heights of the final analysis results.
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Figure 2 shows that our technique effectively normalizes the height progress
of the octagon analysis. The solid lines in Figure 2(a) depicts the height progress
of the main octagon analysis of program wget-1.9 and the dotted line shows
that of the pre-analysis. By normalizing the main analysis’ progress behavior,
we obtain the progress bar depicted in Figure 2(b), which is almost linear.

Figure 3 depicts the resulting progress bar for other benchmark programs,
and the following table reports detailed experimental results.

Time(s)
Program LOC Main Pre Linearity Overhead
httptunnel-3.3 6174 49.5 8.2 0.91 16.6%
combine-0.3.3 11472 478.2 16 0.89 3.4%
bc-1.06 14288 63.9 43.8 0.96 68.6%
tar-1.17 18336 977.0 73.1 0.82 7.5%
parser 18923 190.1 104.8 0.97 55.1%
wget-1.9 35018 3895.36 1823.15 0.92 46.8%
TOTAL 69193 5654.0 2069.49 0.91 36.6%

Even though we completely reused the pre-analysis design and height function for
the interval analysis, the resulting progress bars are almost linear. This prelimi-
nary results suggest that our method could be applicable to relational analyses.

7 Conclusion

We have proposed a technique for estimating static analysis progress. Our tech-
nique is based on the observation that semantically related analyses would have
similar progress behaviors, so that the progress of the main analysis can be esti-
mated by a pre-analysis. We implemented our technique on top of a realistic C
static analyzer and show our technique effectively estimates its progress.

Acknowledgment The authors would like to thank the anonymous referees for
their comments in improving this work.
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A Progress Graphs

In this appendix, progress graphs are presented. Figure 3 presents the result-
ing interval, pointer, and octagon analysis progress bars respectively. Dotted
diagonal line denotes the ideal progress bar.
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