
87

Modular Component-BasedQuantum Circuit Synthesis
CHAN GU KANG, Korea University, Republic of Korea
HAKJOO OH∗, Korea University, Republic of Korea

In this article, we present a novel method for synthesizing quantum circuits from user-supplied components.

Given input-output state vectors and component quantum gates, our synthesizer aims to construct a quantum

circuit that implements the provided functionality in terms of the supplied component gates. To achieve this,

we basically use an enumerative search with pruning. To accelerate the procedure, however, we perform

the search and pruning at the module level; instead of simply enumerating candidate circuits by appending

component gates in sequence, we stack modules, which are groups of gate operations. With this modular

approach, we can effectively reduce the search space by directing the search in a way that bridges the gap

between the current circuit and the input-output specification. Evaluation on 17 benchmark problems shows

that our technique is highly effective at synthesizing quantum circuits. Our method successfully synthesized

16 out of 17 benchmark circuits in 96.6 seconds on average. On the other hand, the conventional, gate-level

synthesis algorithm succeeded in 10 problems with an average time of 639.1 seconds. Our algorithm increased

the speed of the baseline by 20.3x for the 10 problems commonly solved by both approaches.

CCS Concepts: • Computer systems organization → Quantum computing; • Software and its engi-
neering→ Automatic programming.

Additional Key Words and Phrases: Quantum circuit synthesis, Quantum programming

ACM Reference Format:
Chan Gu Kang and Hakjoo Oh. 2023. Modular Component-Based Quantum Circuit Synthesis. Proc. ACM
Program. Lang. 7, OOPSLA1, Article 87 (April 2023), 28 pages. https://doi.org/10.1145/3586039

1 INTRODUCTION
Quantum computers are expected to outperform classical computers in applications such as machine

learning [Gilyén et al. 2019], quantum system simulation [Low and Chuang 2019], and unstructured

search [Grover 1996]. Currently, implementing these algorithms takes the form of quantum circuits

and is accomplished by applying quantum gates to qubit registers. In recent years, many frameworks

and libraries for quantum circuit programming have become available (e.g., Cirq [Developers 2022]

and Qiskit [Aleksandrowicz et al. 2019]), which has contributed to an increased interest in quantum

computing and programming.

However, due to the fundamental differences between classical and quantum computers, pro-

gramming quantum circuits is challenging. Quantum circuits’ linear algebraic formalism is one

of the primary sources of the difficulty. In quantum programming, data values are represented as

vectors, and operations (quantum gates) are interpreted as matrices. These matrix operations are

∗
Corresponding author

Authors’ addresses: Chan Gu Kang, changukang@korea.ac.kr, Department of Computer Science and Engineering, Korea

University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea; Hakjoo Oh, hakjoo_oh@korea.ac.kr, Department of

Computer Science and Engineering, Korea University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/4-ART87

https://doi.org/10.1145/3586039

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.

https://doi.org/10.1145/3586039
https://doi.org/10.1145/3586039


87:2 Chan Gu Kang and Hakjoo Oh

|𝑏2⟩ • |𝑏2⟩
|𝑏1⟩ • • |𝑏1⟩
|𝑎2⟩

QFT

𝑍 𝑆
QFT

†

|𝑎1⟩ 𝑍

| (𝑎 + 𝑏) mod 4⟩


Fig. 1. Quantum circuit for performing Draper Adder on 2-bit integers (i.e, 𝑛 = 2, 𝑑 = 4)

𝑞0 : U3 (0, 0, 0.662662011246837) U3 (0, 0,−𝜋
4
) U3 (0, 0,−0.808788750836004) U3 (0, 0, 0.416089669137279) U3 (0, 0,−0.172958953410807) U3 (0, 0,−1.39783737338409) U3 (0, 0, 𝜋

2
) U3 (0,−2.134,−0.7598)

𝑞1 : • • • • U3 (0, 0,−1.78487639886228) U3 (0, 0, 0.448781197782313) U3 (0, 0, 1.0378298203304) U3 (0, 0,−0.850781220687517) U3 ( 𝜋
2
, 0, 0)

𝑞2 : • • • • U3 (0, 0, 0.0395448376233773)
𝑞3 : • • • •

𝑞0 : • • • • U3 ( 𝜋
2
, 0, 1.401)

𝑞1 : U3 ( 𝜋
2
, 1.379,−𝜋) • • U3 ( 𝜋

2
, 0,−𝜋) U3 ( 𝜋

2
, 1.82,−𝜋) •

𝑞2 : U3 (0, 0,−1.0378298203304) U3 (1.743, 0.01668,−1.569) U3 (1.569,−1.743, 1.554) U3 (1.572,−1.587, 1.743) U3 (0.1722, 0.008278, 0.008278) U3 (1.569,−1.743, 1.554) U3 (1.569, 1.587,−1.399) U3 (1.569,−1.743, 1.554) U3 (2.054, 1.551,−1.766)
𝑞3 : • • U3 (0, 0,−1.39597734698542) • • •

𝑞0 : U3 ( 𝜋
2
,−1.137,−𝜋) •

𝑞1 : • U3 (0,−2.814, 1.264) • • U3 (0, 0.8511,−1.75) •
𝑞2 : U3 (1.548, 1.239,−1.705) U3 (1.548,−1.437, 1.903) U3 (2.498,−0.5893,−3.136) U3 (1.265,−2.666,−2.406) • U3 (2.588,−0.8232,−2.048) U3 (1.057, 𝜋

2
, −𝜋

2
)

𝑞3 : • • • U3 (1.402, 0.7708,−1.64) U3 (1.639,−1.401, 0.8115) U3 (1.503,−2.33, 1.401) U3 (1.74,−0.7333,−2.371) • U3 (1.842,−0.2331,−1.603) U3 (1.602,−1.842, 1.795) U3 (1.54,−1.346, 1.842)

𝑞0 : • • • U3 ( 𝜋
2
, 0, 𝜋

2
) U3 (2.556, −𝜋

2
, 𝜋
2
) U3 ( 𝜋

2
, −9𝜋

16
,−𝜋) • U3 ( 𝜋

2
, 0, 0) U3 ( 𝜋

2
, −3𝜋

8
,−𝜋)

𝑞1 : • U3 ( 𝜋
2
, 0,−𝜋) U3 ( 𝜋

2
, 0.3474,−𝜋) • U3 (0,−1.879, 0.9956)

𝑞2 : U3 (2.717,−0.9722,−3.04) U3 (1.596,−1.308, 1.379) U3 (1.545,−1.762, 1.308) U3 (2.751,−1.66, 0.9243) U3 (0.3596, 0.09876,−2.448) U3 ( 𝜋
2
, 𝜋
8
, −𝜋

2
)

𝑞3 : U3 (1.299, 1.485, 2.909) • • • U3 (1.033,−0.6037,−1.4) U3 (1.033, 2.995,−2.538) • • •

Fig. 2. Quantum circuit for performing Draper adder generated by qiskit-transpiler.

nonintuitive, making their semantic effects on data values difficult to comprehend. In light of this

motivation, this paper investigates a method for automatically programming quantum circuits.

Problem: Component-based Quantum Circuit Synthesis. Specifically, we study the problem
of synthesizing quantum circuits using user-provided components. As input, our quantum circuit

synthesizer takes input-output state vectors and component quantum gates; as output, it generates

a quantum circuit that implements the specified functionality in terms of the supplied gates. Note

that our component-based synthesis differs from previous work on quantum circuit synthesis (also

known as unitary synthesis). While the goal of earlier work [Davis et al. 2020; Goubault de Brugière

et al. 2020; Shende et al. 2006; Tucci 2005; Younis et al. 2020] is to “compile” unitary matrices

into circuits with a fixed set of low-level gates (e.g., 𝑈3 (𝜃, 𝜙,𝜓 )), our objective is to generate a

human-readable, high-level implementation that reveals the algorithm’s inner workings.

Consider, for instance, the modular addition specified by the following input-output specification:

|𝑏⟩ |𝑎⟩ ↦→ |𝑏⟩ |(𝑎 + 𝑏) mod 𝑑⟩ where 𝑎, 𝑏 are 𝑛-bit binary representations of integers (1)

where 𝑑 and 𝑛 are fixed integers. For example, when 𝑑 = 4 and 𝑛 = 2, the specification includes 16

state vector mappings such as |11⟩ |01⟩ ↦→ |11⟩ |00⟩. As in classical circuit design, this adder plays a

crucial part in quantum algorithms (e.g, Shor’s factorization [Shor 1997] algorithm). Using classical

carry gates and several ancilla bits, we may implement the adder in a reversible circuit. Suppose,

however, that we are interested in implementing the adder in a more quantum-native manner by

utilizing Quantum Fourier Transform (QFT) and phase operations (e.g., S,Z), so that addition is

performed in place without ancilla bits. Figure 1 depicts such a circuit found by our synthesizer,

which is indeed equivalent to the algorithm previously known as Draper Adder [Draper 2000].

By contrast, Figure 2 shows the circuit generated by qiskit-transpiler [Aleksandrowicz et al. 2019;
Transpiler 2022]. As input, qiskit-transpiler takes the unitary matrix specified by (1), and produces

the circuit in Figure 2 by applying Quantum Shannon Decomposition [Shende et al. 2006]. The

resulting circuit does not help programmers grasp the idea of in-place addition; 107 low-level gates

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



Modular Component-BasedQuantum Circuit Synthesis 87:3

are used, and it is unclear how these gates are combined to perform the addition. We note that our

approach and existing compilation approach have different purposes; the goal of compilation is to

produce circuits that are directly executable on quantum computers while our goal is to generate

circuits that can be read and maintained by humans.

Approach: Modular Synthesis of QuantumCircuits. In this paper, we present a novel, modu-

lar algorithm for synthesizing quantum circuits. We use enumerative search as our primary method

for component-based synthesis. To speed up the method, however, we perform module-level search

and pruning. Instead of naively enumerating candidate circuits by sequentially applying component

gates, we apply certain groups of gate operations, called modules, at once. Furthermore, we direct

this modular search in a certain way that bridges the gap between the current circuit and the given

input-output specification. To this purpose, we define four distinct module attributes—entanglement,

superposition, phasing, and boolean—by characterizing the attribute difference of state vectors. In

Section 4, we formalize our module-level search algorithm and present a pruning method that is

sound under practical assumptions.

Evaluation results show that our modular algorithm is highly effective at solving component-

based quantum-circuit synthesis problems. For evaluation, we gathered 17 benchmark problems

from various sources, including online forums and textbooks, and compared the performance of

our module-level algorithm to that of a baseline algorithm that performs a conventional, gate-level

enumerative search. Our algorithm successfully synthesized 16 out of 17 circuits in 96.6 seconds

on average. The baseline algorithm, on the other hand, succeeded in 10 benchmarks, where our

algorithm increased the speed of the baseline algorithm by 20.3x for those 10 problems.

Contributions. Our contributions are summarized as follows:

• We present a new modular approach to the component-based synthesis of quantum circuits.

To our knowledge, our work provides the first method for synthesizing quantum circuits

from arbitrary, user-supplied component gates.

• We experimentally show that our module-level synthesis algorithm is significantly more

effective than a gate-level algorithm on a variety of benchmark problems. Our tool and

benchmarks are publicly available:

https://github.com/kupl/qsyn

2 PRELIMINARIES
This section gives background information on quantum circuits and computation.

Qubits and Quantum States. Unlike classical bits, the state of a qubit can be in a superposition

of two basis states. Using the Dirac notation, a single qubit is represented by a two-dimensional

state vector of the form:

|𝜓 ⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩
where |0⟩ and |1⟩ denote the computational basis states:

|0⟩ =
[
1

0

]
, |1⟩ =

[
0

1

]
and 𝛼0, 𝛼1 ∈ C are complex numbers, called probability amplitudes, such that |𝛼0 |2 + |𝛼1 |2 = 1. For

example,
1√
2

|0⟩ + 1√
2

|1⟩, 1√
2

|0⟩ − 𝑖√
2

|1⟩, 1

2
|0⟩ +

√
3

2
|1⟩ are legitimate states of a qubit.

The state of a two-qubit system is represented by a linear combination (superposition) of four

basis states:

|𝜓 ⟩ = 𝛼0 |00⟩ + 𝛼1 |01⟩ + 𝛼2 |10⟩ + 𝛼3 |11⟩

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.

https://github.com/kupl/qsyn


87:4 Chan Gu Kang and Hakjoo Oh

where 𝛼0, 𝛼1, 𝛼2, 𝛼3 ∈ C are complex numbers such that |𝛼0 |2 + |𝛼1 |2 + |𝛼2 |2 + |𝛼3 |2 = 1 and the basis

states, i.e., |00⟩, |01⟩, |10⟩, and |11⟩, represent the following state vectors:

|00⟩ =


1

0

0

0

 , |01⟩ =


0

1

0

0

 , |10⟩ =


0

0

1

0

 , |11⟩ =


0

0

0

1

 .
In general, the state of an 𝑁 -qubit system is defined with 2

𝑁
basis states, denoted |𝑥⟩ for

𝑥 ∈ {0, 1}𝑁 , and is represented by a linear combination

|𝜓 ⟩ =
∑

𝑥 ∈{0,1}𝑁
𝛼𝑥 |𝑥⟩

where amplitudes, 𝛼𝑥 ∈ C, are complex numbers such that

∑
𝑥 ∈{0,1}𝑁 |𝛼𝑥 |2 = 1. Each basis state |𝑥⟩

represents a 2
𝑁
-dimensional one-hot vector whose 𝑥-th element is 1.

The basis vectors for a multi-qubit system can be constructed by the tensor product of basis

vectors for smaller quantum systems. For example, a basis vector |01⟩ for a two-qubit system

q = {𝑞0, 𝑞1} is the tensor product of vector |0⟩ and |1⟩, i.e., |01⟩ = |0⟩ ⊗ |1⟩, as follows:

|01⟩q = |0⟩𝑞0 ⊗ |1⟩𝑞1 =
[
1

0

]
⊗
[
0

1

]
=


0

1

0

0


where we use the notation |𝜓 ⟩q to indicate that the vector |𝜓 ⟩ denotes the state of qubits q.

Properties of Quantum States. For an 𝑁 -qubit system |𝜓 ⟩ = ∑
𝑥 ∈{0,1}𝑁 𝛼𝑥 |𝑥⟩, measuring the

qubits returns one of classical states |𝑥⟩ with probability |𝛼𝑥 |2. Upon measurement, the state of

the system collapses to the observed state |𝑥⟩. For example, by measuring the qubits in state

1√
2

( |00⟩ + |11⟩), we observe either |00⟩ or |11⟩ with equal probability, and the state
1√
2

( |00⟩ + |11⟩)
collapes to the observed state.

Consider two quantum states |𝜓 ⟩ = ∑
𝑥 𝛼𝑥 |𝑥⟩ and |𝜙⟩ =

∑
𝑦 𝛽𝑦 |𝑦⟩. Consider two amplitudes 𝛼 𝑗

and 𝛽 𝑗 of |𝜓 ⟩ and |𝜙⟩, respectively, for a certain index 𝑗 . We say 𝛼 𝑗 and 𝛽 𝑗 differ by a relative phase
if 𝛼 𝑗 = 𝑒𝑖𝜃𝛽 𝑗 for some 𝜃 ∈ (0, 2𝜋). For example, consider |𝜓 ⟩ = 1√

2

( |0⟩ − |1⟩) and |𝜙⟩ = 1√
2

( |0⟩ + |1⟩),
where the two amplitudes of |1⟩ are related: − 1√

2

= 𝑒𝑖𝜋 1√
2

. Hence, |𝜓 ⟩ and |𝜙⟩ said to be differerent

in a relative phase. Note that quantum states that differ only in relative phases induce the same

probability distribution of measurements since when 𝛼 𝑗 = 𝑒𝑖𝜃𝛽 𝑗 we have |𝛼 𝑗 |2 = |𝑒𝑖𝜃 |2 |𝛽 𝑗 |2 = |𝛽 𝑗 |2.
For quantum state |𝜓 ⟩ on qubit register q, we say it is entangled in two sub-systems q1, q2 if it

cannot be decomposed into tensor products of smaller two state vectors, i.e, for any |𝜓1⟩q1 , |𝜓2⟩q2
such that q1 ∪· q2 = q,

|𝜓 ⟩ ≠ |𝜓1⟩q1 ⊗ |𝜓2⟩q2 .
For example, the Bell state |Φ⟩ = 1√

2

( |00⟩ + |11⟩) is entangled because we cannot find single-qubit

states |𝜓1⟩ , |𝜓2⟩ such that |Φ⟩ = |𝜓1⟩ ⊗ |𝜓2⟩.

