
Quantum Probabilistic Model Checking

for Time-Bounded Properties

SEUNGMIN JEON, KAIST, South Korea
KYEONGMIN CHO

∗
, Rebellions, South Korea

CHAN GU KANG, Korea University, South Korea
JANGGUN LEE, KAIST, South Korea
HAKJOO OH, Korea University, South Korea
JEEHOON KANG, KAIST, South Korea

Probabilistic model checking (PMC) is a verification technique for analyzing the properties of probabilistic
systems. However, existing techniques face challenges in verifying large systems with high accuracy. PMC
struggles with state explosion, where the number of states grows exponentially with the size of the system,
making large system verification infeasible. While statistical model checking (SMC) avoids PMC’s state
explosion problem by using a simulation approach, it suffers from runtime explosion, requiring numerous
samples for high accuracy.

To address these limitations in verifying large systems with high accuracy, we present quantum probabilistic
model checking (QPMC), the first method leveraging quantum computing for PMC with respect to time-
bounded properties. QPMC addresses state explosion by encoding PMC problems into quantum circuits that
superpose states within qubits. Additionally, QPMC resolves runtime explosion through Quantum Amplitude
Estimation, efficiently estimating the probabilities of specified properties. We prove that QPMC correctly
solves PMC problems and achieves a quadratic speedup in time complexity compared to SMC.
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1 Introduction

Systemswithmultiple interacting components such as distributed systems often exhibit probabilistic
behaviors to maintain stability, even in the presence of the uncertainties inherent in their complex
interactions [Herman 1990; Kwiatkowska et al. 2022, 2003]. For example, Herman’s randomized
self-stabilization protocol [Herman 1990] is designed to allow a distributed system to recover from
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arbitrary initial states to a stable one even if some components temporarily behave incorrectly due
to various factors such as network glitches, hardware malfunctions, or temporary software issues.

To automatically analyze the safety and performance of such probabilistic systems, probabilistic
model checking (PMC) has been employed [Baier et al. 2018]. PMC answers various property
queries, including time-bounded ones like, “the probability of reaching a stable state from a certain
initial state within 10 steps,” by modeling the system as a discrete-time Markov chain (DTMC) and
analyzing the model. PMC has been actively utilized to analyze numerous real-world probabilistic
systems [Filieri et al. 2011; Giannarakis et al. 2021; Holtzen et al. 2021; Jansen et al. 2020; Smolka
et al. 2019; Su et al. 2016].

Challenges. However, classical approaches to PMC face scalability challenges due to the state
explosion problem [Valmari 1996], which renders it computationally infeasible to obtain the precise
probability for large probabilistic systems. For instance, in Herman’s self-stabilizing algorithm [Her-
man 1990], the number of states grows exponentially with an increase in the number of processes.
While several approaches have been proposed to address the state explosion problem [Baier

et al. 1997; Hensel et al. 2021; Holtzen et al. 2021; Katoen 2016; Younes and Simmons 2002], their
scalability comes at the cost of sacrificing accuracy. A typical way to avoid state explosion is
statistical model checking (SMC), which utilizes Monte Carlo simulations to estimate probabilities
without exhaustive exploration of state space [Hérault et al. 2004; Younes and Simmons 2002].
But SMC suffers from the runtime explosion problem [Agha and Palmskog 2018; Budde et al. 2020;
Hahn et al. 2019; Rubino et al. 2009], requiring a large number of samples to achieve high accuracy,
thus making it computationally expensive, especially when analyzing rare events. For instance,
achieving an error margin of 10−5 would require billions of samples, potentially requiring several
weeks or more to explore [Budde et al. 2020].

Contributions. We address PMC’s aforementioned scalability-accuracy tradeoff by utilizing quan-
tum computers. Quantum computing has the potential to solve computational problems that are
intractable on classical computers, especially with small input data sets [Hoefler et al. 2023]. This
aspect is particularly relevant in PMC, where extensive computation is required to verify large
probabilistic systems, which are often characterized by small model descriptions and property
specifications.
Recognizing the potential of quantum computing to be well-suited for PMC, we introduce

quantum probabilistic model checking (QPMC) for time-bounded properties, a method that translates
PMC problems for these properties into quantum circuits. QPMC superposes states and transitions
within qubits, and estimates the superposed probabilities in the resultant qubits for the given
property queries by employing the Quantum Amplitude Estimation (QAE) algorithm [Brassard
et al. 2002]. The QAE algorithm offers a quadratic speedup compared to SMC: it reaches an error
bound of 𝜖 (< 1) with 1/𝜖 samples, whereas classical Monte Carlo methods (on which SMC is based)
requires 1/𝜖2 samples [Montanaro 2015]. Consequently, QAE has been successfully applied to a
variety of problems, including financial risk measures [Egger et al. 2020; Stamatopoulos et al. 2020].

While doing so, we tackle the technical challenge of efficiently encoding large-scale PMC prob-
lems into quantum circuits. A potential strategy is to convert matrices into quantum-compatible
unitary forms [Gilyén et al. 2019] and then create their corresponding quantum circuits. However,
this strategy results in the expansion of DTMC models into exponentially large matrices, incurring
the state explosion problem. To address this challenge, we make the following contributions:

• In §3, we encode PMC problems for time-bounded properties into quantum circuits. QPMC
first preprocesses a DTMC model to desugar inter-module synchronizations and then converts it
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module // Main
x : [0..1] init 0
[do] !x→ 0.5 : (x = 0) + 0.5 : (x = 1)
[do] x→ 1 : (x = 1)
[done] x→ 1 : (x = 0)

module // Sub
y : [0..1] init 0
[do] !y → 0.8 : (y = 0) + 0.2 : (y = 1)
[do] y ∧ !x→ 1 : (y = 1)
[done] y → 1 : (y = 0)

Model

Pr(♦=3 x = 1 ∧ y = 0 )?

Property

PMC Tool

0x0y

0x1y 1x0y

1x1y

Markov chain
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Fig. 1. Probabilistic model checking example.

into a circuit that corresponds to a single transition. It then constructs the final circuit tailored
to the given property and estimates the result probabilities utilizing the QAE algorithm.
• In §4, we design QPMC’s optimization technique, batch recycling, to reduce the number of
qubits required. This technique involves repeatedly applying delayed uncomputation [Bennett
1973] to qubits that are no longer in use, making them available for later use.
• In §5, we prove that the encoded quantum circuit correctly solves the original PMC problem.
• In §6, we implement QPMC’s translation algorithm using the Qiskit framework [Abraham et al.
2019] for quantum computing and observe that QPMC correctly verifies PMC problems via
end-to-end classical simulation of small examples (up to 29 qubits).
• In §7, we analyze the performance of QPMC. QPMC achieves a quadratically lower time
complexity compared to SMC for the same error bound and confidence level. Furthermore,
QPMC’s qubit optimization technique results in a 37% reduction in qubit requirements on
average across benchmarks.

In §2, we review the technical background. In §8, we conclude with related and future work. All our
implementation, experimental results, and proofs are available in the supplementary material [Jeon
et al. 2024].

2 Background

2.1 Probabilistic Model Checking

Probabilistic model checking (PMC) is a formal technique designed to automate the analysis of
probabilistic systems. It extends traditional model checking by quantifying probabilistic properties
such as the “probability of unsafe events.” PMC provides a robust framework for assessing safety
and performance, and fault tolerance across diverse domains, ranging from computer networks to
biological processes [Baier et al. 2018; Hensel et al. 2021; Katoen 2016].

Various PMC tools [Hartmanns and Hermanns 2014; Hensel et al. 2021; Kwiatkowska et al. 2011]
follow a common workflow shown in Fig. 1, consisting of the following three phases:

(1) Model description: Users first describe probabilistic systems using model description lan-
guages such as Prism [Kwiatkowska et al. 2011] and Jani [Budde et al. 2017]. Fig. 1 shows
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(Model)

Model ∋ m ::= md1 | | . . . | | md𝑛

Module ∋ md ::= module
#»

d #»c

Decl ∋ d ::= v : [0..𝑛max] init 𝑛init
Comm ∋ c ::= [a] g → 𝜆1 : u1 + ... + 𝜆𝑛 : u𝑛
Guard ∋ g ::= e

Update ∋ u ::=
#           »(v = e)

Expr ∋ e ::= 𝑛 | v | !e | e1 𝑜𝑝 e2
𝑂𝑝 ∋ 𝑜𝑝 ::= + | ≤ | ∧ | . . .

𝑛 ∈ N v ∈ Var 𝜆 ∈ [0, 1] a ∈ Action∪{⊥}

(Configuration)

Config ∋ 𝜏 ::= (m, p)
Prop ∋ p ::= Pr(♦=t 𝜔)

t ∈ N 𝜔 ∈ Expr

(a) Syntax.

(Model)

JmK( 𝑗, 𝑖) =
∏

md∈m

∑︁
c∈md∧Enabled(c,𝑖)

JcK( 𝑗, 𝑖)

JcK( 𝑗, 𝑖) =
∑︁

(𝜆:u) ∈c∧∀(v=e) ∈u.JeK(𝑖)=𝑗 [v ]
𝜆

JuK(s) = (Jv𝑛 = e𝑛K ◦ . . . ◦ Jv1 = e1K) (s)
Jv = eK(s) = s[v ↦→ JeK(s)]

JeK(s) △= (Evaluated value of e in s)

Enabled(c, s) △= Jc.gK(s) ∧ Sync(c.a, s)

Sync(a, s) △= ∀md ∈ m. ∃c ∈ md . Jc.gK(s) ∧ c.a = a

(Configuration)

J(m, Pr(♦=t 𝜔))K = Res(𝜔, JmKt𝜋0 (m))

Res(𝜔, 𝜋) =
∑︁
s∈S𝜔

𝜋 (s) where S𝜔 = {s ∈ S | J𝜔K(s)}

𝜋0 (m)
△
= (Initial state of m)

(b) Semantics.

Fig. 2. PMC language.

a model comprising two modules: Main that waits for Sub to complete its tasks. Each mod-
ule has a state variable, x and y, respectively, indicating whether it is ready (0) or done (1).
The model describes state transition rules via commands. For instance, Main’s first command
[do] !x→ 0.5 : (x = 0) + 0.5 : (x = 1) implies that x will be updated to 0 or 1, each with a 50%
probability, when this command is enabled. A command is enabled if its guard condition (!x) is
met and its synchronization action (do) is enabled. An action is enabled if each module contains
a command of the action whose guard is satisfied.1 For example, in the state {x ↦→ 1, y ↦→ 0},
Main’s second command and Sub’s first command with the action do are enabled as their guard
conditions are met. That is, x remains 1 and y transitions to 1 with 20% probability.

(2) Property specification: Users specify the properties for analysis using temporal logic formulas,
such as PCTL [Hansson and Jonsson 1994]. Fig. 1 includes a time-bounded query about the
probability of Main completing its job and Sub being ready after three transitions.

(3) Computation: PMC tools compute the probability of the specified property for the described
model. Fig. 1 shows the model’s Markov chain with four states and its corresponding transition
probability matrix, describing the transition probabilities between states. The result is obtained
bymultiplying thismatrix three times to the one-hot vector for the initial state {x ↦→ 0, y ↦→ 0} ,
resulting in a 49% probability of reaching the target state {x ↦→ 1, y ↦→ 0} after three transi-
tions.

1We do not consider cases where multiple commands are enabled in a module, which necessitates normalization for
DTMC [Kwiatkowska et al. 2011]. In cases where no guard condition is met in a module, a self-loop command is implicitly
included as in prior work [Holtzen et al. 2021].
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Syntax. We use a core language of PMC simplified from Prism [Kwiatkowska et al. 2011]. Fig. 2a
presents the syntax. A DTMCmodel comprises distinct modules, each with variable declarations and
commands. Variables are specified with an initial value 𝑛init and a maximum value 𝑛max, restricting
them to integer values ranging from 0 to 𝑛max, inclusively. Each command comprises (1) action
name (a) for synchronization; (2) guard condition (g) that dictates when the command can be
invoked; and (3) probabilistic updates. Each probabilistic update, denoted by 𝜆𝑖 : u𝑖 for a given
index 𝑖 , includes (1) the probability 𝜆𝑖 to take this update, and (2) the update operation u𝑖 of the
assignment form

#            »(v = e) where v is a variable and e is an expression. An expression e is defined in a
standard fashion. As a syntactic sugar, we use formula as temporary variables used in expressions.

