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We present PrisM, a novel technique for detecting overfitting patches in automatic program repair (APR).
Despite significant advances in APR, overfitting patches—those passing test suites but not fixing bugs—persist,
degrading performance and increasing developer review burden. To mitigate overfitting, various automatic
patch correctness classification (APCC) techniques have been proposed. However, while accurate, existing
APCC methods often mislabel scarce correct patches as incorrect, significantly lowering the APR fix rate.
To address this, we propose (1) novel semantic features capturing patch-induced behavioral changes and (2)
a tailored learning algorithm that preserves correct patches while filtering incorrect ones. Experiments on
ranked patch data from 10 APR tools show that PRism uniquely reduces review burden and finds more correct
patches. Other methods lower the fix rate by misclassifying correct patches. Evaluations on 1,829 labeled
patches confirm PrRism removes more incorrect patches at equal correct patch preservation rates.

CCS Concepts: » Software and its engineering — Software verification and validation.
Additional Key Words and Phrases: Automated Program Repair, Static Analysis

ACM Reference Format:

Dowon Song and Hakjoo Oh. 2025. Enhancing APR with PRISM: A Semantic-Based Approach to Overfitting
Patch Detection. Proc. ACM Program. Lang. 9, OOPSLA2, Article 392 (October 2025), 29 pages. https://doi.org/
10.1145/3763170

1 Introduction

Overfitting Patches in APR. Despite the remarkable progress in automatic program repair
(APR) over the past decade [1, 17, 19, 20, 23, 25, 29, 30, 33-36, 40, 48, 49, 60], modern APR tools
still suffer from a major challenge called overfitting. This problem occurs when APR techniques
generate patches that only satisfy the given test suite as a specification, but fail to generalize to the
full intended program behavior. Overfitting leads to the creation of incorrect patches, which satisfy
the provided tests without actually fixing the underlying bug. As a result, it undermines not only the
overall performance but also the reliability of APR systems [18, 21, 39, 41]. For example, if an APR
technique returns only the first plausible patch that satisfies the given tests, overfitting can cause the
APR to produce an incorrect patch that prevents the discovery of the correct solution. Alternatively,
if APR tools produce a set of plausible patches like a recommendation system, overfitting may result
in the generation of numerous incorrect patches, thereby increasing the review effort required by
developers to identify the truly correct patch.
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Table 1. Performance of TBAR with different APCC techniques. "# Bugs with Top-k Fixes" (Top-1, Top-5,
Top-o0) measures the APR effectiveness. "# Patches to Review" (To 1st Fix, To All Fixes) measures the number
of patches a developer needs to examine before finding the first or all correct patches.

Settings # Bugs with Top-k Fixes (A%) | # Patches to Review (A%)

Top-1 Top-5 Top-co | To 1st Fix  To All Fixes

TBAR (Baseline) 29 33 37 142 219
TBar + PATCH-SIM 22 (-24%) 26 (-21%) 28 (-24%) | 84 (-41%) 153 (-30%)
TBar + ODS 13 (-55%) 14 (-58%) 15(-59%) | 29 (-80%) 29 (-87%)
TBar + Shibboleth  25(-14%) 29 (-12%) 37 () | 126 (-11%) 275 (+26%)
TBAR + PRrism 32 (+10%) 34 (+3%) 37 () | 96 (-32%) 166 (-24%)

Automatic Patch Correctness Classification (APCC). To combat the overfitting problem,
numerous APCC (Automatic Patch Correctness Classification) techniques have been proposed [7,
10, 13, 24, 43, 45, 46, 52, 55, 56, 61]. These approaches aim to identify and filter out incorrect patches
so that APR systems can focus on generating or selecting patches that are more likely to be correct.
Existing methods can be broadly divided into two categories. On one hand, dynamic execution-
based techniques [13, 52, 55] leverage runtime information, such as memory-safety checks, crash
oracles [13, 55], or execution traces [52]. These methods detect incorrect patches by identifying
deviations from expected runtime behavior. On the other hand, syntax-based approaches [24, 43,
45, 46, 56, 61] classify patch correctness based on code structure and patch patterns. Many of
these studies incorporate machine learning techniques with human-crafted code features [43, 56]
or automatically extracted features [24, 45, 46]. In addition, the use of large language models
(LLMs) has recently been considered [61], as they require minimal fine-tuning and can leverage
massive datasets. Furthermore, some methods, such as Shibboleth [10], combine both dynamic and
syntactic information to achieve a balanced classification. Prior works have demonstrated promising
performance on widely used APR-generated patch datasets [27, 47, 52, 58]; for example, Tian et al.
[46] showed that integrating human-crafted syntactic features [56] with learned embeddings [45]
can classify 2,147 patches with an accuracy of 76%.

Limitation of Existing APCC Techniques. Despite their impressive classification accura-
cies, existing APCCs have a critical limitation when integrated with APR systems. While these
approaches can reduce the human effort in patch review by aggressively filtering out incorrect
patches, they are likely to conversely impair the most important performance metric (i.e., fix rate)
of APR. Table 1 shows the performance change of an APR system, TBAR, when combined with
representative APCC techniques. We observed that all of the existing APCC techniques degrade
TBAR’s performance relative to the baseline. This counterintuitive result arises from the unique
characteristics of APR: correct patches are extremely scarce in the search space relative to incorrect
ones [39]. Thus, in a conventional binary classification setting, labeling most patches as incorrect
might boost overall accuracy. However, in the actual APR context, even a single misclassified correct
patch can drastically reduce the fix rate [13]. Therefore, an effective APCC technique in practice must
preserve almost all correct patches while filtering out only the incorrect ones.

Our Approach. In this paper, we present Prism, a novel APCC technique that uniquely achieves
both enhanced APR performance and reduced human effort in patch review. This achievement is
underpinned by two key components: (1) a patch representation based on semantic features that
directly captures the behavioral impact induced by patches, and (2) a specialized learning algorithm
to obtain a patch classification model tailored for APR.
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To achieve our first objective, instead of relying on changes in test executions or syntactic
differences, which only provide indirect indications of a patch’s behavioral impact, we introduce 66
new semantic features that explicitly capture the modifications caused by a patch. These features
are defined based on 11 general semantic properties. In contrast to test execution-based methods,
which can only cover a small set of a program’s executions, we employ static analysis that effectively
approximates a larger set of possible program behaviors. Specifically, we develop a differential static
analysis to identify differences in semantic properties between the buggy and patched versions.
These differences are then used to extract semantic features from the given patch.

Second, Prism employs a custom learning algorithm specifically designed for the APR context.
Our algorithm produces a boolean formula over the semantic features to express accurate descrip-
tions of the correct patches. Since it is crucial to preserve correct patches, which are extremely
rare in the APR search space, our algorithm ensures a high preservation rate of correct patches
while maximizing the filtering of incorrect ones on the training set. Furthermore, unlike existing
off-the-shelf learning algorithms, our model is inherently interpretable due to its boolean formula
format, providing clear and human-understandable reasoning behind each classification decision.

We conducted large-scale experiments to demonstrate that Prism is the only APCC technique
that benefits APR in real-world scenarios. In experiments using ranked patch data from 10 APR tools
(Section 4.1), Prism reduced human effort in reviewing top-1 patches by 12% and identified 9 more
top-1 correct patches compared to the baseline. In contrast, although existing techniques [10, 52, 56]
reduced review effort by 9% to 84%, they mistakenly filtered out 24 to 118 top-1 correct patches,
drastically lowering the fix rate. Furthermore, experiments on 1,829 labeled patches (Section 4.2)
show that, at the same correct patch preservation rate, PrRism consistently detects and filters out
more incorrect patches. Our ablation study confirms that both components of Prism are essential
(Section 4.3). Lastly, the analysis of our experimental results shows that Prism requires minimal
overhead, making it practical for real-world APR applications while providing interpretable insights
that offer valuable intuition for further refinements in APR (Section 4.4).

Contributions. This paper makes the following contributions:

e We propose Prism, the only APCC technique that reduces human burden while improving
the fix rates of APR tools.

e We introduce 66 semantic features that directly express the behavioral impact of patches,
extracted using a specialized differential static analysis.

e We develop a learning algorithm tailored for APR that generates an effective patch classifier.

e We conduct large-scale experiments to validate that PrRism outperforms existing techniques.

e For open science, we make Prism open-sourced and the datasets publicly available.

2 Overview

In this section, we illustrate the primary challenge in accurately classifying patch correctness with
current techniques and demonstrate how Prism addresses it. Figure 1 shows two patches from the
DEeFECTS4] benchmark:

(a) A correct patch for the Chart-1 bug, generated by the APR tool TBAR [25].
(b) An incorrect patch for the Chart-25 bug, produced by the APR tool JMUTREPAIR[32].

Notably, the patch in Figure 1a is the only correct fix among those generated by TBAR. Therefore,
misclassifying it as incorrect would prevent TBAR from successfully repairing Chart-1. Our primary
objective is to correctly classify both patches, with special attention to avoiding misclassification
of the correct one, as such an error severely impairs the repair performance of APR tools.
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1 public Collection getlLegendItems() { 1 public Number getMean(int r, int c) {
2 int idx = this.plot.getIdx(this); 2 Number result = null;

3 DSet dataset = this.plot.getDSet(idx); 3 MASD masd = this.data.getObj(r, c);
4 — if (dataset != null) { 4 = if (masd !'= null) {

5 + if (dataset == null) { 5 + if (masd == null) {

6 return result; 6 result = masd.getMean();

7 } 7 }

3 int seriesCnt = dataset.getRowCount(); 8 return result;

9 .3 9 }

(a) The only correct patch generated by TBAR for the (b) An incorrect patch generated by JMUTREPAIR for
Chart-1 bug the Chart-25 bug

Fig. 1. Motivating examples with two patches

Limitations of Existing Techniques. We found that existing techniques [10, 52, 56] are unable
to distinguish between the two patches, leading to the misclassification of the only correct patch in
Figure 1a and, consequently, a reduction in TBAR’s repair performance.

