
140

Precise and Scalable Points-to Analysis via Data-Driven
Context Tunneling

MINSEOK JEON, Korea University, Republic of Korea
SEHUN JEONG, Korea University, Republic of Korea
HAKJOO OH∗, Korea University, Republic of Korea

We present context tunneling, a new approach for making k-limited context-sensitive points-to analysis

precise and scalable. As context-sensitivity holds the key to the development of precise and scalable points-to

analysis, a variety of techniques for context-sensitivity have been proposed. However, existing approaches

such as k-call-site-sensitivity or k-object-sensitivity have a significant weakness that they unconditionally

update the context of a method at every call-site, allowing important context elements to be overwritten

by more recent, but not necessarily more important, context elements. In this paper, we show that this is a

key limiting factor of existing context-sensitive analyses, and demonstrate that remarkable increase in both

precision and scalability can be gained by maintaining important context elements only. Our approach, called

context tunneling, updates contexts selectively and decides when to propagate the same context without

modification.

We attain context tunneling via a data-driven approach. The effectiveness of context tunneling is very

sensitive to the choice of important context elements. Even worse, precision is not monotonically increasing

with respect to the ordering of the choices. As a result, manually coming up with a good heuristic rule for

context tunneling is extremely challenging and likely fails to maximize its potential. We address this challenge

by developing a specialized data-driven algorithm, which is able to automatically search for high-quality

heuristics over the non-monotonic space of context tunneling.

We implemented our approach in the Doop framework and applied it to four major flavors of context-

sensitivity: call-site-sensitivity, object-sensitivity, type-sensitivity, and hybrid context-sensitivity. In all cases,

1-context-sensitive analysis with context tunneling far outperformed deeper context-sensitivity with k = 2 in

both precision and scalability.

CCS Concepts: • Theory of computation → Program analysis; • Computing methodologies → Ma-
chine learning approaches;

Additional Key Words and Phrases: Points-to analysis, Context-sensitive analysis, Data-driven program

analysis

ACM Reference Format:
Minseok Jeon, Sehun Jeong, and Hakjoo Oh. 2018. Precise and Scalable Points-to Analysis via Data-Driven

Context Tunneling. Proc. ACM Program. Lang. 2, OOPSLA, Article 140 (November 2018), 30 pages. https:

//doi.org/10.1145/3276510

∗
Corresponding author

Authors’ addresses: Minseok Jeon, minseok_jeon@korea.ac.kr, Department of Computer Science and Engineering, Korea

University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea; Sehun Jeong, gifaranga@korea.ac.kr, Department

of Computer Science and Engineering, Korea University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea;

Hakjoo Oh, hakjoo_oh@korea.ac.kr, Department of Computer Science and Engineering, Korea University, 145, Anam-ro,

Sungbuk-gu, Seoul, 02841, Republic of Korea.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

2475-1421/2018/11-ART140

https://doi.org/10.1145/3276510

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

https://doi.org/10.1145/3276510
https://doi.org/10.1145/3276510
https://doi.org/10.1145/3276510

140:2 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

1 INTRODUCTION
Points-to analysis is a fundamental program analysis technique with diverse applications in software

engineering tasks. The goal of points-to analysis is to safely yet accurately approximate the objects

that pointer variables may point to at runtime, as precise pointer information is a key ingredient

of modern software analysis techniques such as static bug-finding [Avots et al. 2005; Blackshear

et al. 2015; Livshits and Lam 2003; Naik et al. 2006; Sui et al. 2014], program verification [Fink

et al. 2008], security vulnerability detection [Arzt et al. 2014; Tripp et al. 2009; Yan et al. 2017], and

automatic program repair [Gao et al. 2015; Lee et al. 2018]. The effectiveness and usefulness of

these techniques are ultimately determined by the qualities of the underlying points-to analysis.

Context-sensitivity holds the key to the development of precise and scalable points-to analysis.