Quantum Gates and Circuits. Let q = (𝑞0, 𝑞1, . . . , 𝑞𝑁−1) be the qubits of an 𝑁 -qubit system.

A quantum circuit is a sequence of quantum gates:

𝐶 = 𝐺1 (q1);𝐺2 (q2); . . . ;𝐺𝑛 (q𝑛)
where each quantum gate 𝐺𝑖 (q𝑖 ) consists of gate operation 𝐺𝑖 and qubit register q𝑖 ⊆ q to which

the operation 𝐺𝑖 is applied. The gate operation 𝐺𝑖 denotes a 2
|q𝑖 | × 2 |q𝑖 | unitary matrix.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



Modular Component-BasedQuantum Circuit Synthesis 87:5

Quantum circuits are typically represented by circuit diagrams, where wires represent physical

positions of qubits and blocks or symbols on wires denote quantum gates applied to the corre-

sponding qubit(s). For example, the quantum circuit 𝐶 = 𝐻 (𝑞0);𝐶𝑁𝑂𝑇 (𝑞0, 𝑞1) is represented by

the following circuit diagram:

𝑞0 𝐻 •
𝑞1

The circuit diagram should be read from left to right. The circuit consists of two quantum gate

operations: the first operation is the Hadamard gate 𝐻 on qubit 𝑞0. The second gate operation is

𝐶𝑁𝑂𝑇 (Controlled-NOT) where 𝑞0 is the control qubit and 𝑞1 is the target qubit. The 𝐻 and𝐶𝑁𝑂𝑇

gates denote unitary matrices as follows:

𝐻 =
1

√
2

[
1 1

1 −1

]
𝐶𝑁𝑂𝑇 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


We can always extend 𝐺𝑖 (q𝑖 ) to operation on q, that is, a 2 |q | × 2 |q | matrix. If the gate operation

is applied to consecutive qubits 𝑞𝑛1
, . . . , 𝑞𝑛𝑚 such that 𝑛𝑖 + 1 = 𝑛𝑖+1 (1 ≤ 𝑖 ≤ 𝑚), we can extend it to

be regarded as a 2
|q | × 2 |q | matrix as follows:

(
⊗

𝑞𝑖 s.t 𝑖<𝑛1

𝐼 (𝑞𝑖 )) ⊗ 𝐺 (𝑞𝑛1
, .., 𝑞𝑛𝑚 ) ⊗ (

⊗
𝑞𝑖 s.t 𝑖>𝑛𝑚

𝐼 (𝑞𝑖 ))

where 𝐼 denotes the identity matrix. Otherwise, we can apply swap operations to make the gate

operation apply to consecutive qubits temporarily, apply the identity-matrix tensor product as

above, and again apply swap operations to restore the original qubit positions. In this manner, we

generally assume that any gate operation is represented by a 2
|q | × 2 |q | matrix. This assumption

allows us to define the semantics of quantum circuit 𝐶 using simple matrix multiplication without

worrying about dimensions as follows:

𝐶 = 𝐺𝑛 (q𝑛) × · · · ×𝐺1 (q1).

Note that in the matrix multiplication above, we read the gate operation sequence from right to left.

Other Notations. For an 𝑁 -qubit state vector |𝜓 ⟩ =
∑

𝑥 ∈{0,1}𝑁 𝛼𝑥 |𝑥⟩, we write amp |𝜓 ⟩ and
dist |𝜓 ⟩ for the tuple of amplitudes and the distribution of measurements, respectively:

amp |𝜓 ⟩ = (𝛼0, . . . , 𝛼2𝑁 −1), dist |𝜓 ⟩ = ( |𝛼0 |2, . . . , |𝛼2𝑁 −1 |2).

We also define equality between tuples, =𝑝𝑒𝑟𝑚 and ≠𝑝𝑒𝑟𝑚 , as equality up to permutation. For𝑛-tuples

𝑡1 and 𝑡2 (either amp or dist)

𝑡1 =𝑝𝑒𝑟𝑚 𝑡2 ⇐⇒ there exists a permutation 𝜎 such that 𝜎 (𝑡2) = 𝑡1.

3 PROBLEM DEFINITION
In this paper, we tackle the problem of synthesizing quantum circuits using user-supplied component

gates. We assume the following items are given:

• 𝑁 : the size of the circuit to be synthesized (i.e., the number of qubits),

• 𝐸 = {(|𝑖𝑛𝑖⟩ , |𝑜𝑢𝑡𝑖⟩) | 𝑖 = 1, . . . , 𝑘}: input-output examples, and

• G: a set of user-provided gates.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



87:6 Chan Gu Kang and Hakjoo Oh

Given (𝑁, 𝐸,G) as input, our goal is to automatically generate a quantum circuit 𝐶 on 𝑁 -qubit

register q = {𝑞0, 𝑞1, . . . , 𝑞𝑁−1} that satisfies 𝐸, only using the gates in G. Formally, for finite index

𝐼 = {1, ..,𝑚} we aim to find a sequence of gate operations 𝐶 = 𝐺1 (q1);𝐺2 (q2); . . . ;𝐺𝑚 (q𝑚) such
that 𝐺𝑖 ∈ G, q𝑖 ⊆ q, and satisfies 𝐸 exactly as

|𝑜𝑢𝑡𝑖⟩ = 𝐶 |𝑖𝑛𝑖⟩ for all ( |𝑖𝑛𝑖⟩ , |𝑜𝑢𝑡𝑖⟩) ∈ 𝐸. (2)

Note that we can sometimes relax the correctness criterion (2) to ignore global phase, that is, for

some 𝜃 ∈ [0, 2𝜋) :

𝑒𝑖𝜃 |𝑜𝑢𝑡𝑖⟩ = 𝐶 |𝑖𝑛𝑖⟩ for all ( |𝑖𝑛𝑖⟩ , |𝑜𝑢𝑡𝑖⟩) ∈ 𝐸. (3)

For instance, this is a natural choice for certain classes of synthesis problems, namely state prepara-
tion, where the task is to build a circuit that prepares a certain quantum state |𝜓 ⟩ from classical

state |𝑥⟩ (e.g., |0 . . . 0⟩). In this case, the specification is given as the singleton set 𝐸 = {(|𝑥⟩ , |𝜓 ⟩)}.
Also note that, when the specification is given as a unitary matrix𝑈 , the input-output examples

are defined as 𝐸 = {(|𝑥⟩ ,𝑈 |𝑥⟩) | 𝑥 ∈ {0, 1}𝑁 }.

Example 3.1 (Running Example). Consider the following question posted on StackExchange [SE

2020c]:

“How to convert 3-qubit quantum state |100⟩ into |𝐺𝐻𝑍 ⟩ = 1√
2

( |000⟩ + |111⟩)
using only Hadamard and 𝐶𝑁𝑂𝑇 gates?”

This is a state preparation problem and can be translated into our problem definition as follows:

• 𝑁 = 3

• 𝐸 = {(|100⟩ , 1√
2

( |000⟩ + |111⟩))}
• G = {𝐻,𝐶𝑁𝑂𝑇 }

Given these inputs, our goal is to synthesize a circuit such as one presented in Figure 3.

H • •

•|100⟩

H H

|𝐺𝐻𝑍 ⟩ = 1√
2

( |000⟩ + |111⟩)




Fig. 3. Quantum circuit for transforming |100⟩ to |𝐺𝐻𝑍 ⟩

4 OUR SYNTHESIS ALGORITHM
In this section, we present a modular algorithm for synthesizing quantum circuits. Section 4.1

defines what we mean by modules and describe their properties. Section 4.2 describes the high-level

structure of our algorithm. Then, we provide the details of the two crucial parts of our algorithm:

module-level pruning (Section 4.3) and candidate module generation (Section 4.4). Finally, we

discuss on complexity of our synthesis algorithm in Section 4.5.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



Modular Component-BasedQuantum Circuit Synthesis 87:7

4.1 Modular Representation ofQuantum Circuits

𝑀1 𝑀2

H • •
•

H H

(a)

𝑀1 𝑀2 𝑀3

H • •
•

H H

(b)

Fig. 4. Modular representation of construction GHZ_from_100

Modules. Given a quantum circuit 𝐶 = 𝐺1 (q1);𝐺2 (q2); . . . ;𝐺𝑛 (q𝑛), we define a module of 𝐶 to

be a consecutive slice 𝐺𝑙 (q𝑙 );𝐺𝑙+1 (q𝑙+1); · · · ;𝐺𝑙+𝑚 (q𝑙+𝑚) (1 ≤ 𝑙 ≤ 𝑛, 0 ≤ 𝑚 ≤ 𝑛 − 𝑙). For example,

we can decompose the circuit in Figure 3 into two modules 𝐶 = 𝑀1;𝑀2 in Figure 4a, where

𝑀1 = 𝐻 (𝑞0);𝐶𝑁𝑂𝑇 (𝑞0, 𝑞1);𝐶𝑁𝑂𝑇 (𝑞0, 𝑞2), 𝑀2 = 𝐻 (𝑞2);𝐶𝑁𝑂𝑇 (𝑞1, 𝑞2);𝐻 (𝑞2).
A circuit may have multiple modular representations. For example, we can also decompose the

circuit in Figure 3 into three modules 𝐶 = 𝑀1;𝑀2;𝑀3 in Figure 4b, where

𝑀1 = 𝐻 (𝑞0), 𝑀2 = 𝐶𝑁𝑂𝑇 (𝑞0, 𝑞1);𝐶𝑁𝑂𝑇 (𝑞0, 𝑞2), 𝑀3 = 𝐻 (𝑞2);𝐶𝑁𝑂𝑇 (𝑞1, 𝑞2);𝐻 (𝑞2).

Attribute Difference. For two state vectors |𝜓 ⟩ and |𝜙⟩, we characterize their attribute difference,
denoted |𝜓 ⟩ ⊖ |𝜙⟩. We consider four kinds of attributes:

Ω = {Entangle, Superposition, Phasing, Bool}.
Intuitively, |𝜓 ⟩ ⊖ |𝜙⟩ is defined to be

• Entangle if |𝜓 ⟩ and |𝜙⟩ are different in how qubits are entangled,

• Superposition if |𝜓 ⟩ and |𝜙⟩ are different in how their basis states are superposed,

• Phasing if |𝜓 ⟩ and |𝜙⟩ differ in relative phases, and

• Bool if |𝜓 ⟩ and |𝜙⟩ differ classically.
To formally define |𝜓 ⟩ ⊖ |𝜙⟩, let us first define the notion of the entanglement partition of a state

vector.

Definition 4.1 (Entanglement Partition). Let |𝜓 ⟩q be an 𝑁 -qubit state vector on qubit register q.
An entanglement partition of |𝜓 ⟩q is the finest partition {q1, q2, . . . , q𝑘 } of the qubit register q such

that |𝜓 ⟩ is separable as
|𝜓 ⟩q = |𝜓1⟩q1 ⊗ · · · ⊗ |𝜓𝑘⟩qk

where each state vector |𝜓𝑖⟩ on q𝑖 is fully entangled: for any q
(1)
𝑖

, q(2)
𝑖
⊆ q𝑖 such that q(1)

𝑖
∪· q(2)

𝑖
= q𝑖

and state vectors |𝜙1⟩q(1)
𝑖

and |𝜙2⟩q(2)
𝑖

, |𝜓𝑖⟩ is not decomposed into |𝜙1⟩ and |𝜙2⟩, i.e., |𝜓𝑖⟩ ≠ |𝜙1⟩⊗ |𝜙2⟩.

Example 4.2. The Bell state |Φ⟩ = 1√
2

( |00⟩ + |11⟩) on qubit register q = {𝑞0, 𝑞1} is entangled with
entanglement partition {{𝑞0, 𝑞1}}. Similarly, the entanglement partition of |𝐺𝐻𝑍 ⟩ = 1√

2

( |000⟩ +
|111⟩) is {{𝑞0, 𝑞1, 𝑞2}}. On the other hand, classic state vectors such as |𝜙⟩ = |100⟩ on qubit register

q = {𝑞0, 𝑞1, 𝑞2} is not entangled at all; its entanglement partition is {{𝑞0}, {𝑞1}, {𝑞2}}.

Now we can define the attribute difference, |𝜓 ⟩ ⊖ |𝜙⟩, between state vectors.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



87:8 Chan Gu Kang and Hakjoo Oh

Definition 4.3 (Attribute Difference between State Vectors). Consider two (different) state vectors

|𝜓 ⟩ and |𝜙⟩ on a qubit register q. The attribute difference between |𝜓 ⟩ and |𝜙⟩, denoted |𝜓 ⟩ ⊖ |𝜙⟩,
is defined as follows:

• |𝜓 ⟩ ⊖ |𝜙⟩ = Entangle if the entanglement partitions of |𝜓 ⟩ and |𝜙⟩ are different,
• |𝜓 ⟩ ⊖ |𝜙⟩ = Superposition (or in short Sp) if dist |𝜓 ⟩ ≠𝑝𝑒𝑟𝑚 dist |𝜙 ⟩ ,
• |𝜓 ⟩ ⊖ |𝜙⟩ = Phasing if dist |𝜓 ⟩ =𝑝𝑒𝑟𝑚 dist |𝜙 ⟩ but amp |𝜓 ⟩ ≠𝑝𝑒𝑟𝑚 amp |𝜙 ⟩ , and
• |𝜓 ⟩ ⊖ |𝜙⟩ = Bool if amp |𝜓 ⟩ =𝑝𝑒𝑟𝑚 amp |𝜙 ⟩ (by non-trivial permutation).

Although it is not a ‘difference’, we additionally define to be |𝜓 ⟩ ⊖ |𝜙⟩ = Identity (in short Id) if

|𝜓 ⟩ = |𝜙⟩.

There are two remarks regarding the definition:

• Superposition, Phasing, and Bool are mutually exclusive: when |𝜓 ⟩ ⊖ |𝜙⟩ ≠ Entangle,

|𝜓 ⟩ ⊖ |𝜙⟩ is only one of Superposition, Phasing, and Bool. In this case, we say the attribute

difference is local. However, when the difference is Entangle, |𝜓 ⟩ ⊖ |𝜙⟩ could still be one of

{Superposition, Phasing, Bool}. For example, |𝜙⟩ = 1√
2

( |00⟩ − |11⟩) and |𝜓 ⟩ = 1√
2

( |01⟩ +
|11⟩) differ in Entangle and Phasing. In this case, we prioritize Entangle and define

|𝜓 ⟩ ⊖ |𝜙⟩ = Entangle.

• When defining Phasing, unlike the usual definition of a relative phase, we compare distri-

butions and amplitudes up to permutation. This allows us to view phasing operations in

a broader sense. For example, the 𝑍 × 𝑋 operation is still regarded as a phasing operation

according to our definition.

Example 4.4. Consider |𝐺𝐻𝑍 ⟩ = 1√
2

( |000⟩ + |111⟩). We show several examples of attribute

difference, |𝐺𝐻𝑍 ⟩ ⊖ |𝜙⟩, between |𝐺𝐻𝑍 ⟩ and a state vector |𝜙⟩.
(1) When |𝜙⟩ = |100⟩, |𝐺𝐻𝑍 ⟩ ⊖ |𝜙⟩ = Entangle. State vector |100⟩ is not entangled at all, so its

entanglement partition is {{𝑞0}, {𝑞1}, {𝑞2}}. On the other hand, |𝐺𝐻𝑍 ⟩ is fully entangled and
the entanglement partition is {{𝑞0, 𝑞1, 𝑞2}}. Thus, their entanglement paritions are different.

(2) When |𝜙⟩ = 1√
3

( |001⟩ + |010⟩ + |100⟩), |𝐺𝐻𝑍 ⟩ ⊖ |𝜙⟩ = Superposition. Note that the entan-

glement partition of |𝜙⟩ is the same as |𝐺𝐻𝑍 ⟩. Thus, we compare the distributions of the

state vectors:

dist |𝐺𝐻𝑍 ⟩ = (
1

2

, 0, 0, 0, 0, 0, 0,
1

2

), dist |𝜙 ⟩ = (0,
1

3

,
1

3

, 0,
1

3

, 0, 0, 0).