ODS [56], a syntax-based probabilistic approach, fails to distinguish between the two example
patches. This technique assumes that patches with similar syntactic features have the same correct-
ness. However, in this example, the two patches are syntactically similar because they both modify
null-handling conditions for local variables (dataset and masd), yet they differ in correctness. As a
result, ODS labels both patches as incorrect, ultimately degrading the fix rate of TBAR.

Similarly, PATCH-SIM [52], a test execution-based method, misclassifies the correct patch. It
operates under the assumption that patches causing significant changes in passing test traces are
likely to be incorrect, while those altering failing test traces are considered correct. However, the
correct patch in Figure 1a contradicts this assumption. It significantly changes the execution trace
of passing tests by switching a conditional branch from true to false.

Even Shibboleth [10], which integrates both syntactic and execution features, misclassifies the
correct patch. It presumes that a correct patch should introduce minimal modifications to syntax,
execution traces, and the coverage of passing tests. However, the patch in Figure 1a makes only a
slight syntactic modification while causing substantial changes in test coverage.

Our Technique: Prism. To distinguish correct from incorrect patches, we focus on the semantic
changes each patch introduces. This is motivated by the fact that existing methods do not directly
capture the behavioral impact of a patch, but only describe its underlying semantic modifications
indirectly. For example, an error may cause abnormal termination; a trace-based approach might
only show a shortened trace rather than the termination itself. In contrast, our approach directly
captures and details the semantic changes introduced by a patch, offering a clear understanding
of its behavioral impact. For the patches shown in Figure 1, we identified two critical semantic
differences that clearly distinguish the correct patch from the incorrect one:

(1) Patch Introduces a New Null Pointer Exception: The patch in Figure 1b makes masd always
null at line 7, causing an inevitable null pointer exception (NPE). In contrast, the patch in
Figure 1a ensures dataset is non-null at line 9, thereby eliminating a potential NPE.

(2) Patch Makes a Constant Method: Before the patch, the method in Figure 1b returns different
values depending on masd. After the patch, however, it consistently returns a null-initialized
result (except when an NPE occurs). This change is not observed in Figure 1a.
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First, to effectively express such semantic differences, we represent a patch with a novel set of 66
semantic features (Section 3.2). To extract semantic features from a patch, we employ a differential
static analysis specifically tailored to patch changes. Unlike test execution, which only reveals a
subset of runtime behaviors, our method considers all potential program executions. For instance,
the memory states and corresponding path conditions at line 9 of the program before (left) and
after (right) the patch in Figure 1a are obtained as follows:

Path Cond Memory Path Cond Memory
o =null - o # null dataset - a
a (Unreachable By NPE) dataset — a.RowCount

where o denotes an object that the variable dataset points to. In the analysis, before the patch, the
object a is null. Consequently, when the code calls dataset.getRowCount() at line 9, an NPE is
inevitably triggered. In contrast, after the patch, proper null-handling is introduced for dataset, «
is non-null at line 9, thereby eliminating the potential for an NPE. Based on this difference, Prism
extracts the feature Eliminate Null Pointer Exceptions. Similarly, consider the analysis results
at line 8 of the program before (left) and after (right) the patch in Figure 1b:

Path Cond Memory Path Cond Memory
_ masd - f _ +
p=null | 1t null f=null (Unreachable By NPE)
masd — f masd — f
B # null result — B.mean p# null result — null

where  denotes an object referenced by the variable masd. According to our analysis, the program
exhibits different behaviors depending on the value of . When f is null, the pre-patch version of
the function returns null without error. In contrast, after the patch, an NPE is triggered during the
call to masd. getMean (). Furthermore, when f is non-null, the function originally returns the value
of the mean field of masd. However, the post-patch function consistently returns null, behaving
as a deterministic function. Consequently, these differences enable Prism to extract two features:
Generate Null Pointer Exceptions and Generate Constant Methods.

To classify the correctness of patches represented by semantic features, we employ a specialized
learning algorithm. To improve the likelihood of identifying correct patches without degrading
APR’s overall performance, it is essential to maximize the retention of correct patches while
discarding incorrect ones. To address this challenge, we have designed a customized learning
algorithm that automatically derives a patch classification model. Our algorithm guarantees a
specified correct patch preservation ratio while filtering out as many incorrect patches as possible
on the given training set. Our learning algorithm returns a boolean formula in Disjunctive Normal
Form (DNF) that characterizes correct patches. In our experiments, we found that the learned
formula includes a key clause with 11 semantic features, which distinguishes the two patches:

Eliminate Null Pointer Exceptions A Avoid Generating Constant Methods

A Preserve Used Parameters A Eliminate Exceptional Calls A Preserve Constant Fields

A Do Not Eliminate Arrays with OB A Preserve Return-Related Parameters

A Preserve Constant Returns A Avoid Generating Exceptional Calls

A Preserve Used Local Variables A Preserve Thrown Exceptions
Unlike off-the-shelf learning algorithms, our model is interpretable due to its boolean formula
representation. From the learned formula, we found that it includes two key semantic features

(i.e., Eliminate Null Pointer Exceptions and Avoid Generating Constant Methods) which play a
critical role in distinguishing the two patches in Figure 1. As a result, while existing techniques fail
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Fig. 2. Overall workflow of Prism

to classify the patches correctly or offer any explanation, our approach not only ensures accurate
classification but also provides interpretable reasoning behind each decision.

3 Prism

In this section, we present how Prism works. Figure 2 illustrates its overall workflow. Given a pair of
buggy and patched code, Prism first performs static analysis to capture the alarms of each version. It
then compares the analysis results to extract semantic features that represent the behavioral impact
of the patch. Finally, Prisum learns a patch classifier from labeled data, producing a boolean formula
that characterizes correct patches. The rest of this section is organized as follows. Section 3.1
formally defines the patch classification problem. Section 3.2 describes semantic features and how
they are extracted using static analysis. Section 3.3 presents our learning algorithm.

3.1 Problem Definition
We begin by formally defining programs, patches, and the patch classification problem.

Program and Patch. To better illustrate the key mechanism of Prism, we assume a simple
imperative style language represented by a control flow graph (CFG). For simplicity, we assume that
loops and recursion are unrolled up to a fixed bound, resulting in a loop-free program. A program
P consists of a collection of method declarations MDeclp, a set of program points Lp, a function
nextp : Lp — P (Lp) for next labels, and a corresponding statement of each label stmtp : Lp — S.
Each method declaration M € MDeclp is defined by a method name m € Mthdp, a parameter
Pm € Varp, a return variable ret,, € Varp, a start label £}, € Lp, and an exit label £, € Lp. We omit
the subscript m when the method context is clear. In summary, the program P is defined as follows:

Pgm > P = (MDeclp,Lp, nextp, stmtp)
MDeclp > M = (m,pm L5, L5, rety)
A statement S € S, an l-value [v, and an experssion E are defined as follows:
S — W:=E|W:=newC() | newx[y] | thrownew C | assume(x < y) | catch C

o> x|xlyl | xy
E — Iv|n|null| m(x)

A statement S can be an assignment, an object creation, an array allocation, a throw statement
with an exception of class C € Class, a binary relation <€ {=, #, >, >} between two variables, or a
catch statement that handles exceptions of type C. An l-value is either a variable, an array element,
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or an object with field access. An expression is an l-value [v, an integer n € Z, null, or a method
invocation m(x). Note that, for simplicity, we model method calls such as x.m(y) as function calls
m(x). We denote the expression used in the statement at stmtp(¢) as E(¢). The variables used and
defined at label ¢ are denoted as use(¢) and def(¢), respectively. For presentation simplicity, we
assume that variables and method names are unique, and introduce two special variables: xy;,, for
the size of array x and exn,, for the exception state of method m. Note that this simplified language
is used for clarity of presentation. Our actual implementation is based on INFER’s intermediate
representation (SIL) and supports full Java features.

We define a patch as a pair of programs: the original (buggy) program P, € Pgm and its modified
version P, € Pgm. We write Lpgcn = ]LpbA]LpP for all patched labels. For the labels that are not
modified by the patch (¢ € Lp,NLp,), the programs have the same statements: stmtp, (£) = stmtp, (£).

Patch Representation. In our approach, patches are represented by boolean formulas over
atomic features. An atomic feature f; € Feature is a predicate on patches (pairs of programs) and
checks whether a specific aspect is present (T) or absent (L):

fi : Pgmx Pgm — {T, L}
A boolean formula  is defined over the atomic features as follows:

Y — T | L|fi € Feature | =y | Y1 A2 [ Y1V 2
Given a patch (Py, Pp), a boolean formula i evaluates to T iff the patch is described by y:

[T](PnP,) = T

[[J-]] (P bs P, p) = 1

1fi](Pse, Py) = fi(Py, Py)
[-¢¥1(Pp. Py) = =[¥](Py,Py)

[¥1 A Y] (P, Pp) (Y11 (Pe, Pp) A [p2] (Po, Pp)
[y1 v 2] (Po, Pp) = [Yn](Po, Pp) V [Y2] (Pb, Pp)

Our Patch Classification Problem. Suppose we are given a set T C Pgm X Pgm of patches that
are partitioned into correct patches T, and incorrect patches T;. We aim to find an optimal patch
classification formula * such that

(Pb,Pp) €T, & [[l//*ﬂ(PbsPP) =T
or equivalently, (P, P,) € T; &= [¢"](Pp,Pp) = L.