A PMC problem configuration, denoted by 𝜏 , comprises a model m and a property p. A property
p consists of the number t of transitions and a boolean expression 𝜔 that defines the set of target
states. For example, the property Pr(♦=3 x = 1∧ y = 0) in Fig. 1 represents the time-bounded query
for the probability of reaching the state {x ↦→ 1, y ↦→ 0} after three transitions.2 Note that while
the original PMC can handle a variety of properties from PCTL [Hansson and Jonsson 1994], we
focus specifically on time-bounded reachability properties in this work [Katoen 2016].

Semantics. Fig. 2b presents the semantics as transition probabilities among states. A state 𝑠 ∈ 𝑆 △=
Var→ N is a variable map, and the semantics of a model m is a function JmK : S × S → [0, 1]. Here,
JmK( 𝑗, 𝑖) indicates the probability of transitioning from state 𝑖 to 𝑗 . For simplicity, we also refer to
JmK as a matrix and state s as a number that represents the global state of the model (e.g., s = 102
for the state {x ↦→ 1, y ↦→ 0}). The transition probability JmK( 𝑗, 𝑖) is the product of local transition
probabilities across all enabled commands in all modules. A command c is enabled (Enabled(c, 𝑖))
if its guard condition c.g is met and its corresponding action c.a is enabled. An action a is enabled
(Sync(a, 𝑖)) if each module has at least one command of the action whose guard is satisfied. The
local transition probability JcK( 𝑗, 𝑖) of a command from state 𝑖 to 𝑗 is the sum of the probabilities of
all updates in c that change the variables from 𝑖 to 𝑗 . Also, a model should satisfy the following
condition to ensure DTMC’s basic properties:

∀md ∈ m, s ∈ S. ∃!c. c ∈ md ∧ Enabled(c, s) ,
meaning that for every step in any module, exactly one command is enabled.
The semantics J𝜏K ∈ [0, 1] of a PMC configuration 𝜏 = (m, Pr(♦=t 𝜔)) is the probability of 𝜔

being satisfied in m after t steps. The initial state of the model 𝜋0 (m) : S → [0, 1] is a one-hot
vector that represents the initial state of m determined by the initial values of the variables; and
S𝜔 ⊆ S denotes the set of target states satisfying the boolean expression 𝜔 .
For example, the semantics of the PMC configuration 𝜏 = (m, Pr(♦=3 x = 1 ∧ y = 0)) presented

in Fig. 1, where S𝜔 = {102}, is defined as follows:

J𝜏K =
∑︁
s∈S𝜔

JmK3𝜋0 (m) =
∑︁
s∈S𝜔

©«

0.4 0 0 1
0.1 0.5 0 0
0.4 0 0.8 0
0.1 0.5 0.2 0


3 

1
0
0
0


ª®®®®®¬
≃

∑︁
s∈{102 }


0.27
0.07
0.49
0.17


= 0.49 .

State explosion problem. Fig. 1 illustrates the direct matrix multiplication method to PMC. How-
ever, this approach is feasible only for tiny models due to the state explosion problem: the number of
states and transitions grows exponentially relative to the model size. In a system with 𝑁 processes,

2Bounded property Pr(♦≤t 𝜔) , which represents the probability of reaching the target state within t transitions, can be
encoded with transient properties in the form of Pr(♦=t 𝜔) by tweaking the model [Katoen 2016].
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x • 𝑅𝑦 (𝜋/2) 𝑋

g 𝑋 •
|𝜓0⟩ |𝜓1⟩ |𝜓2⟩ |𝜓3⟩

Cmain = 𝐶𝑡1 (𝑋 ) (x, g); 𝐶𝑡0 (𝑅𝑦 (𝜋/2)) (g, x); 𝐶𝑡1 (𝑋 ) (g, x);

(a) Diagram and syntax.

|𝜓0⟩ =
√
0.3 |0⟩x |0⟩g +

√
0.7 |1⟩x |0⟩g

|𝜓1⟩ = J𝐶𝑡1 (𝑋 ) (x, g)K( |𝜓0⟩) =
√
0.3 |0⟩x |0⟩g +

√
0.7 |1⟩x |1⟩g

|𝜓2⟩ = J𝐶𝑡0 (𝑅𝑦 (𝜋/2)) (g, x)K( |𝜓1⟩) =
√
0.15 |0⟩x |0⟩g +

√
0.15 |1⟩x |0⟩g +

√
0.7 |1⟩x |1⟩g

|𝜓3⟩ = J𝐶𝑡1 (𝑋 ) (g, x)K( |𝜓2⟩) =
√
0.15 |0⟩x |0⟩g +

√
0.15 |1⟩x |0⟩g +

√
0.7 |0⟩x |1⟩g

(b) Semantics.

Fig. 3. 2-qubit quantum circuit for the Main module of the DTMC model in Fig. 1.

each in one of 𝑀 states, the total possible states amount to 𝑀𝑁 , leading to a transition matrix
size of 𝑀𝑁 ×𝑀𝑁 [Herman 1990; Valmari 1996]. This exponential increase in complexity poses
substantial computational challenges. While several techniques such as symbolic representation
and abstraction have been proposed to mitigate the problem [Baier et al. 1997; Dehnert et al. 2012;
Hahn et al. 2010; Katoen 2016; Kattenbelt et al. 2010], they still encounter exponential state growth
(see §8 for details).

To avoid exhaustive state exploration, statistical model checking (SMC) employs Monte Carlo
simulation to estimate model behavior [Bogdoll et al. 2011; Hérault et al. 2004; Lassaigne and
Peyronnet 2002; Younes et al. 2006; Younes and Simmons 2002]. SMC determines whether a finite
number of simulations of the system support or refute a given property. Consequently, this approach
enables the handling of larger models while reducing computational demand and memory usage.
However, SMC is impractical for high-accuracy analysis. To achieve low error bound, SMC

requires an inverse quadratically growing number of samples. For instance, achieving the error
margin of 10−5 requires billions of samples and thus several weeks or more of analysis time [Budde
et al. 2020]. This limitation is particularly crucial in safety-critical systems like transportation and
nuclear plants, where even rare events are of significant consequence [Lagnoux 2006; Rubino et al.
2009].

2.2 Quantum Computing

Quantum computing leverages quantum mechanical phenomena to accelerate tasks that are compu-
tationally intensive. Fig. 3a depicts a circuit that represents a quantum algorithm. In circuits, each
wire represents a qubit (quantum bit), the basic unit of information. Unlike classical bits, a qubit can
exist in a superposition of two basis states, loosely meaning it inhabits both states probabilistically,
thus enabling inherent parallel computation of probabilities. The blocks are quantum gates that
manipulate the states of the qubits.

Qubits. A state of 𝑛 qubits is represented as a unit vector in C2𝑛 . This state can be represented as a
superposition (linear combination) of computational (standard) basis vectors in C2𝑛 . For example,
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a 1-qubit state can be represented as 𝑎0 |0⟩ + 𝑎1 |1⟩, where 𝑎0, 𝑎1 ∈ C satisfy |𝑎0 |2 + |𝑎1 |2 = 1; and
|0⟩ and |1⟩ are the computational basis vectors [1 0]† and [0 1]†, respectively, with † indicating
the conjugate transpose. Generally, an 𝑛-qubit state |𝜓 ⟩ can be represented as

∑2𝑛−1
𝑖=0 𝑎𝑖 |𝑖⟩, where

each |𝑖⟩ is one-hot vector in 2𝑛-dimensions with the 𝑖-th element being 1; and their coefficients
satisfy

∑2𝑛−1
𝑖=0 |𝑎𝑖 |2 = 1. Here, a basis vector is a tensor product of those of smaller qubit systems, e.g.,

|102⟩ = |12⟩ ⊗ |02⟩ where |102⟩ is a basis vector in 2-qubit system and |12⟩, |02⟩ in 1-qubit system.
For simplicity, we omit the subscript “2” denoting a binary number and the tensor product symbol
⊗ when it is clear from the context.
Each quantum state poses a probability distribution over possible measurement outcomes. Mea-

suring the state
∑2𝑛−1

𝑖=0 𝑎𝑖 |𝑖⟩ collapses into a basis state, say |𝑖⟩, with a probability of |𝑎𝑖 |2. For example,
in Fig. 3b, the last state |𝜓3⟩ of qubits x and g is given as

√
.15 |0⟩x |0⟩g +

√
.15 |1⟩x |0⟩g +

√
.7 |0⟩x |1⟩g,

indicating a 15% probability of measuring |00⟩, 15% for |10⟩, and 70% for |01⟩. Here, the subscript
“x” or “g” indicates the qubit’s name. The probability distribution for a partial measurement is the
marginal probability distribution over possible outcomes. For instance, measuring only the qubit
x from the state |𝜓3⟩ implies a 85% probability of |0⟩x and 15% for |1⟩x. We use Pm( |𝜓 ⟩ , #»q ) to
denote the probability distribution of partial measurement of the qubits #»q from the state |𝜓 ⟩, e.g.,
Pm( |𝜓3⟩ , x) = [0.85, 0.15] (see Def. B.1 in the supplementary material [Jeon et al. 2024] for the full
definition).

Gates. A gate represents a unitary transformation of qubit states. Formally, an 𝑛-qubit gate, say G,
represents a unitary matrix JGK of size 2𝑛 × 2𝑛 that maps a state |𝜓 ⟩ ∈ C2𝑛 to a new state JGK |𝜓 ⟩.
For simplicity, we abuse the notation to denote by JGK the mapping as well. In circuit diagrams, a
gate is represented as a block on the wires. For example, 𝑋 denotes the 𝑋 gate.
In this paper, we will use several well-known gates from the literature, with their meanings

provided as follows:

J𝐼K :=

[
1 0
0 1

]
J𝑋 K :=

[
0 1
1 0

]
J𝑅𝑦 (𝜃 )K :=

[
cos(𝜃/2) − sin(𝜃/2)
sin(𝜃/2) cos(𝜃/2)

]
The 𝐼 gate is the 1-qubit identity gate that leaves the state unchanged; and the 𝑋 gate maps |𝑖⟩ to |𝑖⟩,
where 𝑖 is 𝑖’s bit-complement. The𝑅𝑦 (𝜃 ) “y-rotation” gatemaps |𝑖⟩ to cos(𝜃/2) |𝑖⟩+(−1)𝑖 sin(𝜃/2) |𝑖⟩,
where 𝜃 is the rotation angle. We will use this gate to represent arbitrary probabilistic distributions
(see §3.3 for details). It is worth noting that these mappings from the bases vectors fully characterizes
the semantics of gates represented as unitary matrices.

The 𝐶𝑡
#»

𝑏 (G) “controlled-G” gate applies G to the target qubits if the control qubits are in state
#»

𝑏 .
Formally, J𝐶𝑡

#»

𝑏 (G)K := |𝑖1⟩ |𝑖2⟩ ↦→ |𝑖1⟩ JGK𝑖1=
#»

𝑏 |𝑖2⟩, where |𝑖1⟩ ∈ {|0⟩ , |1⟩}𝑛1 and |𝑖2⟩ ∈ {|0⟩ , |1⟩}𝑛2

are basis vectors for control and target qubits, respectively;
#»

𝑏 ∈ {0, 1}𝑛1 is the control condition
for the 𝑛1-qubits; and G is an 𝑛2-qubit gate. One-bit controlled gate is visualized as a block with
control qubits indicated by an empty circle ( ) for 𝑏 = 0, or a filled circle ( • ) for 𝑏 = 1.