Apparently, dist |𝐺𝐻𝑍 ⟩ ≠𝑝𝑒𝑟𝑚 dist |𝜙 ⟩ .
(3) When |𝜙⟩ = 1√

2

( |000⟩ − |111⟩), |𝐺𝐻𝑍 ⟩ ⊖ |𝜙⟩ = Phasing since the two states have the same

distribution, ( 1
2
, 0, 0, 0, 0, 0, 0, 1

2
), but their amplitudes are different:

amp |𝐺𝐻𝑍 ⟩ = (
1

√
2

, 0, 0, 0, 0, 0, 0,
1

√
2

), amp |𝜙 ⟩ = (
1

√
2

, 0, 0, 0, 0, 0, 0,− 1

√
2

).

(4) When |𝜙⟩ = 1√
2

( |001⟩ + |110⟩), |𝐺𝐻𝑍 ⟩ ⊖ |𝜙⟩ = Bool because the amplitudes of |𝐺𝐻𝑍 ⟩ and
|𝜙⟩ are equivalent up to permutation:

amp |𝐺𝐻𝑍 ⟩ = (
1

√
2

, 0, 0, 0, 0, 0, 0,
1

√
2

), amp |𝜙 ⟩ = (0,
1

√
2

, 0, 0, 0, 0,
1

√
2

, 0).

Indeed, we can reach from |𝜙⟩ to |𝐺𝐻𝑍 ⟩ by 𝑋 (𝑞2), that is, 𝑋 (𝑞2) |𝜙⟩ = |𝐺𝐻𝑍 ⟩.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



Modular Component-BasedQuantum Circuit Synthesis 87:9

Attribute of Modules. From the definition of attribute difference between state-vectors, at-

tributes can also be defined for quantum operators and modules acting on state-vectors.

Definition 4.5 (Attribute of Module or Quantum Operator). Given a quantum operator 𝑈 and an

input state-vector |𝑖𝑛⟩, we define the attribute of𝑈 w.r.t. |𝑖𝑛⟩, denoted𝐴𝑡𝑡 |𝑖𝑛⟩ (𝑈 ), to be𝑈 |𝑖𝑛⟩ ⊖ |𝑖𝑛⟩.
For a modular quantum circuit 𝐶 = 𝑀1; · · · ;𝑀𝑘 and input |𝑖𝑛⟩, the attribute of module𝑀𝑙 , denoted

𝐴𝑡𝑡𝑀𝑙−1 ...𝑀1 |𝑖𝑛⟩ (𝑀𝑙 ), is defined to be (𝑀𝑙 · · ·𝑀1) |𝑖𝑛⟩ ⊖ (𝑀𝑙−1 · · ·𝑀1) |𝑖𝑛⟩.

Example 4.6. Consider the modularized circuit in Figure 4a with input state-vector |𝑖𝑛⟩ = |100⟩.
• 𝐴𝑡𝑡 |100⟩ (𝑀1) = 𝑀1 |100⟩ ⊖ |100⟩ = 1√

2

( |000⟩ − |111⟩) ⊖ |100⟩ = Entangle, where module

𝑀1 = 𝐻 (𝑞0);𝐶𝑁𝑂𝑇 (𝑞0, 𝑞1);𝐶𝑁𝑂𝑇 (𝑞0, 𝑞2) maps |100⟩ to 1√
2

( |000⟩ − |111⟩). Intuitively, the
attribute of𝑀1 is Entangle because its input |100⟩ and output 1√

2

( |000⟩−|111⟩) have different
engtanglement partitions.

• 𝐴𝑡𝑡𝑀1 |100⟩ (𝑀2) = (𝑀2×𝑀1) |100⟩ ⊖𝑀1 |100⟩ = |𝐺𝐻𝑍 ⟩ ⊖ 1√
2

( |000⟩ − |111⟩) = Phasing, where

module 𝑀2 = 𝐻 (𝑞2);𝐶𝑁𝑂𝑇 (𝑞1, 𝑞2);𝐻 (𝑞2) maps
1√
2

( |000⟩ − |111⟩) to |𝐺𝐻𝑍 ⟩ = 1√
2

( |000⟩ +
|111⟩). These two state-vectors differ only in a relative phase.

• 𝐴𝑡𝑡 |100⟩ (𝑀2 ×𝑀1) = (𝑀2 ×𝑀1) |100⟩ ⊖ |100⟩ = |𝐺𝐻𝑍 ⟩ ⊖ |100⟩ = Entangle.

We define an order between modules based on their attributes as follows.

Definition 4.7 (Order Between Modules). Consider a modularized quantum circuit𝐶 = 𝑀1; · · · ;𝑀𝑘 .

Given two consecutive modules𝑀𝑖 , 𝑀𝑖+1 (1 ≤ 𝑖 < 𝑘) and input |𝑖𝑛⟩ to𝑀𝑖 , where the input vector

will be clear from the context:

𝑀𝑖 ≻ 𝑀𝑖+1 ⇐⇒ 𝐴𝑡𝑡 |𝑖𝑛⟩ (𝑀𝑖+1 ×𝑀𝑖 ) = 𝐴𝑡𝑡 |𝑖𝑛⟩ (𝑀𝑖 )

On the other hand, we define𝑀𝑖 ≺ 𝑀𝑖+1 if𝑀𝑖+1 absorbs the attribute of𝑀𝑖 :

𝑀𝑖 ≺ 𝑀𝑖+1 ⇐⇒ 𝐴𝑡𝑡 |𝑖𝑛⟩ (𝑀𝑖+1 ×𝑀𝑖 ) = 𝐴𝑡𝑡𝑀𝑖 |𝑖𝑛⟩ (𝑀𝑖+1)

We write𝑀𝑖 ≃ 𝑀𝑖+1 when both𝑀𝑖 ≻ 𝑀𝑖+1 and𝑀𝑖 ≺ 𝑀𝑖+1 hold.

Example 4.8. In Example 4.6, 𝑀1 ≻ 𝑀2 holds because 𝐴𝑡𝑡 |100⟩ (𝑀2 × 𝑀1) = Entangle =

𝐴𝑡𝑡 |100⟩ (𝑀1). However,𝑀1 ⊀ 𝑀2 since𝐴𝑡𝑡 |100⟩ (𝑀2×𝑀1) = Entangle ≠ Phasing = 𝐴𝑡𝑡𝑀1 |100⟩ (𝑀2).
Hence,𝑀1 ; 𝑀2 and𝑀1 ⋩ 𝑀2.

Example 4.9. Consider a quantum circuit𝐶 = 𝑀1;𝑀2, where𝑀1 = 𝑋 (𝑞0);𝐻 (𝑞0); and𝑀2 = 𝐻 (𝑞0).
For input vector |0⟩, 𝐴𝑡𝑡 |0⟩ (𝑀1) = Superposition and 𝐴𝑡𝑡𝑀1 |0⟩ (𝑀2) = Superposition. However,

𝐴𝑡𝑡 |0⟩ (𝑀2 × 𝑀1) = 𝐴𝑡𝑡 |0⟩ (𝑋 (𝑞0)) = Bool, which is neither 𝐴𝑡𝑡 |0⟩ (𝑀1) nor 𝐴𝑡𝑡𝑀1 |0⟩ (𝑀2). Hence,
𝑀1 ⊁ 𝑀2 and𝑀1 ⊀ 𝑀2, which implies that ≻ is a partial order.

Definition 4.10. We define the order < between attributes as follows:

Identity < Bool < Phasing < Superposition < Entangle (4)

The order ≻ between modules and the order < between attributes are closely related.

Proposition 4.11. For 𝜔,𝜔 ′ ∈ Ω = {Entangle, Superposition, Phasing, Bool, Identity}, con-
sider modules𝑀𝑖 , 𝑀𝑖+1 with input |𝑖𝑛⟩ (for𝑀𝑖 ) such that 𝐴𝑡𝑡 |𝑖𝑛⟩ (𝑀𝑖 ) = 𝜔 and 𝐴𝑡𝑡𝑀𝑖 |𝑖𝑛⟩ (𝑀𝑖+1) = 𝜔 ′.
Then,

𝜔 > 𝜔 ′ ⇐⇒ 𝑀𝑖 ⋩ 𝑀𝑖+1.

Proof. By case analysis on 𝜔 ∈ Ω. □

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



87:10 Chan Gu Kang and Hakjoo Oh

We say a modularized quantum circuit𝐶 = 𝑀1; · · · ;𝑀𝑘 ismonotonically decreasing (resp., strictly
decreasing) if 𝑀𝑖 ≻ 𝑀𝑖+1 (resp., 𝑀𝑖 ⋩ 𝑀𝑖+1) holds for every pair 𝑀𝑖 , 𝑀𝑖+1 (1 ≤ 𝑖 ≤ 𝑘 − 1) of

consecutive modules.

As we will show later, these properties characterize the quantum circuit we are constructing,

concretely for the state preparation case.

Example 4.12. The modularized circuit in Figure 4a is strictly decreasing because 𝑀1 ⋩ 𝑀2

(see Example 4.9). We can also check this by Proposition 4.11 : since 𝐴𝑡𝑡 |100⟩ (𝑀1) = Entangle >

Phasing = 𝐴𝑡𝑡𝑀1 |100⟩ (𝑀2), it is strictly decreasing. In contrast, the modular representation in

Figure 4b is not decreasing since the attributes of𝑀1,𝑀2, and𝑀3 are Superposition, Entangle,

and Phasing, respectively, but Superposition < Entangle.

4.2 Algorithm Outline
Algorithm 1 describes the outline of our modular synthesis algorithm. Let (𝑁, 𝐸,G) be the problem
specification, where 𝑁 is the circuit size, 𝐸 input-output examples, and G the user-provided gates.

High-Level Structure. The main feature of our algorithm is that it works at a module-level,

rather than a gate-level. That is, the algorithm uses a setM of modules, not gates, as (atomic)

components, and aims to find a sequence𝐶 = 𝑀1;𝑀2; . . . ;𝑀𝑙 of modules that satisfies input-output

examples. Thus, the very first job of the algorithm is to build the setM of component modules from

the gate set G. For the moment, assumeM𝑘 is given (where 𝑘 is some parameter that determines

space ofM, explained in Section 4.4) and letM𝐶,𝐸 ⊆ M𝑘 be the subset of modules relevant for

the current context (the circuit 𝐶 and examples 𝐸). We explain how to buildM𝑘 andM𝐶,𝐸 in

Section 4.4.

We explain Algorithm 1 line by line. The algorithm performs enumerative search with pruning at

the module-level. It is a worklist-based algorithm, where the worklist𝑊 is a set of (partial) circuits

and initially contains the empty circuit 𝜖 (line 1). The synthesis loop at lines 2–11 is repeated

until𝑊 becomes empty or the time budget expires. At lines 3 and 4, a circuit 𝐶 is chosen from

the worklist. For Choose, we prioritize 𝐶 ∈𝑊 with smallest modular length and number of gate

operations, in order to expect a smallest size circuit as synthesis result. At lines 5–6, we consider

each candidate module𝑀 ∈ M𝐶,𝐸 and use the predicate

is_gap_filled(𝐶,𝑀, 𝐸) ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}
to see if module 𝑀 “fills” the attribute gap between the current circuit 𝐶 and the desired one

specified by examples 𝐸. (The definition of is_gap_filled will be given shortly in Section 4.3.) When

is_gap_filled(𝐶, 𝐸,𝑀) evaluates to𝑇𝑟𝑢𝑒 , we append𝑀 to𝐶 (line 7) and check whether the extended

circuit 𝐶 ′ is a solution satisfying all input-output examples (possibly up to global phase by user’s

choice) (line 8):

solution(𝐶, 𝐸) ⇐⇒ ∀(|𝑖𝑛⟩ , |𝑜𝑢𝑡⟩) ∈ 𝐸 : 𝐶 |𝑖𝑛⟩ = |𝑜𝑢𝑡⟩ .
The algorithm ends if a solution is discovered (line 9). Otherwise, it repeats the previous steps while

adding 𝐶 ′ to the worklist𝑊 (line 10).

Example. Let us illustrate the algorithm for the problem in Example 3.1, where the goal is to

synthesize the GHZ circuit in Figure 3 given 𝐸 = {(|100⟩ , 1√
2

( |000⟩ + |111⟩))} and G = {𝐻,𝐶𝑁𝑂𝑇 }.
The first step of our algorithm is to generate the set of modules from G. For simplictiy, suppose the

following three modules are available for use regardless of given circuit 𝐶:

M =


𝑀1 = 𝐻 (𝑞0);𝐶𝑁𝑂𝑇 (𝑞0, 𝑞1);𝐶𝑁𝑂𝑇 (𝑞0, 𝑞2),
𝑀2 = 𝐶𝑁𝑂𝑇 (𝑞0, 𝑞1),
𝑀3 = 𝐻 (𝑞2);𝐶𝑁𝑂𝑇 (𝑞1, 𝑞2);𝐻 (𝑞2)


Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



Modular Component-BasedQuantum Circuit Synthesis 87:11

Algorithm 1 Algorithm Outline

Input: 𝑁 : circuit size, 𝐸: input-output examples, G: user-defined gate set

Output: Quantum circuit 𝐶 satisfying 𝐸

1: 𝑊 ← {𝜖}
2: repeat
3: 𝐶 ← Choose(𝑊 )
4: 𝑊 ←𝑊 \ {𝐶}
5: for 𝑀 ∈ M𝐶,𝐸 do ⊲M𝐶,𝐸 : component modules relevant for 𝐶 and 𝐸 (Section 4.4)

6: if is_gap_filled(𝐶,𝑀, 𝐸) then ⊲ Attribute-based pruning (Section 4.3)

7: 𝐶 ′← 𝐶;𝑀

8: if solution(𝐶 ′, 𝐸) then
9: return 𝐶 ′

10: 𝑊 ←𝑊 ∪ {𝐶 ′}
11: until𝑊 = ∅ or timeout

Then, our algorithm goes into the main loop and works as follows:

(1) The algorithm begins with the blank circuit,𝐶 = 𝜖 , which acts as the identify function on the

input state |100⟩, i.e.,𝐶 |100⟩ = |100⟩. At line 5, we consider each ofM = {𝑀1, 𝑀2, 𝑀3} and use
is_gap_filled to identify modules that fill the gap between𝐶 and the desired solution. To do so,

we first find out that the attribute difference between𝐶 and the solution is Entangle because

1√
2

( |000⟩ + |111⟩) ⊖ 𝐶 |100⟩ = Entangle according to Definition 4.3. Next, we compute the

module attributes (Definition 4.5) for𝑀1,𝑀2, and𝑀3 as follows:

𝐴𝑡𝑡𝐶 |100⟩ (𝑀1) = (𝑀1 ×𝐶) |100⟩ ⊖ 𝐶 |100⟩ = 1√
2

( |000⟩ − |111⟩) ⊖ |100⟩ = Entangle

𝐴𝑡𝑡𝐶 |100⟩ (𝑀2) = (𝑀2 ×𝐶) |100⟩ ⊖ 𝐶 |100⟩ = |110⟩ ⊖ |100⟩ = Bool

𝐴𝑡𝑡𝐶 |100⟩ (𝑀3) = (𝑀3 ×𝐶) |100⟩ ⊖ 𝐶 |100⟩ = |100⟩ ⊖ |100⟩ = Identity

Note that the attribute of module 𝑀1, i.e., 𝐴𝑡𝑡𝐶 |100⟩ (𝑀1) = Entangle, is equivalent to the

attribute difference, Entangle, between 𝐶 and the solution. Thus, is_gap_filled(𝐶,𝑀1, 𝐸)
at line 6 evlauates to True and we append𝑀1 to 𝐶 . (For𝑀2 and𝑀3, is_gap_filled evaluates

to False.) At line 8, we check if 𝐶 ′ = 𝐶;𝑀1 = 𝑀1 can be a solution. In this case, since

𝑀1 |000⟩ = 1√
2

( |000⟩ − |111⟩) ≠ 1√
2

( |000⟩ + |111⟩), solution(𝐶 ′, 𝐸) evaluates to False.
(2) In the second iteration, the current circuit𝐶 is𝑀1 and we try to extend it with modules inM.