3.2 Extracting Semantic Features

This section illustrates how Prism extracts semantic features from patches.

Semantic Features. First, we define semantic features. A semantic feature Feature, : Pgm X
Pgm — {T, L} is a predicate that determines whether a patch causes a change in a semantic
property. To construct these features, we initially considered a wide range of semantic properties
that could reflect diverse patch behaviors. For clarity, we organize them into three categories:
(1) basic program state properties (variables, values, and memory updates), (2) object-oriented
properties (type casting, inheritance relations, and method overriding), and (3) control-flow and
exception-related properties (branch conditions, null checks, and various exception types). However,
through iterative implementation and empirical evaluation, we found that some of the initial features
were either too sparsely observed or too difficult to analyze with sufficient precision and scalability.
Moreover, including a large number of uninformative features degraded the performance of our
learning algorithm (Section 3.3). Therefore we pruned the feature set using two criteria:
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Table 2. Semantic properties within a single program

Description

Declared methods in the program
Defined variables in the program
Used variables in the program
Unused variables in the program

Thrown exceptions

Return-related memory locations of each method

Memory locations with constants at method exit

Methods that always return the same value
Occurrence of Null Pointer Exception (NPE)
Occurrence of Index Out of Bounds Exception (IOB)

o BN IN-JRCC RN T RGN RS BTN OV SR Ry IS

Method calls that terminated abnormally

(1) The feature must have high expressiveness in capturing meaningful semantic differences.
(2) The feature must be extractable with reasonable precision and scalability in practice.

The final 11 features listed in Table 2. They cover a wide range of semantic dimensions: variable
and function usage (1-4), control and error flow (5, 9-11), data flow (6), and value-related semantics
(7, 8). These categories align with the common criteria for program semantics.

We define the changes in these semantic properties between two programs as our semantic
features. Specifically, for each semantic property, we consider three types of changes: (1) Gen;
represents the generation of the i-th property by the patch, (2) Del; denotes its removal, and
(3) Remain; reflects its preservation. Consequently, we obtain a total of 33 semantic features,
encompassing three types of changes for each of the 11 property types. In the actual implementation,
we refined the 11 semantic properties to yield 66 distinct semantic features. For example, variable-
related properties were further categorized by type (e.g., local variable, parameter, class field).

To extract semantic features from a pair of programs (P, P,), Prism first performs static analysis

on each program and computes a pair of abstract semantics: (m, [[/PH]) Then, using a checker
C;, it extracts the set of alarms for the i-th property from the analysis results. Finally, it compares
the resulting alarm sets to describe changes. Formally, the semantic changes of the i-th semantic
property are defined as follows:

Gen;(Py, Py) &= Ci([B,]) \ Ci([Po]) # 0
Del; (P, P) &= Ci([P]) \ Ci([P,]) # 0
Remain;(Py, P,) = C;([P,]) N Ci([P,]) # 0

The definitions of our static analyzer m] and the checker C; will be discussed later in this section.

Design Principles of PrRism’s Static Analysis. Because PrisM derives semantic features from
static analysis, its overall effectiveness critically depends on the underlying analyzer. To support
accurate and practical patch classification, the analysis must strive for maximal soundness, accuracy,
and scalability:

e Accuracy: Insufficient accuracy leads to spurious features, making it harder to distinguish
correct from incorrect patches.
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e Soundness: Unsound analysis may fail to capture actual behavioral changes introduced by
patches, leading to missed features.

e Scalability: The analysis must efficiently handle a large number of patches generated by
APR tools, as well as the complexity of real-world programs.

Balancing these tradeoffs is a fundamental challenge in static analysis. While our goal is to maximize
soundness, accuracy, and scalability, full formal guarantees are often impractical in real-world
settings. Specifically, our analysis sacrifices completeness and full soundness to improve practical
accuracy and scalability. For instance, it applies bounded loop unrolling, which may miss some
behaviors but effectively captures most patch-relevant effects. Instead of pursuing full correctness,
our analysis is designed to extract a rich set of semantic features that capture patch-induced
behavioral changes with high reliability and efficiency. To this end, our analysis is designed to meet
the following practical goals:

(1) Patch-aware disjunctive analysis: Preserve patch-affected abstract states while aggres-
sively merging irrelevant states to reduce analysis cost.

(2) Bounded soundeness: Over-approximate behaviors within a fixed bound by loop unrolling
to capture key effects efficiently.

(3) Modular interprocedural analysis: Perform a bottom-up, summary-based analysis to
enable efficient reuse and incremental re-analysis.

Despite these efforts, the static analysis in PrRism is inherently unsound and imprecise by design,
which may lead to misclassifications of correct patches (see Section 4.4.3). We now describe the
abstract domain used in our analysis.

Abstract Domain. To detect the semantic properties in Table 2, we have designed the following
abstract domain:

d € Dp = Lp — P(State)

s € State = PC X Memory X Dgg,

T € PC = P(Vgl X < X %l)

o € Memory = Loc— Val

5 € Dyata = P(Loc X Loc)

I € Loc = Var+ (AllocSite x ‘7;1) + (AllocSite x Var)
t € AllocSite < Lp

v € Val = {null}+Z+ AllocSite + Class + {L, T}

This domain is based on disjunctive analysis: it computes a table d € Dp that maps each program
point to a set of reachable abstract states. An abstract state s € State consists of three components:
(1) a set of path conditions = € PC, representing binary relations between abstract values; (2) a
memory state ¢ € Memory, which maps locations to abstract values; and (3) a set of data dependency
relations § € Dy,y, between locations. We use 6* to denote the reflexive transitive closure of §. A
location [ € Loc is either a variable (x € Var), an array element at a specific allocation site and
index (AllocSite x X’/El), or a field access on an object allocated at a particular site (AllocSite X Var).
An abstract value v € Val can be a literal (null or Z), an allocation site (AllocSite) representing a
base address or symbolic parameter for method invocation modeling, an exception class (Class) for
exception handling, 1 if undefined, and T if it may represent multiple values. For simplicity, we
abstract objects by their allocation sites only, though the implementation also tracks their types.
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The abstract transfer function Fp : Dp — Dp is defined as an abstraction of all possible transitions
of a program P:

B@=du(| | [| 10 |J [l
telp ¢’ €nextp(f) sed(t)

To define the abstract semantics, we first describe how to evaluate an l-value. The locations [/ and I
of I-values v and Iv/, respectively, under memory o are computed by L[Iv] : Memory — Loc:

Llx](e)=x  Llx[yl](o) = (6(x).0(y))  L[x.y](o) = (c(x).1)

— ¢
The abstract semantics [S]p : Dp X State — P (State) of a statement S at label £ of program P is
defined as follows:

[[lv =l ]]P(d (r,0,68)) = {(moll>al)],6U{IL1)}H}
[[lv = c]]P(d (r,0,8)) = {(mo[lcl,d)} where ¢ € ZU {null}

[[lv = m(x)]]P(d, (1,0,8) = Ud(rurl, ol om(retm)] su St U{(Lrety)})}
where (7!, 0%, 8%) € d(£5)[£3, — o(x)]

[1v = new COLp(d, (1,0:8)) = {(moll > £1.8))
Inewx[yllp(d, (. 0,8) = {(xU{o(y), >0} olx = & xyze = 0 (5)],6 U {(x. )}

[throw new Clp(d, (7,0,8)) = {(z,0lexn> C],8)}
[assume(x < y)]];(d, (1,0,8)) = é(ﬂ U{(o(x),<,0(y)} 0,0)} if SAT(7‘1' A (o(x) < a(y)))
otherwise
[caten Clp(d, (ra oy = {{Umolem= Lo if o(exn) =
0 otherwise

We assume that all non-catch statements are skipped when o(exn) # L. For a method invocation
m(x), we model the parameter of m using its entry label £;, as a symbolic value. During bottom-up
analysis, we compute the exit states d(¢y,) of m with respect to this symbolic parameter. At the call
site, these callee states are instantiated by substituting £;, with the actual argument o(x), resulting
in states (., 0%, 51 ) € d(£¢)[£5, — o(x)]. For assume statements, we accumulate path conditions.
If the path becomes unsatisfiable (i.e., =SAT (7 A (o(x) < o(y)))), the state is pruned. For catch
statements, we reset exn to L when it contains an exception of type C, indicating that it is handled;
otherwise, the state is pruned. The abstract semantics of a program P is defined as the least fixed
point of the transfer function Fp:

[P] = lim (Fp)'(d*)

where d° = | |,,,epnap [ = {(0, [pm = £3,1, 0)}] is the initial abstract state, where each method’s
entry label £, is assigned to its formal parameter p,,.