Circuits. Fig. 4 presents the syntax and semantics of quantum circuits. A circuit, say C, is a series
of gate applications G( #»q ), where G is a gate; #»q is a sequence of qubits; and Q is the finite set of
qubits considered. For example, Cmain in Fig. 3a represents the 4-gate circuit. Also, a circuit should
satisfy the following well-formedness condition:

wf (C) △= ∀G( #»q ) ∈ C . ( |𝐺 | = | #»q |) ∧ (∀𝑖, 𝑗 . 𝑖 ≠ 𝑗 ⇒ q𝑖 ≠ q𝑗 ) .

Here, the size |G | of an 𝑛-qubit gate G is defined as 𝑛. In essence, each gate’s arity should be
observed and each gate should operate on distinct qubits.
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C ∋ C ::=
#        »

G( #»q )

G ∋ G ::= 𝐼 | 𝑋 | 𝑅𝑦 (𝜃 ) | 𝐶𝑡
#»

𝑏 (G) | · · ·

q ∈ Q 𝜃 ∈ [0, 2𝜋) 𝑏 ∈ {0, 1}

(a) Syntax.

J[]K △= (identitiy) JG( #»q );CK △= JCK ◦ JG( #»q )K

JG( #»q )K △= ©«
⊗
𝑘∈ #»q

|𝑖𝑘 ⟩𝑘
ª®¬ ⊗ ©«

⊗
𝑙 ∈(Q\ #»q )

|𝑖𝑙 ⟩𝑙
ª®¬

↦→ JGK ©«
⊗
𝑘∈ #»q

|𝑖𝑘 ⟩𝑘
ª®¬ ⊗ ©«

⊗
𝑙 ∈(Q\ #»q )

|𝑖𝑙 ⟩𝑙
ª®¬

(b) Semantics.

Fig. 4. Quantum circuit language.

|0⟩𝑚−1 𝑅𝑦 (𝜋/2) . . . •

F †𝑚
...

...

|0⟩1 𝑅𝑦 (𝜋/2) • . . .

|0⟩0 𝑅𝑦 (𝜋/2) • . . .

|0 . . . 0⟩sys / Cprep C20
grov

C21
grov

. . .
C2𝑚−1
grov|0⟩res . . .

Fig. 5. The quantum circuit of QAE. The𝑚 qubits above represent the evaluation qubits for the QPE, while

the qubits sys and res below represent the qubits for the state preparation circuit Cprep. C𝑖
grov

denotes the

application of the Grover operator 𝑖 times, F †𝑚 is the inverse quantum Fourier transform for𝑚 qubits, and

the measurement is shown on the right side of F †𝑚 .

The semantics of C is a mapping JCK : C2𝑛 → C2𝑛 for 𝑛 = |Q|, defined as the composition of
gate applications in C. In turn, JG( #»q )K applies gate 𝐺 to the qubits in #»q while leaving the other
qubits unaffected. For example, Fig. 3 presents a circuit Cmain that mirrors the state transitions of
the Main module from Fig. 1, without action synchronization. Qubits x and g represent the state of
Main and a temporary value. Starting with the initial state |𝜓0⟩ (30% probability of x = 0 and 70% of
x = 1), |𝜓1⟩ copies x’s basis to g. Then, |𝜓2⟩ and |𝜓3⟩ mirrors the first and third commands of Main
for x = |0⟩ and |1⟩, respectively. Overall, the Cmain transforms the state of two qubits x and g from
|𝜓0⟩ to |𝜓3⟩ (85% probability of x = 0 and 15% of x = 1), thus parallelizing the state transition in the
Main module except for the second command.

2.3 Quantum Amplitude Estimation

Quantum amplitude estimation (QAE) [Brassard et al. 2002] is a quantum algorithm that estimates
the probability of measuring a specific state in a quantum state. Consider a circuit Cprep acting on
a quantum state |0 . . . 0⟩sys |0⟩res for some multiple qubits sys, single qubit res. QAE efficiently
estimates 𝑎 ∈ [0, 1], the probability of measuring |1⟩ on the qubit res after applying Cprep to initial
state |0 . . . 0⟩sys |0⟩res, or more formally:3

𝑎 = Pm(JCprepK( |0 . . . 0⟩sys |0⟩res), res) (1) .
3This equation matches the form commonly found in QAE papers [Brassard et al. 2002; Stamatopoulos et al. 2020]:
JCprepK( |0 . . . 0⟩sys |0⟩res) =

√
1 − 𝑎 |𝜓0 ⟩sys |0⟩res +

√
𝑎 |𝜓1 ⟩sys |1⟩res, where |𝜓0 ⟩ and |𝜓1 ⟩ are some normalized states.
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QAE estimates 𝑎 with an error of 𝜖 using 𝑂 (1/𝜖) applications of Cgrov (see below), where each
application of Cgrov corresponds to one quantum sample. QAE has a success probability of 81%, so
by repeating the process a few times and taking the median result, the algorithm succeeds almost
with certainty. This results in a quadratic speedup compared to classical Monte Carlo methods,
which require 𝑂 (1/𝜖2) samples to achieve the same error 𝜖 [Montanaro 2015].

QAE circuit. Fig. 5 shows the complete QAE circuit. Instead of directly estimating 𝑎 from Cprep,
QAE estimates 𝜃𝑎 such that sin2 (𝜃𝑎) = 𝑎. The estimation of 𝜃𝑎 involves two primary components:

• Grover Operator (Cgrov): The Grover operator Cgrov is a unitary matrix constructed from Cprep,
which has eigenvalues 𝑒±2𝑖𝜃𝑎 .
• Quantum Phase Estimation (QPE) [Kitaev 1995]: The QPE process estimates the eigenvalue of
a given unitary matrix.

Within the QAE circuit, the QPE algorithm is applied to Cgrov to estimate 𝜃𝑎 . Subsequently, this
estimated 𝜃𝑎 can be post-processed to determine the value of 𝑎.

The Grover operator Cgrov is a key component used in Grover’s search algorithm [Grover 1996]
to amplify the probability amplitude of the desired output states. It consists of four components,
Cgrov = Corac;C−1prep;Czero;Cprep, and has eigenvalues 𝑒±2𝑖𝜃𝑎 , where C−1

prep
is the inverse of Cprep, and

Corac and Czero are boolean oracle and zero reflection circuits that perform a phase flip (i.e., transform
|𝜓 ⟩ to − |𝜓 ⟩) when the result qubit res is |1⟩ and when sys and res are both |0⟩, respectively. This
Cgrov can be easily constructed once Cprep is provided: (1) C−1prep is constructed by reversing the order
and rotation angle of the gates in Cprep. (2) Corac and Czero are constructed using a single-qubit Z
gate and a multi-controlled Z gate, respectively [Nielsen and Chuang 2010].

As shown in Fig. 5, QPE requires𝑚 additional qubits for evaluation, positioned at the top left of
the figure, and 2𝑚 − 1 applications of Cgrov, shown in the middle of the figure, to estimate 𝜃𝑎 with
𝑚 bits of accuracy. QPE involves three procedures: First, the state of𝑚 qubits is transformed to
represent an eigenvalue-related term. This involves initializing𝑚 qubits to an equal superposition
state using 𝑅𝑦 (𝜋/2) gates, initializing sys and res using Cprep, and then controlling the𝑚 qubits
by different powers of Cgrov. Second,𝑚 qubits are transformed to represent the eigenvalue using
the inverse Quantum Fourier Transform (QFT) [Coppersmith 2002]. Finally, after applying the
inverse QFT, the qubits are measured to produce an integer 𝑦 ∈ {0, ..., 2𝑚 − 1}, which is 𝑚-bit
representation of the estimate 𝜃𝑎 for 𝜃𝑎 . From 𝜃𝑎 , we can obtain the estimate 𝑎 = sin2 (𝜃𝑎) ∈ [0, 1].

Example. To estimate the probability of measuring |1⟩x in the state |𝜓3⟩ of the Cmain in Fig. 3 using
QAE, we set Cmain as Cprep and designate the qubit x in Cmain as res in Cprep. By constructing Cgrov

and applying it 𝑂 (1/𝜖) times along with QPE, we can estimate the probability of measuring |1⟩x in
the state |𝜓3⟩, which is 0.15 with an error of 𝜖 .

3 Quantum Probabilistic Model Checking

Generalizing the encoding depicted in Fig. 3, QPMC uses quantum computers to answer the PMC
configuration quadratically faster than SMC. QPMC constructs Cprep, the core component of QAE
(§2.3), to encode the PMC configuration into a quantum circuit and employs QAE to estimate
the probability of the property being satisfied. It superposes multiple states and transitions them
in parallel using qubits and quantum gates. QPMC then estimates the probability for the PMC
configuration by applying Cprep to the QAE algorithm [Brassard et al. 2002]. For the translation
algorithm T from PMC configurations 𝜏 to the quantum circuit Cprep = T (𝜏), we prove the following
property (see §5 for the proof):
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module // Main
x : [0..1] init 0
...
[done] x→ 1 : (x = 0)

module // Sub
y : [0..1] init 0
...
[done] y→ 1 : (y = 0)

Model

QPMC

module // MainSub
x : [0..1] init 0
y : [0..1] init 0
...
formula done = x ∧ y
[] x ∧ done→ 1 : (x = 0)
[] y ∧ done→ 1 : (y = 0)

s /

Cmch /

s′ /

preprocess
(§3.2)

translate
(§3.3)

Pr(♦=3 x = 1 ∧ y = 0 )?

Property

s0 / Cinit

Cmch1 /
s1 /

Cmch2 /
s2 /

Cmch3 /
s3 / Cresres /

Cprep

𝑅𝑦 (𝜋/2) . . . •

F†𝑚.
.
.

.

.

.

𝑅𝑦 (𝜋/2) • . . .

/
Cprep C20

grov

. . .
C2𝑚−1
grov. . .

QAE circuit

≈ .49

Result

(§3.1) (§2.3)

Fig. 6. Overview of QPMC.

Theorem 3.1 (Correctness of QPMC). Let 𝜏 be a PMC configuration and res be the result qubit.
We have J𝜏K = Pm(JT (𝜏)K( |0⟩), res) (1).

The theorem states that J𝜏K equals to the probability of the result qubit being |1⟩ after applying the
translated circuit to the initial state |0⟩. Here, Pm( |𝜓 ⟩ , 𝑞) (𝑣) indicates the probability of the qubit 𝑞
being |𝑣⟩ from the given state |𝜓 ⟩ (§2.2), and |0⟩ is the zero vector. With this property, QPMC can
estimate J𝜏K via QAE, achieving a quadratic speedup compared to SMC (§2.3).

3.1 Overview

Fig. 6 illustrates the QPMC process for the example presented in Fig. 1. QPMC converts a given
PMC configuration 𝜏 = (m, Pr(♦=t 𝜔)) into a quantum circuit Cprep and estimates J𝜏K through the
following four steps.

Preprocessing (§3.2). First, the DTMC model m is preprocessed into a unified system module
mdsys, resolving the inter-module synchronization that makes it challenging to directly encode
the state transitions of multiple modules into a quantum circuit. For example, Fig. 6 shows the
preprocessed system module for the model in Fig. 1, which unifies the two modules Main and Sub
into a single module by resolving the synchronized action done using formulas and additional
guard conditions. This preprocessing preserves semantics, i.e., JmK = JmdsysK, without increasing
the size of the model, unlike the standard approach that incurs an exponential increase in the
number of commands [PRISM 2010].

Translating model (§3.3). Second, the system module mdsys is translated into a quantum circuit
Cm that mirrors its state transitions. This circuit takes a probabilistic distribution of the current state
s in qubits s and produces that on the next state s′ in qubits s′, utilizing “choice qubits” ch. For the
set S of all possible states, their probabilistic distribution is represented with log2 |S | qubits in s and
s′, enabling simultaneous representation and parallel processing of multiple states. For example,
Fig. 6 shows the circuit Cm for the preprocessed model of Fig. 1, which encodes the variable x and
y into the state qubits s and s′, respectively.
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Translating property. Third, Pr(♦=t 𝜔) is translated into a quantum circuit Cprep = T (𝜏) that
mirrors the computation of J(m, Pr(♦=t 𝜔))K as follows:

(1) Initialization Circuit Cinit = Tinit (mdsys): loading the preprocessed system module’s initial
state distribution, which is the one-hot vector of the initial state. For example, Fig. 6 shows
the circuit Cinit for the model in Fig. 1, which encodes the initial state {x ↦→ 0, y ↦→ 0} into the
qubits s0.