To do so, we again find out that the current attribute difference between 𝐶 and the solution

is Phasing:

1

√
2

( |000⟩ + |111⟩) ⊖ 𝐶 |100⟩ = 1

√
2

( |000⟩ + |111⟩) ⊖ 1

√
2

( |000⟩ − |111⟩) = Phasing

and compare it with the attributes of modules𝑀1,𝑀2, and𝑀3:

𝐴𝑡𝑡𝑀1 |100⟩ (𝑀1) = (𝑀1 ×𝑀1) |100⟩ ⊖ 𝑀1 |100⟩
= 1

2
( |000⟩ − |011⟩ + |100⟩ + |111⟩) ⊖ 1√

2

( |000⟩ − |111⟩) = Superposition

𝐴𝑡𝑡𝑀1 |100⟩ (𝑀2) = (𝑀2 ×𝑀1) |100⟩ ⊖ 𝑀1 |100⟩
= 1√

2

( |000⟩ − |101⟩) ⊖ 1√
2

( |000⟩ − |111⟩) = Entangle

𝐴𝑡𝑡𝑀1 |100⟩ (𝑀3) = (𝑀3 ×𝑀1) |100⟩ ⊖ 𝑀1 |100⟩
= 1√

2

( |000⟩ + |111⟩) ⊖ 1√
2

( |000⟩ − |111⟩) = Phasing

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



87:12 Chan Gu Kang and Hakjoo Oh

In this case, because the attribute of𝑀3 coincides with the current difference, we append𝑀3

to 𝐶 = 𝑀1. The resulting circuit 𝐶
′ = 𝑀1;𝑀3 satisfies the example specification:

(𝑀3 ×𝑀1) |100⟩ =
1

√
2

( |000⟩ + |111⟩)

and the algorithm terminates with the solution found.

4.3 Pruning
Given an example ( |𝑖𝑛⟩ , |𝑜𝑢𝑡⟩) ∈ 𝐸 and a quantum circuit𝐶 , let gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶) be the attribute
difference between 𝐶 and the circuit whose behavior is specified by the example ( |𝑖𝑛⟩ , |𝑜𝑢𝑡⟩):

gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶)
def
= |𝑜𝑢𝑡⟩ ⊖ 𝐶 |𝑖𝑛⟩ .

Single IO. When 𝐸 = {(|𝑖𝑛⟩ , |𝑜𝑢𝑡⟩)} is a singleton set, we append a module 𝑀 to the cur-

rent circuit 𝐶 if the attribute difference between 𝐶 and 𝐸 coincides with the attribute of 𝑀 , i.e.,

gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶) = 𝐴𝑡𝑡𝐶 |𝑖𝑛⟩ (𝑀). That is, we define is_gap_filled as follows:

is_gap_filled(𝐶,𝑀, ( |𝑖𝑛⟩ , |𝑜𝑢𝑡⟩)) ⇐⇒ gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶) = 𝐴𝑡𝑡𝐶 |𝑖𝑛⟩ (𝑀). (5)

Example 4.13. Suppose 𝐸 = {|100⟩ ↦→ |𝐺𝐻𝑍 ⟩} and 𝐶 = 𝜖 . Consider modules 𝑀1 and 𝑀2 in

Figure 4a. In this case, we can append𝑀1 to 𝐶 because

gap_att |100⟩, |𝐺𝐻𝑍 ⟩ (𝐶) = Entangle = 𝐴𝑡𝑡𝐶 |100⟩ (𝑀1).
In contrast, we do not append𝑀2 to 𝐶 because

gap_att |100⟩, |𝐺𝐻𝑍 ⟩ (𝐶) = Entangle ≠ Identity = 𝐴𝑡𝑡𝐶 |100⟩ (𝑀2).

Multi IO. When 𝐸 = {(|𝑖𝑛𝑖⟩ , |𝑜𝑢𝑡𝑖⟩) | 𝑖 = 1, . . . , 𝑘} is not a singleton set. We may want to append

a module𝑀 to the current circuit 𝐶 if the module fills the gap for every example:

∀𝑖 ∈ [1, 𝑘] : gap_att |𝑖𝑛𝑖 ⟩, |𝑜𝑢𝑡𝑖 ⟩ (𝐶) = 𝐴𝑡𝑡𝐶 |𝑖𝑛𝑖 ⟩ (𝑀).

However, we found that modules that fill multiple gaps are often complex (i.e., requiring many gate

operations) and are hardly captured by a module of small depths. Instead, we allow modules to be

appended even if they partially fill the gaps:

is_gap_filled(𝐶,𝑀, 𝐸) ⇐⇒


∑
( |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩) ∈𝐸

1is_gap_filled(𝐶,𝑀,( |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩)

 ≥ 𝛿 (6)

where 𝛿 is a hyper-parameter and we set 𝛿 = ⌊|𝐸 |/2⌋ in our implementation.

𝑀1 𝑀2

• •
• • •

√
𝑋

√
𝑋

√
𝑋
−1

Fig. 5. Implementation of the Toffoli gate using G = {𝐶
√
𝑋,𝐶
√
𝑋
−1
,𝐶𝑁𝑂𝑇 }

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



Modular Component-BasedQuantum Circuit Synthesis 87:13

Example 4.14. Consider the problem of synthesizing the Toffoli gate (i.e., the 𝐶𝐶𝑁𝑂𝑇 gate)

using G = {𝐶
√
𝑋,𝐶
√
𝑋
−1
,𝐶𝑁𝑂𝑇 } as component gates, where input-output examples are given

as 𝐸 = {|000⟩ ↦→ |000⟩ , |001⟩ ↦→ |001⟩ , |010⟩ ↦→ |010⟩ , |011⟩ ↦→ |011⟩ , |100⟩ ↦→ |100⟩ , |101⟩ ↦→
|101⟩ , |110⟩ ↦→ |111⟩ , |111⟩ ↦→ |110⟩}.
The solution circuit is presented in Figure 5. The circuit 𝐶 consists of two modules: 𝐶 = 𝑀1;𝑀2.

The action of each module is illustrated as follows:

𝑀1 𝑀2

|000⟩ ↦→ |000⟩ ↦→ |000⟩
|001⟩ ↦→ |001⟩ ↦→ |001⟩
|010⟩ ↦→ ( 1

2
− 1

2
𝑖) |010⟩ + ( 1

2
+ 1

2
𝑖) |011⟩ ↦→ |010⟩

|011⟩ ↦→ ( 1
2
+ 1

2
𝑖) |010⟩ + ( 1

2
− 1

2
𝑖) |011⟩ ↦→ |011⟩

|100⟩ ↦→ ( 1
2
− 1

2
𝑖) |100⟩ + ( 1

2
+ 1

2
𝑖) |101⟩ ↦→ |100⟩

|101⟩ ↦→ ( 1
2
+ 1

2
𝑖) |100⟩ − ( 1

2
+ 1

2
𝑖) |101⟩ ↦→ |101⟩

|110⟩ ↦→ |111⟩ ↦→ |111⟩
|111⟩ ↦→ |110⟩ ↦→ |110⟩

Module𝑀1 satisfies the condition in (6), i.e., is_gap_filled(𝜖,𝑀1, 𝐸) = True, because it fills the gap of
half of input specs: when ( |𝑖𝑛⟩ , |𝑜𝑢𝑡⟩) ∈ {|000⟩ ↦→ |000⟩ , |001⟩ ↦→ |001⟩ , |110⟩ ↦→ |111⟩ , |111⟩ ↦→
|110⟩}, is_gap_filled(𝜖,𝑀1, ( |𝑖𝑛⟩ , |𝑜𝑢𝑡⟩)) = True holds since

gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝜖) = Bool = 𝐴𝑡𝑡𝜖 |𝑖𝑛⟩ (𝑀1).

However, when ( |𝑖𝑛⟩ , |𝑜𝑢𝑡⟩) ∈ {|010⟩ ↦→ |010⟩ , |011⟩ ↦→ |011⟩ , |100⟩ ↦→ |100⟩ , |101⟩ ↦→ |101⟩},
is_gap_filled(𝜖,𝑀1, ( |𝑖𝑛⟩ , |𝑜𝑢𝑡⟩)) evaluates to False because

gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝜖) = Id ≠ Superposition = 𝐴𝑡𝑡𝜖 |𝑖𝑛⟩ (𝑀1).

Note that, in the latter case,𝑀1 introduces a new attribute difference, Superposition, which is filled

by the next module𝑀2, i.e., is_gap_filled(𝑀1, 𝑀2, ( |𝑖𝑛⟩ , |𝑜𝑢𝑡⟩))) = True for all ( |𝑖𝑛⟩ , |𝑜𝑢𝑡⟩) ∈ 𝐸. For
example, is_gap_filled(𝑀1, 𝑀2, ( |010⟩ , |010⟩)) = True because

gap_att |010⟩, |010⟩ (𝑀1) = Superposition = 𝐴𝑡𝑡𝑀1 |010⟩ (𝑀2).

Optimization. The ⊖ operation (Definition 4.3) can be expensive in practice. Thus, we provide

an optimized version of is_gap_filled in (5), which reduce calls to the ⊖ operation:

is_gap_filledopt (𝐶,𝑀, ( |𝑖𝑛⟩ , |𝑜𝑢𝑡⟩)) def={
gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶) > gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶;𝑀) if gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶) ≠ Bool, Identity

gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶) ≥ gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶;𝑀) otherwise

(7)

Note that is_gap_filledopt replaces the query 𝐴𝑡𝑡𝐶 |𝑖𝑛⟩ (𝑀) in (5) by gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶 ;𝑀). Since we
can cache the result of gap_att, is_gap_filledopt does not require re-calculating gap_att for (𝐶;𝑀)
in the future when is_gap_filledopt (𝐶,𝑀, ( |𝑖𝑛⟩ , |𝑜𝑢𝑡⟩)) evaluates to true and 𝐶;𝑀 gets into the

worklist. The following proposition shows that is_gap_filledopt in (7) implies is_gap_filled in (5).

Proposition 4.15. For any quantum circuit 𝐶 , module 𝑀 , and example ( |𝑖𝑛⟩ , |𝑜𝑢𝑡⟩) (where
𝐴𝑡𝑡𝐶 |𝑖𝑛⟩ (𝑀) ≠ Id ),

is_gap_filledopt (𝐶,𝑀, ( |𝑖𝑛⟩ , |𝑜𝑢𝑡⟩)) =⇒ is_gap_filled(𝐶,𝑀, ( |𝑖𝑛⟩ , |𝑜𝑢𝑡⟩)) .

Proof. By case analysis on gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶).
□

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



87:14 Chan Gu Kang and Hakjoo Oh

A consequence of Proposition 4.15 is that is_gap_filledopt more aggressively prunes out modules

than is_gap_filled.

Soundness. Our pruning procedures, is_gap_filled and is_gap_filledopt , are sound when the

solution circuit to be synthesized satisfies some conditions. Below, let 𝐶∗ be the solution circuit

with modularization 𝐶∗ = 𝑀1; . . . ;𝑀𝑘 . Also, let |𝜓𝑖⟩ be a state vector used as input to 𝑀𝑖 , that is,

|𝜓𝑖⟩ = 𝑀𝑖−1 · · ·𝑀1 |𝑖𝑛⟩ and |𝜓1⟩ = |𝑖𝑛⟩.
We first prove the soundness of is_gap_filledopt since it is mainly used in practice. For the

optimized criterion is_gap_filledopt to be sound, we require that the solution circuit is strictly

decreasing (with allowance of sequential Bool modules in tail):

𝐴𝑡𝑡 |𝜓1 ⟩ (𝑀1) > 𝐴𝑡𝑡 |𝜓2 ⟩ (𝑀2) > · · · > 𝐴𝑡𝑡 |𝜓𝑘 ⟩ (𝑀𝑘 ).

The following theorem states the soundness of is_gap_filledopt .

Theorem 4.16. Let 𝐸 = {(|𝑖𝑛⟩ , |𝑜𝑢𝑡⟩)} be an example and𝐶∗ = 𝑀1; · · · ;𝑀𝑘 (𝑀𝑖 ∈ M and attribute
of each𝑀𝑖 is not Identity) be the solution circuit to be synthesized such that𝐶∗ ( |𝑖𝑛⟩) = |𝑜𝑢𝑡⟩. Suppose
𝐶∗ is strictly decreasing (by input |𝑖𝑛⟩) with allowance of sequential Bool modules. Then, for any
prefix 𝐶 = 𝑀1; · · · ;𝑀𝑙−1 (𝑙 ≤ 𝑘) of 𝐶∗,

is_gap_filledopt (𝐶,𝑀𝑙 , ( |𝑖𝑛⟩ , |𝑜𝑢𝑡⟩)) = True.

Proof. Note that for any consecutive subsequence of strict decreasing modules𝑀𝑝 ; ..;𝑀𝑝+𝑛 , it
is guaranteed that the head module𝑀𝑝 absorbs the attribute of following modules𝑀𝑝+1, .., 𝑀𝑝+𝑛 as

𝐴𝑡𝑡𝑀𝑝−1 · ·𝑀1 |𝑖𝑛⟩ (𝑀𝑝+𝑛 · · ·𝑀𝑝 ) = 𝐴𝑡𝑡𝑀𝑝−1 · ·𝑀1 |𝑖𝑛⟩ (𝑀𝑝 ).

(this can be shown by considering cases on 𝐴𝑡𝑡𝑀𝑝−1 · ·𝑀1 |𝑖𝑛⟩ (𝑀𝑝 )). Let |𝜓 ⟩ = 𝐶 |𝑖𝑛⟩ and 𝑏 (1 ≤ 𝑏 ≤ 𝑘)
be the index of the first module whose attribute is Bool. We consider three cases for 𝑏 as follows.

Suppose 𝑙 − 1 < 𝑏 − 2. This means that the attributes of𝑀𝑙 and𝑀𝑙+1 are not Bool. Then, module

sequences𝑀𝑙 ;𝑀𝑙+1; ..;𝑀𝑘 and𝑀𝑙+1; ..;𝑀𝑘 can be seen to be strictly decreasing by merging (if any)

Bool modules (and redefining indices). Hence, the first module𝑀𝑙 in the subsequence of modules

absorbs the attribute as

gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶) = |𝑜𝑢𝑡⟩ ⊖ 𝐶 |𝑖𝑛⟩ = (𝑀𝑘 · ·𝑀𝑙 )𝐶 |𝑖𝑛⟩ ⊖ 𝐶 |𝑖𝑛⟩ (8)

= 𝐴𝑡𝑡 |𝜓 ⟩ (𝑀𝑘 · · ·𝑀𝑙 ) = 𝐴𝑡𝑡 |𝜓 ⟩ (𝑀𝑙 ) (9)

Similarly,

gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶;𝑀𝑙 ) = |𝑜𝑢𝑡⟩ ⊖ 𝐶 |𝑖𝑛⟩ = (𝑀𝑘 · ·𝑀𝑙+1)𝑀𝑙𝐶 |𝑖𝑛⟩ ⊖ 𝑀𝑙𝐶 |𝑖𝑛⟩ (10)

= 𝐴𝑡𝑡𝑀𝑙 |𝜓 ⟩ (𝑀𝑘 · · ·𝑀𝑙+1) = 𝐴𝑡𝑡𝑀𝑙 |𝜓 ⟩ (𝑀𝑙+1) (11)

Since𝐶∗ is strictly decreasing,𝐴𝑡𝑡 |𝜓 ⟩ (𝑀𝑙 ) > 𝐴𝑡𝑡𝑀𝑙 |𝜓 ⟩ (𝑀𝑙+1). Replacing each by (8), (10), the criterion
is satisfied.

Suppose 𝑙 −1 = 𝑏 −2. Then, 𝑙 +1 = 𝑏, so𝑀𝑙+1 is the first module of attribute Bool (while attribute

of𝑀𝑙 is not Bool). Following the argument of the previous case,

gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶) = 𝐴𝑡𝑡 |𝜓 ⟩ (𝑀𝑘 · · ·𝑀𝑙 ) = 𝐴𝑡𝑡 |𝜓 ⟩ (𝑀𝑙 ) > Bool. (12)

Since𝑀𝑙+1 is a Bool module and attribute of modules after𝑀𝑙+1 is Bool,

gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶;𝑀𝑙 ) = 𝐴𝑡𝑡𝑀𝑙 |𝜓 ⟩ (𝑀𝑘 · · ·𝑀𝑙+1) ≤ Bool, (13)

satisfying the criterion as desired.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



Modular Component-BasedQuantum Circuit Synthesis 87:15

Suppose 𝑙 − 1 > 𝑏 − 2, which means that 𝑙 ≥ 𝑏. Then,𝑀𝑙 , 𝑀𝑙+1, .. are Bool modules. Hence

gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶) = 𝐴𝑡𝑡 |𝜓 ⟩ (𝑀𝑘 · · ·𝑀𝑙 ) = 𝐴𝑡𝑡 |𝜓 ⟩ (𝑀𝑙 ) = Bool (14)

gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶;𝑀𝑙 ) = 𝐴𝑡𝑡𝑀𝑙 |𝜓 ⟩ (𝑀𝑘 · · ·𝑀𝑙+1) ≤ Bool (15)

satisfying the criterion (note that gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶) cannot be Id otherwise it contradicts to 𝐶∗

being solution circuit). □

Note that Theorem 4.16 does not hold for the ‘monotonic’ decreasing case because𝐴𝑡𝑡𝐶 |𝑖𝑛⟩ (𝑀𝑙 ) =
𝐴𝑡𝑡𝑀𝑙𝐶 |𝑖𝑛⟩ (𝑀𝑙+1) could be the case.