Selective State Merging for Patch-Aware Analysis. Note that the join operator LI performs a
weak update, accumulating all reachable states at each label without merging. While this ensures
precision, it leads to a rapid growth in the number of states, causing scalability issues. To mitigate
this, we employ a state merging strategy that balances precision with efficiency. To preserve
soundness, the merge of two abstract states s; = (11, 01, 81) and s; = (712, 02, 82) is defined as:

e Path conditions and data dependencies are merged via set union: 7 = 71 U 2, § = §; U 2.
e Memory is merged pointwise: (o1 Ll 02)(I) = o1 (1) U o2 (]).
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1 int x = 1; Lp d(t) | o(x) IL'p d(¢) a(x) O'p(x)

2 = if (C) x = foo(); |4 |{o} |1 t | {o} 1 1

5+ if (C) x = 0; ts | {o} |0 & | {opy | L 0

4 if (x < 0) b | {o} | T ty | {o,0p} | 1 0

5 goo(y) s : reachable (" o(x) = T) f5 : unreachable (" o(x), 0,(x) > 0)
(a) a patch program p  (b) analysis results (merged) (c) analysis results (unmerged)

Fig. 3. An example patch and analysis results illustrating the effect of patch-aware state merging. We only
show the memory (o) of abstract states d(¢) = (i, g, d) for brevity.

Merging two different concrete values yields T (e.g., 1 LI 0 = T), which represents uncertainty.
While sound, such merging may obscure meaningful semantic differences.

Figure 3 illustrates the importance of selective merging. The patch replaces the original i f branch
at line 2. In the merged result (b), all states after line 3 are combined, yielding o(x) = T. This causes
the analysis to conservatively assume that the condition x < 0 at line 4 may hold, making line 5
reachable. However, this is imprecise: in the patched program, x is always set to 1 or 0, making
the condition unsatisfiable. To avoid this imprecision, PrRism preserves states that are affected by
the patch, as shown in (c). It prevents merging of such patch-relevant states o, arising from the
inserted line. As a result, the analysis retains the precision needed to correctly determine that line
5 is unreachable in all preserved paths.

Formally, we consider two states s; = (71, 01, 81) and s, = (712, 02, 52) to be mergeable as follows:

SAT (7 A 13) if T(s;)) UT(sz) C Lp, NLp
mergable(sy,sz) = ) s
T(s1) NLpateh = O AT(s3) N Lpgen =0 otherwise
where T : State — Lp denotes labels traversed in the execution trace leading to state s. Intuitively, if
both states have not encountered any patch-related program points yet, we merge them only if their
path conditions are satisfiable (i.e., conventional SAT-based merging). Otherwise, we conservatively
merge only states that are unaffected by the patch. Given this, states at £ is updated as:

diem | sius)u g {s}]
s1,52€d(t) sed(?)
mergable(sy,s2) —-3s’ed(t).mergable(s,s”)

Alarm Extraction. We represent the i-th properties in Table 2 as alarms, which include a
variable (Var), a location (Loc), a method name (Mthd), a class name (Class), or a program point (L):

a; € Alarm = Var + Loc + Mthd + Class + L

Each alarm a; € Alarm has a corresponding checker C; : Dp — P (Alarm) that extracts alarms
from abstract semantics. Table 3 lists the 11 alarm types and the definitions of each checker, where
d(f) = 0 means ¢ is unreachable. Since our analysis allows T, alarms triggered under T-related
conditions may be spurious (i.e., semantic features that do not actually occur). To mitigate this
issue, each checker in Table 3 is designed conservatively to capture only highly probable alarms.
For example, an NPE is reported only if a state definitively assigns null to an array. While this
conservative approach avoids false positives, it may also miss valid alarms. The following section
describes how we address this limitation.
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Table 3. List of alarm types and their corresponding checkers C;(d) where d = m]

No | Alarm type Definition of C;(d)

1 | Declared methods | Mthdp

2 | Defined variables {x € Varp | 3t; € Lp.d(£y) # 0 A x € def (&)}

3 | Used variables {x € Varp | 3¢, e Lp.d(&,) #+ O A x € use(£,)}

4 | Unused variables {x € Varp | 3¢; € Lp.V, € Lp.d(£,) =0V x € def (&) \ use(£,)}

5 | Thrown exceptions | {C | 3m € Mthdp.(x, 0,0) € d(¢£;,) A o(exn,) # L}

6 | Return-related locs | {I € Loc | 3m € Mthdp.3(, 0,0) € d(£},).(rety, 1) € 6*}

7 | Constant locs {l € Loc | 3m € Mthdp.3c € ZU {null}.V(x,0,6) € d(¢,).0(l) =cV (a(l),=c) € n}
8 | Constant methods | {m € Mthdp | Ic € ZU {null}.V(x,0,9) € d(£;,).0(retym) = cV (o(rety),=c) € n}
9 | NPE lines {t €Lp | E(¢) € {x[yl,x.y} A I(r,0,6) € d(£).0(x) =nullV (o(x),=null) € 7}
10 | IOB lines {teLlp|E(t) =x[y] AT(m,0,6) € d(£).0(y) > o0(Xsize) V (0(y), >, 0(Xsize)) € 7}
11

Exception call lines | {¢ € Lp | E(£) = m(x) A 3(r, 0,0) € d(£).0(exn,,) # L}

Leveraging Test Execution Information. PrisMm leverages test execution information to detect
true alarms observed during testing. Assuming the following code (left) which gets the first element
of the given integer array a and two test cases (right):

1 int foo (int[] a) { Test No. | Input | Expected | Output
2 return a[e]; 1 [1] 1 1
3 %} 2 null -1 NPE

The developer assumes that if the input is null, the method should return -1, as expressed in
the second test. However, the method at line 2 runs without null-handling for a and directly
dereferences the array, causing an NPE during the execution of the second test case. However, our
static analyzer cannot catch this NPE because it considers a to be either null or non-null at that
line. Therefore, it misses a true alarm that is easily captured during testing.

To detect such true alarms, we leverage test execution information, specifically the error occur-
rence information that can be easily obtained from stack traces. The test execution information
Testp of a program P is defined as follows:

Testp : Lp — {NPE, IOB, ExnCall, -}

It records the type of error (NPE, IOB, or ExnCall), or indicates no error () for each line. Using the
test execution information Testp, we define the improved version of the checker CiTeSt" :

C'il'estp (d) — Cl(d) UA-ireStp

Testp

where A is the set of additional alarms obtained from test execution information. Since Testp

i
: . . Testp
contains only error occurrence information, A;

(i =9,10,11) and is empty for the rest (i = 1 to 8):

is defined only for the error-related alarms

AgeStP = {feLp|Testp(f) =NPE A E(?) € {x[y], x.y}}
A" = {£€Lp | Testp(r) =10B A E(¢) = x[y]}
AI?StP = {telp|Testp(f) = ExnCall A E(¢) = x.m()}

From now on, we omit the superscript Testp; i.e., we use the improved checker ClTeStP as the default.

Leveraging Analysis Result of Original Program. To analyze the patched program more
accurately, PRisMm leverages original analysis results. Consider two different patches for an NPE
bug in Figure 4. The patch in Figure 4a correctly fixes the NPE by modifying the null-handling
condition. In contrast, the patch in Figure 4b partially fixes the NPE, addressing it only when x # 0.
PrisMm considers both patches as NPE-removal patches because they eliminate the fact that a is
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| int foo (int[] a, int x) { L|o(a |7

» - if (a == null) & | ag | {(ag,=null)}

s + if (a != null) Analysis result before patch

4 return alx]; L |o(a) |

5 else return 0; by | ag {(ag, #,null)}

6} Analysis result after patch
(a) A patch properly addressing the NPE

1 int foo (int[] a, int x) { Lo |

» - if (a == null) t | ag | {(ag,=null)}

3 + if (x == 0) Analysis result before patch

4 return alx]; L |o(a)|x

5 else return 0; by | ag {(ax,=,0)}

6} Analysis result after patch

(b) A patch that does not completely resolve the NPE

Fig. 4. Two patches for the same NPE bug (a; and ay represent the formal parameters a and x respectively.)

definitely null at line 4. However, we can infer that the second patch still has an NPE based on the
following evidences: (1) an alarm indicating a potential NPE before the patch, and (2) the object a
related to this alarm remains unchanged after the patch.

To reflect this inference process, we define the improved checker Cf for the patched program:

CP(dy) = Ci(d,) U A

The additional alarms Af” of the patched program P, are based on the fact that the values related to

the original alarms remain unchanged. Therefore, Af” is defined only for the value-related alarms
(i =7 to 11) and is empty for the rest (i = 1 to 6):

A = {x € Cy(dy) | Im € Mthdp.Up, (£5,x)}

Ay = {m € Cy(dy) | Up, (£, ret)}

A = {£ € Co(dp) | E(0) € {x[yl. x.y} A Up,(£.x) A3(7,0,8) € dp.(0(x), % null) ¢ 7}

A= {£ € Cro(dy) | E(0) = x[y] A Up, (£,x) AUp, (£,y) A (7, 0,5) € dp.((x1), 2, 0(y)) & 7}
Af’l’ ={t € Cuu(dp) | E(£) = m(x) A Up, (£, x)}

Each set Afp contains alarms from the original analysis C;(dp) that remain unaddressed and whose
related variables are unchanged after the patch. The predicate Up : Lp X Var — {T, L} checks
whether a variable x is unpatched at the label ¢ of the program P:

Up(t,x) =V(r,0,0) € d(£).VE, € Lpayen.—Iy € def(£,).(x,y) € 6

where d = m A variable x is considered unpatched at £ when no relations between directly
patched variables and x.

3.3 Learning Algorithm

In this section, we introduce our learning algorithm for finding a patch classifier. Given a set of
atomic features A C Feature, a training set T C PgmX Pgm, and a user-provided threshold y € [0, 1],
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the algorithm produces a boolean formula ¢ in disjunctive normal form (DNF).