(2) Transition Circuit Trep (Cm, t): applying the circuit Cm for t times. For exmaple, Trep (Cm, 3)
shown in Fig. 6 applies Cm 3 times in series.

(3) Result Circuit Cres = Tres (𝜔, t): encoding the probability of reaching target states 𝜔 after t
transitions into the qubit res. For example, Cres shown in Fig. 6 encodes the probability of
x = 1 ∧ y = 0 being satisfied.

The Cinit and Cres circuits are completely characterized by the following mappings because states
form a basis for s (§2.2). Furthermore, both circuits are defined by classical operations such as
arithmetics and comparisons so that they can be easily constructed from their classical logic gate
representations [Bolhassani and Haghparast 2016; Haghparast and Bolhassani 2016; Jayashree et al.
2016; Xia et al. 2018]:

|0⟩s0
JCinitK↦−−−−−−→

∑︁
(s ↦→𝜆) ∈𝜋0 (mdsys)

√
𝜆 |s⟩s0 and |s⟩st |0⟩res

JCresK↦−−−−−−→ |s⟩st J𝑋 K1S𝜔 (s) |0⟩res .

In contrast, Trep (Cm, t) is a proper quantum circuit with superposition, which cannot be repre-
sented in classical circuits. After applying these sub-circuits in Cprep, the result qubit res represents
J𝜏K, meaning that the probability of measuring |1⟩ in res is equivalent to the probability of reaching
the target states 𝜔 after t transitions in 𝜏 .

Estimating the property. Finally, QPMC employs the QAE algorithm [Brassard et al. 2002] to
estimate the probability of measuring |1⟩ in res, which corresponds to J𝜏K. To achieve this, QPMC
applies the translated circuit Cprep to the QAE algorithm [Brassard et al. 2002] as described in §2.3.

3.2 Preprocessing DTMC Model

QPMC’s preprocessing desugars inter-module synchronization by merging all modules into a
unified system module mdsys. For the preprocessing algorithm Tpre from DTMC models to system
modules, we prove that Tpre preserves transition matrix (see §5 for the proof):

Lemma 3.2. For every model m, we have JmK = JTpre (m)K.

Motivation. To perform PMC on amodel, one first should address its inter-module synchronization
because it significantly complicates the semantics. Prior work such as Prism [Kwiatkowska et al.
2011] has employed preprocessing approaches to encode synchronization with simpler constructs.
However, these approaches are impractical for accelerating the model checking process in that, as
more modules are synchronized, the number of commands in the preprocessed model increases
exponentially, introducing a significant computational challenges at the later stages of model
checking [PRISM 2010].

To address this issue, we design a preprocessing algorithm that does not increase the number of
commands. To this end, we introduce a new semantics for preprocessed modules that preserves the
semantics of the original model and also facilitates semantics-preserving translation to quantum
circuits at the same time. Particularly, new semantics permits the execution of multiple commands
at each step, which aligns with the parallel nature of quantum circuits (see §3.3 for details).
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Algorithm 1 Preprocessing the given DTMC model m into mdsys.

1: function Tpre(m : Model)
2: info← SyncInfo(m) ⊲ Dictionary {Module : {Action : #           »Comm}}
3: mdsys ← empty module md
4: mdsys.

#»

d ← (m.md1 .
#»

d ++ · · · ++ m.md𝑛 .
#»

d ) ⊲ Add original decls
5: for 𝑖 ∈ [1, |m.

#  »

md |] do ⊲ Add original guards
6: for (a ↦→ #»c ) ∈ info[md𝑖 ] do
7: for 𝑗 ∈ [1, | #»c |] do
8: AddFormula(mdsys,GetId(md𝑖 , a, 𝑗), #»c [ 𝑗] .g)
9: for a ∈ m.Action do ⊲ Add action guards
10: al ← []
11: for 𝑖 ∈ [1, |m.

#  »

md |] do
12: al.add(∨𝑗 ∈ |info [md𝑖 ] [𝑎] | GetId(md𝑖 , a, 𝑗))
13: AddFormula(mdsys, a, (

∧
e∈al e))

14: k ← 1
15: for 𝑖 ∈ [1, |m.

#  »

md |] do ⊲ Add sync-resolved commands
16: for (a ↦→ #»c ) ∈ info[md𝑖 ] do
17: for 𝑗 ∈ [1, | #»c |] do
18: AddFormula(mdsys, gk,GetId(md𝑖 , a, 𝑗) ∧ a) ⊲ New guard
19: mdsys . #»c [k] ← ([⊥] 𝑔k → probabilistic updates of #»c [ 𝑗]) ⊲ New command
20: k ← k + 1
21: return mdsys

Algorithm. Algorithm 1 presents Tpre, which consolidates synchronized commands from different
modules into a system module and encodes inter-module synchronization in additional guard
conditions as follows. (1) Tpre creates a dictionary using SyncInfo, grouping commands by action
names within each module (line 2). (2) Tpre copies all variables and guards from m to mdsys,
renaming and declaring them as formulas to address synchronization (line 4-line 8). Here, GetId
returns a unique identifier based on the module name, action name, and command index; and
AddFormula(mdsys, 𝑛, 𝑔) appends a new formula tomdsys with the name𝑛 and the guard condition
𝑔. (3) Tpre then constructs formulas that determines action enablement (line 9-line 13). An action
is enabled if all modules have an enabled command for the action. Here, whether a module has
an enabled command for a given action is expressed as a disjunction (line 12); and whether all
modules are enabled as a conjunction (line 13). (4) Tpre finally strengthens the guard conditions of
the original commands to encode synchronization (line 14-line 20).
For example, Fig. 7a presents the system module mdsys preprocessed from the model shown

in Fig. 1. The module mdsys incorporates variables x from Main and y from Sub modules, and
represents their command guard conditions as formulas xdo1, xdo2, xdone1, and so on. For example,
xdo1 denotes the guard condition for the first command with action do in Main. The formulas do and
done represent the enablement of actions. The formulas g1, g2, and so on, denote the strengthened
guard conditions that also encode synchronization. The commands mirror those of the original
model but with these strengthened guard conditions.

Semantics. The semantics definition for preprocessed system modules differs from that for original
models. Recall from Fig. 2b that the semantics JmK of the original model m involves the sequential
execution of synchronized commands in each module. Each module identifies its enabled commands
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module // mdsys (MainSub)
x : [0..1] init 0, y : [0..1] init 0
// formulas for original command guard
formula xdo1, xdo2, xdone1 =!x, x, x
formula ydo1, ydo2, ydone1 =!y, y ∧ !x, y
// formulas for action guard
formula do = (xdo1 ∨ xdo2) ∧ (ydo1 ∨ ydo2)
formula done = (xdone1) ∧ (ydone1)
// formulas for new command guard
formula g1 = xdo1 ∧ do, g2 = xdo2 ∧ do
formula g3 = xdone1 ∧ done, g4 = ydo1 ∧ do
formula g5 = ydo2 ∧ do, g6 = ydone1 ∧ done
// commands of module 1
[] g1 → 0.5 : (x = 0) + 0.5 : (x = 1)
[] g2 → 1 : (x = 1)
[] g3 → 1 : (x = 0)
// commands of module 2
[] g4 → 0.8 : (y = 0) + 0.2 : (y = 1)
[] g5 → 1 : (y = 1)
[] g6 → 1 : (y = 0)

(a) Example (from Fig. 1).

JmdsysK( 𝑗, 𝑖) =
∑︁

(𝑐ℎ ↦→𝜆) ∈CH𝑖

∧F𝑖 (𝑐ℎ)=𝑗

𝜆

CHs =
∏

𝑖∈[1, | #»c | ]∧G(s)𝑖
c𝑖 .

#»

𝜆

Fs (𝑐ℎ) = U(s,G(s), 𝑐ℎ)

G(s) = #»c .map( |c | Jc.gK(s))

U(s, 𝑔𝑏, 𝑐ℎ) = ©«
⊎

𝑖∈[1, | #»c | ]∧𝑔𝑏𝑖
Jc𝑖 . #»u [𝑐ℎ[Mi(c𝑖 )]]K

ª®¬ (s)
where #»c is the commands of mdsys

Mi(c) △= (the original module index of command c)

(b) Semantics.

Fig. 7. Example and semantics of the system module.

and applies the corresponding updates in sequence. Therefore, JmK( 𝑗, 𝑖) is the product of the local
transition probabilities of each module.
In contrast, the semantics JmdsysK of the preprocessed system module mdsys is based on the

parallel execution of synchronized commands to replicate the individual behaviors of the original
modules. Specifically, it identifies all enabled commands and simultaneously applies their updates,
guided by three key functions depicted in Fig. 7b: (1) The guard functionG, which identifies enabled
commands. (2) The choice function CH𝑖 , which constructs the joint probability distribution of
choices for all possible updates from state 𝑖 . (3) The update function U, which calculates the next
state for a given set of updates. Thus, JmdsysK( 𝑗, 𝑖) is defined by summing the probabilities of
choices (from all possible combinations of updates in CH𝑖 ) that transition state 𝑖 to 𝑗 (with the next
state 𝑗 determined by U). The three functions are defined as follows.

(1) Guard: The functionG : S → B | #»c | takes the current state and returns whether each command’s
guard is satisfied, where #»c is the commands in mdsys.

(2) Choice: The function CH𝑖 : N |
# »

md | → [0, 1] denotes the joint probability distribution of update
choices at state 𝑖 , where CH𝑖 (𝑛1, . . . , 𝑛 | # »

md |) represents the probability of choosing the 𝑛1-th
update in the first enabled command, the 𝑛2-th in the second, and so on, with

#  »

md being the
modules in the original model m. Therefore, CH𝑖 represents the joint probability distribution
of all possible update combinations for each command that satisfies its guard condition.

(3) Update: The function F𝑖 : N |
# »

md | → S calculates the next state from state 𝑖 and the given choice
𝑐ℎ ∈ N |

# »

md | of updates. This function is defined by the update function U : S×B | #»c | ×N |
# »

md | → S,
which takes the current state s, a boolean vector 𝑔𝑏 representing the guard conditions, and
a choice 𝑐ℎ. It calculates the next state s by applying a chosen combination of updates for the
commands whose guards are met in the current state. Each 𝑛-th element of 𝑐ℎ represents the
index of the update to be applied in the 𝑛-th enabled command in mdsys. To find such an index
𝑛, we use the function Mi(c), which returns the index of the element in 𝑐ℎ for the enabled
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command c. This index is determined by the original module index of the command c, as each
enabled command corresponds directly with one of the modules in the original model m (§2.1).

Example. Fig. 8b presents the execution of mdsys shown in Fig. 7a. Consider the transition proba-
bility from s = {x ↦→ 0, y ↦→ 0} to s′ = {x ↦→ 0, y ↦→ 1}.

(1) Guard : Since !x and !y are true, the enabled commands are identified by G(s) = [1, 0, 0, 1, 0, 0],
indicating that c1 and c4 are enabled.

(2) Choice : At state s, the possible choices are determined by CHs = c1 .
#»

𝜆 × c4.
#»

𝜆 , resulting
in four potential choices, each associated with a specific probability at state s. For instance,
CHs ((1, 2)) = 0.1means the choice of the first update of c1 and the second update of c4 happens
with a probability of 0.1.