By Theorem 4.16, when the solution circuit is strictly decreasing, our algorithmwith the optimized

version of pruning (is_gap_filledopt ) never misses the solution. The existence of strictly decreasing

modularization is the core assumption of Theorem 4.16 and this assumption depends on how the

set of candidate modules (M) is prepared. In the trivial case, ifM includes all the possible modules,

then every circuit has a decreasing modularization (since the circuit itself is included as a module in

M). In practice, we observed that the assumption is still likely to hold; with our module-generation

method in Section 4.4, for example, all single IO circuits considered in our evaluation have strictly

decreasing modularizations (Section 5.3).

For is_gap_filled to be sound, the following two conditions need to be met:

(1) The solution circuit is monotonically decreasing:

𝐴𝑡𝑡 |𝜓1 ⟩ (𝑀1) ≥ 𝐴𝑡𝑡 |𝜓2 ⟩ (𝑀2) ≥ .. ≥ 𝐴𝑡𝑡 |𝜓𝑘 ⟩ (𝑀𝑘 )
(2) The head module of any consecutive subsequence absorbs the attribute of following modules:

𝐴𝑡𝑡𝑀𝑝−1 · ·𝑀1 |𝑖𝑛⟩ (𝑀𝑝+𝑛 · · ·𝑀𝑝 ) = 𝐴𝑡𝑡𝑀𝑝−1 · ·𝑀1 |𝑖𝑛⟩ (𝑀𝑝 ) for 1 ≤ 𝑝 ≤ (𝑘 − 1), 1 ≤ 𝑛 ≤ 𝑘 − 𝑝 (16)

This condition is intended to exclude some redundant circuit constructions such that a

module reverts the attribute constructed by previous modules. For example, the circuit of

three modules𝑀1 = 𝐻 (𝑞0), 𝑀2 = 𝐻 (𝑞1), 𝑀3 = 𝐻 (𝑞0);𝐻 (𝑞1) is monotonically decreasing on

input |0⟩. However, 𝐴𝑡𝑡 (𝑀3𝑀2𝑀1) = Id as 𝑀3 reverts the superposition constructed by 𝑀1

and𝑀2.

Theorem 4.17. Let 𝐸 = {(|𝑖𝑛⟩ , |𝑜𝑢𝑡⟩)} be an example and𝐶∗ = 𝑀1; · · · ;𝑀𝑘 (𝑀𝑖 ∈ M and attribute
of each𝑀𝑖 is not Identity) be the solution circuit to be synthesized such that𝐶∗ ( |𝑖𝑛⟩) = |𝑜𝑢𝑡⟩. Suppose
𝐶∗ is monotonically decreasing (by input |𝑖𝑛⟩). Further, assume the following holds:

𝐴𝑡𝑡𝑀𝑝−1 · ·𝑀1 |𝑖𝑛⟩ (𝑀𝑝+𝑛 · · ·𝑀𝑝 ) = 𝐴𝑡𝑡𝑀𝑝−1 · ·𝑀1 |𝑖𝑛⟩ (𝑀𝑝 ) for 1 ≤ 𝑝 ≤ (𝑘 − 1), 1 ≤ 𝑛 ≤ 𝑘 − 𝑝 (17)

Then, for any prefix 𝐶 = 𝑀1; · · · ;𝑀𝑙−1 (𝑙 ≤ 𝑘) of 𝐶∗,

is_gap_filled(𝐶,𝑀𝑙 , ( |𝑖𝑛⟩ , |𝑜𝑢𝑡⟩)) = True.

Proof. Let |𝜓 ⟩ = 𝐶 |𝑖𝑛⟩ = 𝑀𝑙−1 · · ·𝑀1 |𝑖𝑛⟩ be the output vector of𝐶 . By definition𝑀𝑘 · · ·𝑀𝑙 |𝜓 ⟩ =
|𝑜𝑢𝑡⟩ and thus

𝐴𝑡𝑡 |𝜓 ⟩ (𝑀𝑘𝑀𝑘−1 · · ·𝑀𝑙 ) = |𝑜𝑢𝑡⟩ ⊖ |𝜓 ⟩ = gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶).
Since 𝐶∗ is decreasing and by the given condition of (17), 𝐴𝑡𝑡 |𝜓 ⟩ (𝑀𝑘𝑀𝑘−1 · · ·𝑀𝑙 ) = 𝐴𝑡𝑡 |𝜓 ⟩ (𝑀𝑙 ).
Therefore, gap_att |𝑖𝑛⟩, |𝑜𝑢𝑡 ⟩ (𝐶) = 𝐴𝑡𝑡 |𝜓 ⟩ (𝑀𝑙 ), which satisfies the criterion. Note that if 𝐶∗ is not
decreasing, the condition (17) cannot hold. □

Our soundness theorems are naturally extended to the multi-IO case. Since the pruning for

multi-IO problems is defined using the technique for the single IO case, the soundness condition

for pruning by (6) is merely the existence of partially decreasing modularizations (that partially

hold for some of 𝐸). In practice, we observed that this assumption is also likely to hold; all multi-IO

benchmark problems in our evaluation had such modularizations.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



87:16 Chan Gu Kang and Hakjoo Oh

4.4 Module Generation
In this section, we explain our procedure for generating modules, i.e.,M𝐶,𝐸 .

4.4.1 Naive Module Generation. The most straightforward method would be to build every module

that might exist with a length up to 𝑘 by exhaustively listing all the possible component gates in G.
This naive module-generation procedure is to defineM𝐶,𝐸 regardless of 𝐶 and 𝐸 as follows:

M𝐶,𝐸 =M𝑘 = {𝐺1 (q1); · · · ;𝐺𝑚 (q𝑚) | q𝑖 ⊆ q,𝐺𝑖 ∈ G, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑚 ≤ 𝑘}.
However, this approach has performance problems because the number of modules produced using

this method grows exponentially in 𝑘 as follows:

|M𝑘 | =
∑

𝑗=1,...,𝑘

|{𝐺 (q′) | 𝐺 ∈ G, q′ ⊆ q}| 𝑗 (18)

=
∑

𝑗=1,...,𝑘

[ ∑
𝐺𝑖 ∈G
(𝑃 (𝑁,𝑔𝑖 ))

] 𝑗
(19)

where 𝑔𝑖 is the number of qubits for 𝐺𝑖 and 𝑃 (𝑎, 𝑏) denotes permutation (i.e, choosing 𝑏 from 𝑎

things). 𝑃 (𝑁,𝑔𝑖 ) is the number of gate operations possibly made by 𝐺𝑖 on 𝑁 -qubits. For example,

the number of modules for a 3-qubit circuit with 𝑘 = 3 and G = {𝐻,𝐶𝑁𝑂𝑇 } is∑
𝑗=1,2,3

|{𝐻 (𝑞0), 𝐻 (𝑞1), 𝐻 (𝑞2),𝐶𝑁𝑂𝑇 (𝑞0, 𝑞1),𝐶𝑁𝑂𝑇 (𝑞0, 𝑞2),

𝐶𝑁𝑂𝑇 (𝑞1, 𝑞0),𝐶𝑁𝑂𝑇 (𝑞1, 𝑞2),𝐶𝑁𝑂𝑇 (𝑞2, 𝑞0),𝐶𝑁𝑂𝑇 (𝑞2, 𝑞1)}| 𝑗 = 819.

This observation led us to develop a technique for effectively reducing the number of modules.

4.4.2 Our Approach. Our method dynamically selects the set of candidate modules during the

synthesis algorithm that are likely to pass the pruning criterion. Let 𝐸 be the given input-output

specification and 𝐶 be the current circuit during the algorithm. Given 𝐶 and 𝐸, our goal is to find a

subsetM𝐶,𝐸 ⊆ M𝑘 . To achieve this, we exclude modules that are unlikely to pass the criterion,

is_gap_filled (i.e., is_gap_filled(𝐶,𝑀, 𝐸) = 𝐹𝑎𝑙𝑠𝑒). Note that a module 𝑀 passes our criterion,

is_gap_filled(𝐶,𝑀, 𝐸), if the module attribute coincides with the attribute gap between 𝐶 and 𝐸:

𝐴𝑡𝑡𝐶 |𝑖𝑛𝑖 ⟩ (𝑀) = gap_att |𝑖𝑛𝑖 ⟩, |𝑜𝑢𝑡𝑖 ⟩ (𝐶) for ( |𝑖𝑛𝑖⟩ , |𝑜𝑢𝑡𝑖⟩) ∈ 𝐸.
Therefore, if modules could be categorized according to their attributes, we might avoid applying

other types of modules unnecessarily. LetM𝜔 be the set of modules whose attribute is 𝜔 . Then,

we defineM𝐶,𝐸 as follows:

M𝐶,𝐸 =
⋃

( |𝑖𝑛𝑖 ⟩, |𝑜𝑢𝑡𝑖 ⟩) ∈𝐸
Mgap_att|𝑖𝑛𝑖 ⟩,|𝑜𝑢𝑡𝑖 ⟩ (𝐶) . (20)

Now, we explain how we defineM𝜔 for each 𝜔 ∈ {Entangle, Superposition, Phasing, Bool}.
Following Definition 4.5, we should ideally collect modules 𝑀 ∈ M𝜔 to be 𝐴𝑡𝑡 |𝜓 ⟩ (𝑀) = 𝜔 ,

where |𝜓 ⟩ is an input vector that will be used as input to modules 𝑀 (i.e., |𝜓 ⟩ = 𝐶 |𝑖𝑛𝑖⟩ for some

( |𝑖𝑛𝑖⟩ , |𝑜𝑢𝑡𝑖⟩) ∈ 𝐸). Formally, we have the following “ideal” goal: given 𝐶 and some input |𝑖𝑛𝑖⟩ in 𝐸,

collectM𝜔 as follows:

M𝜔

goal

≈ {𝑀 ∈ M | 𝐴𝑡𝑡𝐶 |𝑖𝑛𝑖 ⟩ (𝑀) = 𝜔}.
However, it would be nontrivial to build modulesM𝜔 for every scenario where |𝜓 ⟩ could occur

because 𝐴𝑡𝑡 |𝜓 ⟩ (𝑀) = 𝜔 holds depending on the specified |𝜓 ⟩. Instead, we want 𝑀 to have the

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



Modular Component-BasedQuantum Circuit Synthesis 87:17

attribute 𝜔 in a manner that is independent of the input:

M𝜔

goal

≈ {𝑀 ∈ M | 𝐴𝑡𝑡 (𝑀) = 𝜔}
where 𝐴𝑡𝑡 (𝑀) is defined as follows :

Definition 4.18 (Input independent Attribute). For a module 𝑀 (or gate, unitary matrix etc. in

general), its input-dependent attribute 𝐴𝑡𝑡 (𝑀) is one of the following : for some classical state |𝑥⟩
• Entangle if𝑀 |𝑥⟩ ⊖ |𝑥⟩ = Entangle.

• Superposition if𝑀 |𝑥⟩ ⊖ |𝑥⟩ = Superposition.

• Phasing if for another classical state |𝑦⟩,𝑀 |𝑥⟩ = 𝑒𝑖𝜃 |𝑦⟩ for 𝜃 ∈ (0, 2𝜋).
• Bool if𝑀 |𝑥⟩ is also classical state (strict to global phase).

When there is overlap in the categorization, we prioritize using Entangle > Superposition >

Phasing > Bool.

We defineM𝜔 based on our observation of typical module patterns for each 𝜔 .

Preparation ofMEntangle. Basically, module 𝑀 that includes gate 𝐺 of 𝐴𝑡𝑡 (𝐺) = Entangle

will be 𝐴𝑡𝑡 (𝑀) = Entangle. We observed another major pattern that superpositioning gates and

inseparable gate operations are frequently applied in series to induce entanglement. We say a gate

is inseparable if it cannot be factored out into tensor products of smaller unitary matrices 𝑉 ,𝑊 as

𝐺 = 𝑉 ⊗𝑊 (e.g, 𝐶𝑁𝑂𝑇 is inseparable since 𝐶𝑁𝑂𝑇 = |0⟩ ⟨0| ⊗ 𝐼 + |1⟩ ⟨1| ⊗ 𝑋 ).

For example, consider the following circuit that induces entanglement in GHZ_from_100:

H • •

The module maps unentangled state |100⟩ to entangled one
1√
2

( |000⟩ − |111⟩). This entangling
module is consistent with what we have observed: it is composed of a single Hadamard gate (𝐻 ),

which is a superpositioning gate, followed by a series of 𝐶𝑁𝑂𝑇 gates that are inseparable.

The detailed definition of this pattern is as follows. Assume the circuit size is 𝑁 and the qubit

register is q = {𝑞1, .., 𝑞𝑁 }. Assume for the moment we are creating entanglement from a state that is

completely unentangled (i.e., the partition is {{𝑞1}, .., {𝑞𝑁 }}) to a state that is completely entangled

(i.e., the partition is {{q}}). Then, applying 𝑁 − 1 inseparable gate operations will be sufficient if

all inseparable gates are made of two qubits. Formally,

M ′
Entangle

= {𝐺𝑠𝑝

𝑖
(q𝑠𝑝

1
); . . . ;𝐺𝑠𝑝

𝑠 (q
𝑠𝑝
𝑠 );𝐺𝑖𝑛𝑠

1
(q𝑖𝑛𝑠

1
); . . . ;𝐺𝑖𝑛𝑠

𝑁−1 (q
𝑖𝑛𝑠
𝑁−1)

| 𝐴𝑡𝑡 (𝐺𝑠𝑝

𝑖
) = Sp, 1 ≤ 𝑠 ≤ 𝑁,𝐺𝑖𝑛𝑠

𝑗 is inseparable, q𝑠𝑝
𝑖
, q𝑖𝑛𝑠𝑗 ⊆ q}

If inseparable gates with more than two qubits are allowed as component gates, fewer inseparable

sequences will be necessary. Summing up, the final definition forMEntangle is defined as

MEntangle = {𝐺1 (q1); ..;𝐺𝑠 (qs) | ∃ 𝑗 .𝐴𝑡𝑡 (𝐺 𝑗 ) = Entangle, 1 ≤ 𝑠 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑠} ∪M ′
Entangle

Preparation ofMSp. ForMSp, we collect modules that include at least one gate of attribute Sp

(or Entangle gates since they also induce change in superposition). This is an obvious choice for

MSp; if module𝑀 is consisted only of Phasing and Bool, then its superposition status does not

change and hence 𝐴𝑡𝑡 (𝑀) = Phasing or Bool. For example, the following is a typical pattern:

H

H

H

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



87:18 Chan Gu Kang and Hakjoo Oh

Formally,MSp is defined as follows:

MSp =
{
𝐺1 (q1); . . . ;𝐺𝑠 (q𝑠 )

��
1 ≤ 𝑠 ≤ 𝑘, ∃ 𝑗 .𝐴𝑡𝑡 (𝐺 𝑗 ) = Sp

}
Preparation ofMPhasing andMBool. Basically, modules that only have Bool and Phasing

gates with at least one Phasing gate would cause 𝐴𝑡𝑡 (𝑀) = Phasing. Similarly, modules that only

include Bool gates will satisfy 𝐴𝑡𝑡 (𝑀) = Bool. These two cases are formally defined as follows

M ′
Phasing

=

𝐺1 (q1); . . . ;𝐺𝑠 (q𝑠 )

������ 𝐴𝑡𝑡 (𝐺𝑖 ) = Phasing or Bool for 1 ≤ 𝑖 ≤ 𝑠,

∃ 𝑗 s.t 𝐴𝑡𝑡 (𝐺 𝑗 ) = Phasing,

1 ≤ 𝑠 ≤ 𝑘


M ′

Bool
=
{
𝐺1 (q1); . . . ;𝐺𝑠 (q𝑠 )

�� 𝐴𝑡𝑡 (𝐺 𝑗 ) = Bool, 1 ≤ 𝑗 ≤ 𝑠, 1 ≤ 𝑠 ≤ 𝑘
}

Additionally, modules of attributes Bool or Phasing are often generated by sandwiching them

with two Sp gates. In this case, the front superposition gate sets up the input state to be represented in

a transformed coordinate, and the end superposition gate restores the coordinate of the manipulated

state.