¥ = \/(/\ lij)

i=1 j=1

where each literal /; ; is either a boolean constant (T or L), atomic feature f; € A, or its negation
—f;. We represent a DNF formula ¢ as a set of conjunctive clauses:

lp: {cl’c2a~~~’cm}

where each conjunctive clause c; is a set of literals:
ci={linliz . lin}

Learning Objective. Since finding an optimal solution ¢* is generally infeasible in practice, our
learning algorithm instead aims to find a sub-optimal solution l} As we emphasized earlier, for
APCC techniques to be practical in real-world APR environments, they should preserve as many
correct patches as possible while identifying incorrect ones. To achieve this goal, our algorithm
searches for a formula (ﬁ that maximizes the incorrect patch detection ratio (IDR) while ensuring
that the correct patch preserving ratio (CPR) is at least the user-provided threshold y:

¢ = argmax IDRrp () st CPRp(y) >y
4

where the IDR and CPR of / on the training set T are defined respectively as follows:

[{(Py, P,) € T; | [¥](Py, P,) = L} [{(Py, Py) € Tc | [¥](Py P,) = T}
T |T|

IDRr(y) = CPRr(y) =

Overall Algorithm. Algorithm 1 outlines the overall process. It takes the following six inputs:

(1) A set of atomic features A.

(2) A training set T consisting of patches.

(3) A CPR threshold y, which the resulting formula must satisfy on T.

(4) A hyperparameter K;,;; denoting the initial candidate size.

(5) A decay rate § € (0,1) for adjusting the candidate size.

(6) A generalization threshold k for enlarging formulas after repeated failures.

The algorithm performs a state search using boolean formulas as workset elements. Initially (lines
1-2), the workset W is empty, and the solution candidate 1} is set to an empty set with zero IDR.
The non-improving iteration counter cnt,; is initialized to zero, tracking the number of consecutive
iterations without improvement. The candidate selection threshold K is set to K.

Lines 3-23 constitute the main loop of the algorithm. At the beginning of each iteration, selects
the top K candidates with the highest IDR values from the current workset (line 8). These selected
formulas are then expanded using the SPECIFY, function to generate new candidate formulas:

SeECIFYA(Y) = (Ylei > ¢ UL}l i € Y A fi € AU=A)

where —A = {—f; | fi € A} represents the negation of all atomic features. The SpecIFy, function
constructs new formulas by extending each conjunctive clause in the original formula with an
additional literal. Note that the newly generated formulas " € SPECIFY, () represent a subset of
the correct patches captured by . Consequently, the new formula i’ exhibits a monotonic increase
in IDR and a monotonic decrease in CPR. This property ensures that the algorithm continuously
refines its search, selecting higher-IDR candidates while pruning those with CPR below y (line
9). After refining the workset, the algorithm reduces the candidate selection threshold K (line
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Algorithm 1 Algorithm for learning a patch classification formula

Input: Atomic features A, training set T, CPR threshold y, initial candidate size Kjp;, decay rate 6,
generalization threshold k
Output: A learned formula g& with a CPR greater than y on the training set T
W0
2: Y, idr, cnty;, K < 0,0, 0, Kipir

3: repeat

4 if W =0 then

5: W—{yu{{fith) [ ficAU-A}

6: IsUpdated < False

7 K = min(K, |W|)

8: ¥ = {y € W | IDRr(¢) is among the top K highest values in W}
9: W={y' |y e€¥ Ay eSpecirys(¥) A CPRy(y’) > v}

10: K—K=x6
11: for ¥’ € W do

12: idr’ IDR’]I‘(IP/)

13: if idr’ > idr then

14: U, idr — /. idr’

15: IsUpdated < True

16: cnty; «— 0

17: if —IsUpdated then

18: cnty; «— cntpyi+ 1

19: if cnt,; > k then

20: W {y|ye(WUV)AY € GENERALIZE4L (V) }
21: C?‘ltm',K «— 0, Kinit

22: until timeout
23: return ¢

10). Intuitively, this encourages diverse exploration in the early stages of search and gradually
prioritizes high-quality candidates over iterations.

If any new candidate ¢’ has a higher IDR than the current solution i/, the solution is updated
(lines 11-16). In this case, the update flag IsUpdated is set to True, and the no-improvement counter
cnty; is reset to zero. If no improvement occurs, the counter cnt,; is incremented (lines 17-18). Once
cnty; exceeds the threshold k, the algorithm generalizes the current workset by expanding the
extracted promising candidates:

GENERALIZEL () = {y U {a} | a € AU-A}

A new formula ' € GENERALIZE, (/) always represents a superset of the correct patches described
by the given formula . Consequently, this results in a monotonic increase in CPR and a monotonic
decrease in IDR, promoting exploration by allowing the learning algorithm to discover new formulas.
After generalization, the counter cnt,; and the candidate selection threshold K are reinitialized,
and the search resumes. This process continues until the timeout is reached (line 22). Finally, the
algorithm returns the solution 1/; (line 23).

4 Evaluation

In this section, we experimentally evaluate Prism to answer the following research questions.
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¢ RQ1. Impact on End-to-End APR: How does Prism improve APR performance while
reducing human effort in patch validation?

e RQ2. Patch Classification Performance: How effectively does Prism classify patches?

e RQ3. Ablation Study: Are the semantic features and learning algorithm essential for the
performance of Prism?

Comparison Target Selection Criteria. We compared Prism with three APCC techniques,
each representing a distinct category: PATCH-SIM [52] (dynamic), ODS [56] (syntactic), and
Shibboleth [10] (hybrid). We did not evaluate other methods based on syntactic features, such as
those by Lin et al. [24] and Tian et al. [45, 46], because although they employ different feature sets
and models than ODS, they belong to the same syntactic category and their performance does not
differ significantly from that of ODS [45, 46]. In our experiments, we also excluded OpAD [55], a
tool originally designed for C programs that relies heavily on specialized vulnerability detectors.
We found that, in a Java environment, no suitable counterparts exist for them'. We were unable
to evaluate the LLM-based approach [61]; although the benchmark and code for reproducing the
results are available, applying it to a new dataset is challenging. We did not evaluate approaches that
are not fully automated; for instance, those that require user interaction [13] or developer-provided
fixes as ground truth [22, 51]. In addition, we implemented a rule-based classifier (RULE-BASED) that
reflects intuitive characteristics of correct patches. These rules were manually designed based on
patterns observed in our learned formula (see Section 4.4.2). We obtained all the tools from the links
provided in their respective papers. PATCH-SIM normally leverages both developer-provided tests
and tests generated by RANDooP. When RaNDOOP fails to generate tests, we ran PATCH-SIM using
only the developer tests. When any technique failed to run due to internal errors, we assumed that
the tool classified the patch as correct. This assumption is based on the fact that APCC techniques
are primarily employed to filter out patches marked as incorrect.

Datasets for Patch Classification. To ensure robust training and evaluation, we constructed a
new dataset by integrating and refining data from prior studies [27, 47, 52, 58]. The dataset consists
of patches generated by various APR tools for DEFECTs4], a widely used benchmark containing real
bugs from six open-source Java projects: Chart, Closure, Lang, Math, Time, and Mockito. Because
the original datasets predominantly contained incorrect patches, we augmented 388 correct patches
(excluding 7 deprecated ones) to balance the distribution. The initial dataset contained 4,019 patches.
We then removed non-compilable and implausible patches, which are generally not considered
valid inputs for APCC techniques. Additionally, we eliminated syntactically redundant patches
to improve overall dataset quality. To ensure labeling consistency, we manually re-labeled all
patches by checking their semantic equivalence to the developer’s patch (ground truth), following
the standard criterion used in APR and APCC research. When this was difficult to apply due to
ambiguity, we referred to the labeling guidelines proposed by Liu et al. [27]. If neither approach was
sufficient, we used the labels provided in the original APR papers. The finalized dataset comprises
522 correct patches and 1,307 incorrect patches.

Patch Classifier Training Setup. To eliminate data leakage and properly evaluate generaliza-
tion, we used a project-by-project approach on DEFECTS4] to train a patch classifier. Specifically,
we constructed six distinct training datasets, each excluding patches from one project. For instance,
when testing on the Chart project, the training set consisted solely of patches from the remaining
projects. This approach guarantees that there is no overlap between the training and testing sets.
As we assembled a new dataset, we re-trained the patch classifiers for both ODS and Shibboleth.

1 Although previous studies have evaluated OpAD using Randoop, we observed that this setting drastically reduced its
effectiveness, yielding an incorrect patch filtering rate below 5%.
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Table 4. Benchmark Table: Performance metrics for the ten APRs. # Bugs with Top-k Fixes: The number of
bugs for which a correct patch was successfully returned as the first plausible patch (Top-1), within the first
five plausible patches (Top-5), or at least once among all generated patches (Top-0). # Generated Patches:
The total number of correct and incorrect patches generated by each APR. # Patches to Review: The number
of patches a developer needs to review before encountering the first correct patch (To 1st Fix) or all correct
patches (To All Fixes).

APR # Bugs with Top-k Fixes | # Generated Patches # Patches to Review
Top-1 | Top-5 | Top-co | Correct | Incorrect | To 1stFix | To All Fixes
TBAR [25] 29 33 37 51 278 142 219
ALPHAREPAIR [49] 14 18 22 67 342 250 348
CoCoNuT [31] 9 10 10 38 70 11 72
CURE [16] 13 18 18 27 132 28 49
Edits [5] 2 2 2 2 8 2 2
RECODER [62] 28 29 30 33 63 37 44
RewardRepair [59] 25 28 29 107 170 40 179
SELFAPR [57] 29 32 33 224 175 54 291
SEQUENCER [4] 13 16 17 25 88 29 58
SimFix [15] 14 15 15 15 22 16 16
Total 176 201 213 589 1348 609 1278

For ODS, we utilized the provided XGBoost [3] model with the hyperparameters from the original
work [56]. For Shibboleth, we employed a random forest classifier [11] as described in the original
work; however, since the exact hyperparameter settings were not provided, our re-trained model
may not fully replicate the reported performance.