(3) Update : For each choice ch : N2, where ch(1) and ch(2) are the indices of the chosen updates
for the first and second enabled commands, respectively, the next state from s is computed
by the function Fs (ch) = U(s,G(s), ch). For example, the enabled commands c1 and c4 apply
the updates of the indices 𝑐ℎ(Mi(c1)) = 𝑐ℎ(1) and 𝑐ℎ(Mi(c4)) = 𝑐ℎ(2), respectively. Following
this, Fs ((1, 2)) = U(s,G(s), (1, 2)) applies the first update of c1 and the second update of c4 to
current state s, resulting in the next state {x ↦→ 0, y ↦→ 1}.

Finally, the transition probability from state s to state s′ is determined by summing the probabilities
of all choices from CHs that transition s to s′, which is JmdsysK(s′, s) = CHs ((1, 2)) = 0.1. This
probability equals to JmK(s′, s) in the original model m depicted in Fig. 1.

3.3 Translating Preprocessed DTMC Model toQuantum Circuit

QPMC subsequently translates mdsys into a quantum circuit Cm that encodes JmdsysK. At a high
level, Cm takes the current state and generates the next state’s probability distribution by employing
qubits for current states, guards, choices, and next states to superpose parallel execution of enabled
transitions. For the translation Tm from systemmodules to quantum circuits, we prove the following
property (see §5 for the proof):

Lemma 3.3. Let mdsys be a system module, and s, g, ch, s′ the qubits representing its current state,
guards, choices, and next state, respectively. We have:

∀s, s′ ∈ S, JmdsysK(s′, s) = Pm(JTm (mdsys)K( |𝑠⟩s |0⟩g |0⟩ch |0⟩s′), s′) (s′) .
This lemma states that JmdsysK(s′, s) equals to the probability of measuring s′ from the next state
qubits s′ after applying the translated circuit Tm (mdsys) to the input state |𝑠⟩s |0⟩g |0⟩ch |0⟩s′ .

Fig. 9 overviews the circuit Cm = Tm (mdsys) that replicates the transitions of mdsys. It consists
of four circuits that encode G, CHs , U, and G

−1 (§3.2):

(1) Guard Circuit Cg = Tg (mdsys): encoding G to evaluates the guard conditions for state 𝑠 and
encodes the results into guard qubits g.

(2) Choice Circuit Cch = Tch (mdsys): encodingCHs to generates a superposition within the choice
qubits ch, representing all possible update combination choices from state 𝑠 , along with their
probabilities.

(3) Update Circuit Cu = Tu (mdsys): encoding U to calculates the resulting state 𝑠 ′ in s′ from the
update combinations indicated in each basis of ch.

(4) Guard Uncomputation Circuit C−1
g

= Tginv (mdsys): encoding G
−1 to uncompute [Bennett

1973] the guard qubits g back to their initial state |0⟩ for later use.

These four circuits in series map each basis state |𝑠⟩ in s into the probability distribution for the
subsequent state |𝑠 ′⟩ in s′. Recall from §3.1 that mappings from these bases fully characterizes the
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Input state Guard Choice Update Probability

(a) Execution flow of mdsys and Tm (mdsys).

(Guard)

G(s) = [xdo1 ∧ do, xdo2 ∧ do,
. . . , ydone1 ∧ done]

= [1, 0, 0, 1, 0, 0]

(Choice)

CHs = c1 .
#»

𝜆 × c4 .
#»

𝜆

= {1 ↦→ 0.5, 2 ↦→ 0.5} × {1 ↦→ 0.8, 2 ↦→ 0.2}
= {(1, 1) ↦→ 0.4, (1, 2) ↦→ 0.1, (2, 1) ↦→ 0.4, (2, 2) ↦→ 0.1}

(Update)

Fs (𝑐ℎ = (1, 1)) = U(s,G(s), (1, 1)) = (Jc4 . #»u [𝑐ℎ (Mi(c4)) ]K ◦ Jc1 . #»u [𝑐ℎ (Mi(c1)) ]K) (s)
= (Jc4 . #»u [𝑐ℎ (2) ]K ◦ Jc1 . #»u [𝑐ℎ (1) ]K) (s)
= (Jc4 .u1K ◦ Jc1 .u1K) (s) = {x ↦→ 0, y ↦→ 0}

Fs ( (1, 2)) = U(s,G(s), (1, 2)) = (Jc4 .u2K ◦ Jc1 .u1K) (s) = {x ↦→ 0, y ↦→ 1}
Fs ( (2, 1)) = U(s,G(s), (2, 1)) = (Jc4 .u1K ◦ Jc1 .u2K) (s) = {x ↦→ 1, y ↦→ 0}
Fs ( (2, 2)) = U(s,G(s), (2, 2)) = (Jc4 .u2K ◦ Jc1 .u2K) (s) = {x ↦→ 1, y ↦→ 1}

(Probability of transitioning from s = {x ↦→ 0, y ↦→ 0} to s′ = {x ↦→ 0, y ↦→ 1})

JmdsysK( s′ , s ) =
∑︁

(𝑐ℎ ↦→𝜆)∈CHs∧Fs (𝑐ℎ)=s′
𝜆 = CHs ( (1, 2)) = 0.1

(b) Execution of system module mdsys.

(Guard Circuit)

|00⟩s |000000⟩g |00⟩ch |00⟩s′
JCgK
↦−−−−−→ |00⟩s | G(s) ⟩g |00⟩ch |00⟩s′

= |00⟩s |100100⟩g |00⟩ch |00⟩s′
= |𝜓1 ⟩

(Choice Circuit)

|𝜓1 ⟩
JC

ch
K

↦−−−−−−→
∑︁

(𝑐ℎ ↦→𝜆)∈CHs

√
𝜆 |00⟩s |100100⟩g |𝑐ℎ − 1⟩ch |00⟩s′

=
√
0.4 |00⟩s |100100⟩g |0⟩chi1 |0⟩chi2 |00⟩s′

+
√
0.1 |00⟩s |100100⟩g |0⟩chi1 |1⟩chi2 |00⟩s′

+
√
0.4 |00⟩s |100100⟩g |1⟩chi1 |0⟩chi2 |00⟩s′

+
√
0.1 |00⟩s |100100⟩g |1⟩chi1 |1⟩chi2 |00⟩s′

= |𝜓2 ⟩(Update Circuit)

|𝜓2 ⟩
JCuK
↦−−−−−→

√
0.4 |00⟩s |100100⟩g |0⟩chi1 |0⟩chi2 |U(s,G(s), (012, 012)) ⟩s′

+
√
0.1 |00⟩s |100100⟩g |0⟩chi1 |1⟩chi2 |U(s,G(s), (012, 102)) ⟩s′

+
√
0.4 |00⟩s |100100⟩g |1⟩chi1 |0⟩chi2 |U(s,G(s), (102, 012)) ⟩s′

+
√
0.1 |00⟩s |100100⟩g |1⟩chi1 |1⟩chi2 |U(s,G(s), (102, 102)) ⟩s′

=
√
0.4 |00⟩s |100100⟩g |0⟩chi1 |0⟩chi2 |00⟩s′ +

√
0.1 |00⟩s |100100⟩g |0⟩chi1 |1⟩chi2 |01⟩s′

+
√
0.4 |00⟩s |100100⟩g |1⟩chi1 |0⟩chi2 |10⟩s′ +

√
0.1 |00⟩s |100100⟩g |1⟩chi1 |1⟩chi2 |11⟩s′

= |𝜓3 ⟩

(Probability of measuring s′ = {x ↦→ 0, y ↦→ 1} = 012 on qubits s′ after applying Tm (mdsys))

Pm(JTm (mdsys)K( |s⟩s |0⟩g |0⟩ch |0⟩s′ ), s′) ( s′ ) = Pm( |𝜓3 ⟩ , s′) ( s′ ) = 0.1

(c) Execution of circuit Tm (mdsys).

Fig. 8. Execution example of mdsys and Tm (mdsys) with initial state s = {x ↦→ 0, y ↦→ 0} = 002 .
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s /
Cg

Cu

C−1
g

g /
Cch

ch /

s′ /

(a) Diagram.

|s⟩s |0⟩g |0⟩ch |0⟩s′
JCgK↦−−−−−→ |s⟩s |G(s)⟩g |0⟩ch |0⟩s′
JCchK↦−−−−−→

∑︁
(𝑐ℎ ↦→𝜆) ∈CHs

√
𝜆 |s⟩s |G(s)⟩g |𝑐ℎ − 1⟩ch |0⟩s′

JCuK↦−−−−−→
∑︁

(𝑐ℎ ↦→𝜆) ∈CHs

√
𝜆 |s⟩s |G(s)⟩g |𝑐ℎ − 1⟩ch |U(𝑠,G(𝑠), 𝑐ℎ)⟩s′

JC−1
g

K
↦−−−−−−→

∑︁
(𝑐ℎ ↦→𝜆) ∈CHs

√
𝜆 |s⟩s |0⟩g |𝑐ℎ − 1⟩ch |U(𝑠,G(𝑠), 𝑐ℎ)⟩s′

(b) Semantics (G, CHs , U are functions of mdsys).

Fig. 9. Quantum circuit Cm translated from system module mdsys.

circuit for parallel processing of states. Now we explain these four circuits in details. From now
on, we will omit writing mdsys in texts and expressions when their association with mdsys is clear
from the context.

Guards. The circuit Cg encodes G that evaluates the guards for all commands: JCgK transforms
the input state |s⟩s |0⟩g into the output state |s⟩s |G(s)⟩g. Since G comprises classical operations,
we can easily construct Cg as we did for Cinit and Cres in §3.1. For example, Fig. 10a illustrates
the circuit Cg for the system module mdsys in Fig. 7a. It replicates the guard function G of mdsys
in guard qubits by mirroring each formula’s expressions in quantum gates. Here, NOT,AND,OR
represent the corresponding classical logic gates (Fig. 11).
Additionally, after replicating state transitions using Cch and Cu, QPMC uncomputes [Bennett

1973] the state of g back to its initial state |0⟩ using C−1
g
, enabling the reuse of g in subsequent

state transitions. Uncomputation is necessary for reuse because quantum physics does not permit
to overwrite qubits unlike classical bits. The uncomputation process, which involves applying
the gates in Cg in reverse order, can be safely done without impacting other qubits if (1) they are
constructed by a circuit with classical semantics; and (2) the qubits used to construct the qubits
are still available [Bennett 1973; Bichsel et al. 2020]. Formally, for a circuit C whose semantics

are defined by a classical function 𝑓 , the transformation |𝑥⟩ |0⟩
JCK
−−−→ |𝑥⟩ |𝑓 (𝑥)⟩ can be reversed to

|𝑥⟩ |𝑓 (𝑥)⟩
JC−1K
−−−−→ |𝑥⟩ |0⟩, where the inverse circuit C−1 applies each gate in C in the reverse order.

Choices. The circuit Cch encodes CHs that enumerates all possible choices along with their proba-
bilities for the current state s: JCchK transforms the input state |𝑔𝑏⟩g |0⟩ch into a superposed state∑
(𝑐ℎ ↦→𝜆) ∈CHs

√
𝜆 |𝑔𝑏⟩g |ch − 1⟩ch, where 𝑔𝑏 is the boolean vector of guard results generated by Cg.

The circuit is a concatenation of individual circuits that set up choices for each enabled command.
For example, the left side of Fig. 10b shows the circuit Cch translated frommdsys shown in Fig. 7a.

The left three gates set the probabilities for the first, second, and third commands c1, c2, and c3 of
mdsys in the choice qubit chiMi(c1) = chiMi(c2) = chiMi(c3) = chi1, when the corresponding guard
qubit gi1, gi2, and gi3 are in the state |1⟩, respectively. chiMi(c) refers to the qubits allocated for
choices of the command c, which are shared among all commands originally in the same module in
m. Similarly, the right three gate sets the probabilities for the fourth, fifth, and sixth commands
c4, c5, and c6 of mdsys in the choice qubit chiMi(c4) = chiMi(c5) = chiMi(c6) = chi2, when the
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Original command guard Action guard New command guard
x • • • •
y • • •

xdo1 NOT • •
xdo2 𝑋 • •

xdone1 𝑋 • •
ydo1 NOT • •

tmp0 NOT •
ydo2 AND • • •

ydone1 𝑋 •
tmp1 OR •
tmp2 OR •

do AND • • • •

done AND • •
gi1 AND

gi2 AND

gi3 AND

gi4 AND

gi5 AND

gi6 AND

(a) Guard circuit.