For example, consider gate operation 𝑀 = 𝐻 (𝑞0);𝑋 (𝑞0);𝐻 (𝑞0), assuming input state vector

|+⟩ = 1√
2

( |0⟩ + |1⟩). Hadamard gate transforms computational basis |0⟩ and |1⟩ to |+⟩ and |−⟩
respectively. Hence, applying (first) hadamard 𝐻 (𝑞0) on input state |+⟩, it is represented in the

transformed coordinate as 𝐻 (𝑞0) |+⟩ = |0⟩ . Then, we manipulate it by 𝑋 (𝑞0) which becomes |1⟩.
By the end superposition gate, which is also hadamard 𝐻 (𝑞0) it restores the coordinate so that

|1⟩ = 1√
2

( |+⟩ − |−⟩) becomes
1√
2

( |0⟩ − |1⟩). Evaluating𝑀 , we can see that it was indeed identical

to 𝑍 (𝑞0) and hence 𝐴𝑡𝑡 (𝑀) = Phasing. Modules of this pattern can be prescribed as follows:

M∗ =

𝐺1 (q1); . . . ;𝐺𝑠 (q𝑠 )

��������
𝐴𝑡𝑡 (𝐺1), 𝐴𝑡𝑡 (𝐺𝑠 ) = Superposition, q1 = q𝑠 ,
𝐴𝑡𝑡 (𝐺 𝑗 ) = Bool or Phasing and

q𝑗 ∩ q1 ≠ ∅ for 2 ≤ 𝑗 ≤ 𝑠 − 1(if 𝑠 ≥ 3),
2 ≤ 𝑠 ≤ 𝑘


For example, the following circuit has attribute Phasing:

•
H H

and the following circuits are of attribute Bool:

•

QFT

𝑍
QFT

†
•

H Z H

Note that all modules consist of two Sp gates at the front and end, and some Bool, Phasing gates

exist between them.

Summing up, the final definitions forMBool andMPhasing are

MPhasing =M ′
Phasing

∪M∗, MBool =M ′Bool ∪M∗ .

Module Length. In our implementation, we generated modules of lengths up to 𝑘 = 𝑁 (where

𝑁 is the number of qubits), allowing more complex modules to be generated for circuits of larger

qubit registers. As an exception, forMEntangle, we set 𝑘 = 𝑁 + (𝑁 − 1) (𝑁 for superposition and

(𝑁 − 1) for the sequence of inseparables) to capture the patterns described byM ′
Entangle

.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



Modular Component-BasedQuantum Circuit Synthesis 87:19

4.5 Complexity of Our Synthesis Algorithm
In this section, we analyze the time complexity of our synthesis algorithm (Algorithm 1). The

runtime of the single iteration of the outer loop (lines 3–10 in Algorithm 1) is proportional to

|M𝑘 | × (𝑐𝑜𝑠𝑡 (⊖) × |𝐸 |)

where

• M𝑘 is the set of modules given in (18), an upper bound ofM𝐶,𝐸 used at line 5 of the algorithm,

• |𝐸 | is the number of input-output examples (which is bounded as |𝐸 | ≤ 2
𝑁
), and

• 𝑐𝑜𝑠𝑡 (⊖) denotes the cost of computing attribute difference (i.e, the ⊖ operator), which is

invoked |𝐸 | times when evaluating is_gap_filled at line 6.

Note thatM𝑘 depends on 𝑁 (the number of qubits) and G (the set of component gates) as shown in

(18). 𝑐𝑜𝑠𝑡 (⊖) is an expensive operation whose worst-case runtime is a double exponential function

in the number of qubits (𝑁 ). This is because it requires checking the existence of some permutation

when computing the attribute difference for the Bool, Phasing, and Sp cases. However, since state

vectors are mostly sparse, we observed the worst-case behavior is unlikely to occur in practice.

5 EVALUATION
In this section, we demonstrate the effectiveness of our synthesis algorithm.

5.1 Setup
To show the effectiveness, we evaluate and compare the following four variants of our algorithm:

• Base: A gate-level (not module-level) BFS-based enumerative synthesizer that prunes out

identity gate sequences, 𝐺1 (q1),𝐺2 (q2), . . . ,𝐺𝑛 (q𝑛) such that

∏𝑛
𝑖=1𝐺𝑖 (q𝑖 ) = 𝐼 .

• Baseno_prune: Base without pruning. This is included to check that Base is not very weak.

• Ours: The proposed module-level synthesizer with the optimized version of our pruning

method (is_gap_filledopt in Section 4).

• Oursno_prune: Ours without pruning (module-level search without pruning).

All experiments were carried out on an iMac with an Intel Core i5 processor (3.3 GHz).

Benchmarks. We collected 17 benchmark problems from various sources: online quantum

programming exercises
1
, textbook [Nielsen and Chuang 2011], online forum

2
, and previous work

on specific circuit construction [Draper 2000; Mastriani 2021; Neeley et al. 2010]. Table 1 shows

the description of benchmarks, including input-output specifications and component gates used

in experiments. Table 2 shows the solution circuits for each problem; to our knowledge, they are

minimal in the number of provided gates.

5.2 Results
Table 3 reports the evaluation results. The results show that ourmodule-level algorithm substantially

improves the baseline, the gate-level synthesis method. Within a time limit of 3,600 seconds,

Ours successfully synthesized 16 circuits out of 17, with an average synthesis time of 96.6 seconds.

Among them, 11 circuits were synthesized in less than 10 seconds. Base, on the other hand, solved

10 out of 17 problems in an average time of 639.1 seconds. The overall speed-up for the 10 problems

commonly solved by Ours and Base was 20.3x.

1
https://github.com/microsoft/QuantumKatas

2
https://quantumcomputing.stackexchange.com

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.

https://github.com/microsoft/QuantumKatas
https://quantumcomputing.stackexchange.com


87:20 Chan Gu Kang and Hakjoo Oh

Table 1. Benchmark problems used in evaluation, where G 𝑝

𝑞
denotes

( √
𝑝/𝑞 −

√
1 − (𝑝/𝑞)√

1 − (𝑝/𝑞)
√
(𝑝/𝑞)

)
[Cruz et al.

2019].

ID Problem description and input-output specification Component Gates

three_superpose Prepare a 3-equal superposition of a 2-qubit state as |00⟩ ↦→ 1√
3

( |00⟩ + |10⟩ + |01⟩) [SE 2018a]. 𝐺 1

3

,𝐶𝐻,𝑋

M_valued Prepare a state
1√
2

( |0⟩ + 1√
𝑀

∑𝑀
𝑗=1 | 𝑗⟩) for𝑀 = 4 [SE 2018b]. 𝐻,𝐶𝐻,𝐶𝑁𝑂𝑇

GHZ_from_100 Prepare as 𝐺𝐻𝑍 , |100⟩ ↦→ |𝐺𝐻𝑍 ⟩, with restricted gates 𝐻,𝐶𝑁𝑂𝑇 [SE 2020c]. 𝐻,𝐶𝑁𝑂𝑇

GHZ_by_iSWAP Prepare 𝐺𝐻𝑍 , |000⟩ ↦→ |𝐺𝐻𝑍 ⟩, using iSWAP and specific rotations [Neeley et al. 2010].

𝑖𝑆𝑊𝐴𝑃,

𝑅𝑥 (−𝜋
2
), 𝑅𝑦 ( 𝜋

2
)

GHZ_by_QFT
Prepare as |000⟩ ↦→ |𝐺𝐻𝑍 ⟩ specifically with 𝑄𝐹𝑇 operations [Mastriani 2021]

(note that 1-qubit 𝑄𝐹𝑇 is 𝐻 ).

𝐻,𝑄𝐹𝑇

GHZ_Game Prepare a state used in 𝐺𝐻𝑍 game as |000⟩ ↦→ 1

2
( |000⟩ − |011⟩ − |101⟩ − |110⟩) [QK 2022b]. 𝐻,𝑋,𝐶𝑍

W_orthog
Prepare 3-qubit state orthogonal to𝑊 -state [Dür et al. 2000] as :

|000⟩ ↦→ 1√
3

( |001⟩ − |010⟩ + |111⟩) [SE 2020a].

𝐺 1

3

,𝐶𝐻,

𝐶𝑁𝑂𝑇,𝑋

W_phased
Prepare 3-qubit W state with specific phases. 3-qubit version [QK 2022c]:

|000⟩ ↦→ 1√
3

( |001⟩ + 𝜔 |010⟩ + 𝜔2 |100⟩) for 𝜔 = 𝑒
2

3
𝜋𝑖

𝐺 1

3

,𝐶𝐻,

𝐶𝑁𝑂𝑇,𝑍
2

3 , 𝑋

W_four Prepare 4-qubit W state: |0000⟩ ↦→ 1

2
( |0001⟩ + |0010⟩ + |0100⟩ + |1000⟩) [McClung 2020]

𝐻, 𝑁𝐶𝑁𝐶𝑁𝑂𝑇

𝑇𝑂𝐹𝐹𝑂𝐿𝐼,𝐶𝑋

cluster
Prepare a graph state [Hein et al. 2004]: |0000⟩ ↦→ 1

2
( |0000⟩ + |0011⟩ + |1100⟩ − |1111⟩).

Inspired from question about understanding the circuit [SE 2020b].

𝐻,𝐶𝑍

bit_measure

Prepare a state of equal position, where the numbers of 1s in the first two bits and

the last two bits are the same [SE 2018d]:

|0000⟩ ↦→ 1√
6

( |0000⟩ + |0101⟩ + |0110⟩ + |1001⟩ + |1010⟩ + |1111⟩)

𝐺 1

3

,𝐶𝐻,𝑋

𝐶𝑁𝑂𝑇,𝑇𝑂𝐹𝐹𝑂𝐿𝐼

flip
Implement bit flip code using 𝐻,𝐶𝑍 : for binary string state |𝑏1𝑏2𝑏3⟩ (𝑏𝑖 ∈ {0, 1}),
if 𝑏1 = 1, |1𝑏2𝑏3⟩ ↦→ |1¬𝑏2¬𝑏3⟩, o.w identical map [SE 2019]

𝐻,𝐶𝑍

teleportation
Implement quantum teleportation.

Motivated from question on StackExchange (see [SE 2018c] for provided input-output examples).

𝐻,𝐶𝑁𝑂𝑇

indexed_bell
Indexed by first two qubits, prepare last two qubits to be in one of four Bell states [QK 2022a]:

|0000⟩ ↦→ |00⟩ |Φ+⟩ , |0100⟩ ↦→ |01⟩ |Φ−⟩ , |1000⟩ ↦→ |10⟩ |Ψ+⟩ , |1100⟩ ↦→ |11⟩ |Ψ−⟩
𝐻,𝐶𝑁𝑂𝑇,𝐶𝑍

toffoli_by_
√
𝑋

Implement the Toffoli gate with controlled-

√
𝑋 gates [Nielsen and Chuang 2011]:

binary string state |𝑏1𝑏2𝑏3⟩, |11𝑏3⟩ ↦→ |11¬𝑏3⟩ o.w identical map

𝐶
√
𝑋,𝐶
√
𝑋
−1
,𝐶𝑁𝑂𝑇

QFT
Implement Quantum Fourier Transformation(QFT) [Coppersmith 2002]:

for 3-qubit binary state |𝑥⟩, |𝑥⟩ ↦→ 1√
8

∑
7

𝑦=0 𝑒
2𝜋𝑖𝑦𝑥

8 |𝑦⟩
𝐻,𝐶𝑆,𝐶𝑇, 𝑆𝑊𝐴𝑃

draper
Implement Draper Adder [Draper 2000]:

for 2-bit binary 𝑎 = 𝑎2𝑎1, 𝑏 = 𝑏2𝑏1, |𝑏2𝑏1⟩ |𝑎2𝑎1⟩ ↦→ |𝑏2𝑏1⟩ |(𝑎 + 𝑏) mod 4⟩
𝐶𝑍,𝐶𝑆,

𝑄𝐹𝑇,𝑄𝐹𝑇 †

The results also show that our module-level pruning contributed significantly to the speed up. To

show the pruning’s effectiveness, we compared Ours with Oursno_prune . Overall, Oursno_prune suc-
ceeded to solve 14 out of 17 problems with an average time of 687.5 seconds. Ours, on the other

hand, solved those 14 problems in an average time of 94.6 seconds (7.3x speed up).

5.3 Discussion
Modularization. We observed that quantum circuits often have a strictly decreasing modular

decomposition. All the state preparation problems were solvable with such modularization, so that

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



Modular Component-BasedQuantum Circuit Synthesis 87:21

Table 2. Solution circuits for the problems in Table 1. Circuits are in the (known) minimal forms.

Type ID Circuit ID Circuit

State

Preparation

three_superpose G 1

3

•

H

M_valued
H •

H • •
H • • H

GHZ_from_100
H • •

•
H H

GHZ_by_iSWAP Rx (−𝜋
2
)

iSWAP

Rx (−𝜋
2
) Ry ( 𝜋

2
)

Rx (−𝜋
2
)

iSWAP

Ry ( 𝜋
2
)

Rx (−𝜋
2
)

GHZ_by_QFT QFT QFT

QFT QFT

H QFT QFT

GHZ_Game
H • • H

H Z •

H Z Z

W_orthog
H •

X
G 1

3

•

X •

W_phased G 1

3

• • •

H Z

2

3

Z

2

3

W_four
H •

H •

• •

cluster
H • H

H Z •

H Z •

H Z H

bit_measure G 1

3

• • • •

H •

H • • •
• • •

Multi IO

flip • •
H Z H

H Z H

teleportation • H

H •

draper •
• •

QFT

𝑍 𝑆
QFT

†
𝑍

toffoli_by_
√
𝑋 • •

• • •
√
𝑋

√
𝑋

√
𝑋
−1

QFT
H S T ×

• H S

• • H ×

indexed_bell •
•

H •

Z

solution modules can be soundly captured by our pruning method, as Theorem 4.16 supports. For

example, cluster was synthesized by stacking modules in Figure 6e:𝑀1 is a module of attribute

Entangle,𝑀2 is of attribute Superposition, and𝑀3 is of attributeBool. By Proposition 4.11, we can

check that this modularization is indeed strictly decreasing: Entangle > Superposition > Bool.

Another interesting case was the circuit that our algorithm found for QFT (Figure 6g). We note

that it is not possible to find a proper modularization (that might pass (6)) by arbitrary slicing

of QFT circuit in Table 2. However, our algorithm found that a proper modularization exists, as given

in Figure 6g: for all inputs in the specification (𝐸),𝑀1 fills the gap of Sp,𝑀2, 𝑀3, 𝑀4 sequentially fill

the gap of Phasing, and the last 𝑀5 changes in permutation, filling the gap of Bool. Also, note

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



87:22 Chan Gu Kang and Hakjoo Oh

Table 3. Evaluation results. Synthesis time is given in seconds for each variant of our algorithm. ⊥ denotes
time out (3600s). - denotes N/A. Spd-up : speed up in synthesis time of Ours over Base. #S : the number of
gates in solution circuits at Table 2. #O: the number of gates in the circuit synthesized by Ours. Numbers in
parentheses denotes the number of gates after post-processing (which applies trivial equality reduction). #M:
the number of modules generated by Ours.

ID Baseno_prune Base Oursno_prune Ours Spd-up #S #O #M

three_superpose 0.14 0.12 0.12 0.09 1x 3 3 2

M_valued 1764.75 1126.79 666.25 3.89 290x 6 7 3

GHZ_from_100 106.81 48.16 ⊥ 0.47 102x 6 6 2

GHZ_by_iSWAP ⊥ ⊥ 690.67 2.19 - 8 8 2

GHZ_by_QFT 116.90 101.65 101.17 39.26 3x 5 7 2

GHZ_Game ⊥ 2305.71 4.51 0.57 4058x 8 8 2

W_orthog 2927.20 2075.06 248.23 2.43 854x 6 8 3

W_phased ⊥ ⊥ 258.56 5.43 - 7 7 3

W_four ⊥ ⊥ 2851.10 254.88 - 6 7 2

cluster ⊥ ⊥ 3560.38 8.91 - 9 13 3

bit_measure ⊥ ⊥ ⊥ ⊥ - 13 - -

flip 18.56 3.95 0.76 0.83 5x 6 6 2

teleportation 2.02 1.30 1.35 1.35 1x 4 4 2

indexed_bell 14.67 11.66 1.60 1.52 8x 4 4 2

toffoli_by_
√
𝑋 956.29 716.28 306.10 264.66 3x 5 5 2

QFT ⊥ ⊥ ⊥ 220.87 - 7 13(7) 5

draper ⊥ ⊥ 933.47 737.99 - 5 7(5) 2

Avg. (excluding ⊥/-) 656.37 639.07 687.45 96.58 20x

that our modular representation involves more gate operations than the ideal solution (7 vs. 13),

the number of gates can be easily reduced by applying known identities such as 𝐻 2 = 𝐼 . After this

post-processing, we obtain the same circuit presented in Table 2.