Implementation of PrRism. We implemented the static analyzer and semantic feature extractor
of PrisMm in 9,356 lines of OCaml code built on top of Infer [12]. Our learning algorithm and patch
classification module were developed in 363 lines of Python. The CPR threshold y for the learning
algorithm was experimentally set to 90%, which maximizes the filtering of incorrect patches without
reducing the APR fix rate. The learning hyperparameters Kj,;;, §, and k in Algorithm 1 were set
to 1000, 0.75, and 2, respectively. We set a time budget of 20 minutes for the static analysis and a
3-minute limit for the learning algorithm. All experiments were conducted on an Ubuntu machine
equipped with an AMD Ryzen Threadripper 3990X 64-Core Processor and 256GB of memory.

4.1 RQ1: Impact on End-to-End APR

We begin by revisiting the motivation of this work: developing an APCC technique that improves
APR performance while reducing human validation effort.

Evaluation Settings. Table 4 details the performance metrics for the ten APR techniques
evaluated in this experiment. To evaluate APCC techniques, we first ran two widely evaluated
APR tools: (1) TBAR [25] (a template-based approach) and (2) ALPHAREPAIR [49] (an LLM-based
approach) on all 388 bugs from DErEcTs4], with each bug given a 5-hour time budget. To further
demonstrate the generality of Prism, we supplemented this data with patches generated by eight
additional APR techniques from recent studies [37]. The correctness of all generated patches was
manually verified using the criteria described earlier. We were unable to obtain data from the latest
LLM-based APR (e.g., CHATREPAIR [50]) because the data and code are not publicly available, and
the practical use of LLM-based patch generation requires substantial costs.
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Table 5. Impact of APCC techniques on APR effectiveness and the human effort required for patch validation.
Changes due to APCC application are visually represented: @ indicates a positive effect, while @ indicates
a negative effect. "# Bugs with Top-k Fixes" (Top-1, Top-5, Top-o0) measures APR effectiveness. "# Patches
to Review" (To 1st Fix, To All Fixes) measures the number of patches to examine before finding the first or
all correct patches. "# Remaining Patches" (Correct, Incorrect) indicates how many patches remain after
applying APCC techniques, indirectly reflecting APR effectiveness (Correct) and review effort (Incorrect).

Settings # Bugs with Top-k Fixes # Remaining Patches # Patches to Review
APR APCC Top-1 Top-5 Top-co Correct Incorrect To 1st Fix ~ To All Fixes
PATCH-SIM 9 V5 12 vo 15 v7 24 v43 255 v87 236 V14 247 v101
ODS 6 V8 7 vil 7 Vvi15 12 v55 32 v310 8 v242 18  v330
ALPHAREPAIR  Shibboleth 11 v3 17 v1 22 - 67 - 342 - 140 v110 256 V92
RULE-BASED 14 - 17 vl 20 v2 61 Vo6 103 v239 46  v204 123 v225
Prism 15 al 18 - 22 - 64 V3 298 v44 241 v9 319 v29
PATCH-SIM 8 vl 8 v2 8 v2 36 V2 64 Vo6 8 V3 69 v3
ODS 3 Vo6 4 Vo6 4 Vo 11 v27 10 v60 5 V6 12 v60
CoCoNuT Shibboleth 5 v4 10 - 10 - 38 - 70 - 16 A5 74 A2
RULE-BASED 9 - 10 - 10 - 38 - 37 v33 11 - 41 v31
Prism 9 - 10 - 10 - 37 vl 36 V34 1 - 40 v32
PATCH-SIM 9 v4 12 v6 12 v6 19 v8 118 vi4 18 v10 32 v17
ODS 2 vl 3 vi15 3 vi15 4 v23 33 v99 4 v24 5 v44
CURE Shibboleth 13 - 15 v3 18 - 27 - 132 - 50 A22 65 Al6
RULE-BASED 15 A2 17 v1 17 vi1 26 vl 91 v4l 19 v9 36 Vvi13
Prism 15 A2 18 - 18 - 27 - 91 v4l 21 v7 38 vil
PATCH-SIM 2 - 2 - 2 - 2 - 8 - 2 - 2 -
ODS 0 v2 0 v2 0 v2 0 v2 0 v8 0 v2 0 v2
Edits Shibboleth 2 - 2 - 2 - 2 - 8 - 2 - 2 -
RULE-BASED 2 - 2 - 2 - 2 - 8 - 2 - 2 -
Prism 2 - 2 - 2 - 2 - 8 - 2 - 2 -
PATCH-SIM 19 v9 20 v9 21 v9 22 vll 57 V6 28 v9 33 vil
ODS 7 v21 9 v20 9 v21 9 v24 24 v39 13 v24 13 v31
RECODER Shibboleth 22 V6 28 vl 30 - 33 - 63 - 48 All 58 Al4
RULE-BASED 26 V2 27 v2 38 v2 31 v2 38 v25 35 v2 38 vo
Prism 28 - 29 - 30 - 33 - 41 v22 37 - 40 v4
PATCH-SIM 18 v7 21 v7 22 v7 82 v25 158 vi12 33 v7 143 v36
ODS 9 vie6 11 v17 11 vi18 32 V75 53 v117 15 v25 37 v142
RewardRepair ~ Shibboleth 20 v5 27 vl 29 - 107 - 170 - 61 A2l 197 4A18
RuLE-BAsep 25 - 28 - 28 vl 101 ve6 115 v55 33 v7 136 v43
Prism 26 Al 29 Al 29 - 106 v1 117 v53 34 vo6 141 v38
PATCH-SIM 22 vl 25 v7 26 v7 144 v80 171 v4 47 v7 209 v82
ODS 12 v17 13 v19 13 v20 70 v154 56 V119 14 v40 87 v204
SELFAPR Shibboleth 27 v2 32 - 33 - 224 - 175 - 62 A8 299 A8
RULE-BASED 27 v2 30 v2 31 v2 214 v10 158 v17 52 v2 275 V16
Prism 29 - 32 - 33 - 224 - 165 v10 54 - 285 Vo6
PATCH-SIM 6 V7 9 v7 10 v7 15 v10 79 v9 22 v7 47 v1l
ODS 3 vi10 3 vi3 4 vi13 4 v21 22 V66 9 v20 9 v49
SEQUENCER  Shibboleth 12 vi 16 - 17 - 25 - 88 - 35 A6 65 A7
RULE-BASED 14 al 15 vl 16 vi1 24 vl 52 V36 24 V5 36 v22
Prism 15 A2 16 - 17 - 25 - 55 v33 25 v4 39 v19
PATCH-SIM 12 v2 12 v3 12 v3 12 v3 20 v2 12 v4 12 v4
ODS 3 vil 3 vi2 3 vi12 3 vi12 1 v2l 3 vi3 3 vi3
SimFix Shibboleth 15 Al 15 - 15 - 15 - 22 - 15 vi1 15 vl
RULE-BASED 13 vl 14 v1 14 vi1 14 vl 13 v9 15 vi1 15 vi1
Prism 14 - 15 - 15 - 15 - 17 v5 16 - 16 -
PATCH-SIM 22 v7 26 v7 28 v9 36 V15 195 v83 84 v58 153  v66
ODS 13 vi6 14 v19 15 v22 15 v36 46  v232 29 v113 29  v190
TBAR Shibboleth 24 v5 32 vl 37 - 51 - 278 - 126 V16 275 A56
RULE-BASED 29 - 32 vl 34 v3 44 v7 92 Vv186 49 v93 66 V153
Prism 32 A3 34 Al 37 - 49 v2 191 v87 96 V46 166 v53
PATCH-SIM 127 v49 147 v54 156  v57 392 v197 | 1125 v223 490 v119 947 v331
ODS 58 Vv118 67 V134 69 V144 160 v429 277 v1071 100 v509 213 v1065
Total Shibboleth 152 v24 191 v10 213 - 589 - 1348 - 555 V54 1306 A28
RULE-BASED 174 v2 192 v9 200 vi13 555 V34 707 vo641 286 v323 768 v510
Prism 185 A9 203 A2 213 - 582 v7 1019 v329 537 V72 1086 v192
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For each bug, we assumed that the baseline ranking is determined by the order in which an APR
tool generates patches, and then applied each APCC technique to this ranked sequence. When an
APCC technique functions as a patch correctness classifier (as in PATCH-SIM, ODS, RuLE-BASED,
and Prism), it removes patches labeled as incorrect from the ranking. In contrast, for Shibboleth,
which re-ranks the given patch sequence, the resulting ranking is used directly. We measured the
impact of APCC by comparing the above metrics before and after its application.

To evaluate the impact of APCC techniques on APR, we considered two aspects:

(1) Repair Capability: How APCC influences the number of bugs for which a correct patch is
returned as the first plausible patch (Top-1), within the first five plausible patches (Top-5), or
at least once among all generated patches (Top-oo).

(2) Human Effort for Patch Validation: How APCC affects the total number of incorrect
patches and the number of patches a developer must review before encountering the first
correct patch (To 1st Fix) or all correct patches (To All Fixes).