Choice circuit Update circuit
gi1 • • •
gi2 • •
gi3 • •
gi4 • • •
gi5 • •
gi6 • •
chi1 𝑅(c1 .

#»

𝜆 ) 𝑅(c2 .
#»

𝜆 ) 𝑅(c3 .
#»

𝜆 ) •

chi2 𝑅(c4 .
#»

𝜆 ) 𝑅(c5 .
#»

𝜆 ) 𝑅(c6 .
#»

𝜆 ) •

x′ 𝐼 𝑋 𝑋 𝐼

y′ 𝐼 𝑋 𝑋 𝐼

(b) Choice and update circuit.

Fig. 10. Cm example (from Fig. 7a). x, y and x′, y′ are the current and next state qubits, respectively. gi𝑛 is

the guard qubit for the 𝑛-th command, and chi𝑛 are the choice qubit for the 𝑛-th enabled command, which

are shared among all guard qubits originating from the same original module. Other qubits, such as xdo1 and
tmp0 are auxiliary qubits to store intermediate results of guard conditions. C−1

g
is omitted for brevity.
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• •
≡

NOT 𝑋 𝑋

(a) NOT

• •
• ≡ •

AND 𝑋

(b) AND

• 𝑋 • 𝑋

• ≡ 𝑋 • 𝑋

OR 𝑋 𝑋

(c) OR

Fig. 11. Quantum circuit for classical logic gates.

𝐼

(a)

#»

𝜆 = [1]

𝑅𝑦 (0.9273)

(b)

#»

𝜆 = [0.8, 0.2].

𝑅𝑦 (𝜋/2)
𝑅𝑦 (𝜋/2)

𝑋 𝑅𝑦 (−2.58) • 𝑅𝑦 (𝜋/2)

𝑋 𝑅𝑦 (−1.91) •

(c)

#»

𝜆 = [1/13, . . . , 1/13] (uniform) [Shukla and Vedula 2024].

Fig. 12. 𝑅( #»

𝜆 ) gate for preparing probability distribution

#»

𝜆 with semantics J𝑅( #»

𝜆 )K( |0⟩) = ∑ | #»𝜆 |−1
𝑖=0

√
𝜆𝑖 |𝑖⟩.

corresponding guard qubit gi4, gi5, and gi6 are in the state |1⟩, respectively. Here, 𝑅( #»

𝜆 ) is a gate
that establishes the probability distribution

#»

𝜆 on qubits (see §A in the supplementary material [Jeon
et al. 2024] for the full definition).
Formally, Cch = Tch (mdsys) = ++ | #»c |𝑛=1 𝐶𝑡

1 (𝑅(c𝑛 .
#»

𝜆 )) (gi𝑛, chiMi(c𝑛) ), with ++ for list concate-
nation and c𝑛 as the n-th command in mdsys. ch is represented as

⊗ | # »

md |
𝑛=1 chi𝑛 , where

#  »

md is the
modules in m. The safety of sharing choice qubits is ensured because the guards of the same md
are mutually exclusive (§2.1). For example, as depicted in Fig. 10b, the three gates on the left target
the same qubits, chi1. However, at any given basis state, exactly one of their control qubits, gi1,
gi2, and gi3, is in the state |1⟩, ensuring that only one of the three gates is activated.

While constructing the𝑅( #»

𝜆 ) gate can be challenging for arbitrary probability distributions [Shende
et al. 2005], it is feasible for the PMC models of interest. PMC models typically involve regular
probability distributions, such as uniform distributions, and the size of these distributions is gener-
ally small. For example, all DTMC models in the Prism benchmark suite [Kwiatkowska et al. 2012]
including the case studies in §7.2 have either uniform distributions or non-uniform distributions
with a size of 2. Uniform distribution with size 𝑛 can be prepared using 𝑂 (log2 𝑛) elementary
gates [Shukla and Vedula 2024] and non-uniform distribution with size 2 can be prepared using
single 𝑅𝑦 (𝜃 ) gate as shown in Fig. 12.

Updates. The circuit Cu encodes U that generates the next state from the current state, guard
conditions, and probabilistic choices: JCuK transforms the input state |s⟩s |𝑔𝑏⟩g |ch⟩ch |0⟩s′ into the
output state |s⟩s |𝑔𝑏⟩g |ch⟩ch |U(s, 𝑔𝑏, ch)⟩s′ . Since U comprises classical operations, we can easily
construct Cu.
For example, the right side of Fig. 10b illustrates the circuit Cu for the system module mdsys in

Fig. 7a. The left two gates generate the next state for two choices of the first command c1, and
the third gate does so for single choice of the second command c2. Specifically, the second gate
𝐶𝑡112 (𝑋 ) ( [gi1, chi1], x′) updates the basis of x′ from |0⟩ to |1⟩ when the guard qubit gi1 and choice
qubit chi1 are both in state |1⟩, replicating the second update of the first command c1 (x = 1).
Similarly, each subsequent gate replicates each update of all commands.
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Example. Fig. 8c shows the execution of Tm (mdsys) for mdsys shown in Fig. 7a. The focus is on
the probability of measuring the next state s′ = {x ↦→ 0, y ↦→ 1} = 012 on the qubits s′ after Cm is
applied to the initial state s = {x ↦→ 0, y ↦→ 0} = 002. Auxiliary qubits are omitted for simplicity.
Initially, the quantum state is configured as |00⟩s |000000⟩g |00⟩ch |00⟩s′ , with |00⟩s representing the
initial state s, |000000⟩g = |0⟩gi1 . . . |0⟩gi6 for the guards of six commands, |00⟩ch = |0⟩chi1 |0⟩chi2
for the choices for the two enabled commands, and |00⟩s′ for the next state s′, all presented in
binary representation.

(1) Guard : The Cg operation identifies enabled commands, transforming |00⟩s |000000⟩g into
|00⟩s |100100⟩g. This indicates that c1 and c4 are enabled.

(2) Choice : The Cch operation superposes the possible choices of the enabled commands at |00⟩s.
It maps |100100⟩g |0⟩chi1 |0⟩chi2 into |100100⟩g (

√
0.4 |0⟩chi1 |0⟩chi2 + . . . +

√
0.1 |1⟩chi1 |1⟩chi2 ).

This results in four possible choices with their respective probabilities. For example, the last
term

√
0.1 |1⟩chi1 |1⟩chi2 means that the second update (|12⟩) of the first enabled command

(chi1) and the second enabled command (chi2) are selected with a probability of 0.1.
(3) Update : The Cu operation determines the next state for each choice |ch1⟩chi1 |ch2⟩chi2 by

transforming the basis of s′ given the bases of s, g, and ch. For instance, Cu updates the
basis of s′ from |00⟩ to |01⟩ in |00⟩s |100100⟩g |0⟩chi1 |1⟩chi2 |00⟩s′ , and from |00⟩ to |10⟩ in
|00⟩s |100100⟩g |1⟩chi1 |0⟩chi2 |00⟩s′ .

The probability of measuring |01⟩s′ in the output state is determined by summing the probabilities
of all basis states containing |01⟩ in s′. In this example, only one basis |00⟩s . . . |0⟩chi1 |1⟩chi2 |01⟩s′
exist with a probability of 0.1, which equals to JmdsysK(s′, s) as shown in Fig. 8b.

Note that the guard uncomputation circuit C−1
g

is not shown in the figure, but it resets the guard
qubits g to |000000⟩g after the update operation without affecting the probability of measuring
|s′⟩s′ for any s′ ∈ S.

4 Optimizing Number ofQubits using Uncomputation

While C𝜏 = T (𝜏) correctly solves the PMC configuration 𝜏 , managing a large number of transition
steps becomes increasingly demanding due to the linear increase in the required state qubits s and
choice qubits ch. This is significant as qubits are a key resource in quantum computing.

To address this issue, we focus on minimizing the number of state qubits, which can be uncom-
puted [Bennett 1973] and reused, unlike choice qubits. QPMC employs a batch recycling strategy
to reduce the number of state qubits from 𝑂 (t) to 𝑂 (

√
t). This significantly reduces the overall

number of qubits (§7.2) because the number of state qubits is typically larger than that of choice
qubits, due to the latter’s sharing among commands. Specifically, we design a qubit-optimized
translation algorithm Topt that satisfies the following property (see §5 for the proof):

Theorem 4.1 (Correctness of QPMCwithQubit Optimization). Let 𝜏 be a PMC configuration
and res be the result qubit. We have J𝜏K = Pm(JTopt (𝜏)K( |0⟩), res) (1).

4.1 Recycling StateQubits

Similar to the uncomputation of guard qubits g (§3.3), state qubits s can also be uncomputed and
recycled to reduce the total number of state qubits needed for multiple transitions. Recall from
§3.3 that qubits can be uncomputed if (1) their states are constructed by a circuit with classical
semantics, and (2) the corresponding input qubits, used to construct these states, remain available.
Since the update circuit Cu operates classically, its outcome can be reversed to recycle the state
qubits that are no longer needed for subsequent transitions, as long as the input qubits remain
available.
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s0 s1 s2 s0 s2−

Uncompute

s0 s2s3

Reuse

Fig. 13. Recycling state qubits.

s0 ...− − − − − − − − − s0 ...ch1 s1 ch2 s2 ch3 s3 ch4 ch𝑘 s𝑘

Maximize transitions (→)

s0 ...ch1 ch2 ch3− − ch4− ch𝑘 s𝑘

Uncompute state qubits (←)

s0 ...ch1 ch2 ch3 ch4ch𝑘+1 s𝑘+1 ch𝑘+2 ch𝑘 s𝑘

Resume transition
based on s𝑘 (→)

. . .

Fig. 14. Batch recycling with forward transitions and backward uncomputation.

For example, Fig. 13 shows the recycling of state qubits s1 when transitioning from s0 to s3. Here,
other qubits are omitted for simplicity. (1) Suppose the transition from s0 to s1 and then s2 has
been computed. (2) s1 can be safely uncomputed because it is no longer needed; its construction
from s0, g4 and ch1 (not shown in the figure) is classical; and the input qubits s0, g, and ch1 are
still available. Here, the uncomputation of s1 is achieved by applying the circuit C−1

u
to the same

input qubits s0, g, ch1. (3) Subsequently, the uncomputed state qubits s1 can be reused for later
quantum gates.

4.2 Batch Recycling

However, immediately recycling unnecessary state qubits is not always efficient. In Fig. 13, s2
becomes impossible to recycle because its previous state s1 is no longer available. Such immediate
recycling leads to a significant number of non-reusable state qubits.
To improve qubit efficiency, QPMC utilizes a batch recycling strategy, illustrated in Fig. 14,

which reduces the number of non-reusable state qubits and maximizes overall qubit utilization.
Specifically, the strategy proceeds as follows: (1) Transitions (→): State qubits from s1 to s𝑘 and
their corresponding input choices are sequentially computed to utilize all available qubits, where
𝑘 is the limit of achievable transitions. (2) Uncomputation (←): State qubits from s1 to s𝑘−1 are
uncomputed in reverse order, preserving s𝑘 for the next set of transitions. Note that choices cannot
be uncomputed because they are not evaluated by classical operations. (3) Subsequently, the state
qubits s1 to s𝑘−1 can be reused for later transitions (ch𝑘+1, s𝑘+1, . . . ), from the last state qubits s𝑘 .
We repeat this process until the final state qubits s𝑡 is reached.