Similarly, the solution circuit for draper in Table 2 does not give a proper modularization, yet

our algorithm could successfully find one as presented in Figure 6f. Also, note that the circuit in

Figure 6f becomes equivalent to the solution circuit in Table 2 once we apply 𝑄𝐹𝑇 †𝑄𝐹𝑇 = 𝐼 .

Comparison with Compilation. As discussed in Section 1, our synthesizer aims to construct

high-level circuits in terms of user-supplied component gates. On the other hand, existing compilers

(e.g., qiskit-transpiler) produce low-level circuits in terms of a fixed set of primitive gate sets

(e.g., {𝑈3,𝐶𝑁𝑂𝑇 }). For example, consider the problem cluster. The circuit compiled by qiskit-
transpiler is shown in Figure 7. Note that this circuit is difficult to read as it involves 43 gate

operations and includes uninterpretable gate terms such as𝑈3 (𝜋/2, 1.177,−𝜋); programmers would

not be able to understand how it works on input state vectors. Our synthesizer, on the other hand,

produced a much smaller circuit in Figure 6e, when component set {𝐻,𝐶𝑍 } is given. QFT is another
example. The circuit compiled by qiskit-transpiler is presented in Figure 8 and consists of 78 gates.

By contrast, our algorithm found a circuit of size 7 (after post-processing) as presented in Figure 6g.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



Modular Component-BasedQuantum Circuit Synthesis 87:23

𝑀1 𝑀2 𝑀3

H • •

H H • H

H • • •

(a) M_valued

𝑀1 𝑀2

H QFT∗ QFT∗

H

QFT∗ QFT∗
H

QFT∗ QFT∗

(b) GHZ_by_QFT

𝑀1 𝑀2 𝑀3

G 1

3

• •

H H H •
• •

(c) W_orthog

𝑀1 𝑀2

H • •

H •
• •

(d) W_four

𝑀1 𝑀2 𝑀3

H • • • H • • H

H Z Z

H Z H

H Z H Z

(e) cluster

𝑀1 𝑀2•
• •

QFT

𝑍
QFT

†
QFT

𝑆
QFT

†
𝑍

(f) draper

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5

H S T ×

H H • H S

H H • H H • H ×

(g) QFT

Fig. 6. Circuit synthesized by Ours. Shown only when they differ from solutions in Table 2. Dotted lines
marks stacked modules in circuit synthesis. 𝑄𝐹𝑇∗ denotes application of 𝑄𝐹𝑇 in reversed qubit order (i.e,
𝑄𝐹𝑇∗ (𝑎, 𝑏) = 𝑄𝐹𝑇 (𝑏, 𝑎)).

𝑞0 : U3 ( 𝜋
4
, 0.0, 0.0) U3 (−𝜋

4
, 0.0, 0.0) U3 ( 𝜋

4
, 0.0, 0.0)

𝑞1 : U3 ( 𝜋
4
, 0.0, 0.0) U3 ( 𝜋

4
, 0.0, 0.0) U3 (0, −𝜋

16
, −𝜋
16
) U3 (0, 0, 𝜋

8
) U3 (0, 0,−𝜋

8
) U3 (0, 0, 𝜋

8
) • •

𝑞2 : U3 ( 𝜋
2
, 𝜋
2
, −5𝜋

8
) • U3 ( 𝜋

2
, −3𝜋

8
, 𝜋
2
) • • • • •

𝑞3 : U3 (0.7867, −𝜋
2
, −𝜋

2
) U3 ( 𝜋

2
, 1.177,−𝜋) • • •

𝑞0 : U3 (−𝜋
4
, 0.0, 0.0) U3 (0, −𝜋

16
, −𝜋
16
) U3 (0, 0, 𝜋

8
) U3 (0, 0,−𝜋

8
) U3 (0, 0, 𝜋

8
) U3 (0, 0,−𝜋

8
) U3 (0, 0, 𝜋

8
) U3 (0, 0,−𝜋

8
) U3 (0, 0, 𝜋

8
)

𝑞1 : • • • • • •
𝑞2 : • • •
𝑞3 : •

Fig. 7. Quantum circuit for cluster generated by qiskit-transpiler

𝑞0 : U3 (0, 0,−3.21582936584776) U3 (0, 0,−0.926524395882929) U3 (0, 0,−0.926524395882928) U3 (0, 0,−0.00295490297374773) U3 (1.962,−0.02949,−1.577) U3 (1.565, 1.962,−1.544)
𝑞1 : • • U3 (0, 0, 1.47039879358106) U3 (0, 0, 1.40808130467699) •
𝑞2 : • • • • U3 (0, 0,−2.3930100291016) •

𝑞0 : U3 (1.565,−1.598, 1.179) U3 (1.962,−0.1573,−3.112) • • U3 ( 𝜋
2
, 0,−𝜋) U3 (1.568, 1.42,−2.036) U3 (1.632,−0.896, 1.374) U3 (1.502,−1.767, 0.8976)

𝑞1 : • U3 (1.86, 0.3434,−1.52) U3 (1.522,−1.86, 1.242) U3 (1.619,−1.9, 1.86) U3 (0.5662,−2.23, 2.979) U3 (0.809, 2.386, 2.927) • •
𝑞2 : • • • •

𝑞0 : U3 (2.037,−0.6503, 2.993) • • U3 (1.006,−0.5786,−1.398) U3 (0.859, −𝜋
4
, 𝜋
2
) U3 ( 𝜋

2
, −𝜋

2
, 𝜋
4
) U3 ( 𝜋

4
, 1.674, 0)

𝑞1 : • U3 ( 𝜋
2
, 0, −𝜋

2
) U3 ( 𝜋

2
, −5𝜋

8
,−𝜋) • • •

𝑞2 : U3 (0.8044, 0.1927,−1.649) U3 (1.146,−0.7056, 0.9273) U3 (1.427,−2.156, 1.1) U3 (2.036, 0.8486,−2.484) • • U3 (1.536, 0.7848,−1.585)

𝑞0 : • U3 ( 𝜋
2
, 3𝜋

4
,−0.619) U3 ( 𝜋

2
, −𝜋

2
, 𝜋
4
) U3 ( 𝜋

2
, −3𝜋

4
, 𝜋
2
) U3 (𝜋,−𝜋, −𝜋

4
) U3 ( 𝜋

2
, 𝜋
2
, −𝜋

2
)

𝑞1 : U3 ( 𝜋
2
, 0, −𝜋

2
) U3 (3.043, 𝜋

2
, −𝜋

2
) U3 ( 𝜋

2
, −7𝜋

8
,−𝜋) • • U3 ( 𝜋

2
, 0, −𝜋

2
)

𝑞2 : U3 (1.536,−1.606, 2.357) • U3 (3.14, 𝜋
2
, −7𝜋

16
) U3 (0.001323, −𝜋

16
, −𝜋

2
) • • U3 (−𝜋

2
, 𝜋,−𝜋) • •

Fig. 8. Quantum circuit for QFT generated by qiskit-transpiler

5.4 Limitations and Future Work
During the evaluation, we identified limitations and future work as follows.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



87:24 Chan Gu Kang and Hakjoo Oh

Difficulty of Inferring Component Gates. To use our method, users need to provide compo-

nent gates suitable for each synthesis problem, which can be nontrivial in general. For example,

without any prior knowledge, it is nontrivial to infer {𝐻,𝐶𝑆,𝐶𝑇, 𝑆𝑊𝐴𝑃} for QFT.
According to our experience, however, providing the right set of components was frequently not

difficult and much easier than the synthesis problem itself. For example, component gates were

sometimes already specified in the problem description itself, e.g., GHZ_from_100 (“Prepare the

GHZ state using H and CNOT?”), and in this case, no additional effort for inferring components

was needed. Also, it is trivial to infer components for the problem GHZ_by_QFT (“Prepare GHZ

using QFT”), which directly specifies the component gate (QFT).

Evenwhen component gates are not given a priori, we could sometimes assume proper component

gates without much difficulty. For example, consider the problem W_phased, where the input-output

specification is given as |000⟩ ↦→ 1√
3

( |001⟩ +𝜔 |010⟩ +𝜔2 |100⟩) (where let 𝜔 = 𝑒
2

3
𝜋𝑖

). The required

component gates in this case are {𝐺 1

3

,𝐶𝐻,𝐶𝑁𝑂𝑇,𝑋, 𝑍
2

3 }. Inferring the gate 𝐺 1

3

from the input-

output specification is not difficult because the specification says that we must introduce the

amplitude
1√
3

: 𝐺 1

3

|0⟩ = 1√
3

|0⟩ +
√

2

3
|1⟩. Deducing 𝑍

2

3 is also possible because it is the phasing

operation for 𝜔 : 𝑍
2

3 ( |0⟩ + |1⟩) = ( |0⟩ + 𝜔 |1⟩). The choice of {𝐶𝑁𝑂𝑇,𝑋 } is common as they

are frequently used to implement permutations. Also, 𝐶𝐻 is a well-known gate to introduce

superposition. However, note that finding the solution circuit remains still challenging even when

we know these components in advance.

Scalability. Our modular method failed in synthesizing bit_measure within 3,600 seconds.

One possible modular representation of bit_measure that our method could find is the following:

𝑀1 𝑀2

G 1

3

• • • •

H •
H • • •

• • •

where modules𝑀1 and𝑀2 have attributes Entangle and Bool, respectively. However, in order

to find such a solution, the setM of candidate modules should include substantially large and

complex modules with size 5 and various inseparable gates (𝐶𝐻,𝐶𝑁𝑂𝑇,𝑇𝑂𝐹𝐹𝑂𝐿𝐼 ), which increases

the number of candidate modules substantially. To address this issue, a more effective method for

module generation would be required.

Circuits without Decreasing Modularization. The “decreasing modularization” property,

which is the core condition for our synthesis algorithm to be sound, depends on how the set of

modules (M𝜔 ) is configured. So, the circuits that are not amenable to our approach are characterized

by the setM𝜔 . For example, whenM𝜔 contains all the possible modules, all circuits have the

“decreasing modularization” property and are amenable to our method. WhenM𝜔 does not contain

all modules, like ours used in the evaluation, some circuits may not have the property. Although

our choice forM𝜔 was expressive enough to capture the desired strict decreasing modularizations

for benchmarks in Table 1, there exist exceptional cases. For example, consider the problem of

synthesizing a circuit satisfying |00⟩ ↦→ |+⟩ |1⟩ with component gates G = {𝐻,𝑋 1/3}. In this case,

the solution circuit will be

𝐻 (𝑞0);𝑋 1/3 (𝑞1);𝑋 1/3 (𝑞1);𝑋 1/3 (𝑞1).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



Modular Component-BasedQuantum Circuit Synthesis 87:25

Ideally, the solution circuit may have decreasing modularization by two modules;𝑀1 = 𝐻 (𝑞0) of
attribute Sp and𝑀2 = 𝑋 1/3 (𝑞1);𝑋 1/3 (𝑞1);𝑋 1/3 (𝑞1) of attribute Bool. However, by our definition of

MBool, 𝑀2 cannot be captured, hence the solution circuit does not satisfy the decreasing modu-

larization property. As future work, to handle this issue a more thorough definition for eachM𝜔

should be considered (for example, considering G-adaptive definition forM𝜔 ).

6 RELATEDWORKS
Quantum Circuit Synthesis. A large amount of research has been conducted on quantum

circuit synthesis, known as unitary synthesis [Davis et al. 2019, 2020; Goubault de Brugière et al.

2020; Iten et al. 2016; Möttönen et al. 2004; Ross 2015; Shende et al. 2006; Smith et al. 2022; Tucci 2005;

Younis et al. 2020]. One major approach is matrix decomposition, which recursively decomposes

the provided unitary matrix into smaller matrices until they reach primitive gates. For example,

Cartan’s KAK decomposition [Tucci 2005] factorizes a 2-qubit unitary 𝑈 ∈ 𝑆𝑈 (4) into a non-local

unitary matrix sandwiched by several local unitary matrices. More generally, Shende et al. [2006]

introduced Quantum Shanon Decomposition, which is popular for reducing the 𝐶𝑁𝑂𝑇 counts.

Most of these matrix decomposition methods are complete: for any unitary matrix 𝑈 , they are

guaranteed to synthesize a circuit implementing 𝑈 with an arbitrarily small error 𝜖 . Another

approach to unitary synthesis is to parameterize circuits over (continuous) parameters of gates and

then use numerical optimization [Davis et al. 2019, 2020; Smith et al. 2022; Younis et al. 2020].

Existing work on unitary synthesis differs from ours. The goal of unitary synthesis is to generate

circuits with a fixed set of low-level gates (e.g., 𝐶𝑁𝑂𝑇 +𝑈3). In contrast, our method works for

any discrete gate sets including high-level ones such as 𝑄𝐹𝑇 and various controlled operations.

Also, circuits resulting from unitary synthesis methods often suffer from large sizes (the number of

gates, e.g., Figure 8), low fidelity, etc.

Recently, Paradis et al. [2021] presented a technique for automatically synthesizing uncompu-

tation routines. This is also a different problem from ours; we aim to generate a quantum circuit

in general that satisfies user-provided input-output specification while the focus of Paradis et al.

[2021] is on synthesizing task-specific routines for uncomputation.

Program Synthesis. Our technique is an example of enumerative program synthesizers [Feser

et al. 2015; Lee 2021; Osera and Zdancewic 2015; So and Oh 2017; Udupa et al. 2013; Wang et al.

2017], which have been used to synthesize SQL queries [Wang et al. 2017], functional data trans-

formers [Feser et al. 2015], distributed protocols [Udupa et al. 2013], imperative programs [So and

Oh 2017], etc. These techniques are typically used with search-space pruning based on, for example,

abstract interpretation [So and Oh 2017; Wang et al. 2017], deduction [Feser et al. 2015], and

types [Osera and Zdancewic 2015]. In this paper, we present domain-specific search and pruning

techniques for synthesizing quantum circuits.

Component-based synthesis is also well-known in the literature, e.g., synthesizing bit-vector

programs [Jha et al. 2010] API sequences [Feng et al. 2017b], and data wrangling scripts [Feng et al.

2017a]. In this paper, we apply the method to the domain of quantum circuits.

Quantum Programming Languages. As abstractions of quantum circuits, several quantum

programming languages have been released [Aleksandrowicz et al. 2019; Bichsel et al. 2020; Devel-

opers 2022; Green et al. 2013; Svore et al. 2018; Yuan and Carbin 2022]. These languages provide

high-level environments for quantum programming. As future work, our work could be extended

to synthesize quantum programs in these languages.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.



87:26 Chan Gu Kang and Hakjoo Oh

7 CONCLUSION
Despite the enormous potential of quantum computers, writing quantum programs and algorithms is

known to be notoriously difficult. In this paper, we suggested to address this problem with a method

that automatically synthesizes quantum circuits from user-provided examples and component gates.

We presented a quantum-specific algorithm for module-level enumerative search and pruning, and

showed that this module-based approach is significantly faster than a gate-level synthesizer on a

variety of synthesis tasks.

ACKNOWLEDGMENTS
This work was supported by Institute of Information & communications Technology Planning

& Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2020-0-01337,(SW STAR

LAB) Research on Highly-Practical Automated Software Repair), the MSIT(Ministry of Science

and ICT), Korea, under the ICT Creative Consilience program(IITP-2023-2020-0-01819) super-

vised by the IITP(Institute for Information & communications Technology Planning & Evalua-

tion), and the National Research Foundation of Korea(NRF) grant funded by the Korea govern-

ment(MSIT)(No. 2021R1A5A1021944).