Results. Table 5 clearly shows that only Prism achieves improvements in both APR repair
capability and the reduction of human effort for patch validation. In contrast, while other techniques
reduce the number of patches that need to be reviewed, they also substantially decrease the number
of correct patches detected. In essence, these methods fail to meet the practical requirement of
preserving correct patches in real-world APR, where reducing review effort should not come at the
expense of repair effectiveness. Notably, when applied to TBAR, Prism reduces the review effort for
identifying a Top-1 patch by over 32% (from 142 to 96) and simultaneously finds three additional
Top-1 patches. In contrast, applying PATCH-SIM, ODS, and Shibboleth results in review effort
reductions of 41%, 80%, and 11%, respectively, but each also decreases the Top-1 patch count by 7,
16, and 5. In total, Prism decreases the number of patches a developer must review for Top-1 patch
identification by 12% (from 609 to 537) while increasing the Top-1 patch count by 9. Given that the
maximum potential improvement in Top-1 patch detection is 37 (as indicated by the Top-co result),
an increase of 9 represents a significant enhancement. In contrast, the other techniques reduce
review effort by 20%, 84%, and 9% but lower the Top-1 patch count by 49, 118, and 24, respectively.
The rule-based classifier prunes 641 incorrect patches—about twice as many as Prism, but results
in the loss of 2, 9, and 13 Top-1, Top-5, and Top-co patches, respectively. While this performance
drop is smaller than that of the existing techniques, it still highlights the challenge of preserving
correct patches while filtering incorrect ones using hand-crafted rules. We discuss this issue further
in Section 4.4.2. This key difference arises from our approach’s precise patch representation using
semantic features combined with a specialized learning algorithm tailored for APR scenarios. Note
that, although Prism missed 7 correct patches, it did not degrade the end-to-end APR performance.
We will discuss this further in Section 4.4.3.

4.2 RQ2: Patch Classification Performance

In this experiment, we directly compare the patch classification performance of Prism and other
APCC techniques, without considering ranking aspects. This evaluation approach is standard in
prior work [10, 24, 45-47, 52, 56].

Evaluation Settings. We evaluated the patch classification performance of each APCC technique
using our previously described patch classification dataset as the benchmark. Our evaluation focused
on two key metrics: the correct patch preserving rate (CPR) and the incorrect patch detection rate
(IDR). These metrics typically exhibit a trade-off, where improvements in one often lead to a decline
in the other. Because each APCC technique employs a different threshold for patch classification,
we systematically varied these thresholds to evaluate their performance under uniform conditions
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Fig. 5. Trade-off between CPR and IDR across varying thresholds. Each point (x,y) represents the CPR
(x-axis) and IDR (y-axis) of a technique at a specific threshold setting.

and to examine their impact on the CPR/IDR balance. For example, PATCH-SIM provides a tunable
threshold K},, which controls its sensitivity to changes in execution traces of passing tests; we
varied K}, from 0.01 to 1. As ODS and Shibboleth do not offer an explicit threshold, we adjusted the
decision threshold of their binary classifiers (XGBoost [3] and Random Forest [11], respectively),
which is set to 0.5 by default. Since RULE-BASED uses a fixed rule without a tunable threshold, we
only report a single CPR/IDR point. For Prism, we varied the CPR threshold y, of our learning
algorithm over the same range (0.01 to 1).

Results. Figure 5 shows that Prism achieves the best balance between CPR and IDR, delivering
superior incorrect patch detection performance without sacrificing CPR. Across nearly all CPR
ranges, PRIsM consistently maintains a higher IDR than the other techniques. RULE-BASED also
shows competitive performance (CPR: 82%, IDR: 41%), which is expected as it represents a subset of
Prism’s learned formula. The result indicates that, for a given level of correct patch preservation, our
approach is able to eliminate more incorrect patches, thereby reducing the human effort required
for patch validation. Notably, in the high-CPR range (above 50%), which is critical for APCC in
APR contexts, Prism outperforms the competing methods by a substantial margin.

4.3 RQ3: Ablation Study

In this section, we examine the contributions of the key components of Prism: its semantic features
and learning algorithm, to its overall performance.

Evaluation Settings. In this experiment, we used the same patch classification dataset as in
Section 4.2 to assess the contributions of different feature sets and the learning algorithm. To evaluate
feature importance, we compared three configurations: (1) using our proposed 66 semantic features
(Sem), (2) using the 370 syntactic features (Syn) proposed by Ye et al. [56] (the original paper reports
202 features, but the published implementation actually uses 370), and (3) using a combination
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Table 6. Ablation study on IDR across various feature types: syntactic feature (Syn), semantic feature (Sem),
and both features (Syn+Sem), and models: random forest (RF) and ours (Prism) with fixed CPR (70%, 80%,
and 90%). The best results for each setting are highlighted in bold.

Feature Type IDR at CPR=70% IDR at CPR=80% IDR at CPR=90%
RF Prism RF Prism RF Prism
Syn 638 (48%) | 650 (50%) | 405 (30%) | 375 (28%) | 265 (20%) | 135 (10%)
Sem 623 (47%) | 672 (51%) | 484 (37%) | 572 (43%) | 339 (25%) | 451 (34%)
Syn+Sem 649 (49%) | 723 (55%) | 422 (32%) | 544 (41%) | 167 (12%) | 340 (26%)

of both feature sets (Syn + Sem). To assess the significance of our learning algorithm (Prism), we
compared its performance against a baseline Random Forest classifier (RF). All evaluations were
conducted under identical conditions by comparing the highest IDR values achieved at fixed CPR
thresholds of 70%, 80%, and 90%.

Results. Table 6 demonstrates that the combination of our semantic features with our specialized
learning algorithm is essential for achieving a high incorrect patch filtering rate without sacrificing
correct patches. In high-CPR regions (80% and 90%), our approach using semantic features alone
records the highest IDR values, 43% at CPR=80% and 34% at CPR=90%. At a CPR of 70%, the
combination of our learning algorithm with combined feature sets produces superior results. We
observed that at lower CPR thresholds our algorithm generally produces a smaller formula, thereby
requiring a relatively smaller search space; consequently, enriching the representation with diverse
features proves beneficial. Notably, our 66 semantic features consistently outperform 370 syntactic
features by achieving a higher IDR across all CPR levels. This demonstrates that our compact but
more expressive semantic features can represent each patch more effectively than conventional
syntactic features, which enables our learning algorithm to train a more effective patch classifier
in less time by working with fewer features. In fact, in high-CPR regions, where more complex
formulas are typically required, the performance achieved using only semantic features even
exceeds that of the combined feature set.

4.4 Discussion

In this section, we discuss (1) the cost of PRIsm in capturing semantic features from a signle patch,
(2) the characteristics of the incorrect patches identified by Prism’s learning algorithm, (3) the
cases where PrisMm mistakenly classifies correct patches as incorrect, and (4) practical guidance for
adopting Prism in APR systems.

4.4.1  Cost Analysis of Prism. We conducted a cost analysis for all benchmarks with Prism by
recording the elapsed time for three steps: (1) the compilation (capture) process, (2) the execution of
developer-provided tests to extract runtime information, and (3) the main analysis for the original
program and patched program. The average times for these steps were 22, 102, and 54 seconds,
respectively. The first two steps (compilation and test execution) can typically be integrated into the
plausible patch validation process in general APR systems. The main analysis, which is the essence
of PrisMm, does not cause significant overhead due to its scalable analysis design. For the learning
algorithm, we allocated 3 minutes to train the model. Although this is slower than off-the-shelf
methods (e.g., Random Forest), training is performed only once and the model can be reused for
multiple repairs. Therefore, we believe that a 3-minute training time is a reasonable trade-off,
considering the substantial long-term benefits it provides for APR.
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4.4.2  Characteristics of Incorrect Patches. Most patches successfully classified as incorrect by Prism
belong into two major categories: patches (1) causing unexpected crashes, and (2) eliminating the
developer’s original intent. Since the former is well-discussed in prior researches [9, 40, 55], we
focus on the latter with examples. We note that these observations were possible because our
learning algorithm uses an interpretable classification model based on boolean formulas.

Making Originally Used Variables Unused. In 37% of patches that were classified as incorrect,
previously used variables made unused. Because developers basically declare variables only when
they intend to use them, making variables dead often contradicts the developer’s intent. Consider
the following incorrect patch for bug Chart-5 by generated by AvATAR [26]:

1 public XYDataltem addOrUpdate(double x, double y) {
2 = return addOrUpdate(new Double(x), new Double(y));
3 + return addOrUpdate(new Double(y), new Double(y));

4
This patch replaces x with y on line 2, removing all uses of the parameter x within the method.

Making Methods Always Return the Same Value. 19% of incorrect patches identified by Prism
made a method always return the same value, harming its functionality. For example, consider the
following incorrect patch for Lang-63 generated by AVATAR:

1 static int reduceAndCorrect(...) {

2 if(endValue < startValue){

3 = int newdiff = startValue - endValue;
4 + int newdiff = endValue - endValue;

5 return newdiff;

6 } else return 0;

7}

Originally, it computes the difference between startValue and endValue. However, the patch
eliminates the original functionality by making the method always return 0.

Removing Developer-Intended Exceptions. 18% of patches, identified as incorrect, removed
exceptions intended by developers to handle specific error conditions. For example, consider the
following incorrect patch by TBAR for Math-85:

1 static double[] bracket(...) throws ConvergenceException {
2 PP
3 if (fa x fb >= 0.0)

4 = throw new ConvergenceException(...);

It is defined to throw a ConvergenceException in its signature. However, the patch made the
ConvergenceException never occur, contradicting the developer’s intent.