4.3 Space Complexity of StateQubits

By repeating batch recycling, the optimized circuit reaches st using only 𝑂 (
√
t) state qubits. Now

we analyze this space complexity of state qubits.
Let𝑛(𝑡) be the minimum number of qubits required to complete 𝑡 transitions with batch recycling;

and suppose the transitions are divided into 𝑏 batches, the 𝑖-th batch being with 𝑡𝑖 transitions,
where

∑𝑏
𝑖=1 𝑡𝑖 = 𝑡 . After all transitions are completed, we will observe that the 𝑛(𝑡) qubits are

divided into 𝑡 choice qubits and 𝑏 state qubits. This is because choice qubits are necessary for each
step and cannot be uncomputed, thus we require 𝑡 choice qubits. In contrast, only one non-reusable
4Guard qubits g are uncomputed for each step so that they can be reused across multiple transitions. (§3.3). To uncompute
state qubits, the corresponding guard qubits must be temporarily recomputed.
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state qubit remains after each batch, so the total number of state qubits is 𝑏. As such:

𝑛(𝑡) = 𝐶𝐻 × 𝑡 + 𝑆𝑇 × 𝑏 ,

where 𝐶𝐻 and 𝑆𝑇 represent the size of single choice qubits and state qubits, respectively.
From this formula, we can calculate the upper bound of the number 𝑏 of batches, relative to

the minimum number of transitions 𝑡𝑖 for each 𝑖-th batch. In the first batch, 𝑡1 is at least 𝑏 since
we have 𝑏 state qubits and enough choice qubits. After 𝑏 transitions, 𝑏 choice qubits are utilized,
but 𝑡 − 𝑏 choice qubits are not utilized. Hence, we can do more transitions using these idle choice
qubits in the first batch, which means 𝑡1 ≥ 𝑏. In the second batch, 𝑡2 is at least 𝑏 − 1 since 𝑏 − 1
state qubits are uncomputed in the first batch. Generalizing this, we have:

𝑏 − 𝑖 + 1 ≤ 𝑡𝑖 .

By summing up the inequalities, we have:

𝑏 (𝑏 + 1)
2

=

𝑏∑︁
𝑖=1
(𝑏 − 𝑖 + 1) ≤

𝑏∑︁
𝑖=1

𝑡𝑖 = 𝑡 .

Then 𝑏 ∈ 𝑂 (
√
𝑡) and thus we require 𝑂 (

√
𝑡) state qubits.

5 Correctness

Weprove the correctness of QPMC and its optimization techniques. Specifically, we sketch the proofs
of Theorem 3.1 and Theorem 4.1. For the full proof, we refer the reader to §B in the supplementary
material [Jeon et al. 2024].

5.1 Correctness Proof of QPMC

Theorem 3.1 (Correctness of QPMC). Let 𝜏 be a PMC configuration and res be the result qubit.
We have J𝜏K = Pm(JT (𝜏)K( |0⟩), res) (1).

The key idea of the proof is using the fact that the transition circuit represents the transition
probability matrix that correctly accumulates the transition probabilities. To see concretely, let
𝜏 = (m, Pr(♦=𝑡 𝜔)), 𝜋0 be the initial state distribution of model m, mdsys = Tpre (m), and s0, s𝑡 be
the qubits for the initial and final states after 𝑡 transitions, respectively. Then we have:

Pm(JT (𝜏)K( |0⟩), res) (1)
= Pm((JTres (𝜔, t)K ◦ JTrep (Tm (mdsys), 𝑡)K ◦ JTinit (mdsys)K) ( |0⟩), res) (1) ( 1○ by the definition of T)

= Pm((JTres (𝜔, t)K ◦ JTrep (Tm (mdsys), 𝑡)K) ( |𝜓0⟩), res) (1) ( 2○ by property of Tinit)

= Pm(JTres (𝜔, t)K( |𝜓1⟩), res) (1) ( 3○ by Lemma 5.1)

= Res(𝜔, JmdsysK𝑡𝜋0) ( 4○ by Lemma 5.2)

= Res(𝜔, JmK𝑡𝜋0) ( 5○ by Lemma 3.2)

= J𝜏K , ( 6○ by the definition of J𝜏K)

where |𝜓0⟩ = JTinit (mdsys)K( |0⟩) and |𝜓1⟩ = JTrep (Tm (mdsys), 𝑡)K( |𝜓0⟩) satisfy Pm( |𝜓0⟩ , s0) = 𝜋0
and Pm( |𝜓1⟩ , s𝑡 ) = JmdsysK𝑡𝜋0, respectively.
Now we explain each step in more detail. First, eq. 2○ is straightforward by the definition of

Tinit (mdsys): we ensure that |𝜓0⟩ satisfies Pm( |𝜓0⟩ , s0) = 𝜋0. For eq. 3○, we prove Lemma 5.1 that
demonstrates Pm( |𝜓1⟩ , s𝑡 ) = JmdsysK𝑡𝜋0:
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Lemma 5.1. Let mdsys be a system module, 𝜋 a state distribution, 𝑡 ∈ N. If the quantum state |𝜓 ⟩
satisfies Pm( |𝜓 ⟩ , s0) = 𝜋 , then:

JmdsysK𝑡𝜋 = Pm(JTrep (Tm (mdsys), 𝑡)K( |𝜓 ⟩ |0⟩ch1 |0⟩s1 . . . |0⟩ch𝑡 |0⟩s𝑡 ), s𝑡 ) ,
where chi and si, 𝑖 > 0, are qubits that do not belong to |𝜓 ⟩.
This lemma states that after applying Trep (Tm (mdsys), 𝑡) to |𝜓 ⟩ |0⟩ch1 |0⟩s1 . . . |0⟩ch𝑡 |0⟩s𝑡 , the final
state s𝑡 correctly encodes the probability distribution of the system modulemdsys after 𝑡 transitions.
It is proven by induction on 𝑡 and using Lemma 3.3, which is the key for proving the base case of
single state transition.

For eq. 4○, we prove Lemma 5.2 that shows the final result circuit encodes the desired probability
in the result qubit res:
Lemma 5.2. Let Pr(♦=t 𝜔) be a property and 𝜋 be a state distribution. If the input quantum state
|𝜓 ⟩ satisfies Pm( |𝜓 ⟩ , st) = 𝜋 and res is qubit that belong to |𝜓 ⟩ with initial state |0⟩res, then:

Res(𝜔, 𝜋) = Pm(JTres (𝜔, t)K( |𝜓 ⟩), res) (1) .
This lemma states that after applying Tres (𝜔, t) to |𝜓 ⟩, the probability of the target state 𝜔 after t
transitions is correctly encoded in the probability of measuring |1⟩ on the result qubit res. It is
proven by unfolding the definition of Tres (𝜔, t).

For eq. 5○, we prove Lemma 3.2 that shows the semantics of the systemmodulemdsys is equivalent
to that of the original model m:
Lemma 3.2. For every model m, we have JmK = JTpre (m)K.

This lemma is proven by unfolding the semantics of the resulting system module mdsys and
exploiting the fact that, in the original model m, only one command is enabled per module at
each step. As such, the product-sum resulting from unfolding the semantics JmdsysK of the system
module equals to that of JmK for the original model.

5.2 Correctness Proof of Optimization

Theorem 4.1 (Correctness of QPMCwithQubit Optimization). Let 𝜏 be a PMC configuration
and res be the result qubit. We have J𝜏K = Pm(JTopt (𝜏)K( |0⟩), res) (1).
The proof is similar to that of Theorem 3.1, only differing in the use of Lemma 5.3 instead of

Lemma 5.1 for the state transitions of system module mdsys with qubit optimizations. We define
Toptrep as the optimized version of Trep and FreeQubits as a function that yields a list of free qubits
which are used for the batch recycling strategy (see §A.2 in the supplementary material [Jeon et al.
2024] for the full definition).

Lemma 5.3. Letmdsys be a system module and 𝜋 a state distribution. If the input quantum state |𝜓 ⟩
satisfies Pm( |𝜓 ⟩ , s0) = 𝜋 , and s𝑡 and 𝜷 = FreeQubits(Cm, 𝑡) are qubits and free qubits respectively,
which do not belong to |𝜓 ⟩, then

JmdsysK𝑡𝜋 = Pm(JToptrep (Tm (mdsys), 𝑡)K( |𝜓 ⟩ |0⟩𝜷 |0⟩s𝑡 ), s𝑡 ) .
This lemma is proven in two steps: (1) dividing the 𝑡 transitions into 𝑛 batches where the total sum
of the transitions done in each batch is equal to 𝑡 (i.e., 𝑡 =

∑𝑛
𝑖=1 𝑡𝑖 where 𝑡𝑖 denote the number of

transitions in the 𝑖-th batch); and (2) proving that the state transition of 𝑖-th batch corresponds to
the state transition of system module 𝑡𝑖 times with qubit recycling.

To prove the second step, we explicitly categorize the free qubits in each batch into state qubits and
choice qubits. This allows us to safely apply forward transitions (→) and backward uncomputations
(←) to the corresponding type of qubits in each batch. Subsequently, all state qubits uncomputed
by the backward uncomputations become the free qubits for the next batch.
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6 Implementation

We implement QPMC’s translation algorithm T (§3) and Topt (§4) using the Qiskit [Abraham et al.
2019] framework for quantum computing.5 Our implementation leverages Qiskit’s classical circuit
components, such as adders [Vedral et al. 1996], and arbitrary state preparation component [Shende
et al. 2005] to build the 𝑅( #»

𝜆 ) gate (§3.3). Additionally, we use Unqomp [Paradis et al. 2021] to
automatically insert uncomputation circuits.
For the optimized translation algorithm Topt, we start with a binary search to determine the

minimum number of free qubits required for completing 𝑡 transitions using batch recycling (§4).
With these qubits, we recursively apply forward transitions (→) and backward uncomputations
(←) until all 𝑡 transitions are completed.

Validation. To validate the correctness of QPMC, we compare the results of the end-to-end
simulation of QPMC with those obtained from the Prism model checker [Kwiatkowska et al. 2011].
We connect the circuit Cprep generated by T to the QAE algorithm in Qiskit, and simulate the entire
model checking process via classical simulation.

Given the limitations of classical simulation to small numbers of qubits, we consider small DTMC
models up to 29 qubits, such as the following model with property Pr(♦=𝑡 x = 1∧y = 1) for 𝑡 = 1, 2:

module

x: [0..1] init 0

[do] !x → 0.4: (x = 0) + 0.6: (x = 1)

[do] x → 0.25: (x = 0) + 0.75: (x = 1)

module

y: [0..1] init 0

[do] 1 → 0.3: (y = 0) + 0.7: (y = 1)

We observe that the probabilities estimated byQPMC closelymatch the exact probabilities calculated
by Prism, with the result matching up to 10−10 for all tested cases.5

7 Analysis

We assess the performance of QPMC with the following research questions:

RQ1 Does QPMC have better time complexity than classical PMC algorithms?
RQ2 Does the optimization in §4 improve qubit space usage?

To answer RQ1, we compare the time complexities of QPMC and classical methods (§7.1). To
answer RQ2, we analyze the optimization’s effect on the number of qubits and gates, both in
complexities and in case studies (§7.2). For the detailed complexity analysis of QPMC, we refer the
readers to §C in the supplementary material [Jeon et al. 2024].

7.1 Time Complexity

To address RQ1, we compare the performance of QPMC with that of SMC. Both methods handle
large models, which pose challenges for non-statistical approaches, and yield probabilistic answers,
with accuracy improving as computation time increases. For the same error bound 𝜖 (< 1) and
confidence level, QPMC requires quadratically fewer samples than SMC. For analysis, we assume
m is a DTMC model; S is the set of states in m; and t is the number of transition steps.

• QPMC’s time complexity is𝑂 (t |m|/𝜖) from: (1)𝑂 (1/𝜖): the required number of samples (circuit
executions) for the desired error bound 𝜖 in the QAE algorithm [Brassard et al. 2002]; and
(2) 𝑂 (t |m|): the single circuit execution time derived from the required number t of state
transitions and the number of quantum gates 𝑂 ( |m|) in transition circuit Cm.