REFERENCES
Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose

Cabrera-Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D. Córcoles-Gonzales,

Abigail J. Cross, Andrew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente González, Enrique De La Torre,

Delton Ding, Eugene Dumitrescu, Ivan Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert Frisch, Andreas

Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek,

Joe Hellmers, Łukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi, Toshinari Itoko, Ali Javadi-Abhari, Naoki

Kanazawa, Anton Karazeev, Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Marques, Francisco Jose

Martín-Fernández, Douglas T. McClure, David McKay, Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreda

Rodríguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault, Lee James O’Riordan, Hanhee Paik, Jesús Pérez, Anna

Phan, Marco Pistoia, Viktor Prutyanov, Max Reuter, Julia Rice, Abdón Rodríguez Davila, Raymond Harry Putra Rudy,

Mingi Ryu, Ninad Sathaye, Chris Schnabel, Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Siraichi,

Seyon Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor, Pete Taylour,

Kenso Trabing, Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot, Jonathan A. Wildstrom, Jessica

Wilson, Erick Winston, Christopher Wood, Stephen Wood, Stefan Wörner, Ismail Yunus Akhalwaya, and Christa Zoufal.

2019. Qiskit: An Open-source Framework for Quantum Computing. https://doi.org/10.5281/zenodo.2562111

Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. 2020. Silq: A High-Level Quantum Language with

Safe Uncomputation and Intuitive Semantics. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,

USA, 286–300. https://doi.org/10.1145/3385412.3386007

D. Coppersmith. 2002. An approximate Fourier transform useful in quantum factoring. https://doi.org/10.48550/ARXIV.

QUANT-PH/0201067

Diogo Cruz, Romain Fournier, Fabien Gremion, Alix Jeannerot, Kenichi Komagata, Tara Tosic, Jarla Thiesbrummel, Chun Lam

Chan, Nicolas Macris, Marc-André Dupertuis, and Clément Javerzac-Galy. 2019. Efficient Quantum Algorithms for

GHZ and W States, and Implementation on the IBM Quantum Computer. Advanced Quantum Technologies 2, 5-6 (2019),
1900015. https://doi.org/10.1002/qute.201900015 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.201900015

Marc Grau Davis, Ethan Smith, Ana Tudor, Koushik Sen, Irfan Siddiqi, and Costin Iancu. 2019. Heuristics for Quantum

Compiling with a Continuous Gate Set. https://doi.org/10.48550/ARXIV.1912.02727

Marc G. Davis, Ethan Smith, Ana Tudor, Koushik Sen, Irfan Siddiqi, and Costin Iancu. 2020. Towards Optimal Topology

Aware Quantum Circuit Synthesis. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).
223–234. https://doi.org/10.1109/QCE49297.2020.00036

Cirq Developers. 2022. Cirq. https://doi.org/10.5281/zenodo.6599601 See full list of authors on Github: https://github

.com/quantumlib/Cirq/graphs/contributors.

Thomas G. Draper. 2000. Addition on a Quantum Computer. https://doi.org/10.48550/ARXIV.QUANT-PH/0008033

W. Dür, G. Vidal, and J. I. Cirac. 2000. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62 (Nov 2000),

062314. Issue 6. https://doi.org/10.1103/PhysRevA.62.062314

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.

https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.48550/ARXIV.QUANT-PH/0201067
https://doi.org/10.48550/ARXIV.QUANT-PH/0201067
https://doi.org/10.1002/qute.201900015
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.201900015
https://doi.org/10.48550/ARXIV.1912.02727
https://doi.org/10.1109/QCE49297.2020.00036
https://doi.org/10.5281/zenodo.6599601
https://doi.org/10.48550/ARXIV.QUANT-PH/0008033
https://doi.org/10.1103/PhysRevA.62.062314


Modular Component-BasedQuantum Circuit Synthesis 87:27

Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017a. Component-Based Synthesis of

Table Consolidation and Transformation Tasks from Examples. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). Association for Computing Machinery,

New York, NY, USA, 422–436. https://doi.org/10.1145/3062341.3062351

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017b. Component-Based Synthesis for Complex

APIs. SIGPLAN Not. 52, 1 (jan 2017), 599–612. https://doi.org/10.1145/3093333.3009851

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-Output

Examples. SIGPLAN Not. 50, 6 (jun 2015), 229–239. https://doi.org/10.1145/2813885.2737977

András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. 2019. Quantum Singular Value Transformation and beyond:

Exponential Improvements for Quantum Matrix Arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing (Phoenix, AZ, USA) (STOC 2019). Association for Computing Machinery, New York, NY, USA,

193–204. https://doi.org/10.1145/3313276.3316366

Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, and Cyril Allouche. 2020. Quantum circuits synthesis using

Householder transformations. Computer Physics Communications 248 (2020), 107001. https://doi.org/10.1016/j.cpc.2019.

107001

Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoî t Valiron. 2013. Quipper. ACM SIGPLAN
Notices 48, 6 (jun 2013), 333–342. https://doi.org/10.1145/2499370.2462177

Lov K. Grover. 1996. A Fast QuantumMechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing (Philadelphia, Pennsylvania, USA) (STOC ’96). Association for Computing

Machinery, New York, NY, USA, 212–219. https://doi.org/10.1145/237814.237866

M. Hein, J. Eisert, and H. J. Briegel. 2004. Multiparty entanglement in graph states. Physical Review A 69, 6 (jun 2004).

https://doi.org/10.1103/physreva.69.062311

Raban Iten, Roger Colbeck, Ivan Kukuljan, Jonathan Home, and Matthias Christandl. 2016. Quantum circuits for isometries.

Phys. Rev. A 93 (Mar 2016), 032318. Issue 3. https://doi.org/10.1103/PhysRevA.93.032318

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-Guided Component-Based Program Synthesis.

In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1 (Cape Town, South Africa)
(ICSE ’10). Association for Computing Machinery, New York, NY, USA, 215–224. https://doi.org/10.1145/1806799.1806833

Woosuk Lee. 2021. Combining the Top-down Propagation and Bottom-up Enumeration for Inductive Program Synthesis.

Proc. ACM Program. Lang. 5, POPL, Article 54 (jan 2021), 28 pages. https://doi.org/10.1145/3434335

Guang Hao Low and Isaac L. Chuang. 2019. Hamiltonian Simulation by Qubitization. Quantum 3 (July 2019), 163.

https://doi.org/10.22331/q-2019-07-12-163

Mario Mastriani. 2021. Quantum Fourier transform is the building block for creating entanglement. Scientific Reports 11, 1
(2021), 1–10.

James McClung. 2020. Constructions and Applications of W-States. Bachelor’s Thesis. Worcester Polytechnic Institute.

Mikko Möttönen, Juha J. Vartiainen, Ville Bergholm, and Martti M. Salomaa. 2004. Quantum Circuits for General Multiqubit

Gates. Phys. Rev. Lett. 93 (Sep 2004), 130502. Issue 13. https://doi.org/10.1103/PhysRevLett.93.130502

Matthew Neeley, Radoslaw C Bialczak, M Lenander, Erik Lucero, Matteo Mariantoni, AD O’connell, D Sank, H Wang, M

Weides, J Wenner, et al. 2010. Generation of three-qubit entangled states using superconducting phase qubits. Nature
467, 7315 (2010), 570–573.

Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computation and Quantum Information: 10th Anniversary Edition
(10th ed.). Cambridge University Press, USA.

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-Example-Directed Program Synthesis. SIGPLAN Not. 50, 6 (jun
2015), 619–630. https://doi.org/10.1145/2813885.2738007

Anouk Paradis, Benjamin Bichsel, Samuel Steffen, and Martin Vechev. 2021. Unqomp: Synthesizing Uncomputation in

Quantum Circuits. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 222–236.

https://doi.org/10.1145/3453483.3454040

QK. 2022a. Task 1.7. https://github.com/microsoft/QuantumKatas/blob/main/Superposition/Workbook_Superposition.

ipynb.

QK. 2022b. Task 2.1. https://github.com/microsoft/QuantumKatas/blob/main/GHZGame/Workbook_GHZGame.ipynb.

QK. 2022c. Task 2.3. https://github.com/microsoft/QuantumKatas/blob/0bc1b11ad2b29e358a9100dea7d0b9a973f5f9fd/

Superposition/Workbook_Superposition_Part2.ipynb.

Neil J. Ross. 2015. Optimal Ancilla-Free CLIFFORD+V Approximation of Z-Rotations. Quantum Info. Comput. 15, 11–12 (sep
2015), 932–950.

SE. 2018a. How can I build a circuit to generate an equal superposition of 3 outcomes for 2 qubits?

https://quantumcomputing.stackexchange.com/questions/2310/how-can-i-build-a-circuit-to-generate-an-equal-

superposition-of-3-outcomes-for-2.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.

https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3093333.3009851
https://doi.org/10.1145/2813885.2737977
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1016/j.cpc.2019.107001
https://doi.org/10.1016/j.cpc.2019.107001
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/237814.237866
https://doi.org/10.1103/physreva.69.062311
https://doi.org/10.1103/PhysRevA.93.032318
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/3434335
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1103/PhysRevLett.93.130502
https://doi.org/10.1145/2813885.2738007
https://doi.org/10.1145/3453483.3454040
https://github.com/microsoft/QuantumKatas/blob/main/Superposition/Workbook_Superposition.ipynb
https://github.com/microsoft/QuantumKatas/blob/main/Superposition/Workbook_Superposition.ipynb
https://github.com/microsoft/QuantumKatas/blob/main/GHZGame/Workbook_GHZGame.ipynb
https://github.com/microsoft/QuantumKatas/blob/0bc1b11ad2b29e358a9100dea7d0b9a973f5f9fd/Superposition/Workbook_Superposition_Part2.ipynb
https://github.com/microsoft/QuantumKatas/blob/0bc1b11ad2b29e358a9100dea7d0b9a973f5f9fd/Superposition/Workbook_Superposition_Part2.ipynb
https://quantumcomputing.stackexchange.com/questions/2310/how-can-i-build-a-circuit-to-generate-an-equal-superposition-of-3-outcomes-for-2
https://quantumcomputing.stackexchange.com/questions/2310/how-can-i-build-a-circuit-to-generate-an-equal-superposition-of-3-outcomes-for-2


87:28 Chan Gu Kang and Hakjoo Oh

SE. 2018b. How can the state |0⟩ +𝑀−1/2 ∑𝑀
𝑗=1 | 𝑗 ⟩ be generated? https://quantumcomputing.stackexchange.com/questions/

4545/how-can-the-state-lvert0-ranglem-1-2-sum-j-1m-lvert-j-rangle-be-genera.

SE. 2018c. How do I build a gate from a matrix on Qiskit? https://quantumcomputing.stackexchange.com/questions/4975/

how-do-i-build-a-gate-from-a-matrix-on-qiskit.

SE. 2018d. How to create a quantum algorithm that produces 2𝑛-bit sequences with equal number of

1-bits? https://mathoverflow.net/questions/301733/how-to-create-a-quantum-algorithm-that-produces-2-n-bit-

sequences-with-equal-num.

SE. 2019. Quantum circuit for a three-qubit bit-flip code. https://quantumcomputing.stackexchange.com/questions/9175/

quantum-circuit-for-a-three-qubit-bit-flip-code.

SE. 2020a. Generalized construction ofW basis. https://quantumcomputing.stackexchange.com/questions/13077/generalized-

construction-of-w-basis.

SE. 2020b. Quantum Circuit explaination. https://quantumcomputing.stackexchange.com/questions/12552/quantum-circuit-

explaination.

SE. 2020c. Transforming |100⟩ state into |000⟩ + |111⟩ state using only Hadamard and CNOT gates.

https://quantumcomputing.stackexchange.com/questions/14642/transforming-100-rangle-state-into-000-rangle-111-

rangle-state-using-on.

V.V. Shende, S.S. Bullock, and I.L. Markov. 2006. Synthesis of quantum-logic circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 25, 6 (2006), 1000–1010. https://doi.org/10.1109/TCAD.2005.855930

Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.

SIAM J. Comput. 26, 5 (oct 1997), 1484–1509. https://doi.org/10.1137/S0097539795293172

Ethan Smith, Marc G. Davis, Jeffrey M. Larson, Ed Younis, Lindsay Bassman Oftelie, Wim Lavrijsen, and Costin Iancu. 2022.

LEAP: Scaling Numerical Optimization Based Synthesis Using an Incremental Approach. ACM Transactions on Quantum
Computing (aug 2022). https://doi.org/10.1145/3548693

Sunbeom So and Hakjoo Oh. 2017. Synthesizing Imperative Programs from Examples Guided by Static Analysis. In Static
Analysis, Francesco Ranzato (Ed.). Springer International Publishing, Cham, 364–381.

Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov, Mariia

Mykhailova, Andres Paz, and Martin Roetteler. 2018. Q#: Enabling Scalable Quantum Computing and Development with a

High-Level DSL. In Proceedings of the RealWorld Domain Specific LanguagesWorkshop 2018 (Vienna, Austria) (RWDSL2018).
Association for Computing Machinery, New York, NY, USA, Article 7, 10 pages. https://doi.org/10.1145/3183895.3183901

Qiskit Transpiler. 2022. transpiler-qiskit-transpiler. https://qiskit.org/documentation/apidoc/transpiler.html.

Robert R. Tucci. 2005. An Introduction to Cartan’s KAK Decomposition for QC Programmers. https://doi.org/10.48550/

ARXIV.QUANT-PH/0507171

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M.K. Martin, and Rajeev Alur. 2013.

TRANSIT: Specifying Protocols with Concolic Snippets. In Proceedings of the 34th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery,

New York, NY, USA, 287–296. https://doi.org/10.1145/2491956.2462174

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing Highly Expressive SQL Queries from Input-Output

Examples. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Barcelona, Spain) (PLDI 2017). Association for Computing Machinery, New York, NY, USA, 452–466. https://doi.org/10.

1145/3062341.3062365

Ed Younis, Koushik Sen, Katherine Yelick, and Costin Iancu. 2020. QFAST: Quantum Synthesis Using a Hierarchical

Continuous Circuit Space. https://doi.org/10.48550/ARXIV.2003.04462

Charles Yuan and Michael Carbin. 2022. Tower: Data Structures in Quantum Superposition. arXiv preprint arXiv:2205.10255
(2022).

Received 2022-10-28; accepted 2023-02-25

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 87. Publication date: April 2023.

https://quantumcomputing.stackexchange.com/questions/4545/how-can-the-state-lvert0-ranglem-1-2-sum-j-1m-lvert-j-rangle-be-genera
https://quantumcomputing.stackexchange.com/questions/4545/how-can-the-state-lvert0-ranglem-1-2-sum-j-1m-lvert-j-rangle-be-genera
https://quantumcomputing.stackexchange.com/questions/4975/how-do-i-build-a-gate-from-a-matrix-on-qiskit
https://quantumcomputing.stackexchange.com/questions/4975/how-do-i-build-a-gate-from-a-matrix-on-qiskit
https://mathoverflow.net/questions/301733/how-to-create-a-quantum-algorithm-that-produces-2-n-bit-sequences-with-equal-num
https://mathoverflow.net/questions/301733/how-to-create-a-quantum-algorithm-that-produces-2-n-bit-sequences-with-equal-num
https://quantumcomputing.stackexchange.com/questions/9175/quantum-circuit-for-a-three-qubit-bit-flip-code
https://quantumcomputing.stackexchange.com/questions/9175/quantum-circuit-for-a-three-qubit-bit-flip-code
https://quantumcomputing.stackexchange.com/questions/13077/generalized-construction-of-w-basis
https://quantumcomputing.stackexchange.com/questions/13077/generalized-construction-of-w-basis
https://quantumcomputing.stackexchange.com/questions/12552/quantum-circuit-explaination
https://quantumcomputing.stackexchange.com/questions/12552/quantum-circuit-explaination
https://quantumcomputing.stackexchange.com/questions/14642/transforming-100-rangle-state-into-000-rangle-111-rangle-state-using-on
https://quantumcomputing.stackexchange.com/questions/14642/transforming-100-rangle-state-into-000-rangle-111-rangle-state-using-on
https://doi.org/10.1109/TCAD.2005.855930
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1145/3548693
https://doi.org/10.1145/3183895.3183901
https://qiskit.org/documentation/apidoc/transpiler.html
https://doi.org/10.48550/ARXIV.QUANT-PH/0507171
https://doi.org/10.48550/ARXIV.QUANT-PH/0507171
https://doi.org/10.1145/2491956.2462174
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.48550/ARXIV.2003.04462

	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem Definition
	4 Our Synthesis Algorithm
	4.1 Modular Representation of Quantum Circuits
	4.2 Algorithm Outline
	4.3 Pruning
	4.4 Module Generation
	4.5 Complexity of Our Synthesis Algorithm

	5 Evaluation
	5.1 Setup
	5.2 Results
	5.3 Discussion
	5.4 Limitations and Future Work

	6 Related Works
	7 Conclusion
	Acknowledgments
	References