These anti-patterns inspired the construction of a rule-based classifier (RULE-BASED) used in
our evaluation. However, as shown in the experimental results, building an effective rule-based
classifier is not only non-trivial but also suboptimal. One key challenge lies in combining multiple
features without unintentionally filtering out correct patches. Our learning algorithm addresses
this by automatically exploring a large space of boolean formulas. We observed that some correct
patches exhibit "suspicious” features commonly found in incorrect patches, but are still valid due to
compensating features. For example, in Section 2, the formula includes a seemingly harmful feature
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"Do not eliminate array with IOB" yet the patch is correctly accepted based on other supporting
evidence. Such reasoning is difficult to encode manually.

Importantly, while these anti-patterns do not definitively indicate incorrectness, we believe these
insights offer valuable guidance for future APR and APCC research. For instance, discouraging the
generation of patches with such features or assigning them lower rankings may further improve
repair performance and increase the likelihood of identifying correct patches.

4.4.3 Case Analysis for Misclassification of Correct Patches. Our experiments show that Prism
does not perfectly preserve all correct patches, as features common in incorrect patches sometimes
appear in correct ones. Among the various types of misclassifications we observed, we focus on
two particularly interesting cases: (1) misclassification due to imprecise static analysis and (2)
misclassifications that have negligible impact on overall APR performance.

Misclassification due to Imprecise Analysis. Since Prism extracts semantic features based
on the results of static analysis, imprecision in static analysis can lead to spurious features. For
example, consider the following code snippet from the developer’s fix for bug Math-71:

1 while (!lastStep) {

2> for (int k = 1; k < stages; ++k)

3 for (int j = 0; j < y@.length; ++j) {
4
5 for (boolean loop = true; loop;) {

6 stepSize = hNew;
7 if (...)
s + hNew = 0;

In this patch, the variable hNew is re-initialized at line 8 and used in the loop at line 6. However,
PrisM failed to accurately analyze the complex loop structure, misidentifying hNew as a dead
variable. As a result, this patch was misclassified as incorrect.

Misclassification with Minimal Impact on APR. In Section 4.1, despite missing some correct
patches, Prism did not decrease the repair capability (Top-co) of APR. For example, Prism filtered
out the following correct patch generated by TBAR for the Closure-126 bug:

1 if (NodeUtil.hasFinally(n)) {

2 Node finallyBlock = n.getlLastChild();

3 = tryMinimizeExits(finallyBlock, exitType, labelName);
4}

It is correct but misclassified due to generation of a dead variable, finallyBlock, on line 2. However,
APR tools typically generate multiple patches for a bug and can easily generate patches without
such unused variables. For instance, TBAR also generated the following patch for the same bug,
which does not contain dead variables:

1 - if (NodeUtil.hasFinally(n)) {
2 = Node finallyBlock = n.getlLastChild();
3 —  tryMinimizeExits(finallyBlock, exitType, labelName);

4+ =}

This patch was not filtered by PRism, ensuring that the final patch performance is not degraded.
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4.4.4  Practical Guidance for Adopting Prism in APR. A common concern when using Prism is the
need to retrain the model with newly labeled patches. However, as discussed earlier (Section 4.4.2),
the models trained on different projects consistently learned similar key semantic features, and
achieved comparable performance across datasets. On average, our six project-specific models
preserved 91.2% of correct patches (standard deviation: 1.05%) while filtering out 40.3% of incorrect
ones (standard deviation: 1.61%). These results demonstrate the robustness and consistency of
Prism across diverse codebases, suggesting that PRism can be immediately deployed in practical
APR systems with minimal setup effort, such as directly using our provided models. Furthermore,
for scenarios where Prism is applied continuously to a specific codebase, we recommend collecting
a small number of labeled patches from that project. This lightweight transfer learning step allows
users to fine-tune the model for improved accuracy and better alignment with project-specific
characteristics, without requiring a full retraining dataset.

5 Related Work

Automated Patch Correctness Classification. To address testcase overfitting in automated
program repair [21, 39, 41], various methods for automatic patch correctness classification (APCC)
have been proposed (7, 10, 13, 24, 43, 45, 46, 52, 55, 56, 61]. These approaches can be broadly
categorized into two groups: (1) dynamic execution-based methods and (2) syntax-based methods.
Dynamic execution-based approaches [13, 52, 55] leverage runtime information to classify patch
correctness. For instance, OpaAD [55] identifies incorrect patches by checking for violations of
memory-safety and crash oracles. PATCH-SIM [52] compares execution traces under the assumption
that significant changes in passing test traces indicate an incorrect patch. PorAcLE [13] enhances
the test oracle with user-provided preservation conditions in a semi-automated fashion. However,
these methods are limited by the incomplete coverage of test executions and their high time
consumption, which restricts their scalability in real-world APR scenarios. Syntax-based methods
[24, 43, 45, 46, 56] focus on analyzing code structure and patterns introduced by patches. Tan et al.
[43] proposed seven syntactic anti-patterns and considered patches incorrect if they exhibit such
features. Recent approaches represent patches using various syntactic features and classify them
with learning models. These methods employ either a hand-crafted set of features [56], learned
embeddings [24, 45], or a combination of both [46]. Compared to dynamic techniques, syntax-
based approaches are faster as they do not require program execution. However, they may fail
to capture subtle semantic changes that can significantly impact patch correctness. Additionally,
hybrid approaches such as Shibboleth [10] combine static and dynamic features. This method is
based on the assumption that correct patches tend to induce minimal changes in both syntax and
execution traces, and should not reduce the code coverage of passing tests. Yet, even these balanced
designs can overlook minor semantic variations that are critical for patch correctness. With recent
advances in large language models (LLMs), Zhou et al. [61] leverage LLMs for patch classification,
demonstrating that effective patch classification is achievable without fine-tuning or a large labeled
dataset. Although all the existing works have demonstrated high classification accuracy on datasets,
they have not been evaluated for their usability in real-world APR scenarios. In this paper, we
propose PrisMm to addresses this critical gap by directly targeting the unique challenges encountered
in practical APR.

Automated Patch Correctness Assessment. APR techniques are primarily evaluated subjec-
tively by their authors, which can sometimes lead to unreliable results [18]. To address this issue,
recent studies have focused on automatically assessing patch correctness (APCA) [22, 47, 51, 54, 58].
Unlike APCC methods, APCAs generally assume an ideal oracle, which is not practical in real-world
scenarios. One major approach in APCA is to identify tests that produce different results between
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the patched program and the ground truth. For instance, DIFFTGEN [51] uses EvoSurTe [8] to gen-
erate tests targeting the patched areas for detecting behavioral differences. Ye et al. [58] conducted a
large-scale experiment evaluating the correctness of 638 patches using random testing tools [8, 38].
Another method compares runtime states during execution. Yang and Yang [54] evaluated patches
based on runtime invariants extracted by Daikon [6]. INVALIDATOR [22] leverages both runtime
invariants and syntactic patterns of correct patches to assess patch correctness. A significant
large-scale study by Wang et al. [47] evaluated 902 patches from 21 APR tools on DEFECTS4] bugs,
comparing the performance of APCA and APCC techniques.

Other Techniques to Improve APR. To enhance APR performance, various methods have been
proposed, such as extracting patch ingredients by solving semantic constraints [19, 20, 33, 34, 36, 60],
prioritizing patches likely to be correct based on characteristics observed in developer patches
[1, 26, 28-30, 48], preventing the generation of crash-inducing patches [9, 40], and enhancing
test oracles [2, 14, 44]. Recently, large language models (LLMs) have also been used to improve
patch generation in APR [50, 53]. These LLM-based approaches demonstrate the ability to rewrite
entire functions, not just small code fragments [53]. We believe that detecting overfitting is more
challenging in such rewrite-based APR, where patches often introduce substantial syntactic and
structural modifications. In these cases, existing syntactic or trace-based APCC techniques [10, 24,
43, 45, 46, 52, 56] may become less effective due to the extent of the changes. Prism is particularly
well-suited for these scenarios, as it focuses on the underlying behavioral changes. APCC techniques,
including Prism, can also be considered as part of these approaches since they reduce the review
effort by pruning incorrect patches and increasing the likelihood of identifying correct ones.
However, for APCC techniques to be useful in APR, it is crucial that they preserve as many correct
patches as possible while effectively filtering out incorrect ones. Experimentally, we found that
PrisM is the only technique that consistently satisfied this requirement, demonstrating its practical
benefit. Furthermore, we believe that the key features discovered by Prism (Section 4.4.2) can help
the design of future APR techniques.

6 Conclusion

We presented PrisMm, a novel APCC technique that enhances real-world APR systems by accurately
identifying overfitting patches. Unlike existing methods that often misclassify rare correct patches,
reducing repair effectiveness, our approach leverages new semantic features and a specialized
learning algorithm to create a patch classifier optimized for APR. Evaluations with 10 APR tools
show that Prism improves repair performance while reducing human review effort. Furthermore,
experiments on a large dataset of 1,829 labeled patches demonstrate that, at equivalent correct patch
preservation rates, PRIsM surpasses prior techniques in filtering out incorrect patches. We believe
our work sets a clear path for future APCC research and its practical use in real APR scenarios.
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Data Availability

The source code of our tool implementation, benchmarks we used, and experimental results are
archived on Zenodo at [42] and also available at https://github.com/PRISM-artifact/PRISM.
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