5Available in the supplementary material [Jeon et al. 2024].
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• SMC’s time complexity is 𝑂 (t |m|/𝜖2) from: (1) 𝑂 (1/𝜖2): the required number of samples for
the desired error bound 𝜖 in the Chernoff–Hoeffding bound [Hoeffding 1994]6; and (2)𝑂 (t |m|):
sampling’s execution time derived from the required number t of state transitions and sampling’s
execution time 𝑂 ( |m|) [PRISM 2017; Younes and Simmons 2006].

We emphasize that QPMC can fully leverage the performance advantages of QAE without
additional costs for two main reasons: (1) it constructs circuits directly from high-level model
descriptions, and (2) the number of gates in the resulting circuit scales proportionally to the number
of operations 𝑂𝑝 in the model, similar to the sampling time of SMC.

Threats to validity. Although QPMC demonstrates a quadratic speedup over SMC in terms of
the required number of samples, it is practical mainly for large models (1 ≪ |m|) and when
high accuracy (𝜖 ≪ 1) is needed. (1) For small models, non-statistical approaches like sparse
representations are sufficient for verification, making statistical methods like SMC and QPMC
unnecessary. (2) For large models, statistical methods become essential due to the scalability
limitations of non-statistical approaches (§8). For example, handling the LeaderSync case study
with a state space of 2101 (Table 1) or larger models is challenging with non-statistical methods. In
contrast, both QPMC and SMC scale well; managing a model with a state space of 2202 only doubles
the required resources (quantum bits and gates), avoiding exponential resource increases. (3)While
QPMC may be less efficient than SMC at low accuracy due to higher constant costs, its superior
asymptotic complexity offers an advantage at high accuracy.

7.2 Benefits of Optimization

To answer RQ2, we compare the number of gates and qubits in the translated circuits of QPMC,
both in complexities and in numbers for case studies.

Gate complexity. The optimization retains the number of gates at 𝑂 (t |m|). This arises from the
fact that a batch recycling strategy involves adding t𝑖 − 1 uncomputation circuits (C−1

u
) for each

𝑖-th batch, where t𝑖 represents the number of transitions in the 𝑖-th batch. Since 𝑡 =
∑

𝑖 𝑡𝑖 , the total
number of uncomputation circuits is always less than t (i.e.,

∑
𝑖 (𝑡𝑖 − 1) < 𝑡 ), ensuring that there is

no change in the gate complexity.

Qubit space complexity. The optimization reduces the number of qubits required from𝑂 (t log2 |S |+
t | #  »

md | log2 ℎ) to 𝑂 (
√
t log2 |S | + t |

#  »

md | log2 ℎ), where
#  »

md is the modules in m; and ℎ is the maxi-
mum number of probabilistic updates among all commands in the model m. Here, 𝑂 (log2 |S |) and
𝑂 ( | #  »

md | log2 ℎ) denote the number of qubits required to represent states and choices, respectively.
Notably, the total number of state qubits is reduced through a recycling strategy.

Case studies. We compare qubit and gate counts before and after optimization on PMC case
studies. For this purpose, we measure the number of qubits and gates in the circuits generated by T
and Topt (§6), considering the gates 𝑋, 𝑅𝑦 (𝜃 ),𝐶𝑡

#»

𝑏 (𝑋 ),𝐶𝑡
#»

𝑏 (𝑅𝑦 (𝜃 )) (§2.2), where |
#»

𝑏 | ≤ 5, following
Qiskit’s level 2 gate optimization.

Table 1 shows the statistics of the benchmark models we used. We focus on four models with a
large number of modules that are widely used in the evaluation of PMC tools [Holtzen et al. 2021;
Kwiatkowska et al. 2011]: (1) WeatherFactory: An illustrative example that calculates factory
strike probabilities fromweather conditions; (2) Herman: A self-stabilizing algorithm of distributed
systems; (3) Ising: A one-dimensional Ising model for spin systems; and (4) LeaderSync: A leader

6Heuristic methods like sequential testing [Wald 1992] and importance sampling [Srinivasan 2002] are excluded for their
unpredictable sample sizes and no impact on asymptotic complexity.
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Table 1. Model statistics.max | #»𝜆 nu | andmax | #»𝜆 u | represent the maximum sizes of non-uniform and uniform

distributions in the model’s commands, respectively.

Model | #  »

md | |S | max | #»𝜆 nu | max | #»𝜆 u |
WeatherFactory [Holtzen et al. 2021] 25 226 2 N/A

Herman [Herman 1990] 25 225 2 N/A
Ising [Sekizawa et al. 2009] 20 ≈224 2 20

LeaderSync [Itai and Rodeh 1990] 14 ≈2101 N/A 4

(a) Decrease rate of qubits. (b) Increase rate of gates.

Fig. 15. Rates of decrease for qubits and increase for gates after optimization.

election protocol for distributed systems. We measure qubit and gate counts for these models,
ranging from t = 4 to t = 100 in increments of 4.
Fig. 15 shows the rate of change in qubit and gate counts after optimization. For all models, the

decrease rate of qubits and the increase rate of gate become more significant with larger t, showing
that optimization has a larger impact on both qubits and gates at higher t. For example, at 𝑡 = 100,
the WeatherFactory, Herman and Ising models exhibit a 35% decrease in qubits (from 5,887 to 3,469,
5,551 to 3,226 and 8,515 to 6,190, respectively) and an 93% increase in gates (from 285K to 543K,
185K to 357K and 1,153K to 2,229K). The Leader model shows a more substantial 59% decrease
in qubits (15,412 to 6,247) and a 91% increase in gates (1,104K to 2,105K). This notable change is
mainly due to the larger state space in the Leader model compared to other models, which means
that decreasing the number of state qubits results in a more pronounced reduction in the total
number of qubits required. While the reduction rate of qubits varies depending on the proportion
of state qubits in the model, the increase rate of gates is always < 2.
We emphasize that the benefits of the decrease in qubits outweigh the costs of the increase

in gates. Compared to gates, scaling up qubits is a much more challenging task in quantum
computing [Gyongyosi and Imre 2019; Kielpinski et al. 2002; Ladd et al. 2010; Monroe et al. 2014].
As such, even in the most extreme case where the gate count almost doubles, the reduction of
qubits by more than half shows that the optimization can increase the scalability of QPMC.

Threats to validity. Although the optimization significantly reduces the number of qubits, the
translated circuit still may not be operated with current early-stage quantum computers due to
inherent noise and limited qubit scales, typically consisting of only a few hundred physical qubits.
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However, IBM, a company engaged in quantum computing, aims to develop systems with thou-
sands of logical qubits by 2030+ [IBM 2024], potentially enabling QPMC to address realistic PMC
problems in the near future. With such expectations, various quantum algorithms are being poten-
tially embraced [Dalzell et al. 2023b]. For example, applications like lithium-ion battery technology,
which requires 104 to 105 logical qubits [Kim et al. 2022], and finance portfolio optimization, which
may necessitate 107 or more logical qubits [Dalzell et al. 2023a], are proposed.

8 Related and Future Work

Classical approaches to PMC. Various approaches for PMC can be categorized into two groups:
non-statistical and statistical methods (§2.1).
On the one hand, several non-statistical methods have attempted to tackle the state explosion

problem with simplification techniques, but they face fundamental scalability limitations. Symbolic
representation methods compress state spaces using decision diagrams (DDs) such as multi-terminal
binary DDs or multi-valued DDs [Baier et al. 1997], leveraging structural symmetries for compact
representation [Hensel et al. 2021; Holtzen et al. 2021]. Abstraction strategies like bisimulation and
game-based methods reduce model size by removing details from concrete models that are not
relevant to the property of interest [Dehnert et al. 2012; Hahn et al. 2010; Katoen 2016; Kattenbelt
et al. 2010]. For example, bisimulation identifies and merges states that are indistinguishable from
each other [Katoen et al. 2007]. Model reduction techniques [Kamaleson 2018; Kwiatkowska et al.
2006] simplify models by removing redundant states or less significant states, preserving critical
probabilities and behaviors while reducing complexity. In the domain of Markov Decision Processes
(MDPs), CompMDP [Watanabe et al. 2023] integrates string diagram techniques for multi-module
analysis, and other study [Junges and Spaan 2022] focus on utilizing the critical components to
accelerate abstraction-refinement processes. However, these approaches still struggle to handle
complex systems due to their reliance on exploring the entire state space.
On the other hand, several statistical methods have been developed to mitigate the runtime

explosion in simulating rare events for SMC, but they do not reduce the asymptotic complexity
of sampling. They typically use heuristics to identify and focus on crucial parts of the model’s
search space to decrease computational costs. For instance, Modes [Budde et al. 2018, 2020]
employs importance splitting and sampling techniques [Srinivasan 2002], using guidance to steer
the simulation toward the goal state. However, these approaches still require the user to define
the importance function or select the sampling strategy, which can be challenging for non-experts
lacking prior knowledge of the model.

In contrast to these classical approaches, QPMC offers a quantum solution to PMC that addresses
the limitations of both non-statistical and statistical methods. (1) Compared to the non-statistical
methods,QPMC efficiently handles large-scale systems by superposing states within a logarithmic-s-
cale number of qubits (§7.2). (2) Compared to the statistical methods, QPMC improves asymptotic
complexity over SMC (§7.1) without the need for prior model knowledge by systematically trans-
lating the model into quantum circuits (§3).

Quantum algorithms. Including QPMC, various quantum algorithms offer theoretical speedup
over classical counterparts. Quantum simulation [Childs and Wiebe 2012; Low and Chuang 2017]
and optimization [Peruzzo et al. 2014] have the potential to handle large-scale tasks that classical
computers simply cannot, such as molecular modeling and logistics optimization. The QAE algo-
rithm [Brassard et al. 2002], which QPMC utilizes, has been applied in financial risk analysis [Egger
et al. 2020; Rebentrost et al. 2018], a field challenging due to its high complexity and vast datasets.
Similar to QPMC, IBM’s recent study [Layden et al. 2023] utilizes quantum computers to repli-

cate the probabilistic transitions of the Markov chain and shows its practical advantages. The
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authors accelerated Monte Carlo simulations for the Boltzmann distribution of the Ising model by
implementing quantum circuits on current noisy quantum computers. However, this specialized
algorithm targets only the Boltzmann distribution of the Ising model, limiting their general appli-
cability. In contrast, QPMC is general, suitable for DTMCs in PMC languages (§3). We translated
the existing Ising model described in PMC language [Sekizawa et al. 2009] into quantum circuits
capable of systematically analyzing its properties (§7) modulo a primitive gate and quantum noise
(see below).

Future work. While QPMC is general, it does not support all primitives required to subsume
existing quantum algorithms, like the 𝑅𝑍𝑍 gate used in the aforementioned work [Layden et al.
2023]. Such 𝑅𝑍𝑍 gates are essential for introducing phase shifts on qubits and achieving more
efficient quantum circuits. Also, the current implementation of QPMC does not consider the effects
of noise on quantum circuits, which can pose challenges in achieving the expected speedup in
the near future. As future work, we will support the gate to fully represent the existing quantum
algorithms in PMC language, and investigate the impact of noise on quantum circuits to highlight
the practical advantages of QPMC.
In addition, we plan to explore the following areas: (1) MDP support: We aim to extend be-

yond bounded reachability problems in DTMCs to a wider class PMC problems, including MDPs.
(2) Runtime analysis: We aim to estimate the execution times of QPMC on both noisy and noiseless
quantum hardware. For example, we plan to estimate the runtime by assuming the reasonable
fault-tolerant quantum hardware likes IBM [Egger et al. 2020]. (3) New quantum programming
abstraction: We aim to design a high-level quantum programming language by extending QPMC’s
approach to probabilistic programming languages. As QPMC serves as an initial bridge between
probabilistic models and quantum circuits, our goal is to naturally extend this connection to en-
compass a more general probabilistic programming language. This allows for the development of
quantum algorithms as programs based on probabilistic models, providing a more user-friendly
programming environment compared to existing low-level, gate-centric quantum programming
languages.
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