In order to accurately track local variables and heap objects, a context-sensitive analysis treats

multiple calls to the same method separately for its different calling contexts. For object-oriented

and functional languages, context-sensitivity is the single most important factor that affects both

precision and scalability. It has greater impact on the analysis precision than other techniques

such as flow-sensitivity [Lhoták and Hendren 2006; Smaragdakis and Balatsouras 2015], and the

improved precision by context-sensitivity is likely to increase scalability as well [Kashyap et al.

2014; Smaragdakis et al. 2011].

Consequently, developing effective approaches to context-sensitivity has been the major goal of

research in points-to analysis. In particular, one practical approach to context-sensitivity is the

so-called k-limited method [Sharir and Pnueli 1981] and over the last decades researchers have

explored various flavors and policies with different tradeoffs, such as object-sensitivity [Milanova

et al. 2005], type-sensitivity [Smaragdakis et al. 2011], hybrid context-sensitivity [Kastrinis and

Smaragdakis 2013], and selective context-sensitivity [Jeong et al. 2017; Oh et al. 2014; Smaragdakis

et al. 2014]. These approaches vary depending on the program entities that they use as context

elements or policies to assign k values. Unlike the classical k-call-site-sensitivity [Shivers 1988],

object- and type-sensitivity use a sequence of allocation-sites and a sequence of allocating-classes

as context elements, respectively, providing new sweet spots for object-oriented languages. Hybrid

context-sensitivity provides a way of combining call-site-sensitivity and object-sensitivity to enjoy

benefits of both approaches. Selective context-sensitive analyses assign differentk values to different

methods.

In this paper, we present context tunneling, a new approach for performing precise and scalable

k-limited context-sensitive analysis. The key observation behind our approach is that, although

existing approaches for context-sensitivity differ in various characteristics such as flavors [Kastrinis

and Smaragdakis 2013; Milanova et al. 2005; Shivers 1988; Smaragdakis et al. 2011] and policies to

assign k values [Jeong et al. 2017; Oh et al. 2014; Smaragdakis et al. 2014], they all have a significant

weakness in common: they update the context of a method unconditionally at every call-site and

therefore important context elements are overwritten by more recent, but not necessarily more

important, context elements. We found that this is a key factor that limits the effectiveness of

the existing context-sensitive analyses, and show that dramatic increase in both precision and

scalability can be gained by maintaining important context elements only. Our technique updates

contexts selectively and decides when to preserve contexts without modification. We formalize our

technique in a general setting, so that it is applicable to all major flavors of context-sensitivity.

We also present a new data-driven approach for realizing effective context tunneling. Although

the potential of context tunneling is tremendous, maximizing its impact in practice is nontrivial.

This is mainly because precision increase by context tunneling is very sensitive to the choice of

important context elements and even not monotone with respect to the ordering of the choices.

As a result, manually coming up with a good heuristic rule for context tunneling is extremely

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling 140:3

challenging and likely ends up with suboptimal results. To address this challenge, we leverage the

recent trend of data-driven program analysis [Chae et al. 2017; Heo et al. 2016, 2017; Jeong et al.

2017; Oh et al. 2015; Singh et al. 2018; Wei and Ryder 2015] and aim at automatically learning a

context-tunneling heuristic from data. Given a dataset of programs and a set of method features,

our learning algorithm generates a heuristic that determines the context elements that contribute to

improving the final analysis performance. Our algorithm is carefully designed for context tunneling,

so it is able to produce effective heuristics over the non-monotonic space of context tunneling.

We implemented our approach on top of the Doop framework [Bravenboer and Smaragdakis

2009] and evaluated it with four major flavors of context-sensitivity: call-site-sensitivity [Shivers

1988], object-sensitivity [Milanova et al. 2002, 2005], type-sensitivity [Smaragdakis et al. 2011], and

hybrid context-sensitivity [Kastrinis and Smaragdakis 2013]. In all analyses, context tunneling has

improved the performance of the existing analyses remarkably. In particular, context tunneling

enabled 1-context-sensitive analyses to far outperform 2-context-sensitive counterparts in both

scalability and precision. We also demonstrate that the effectiveness of context tunneling comes

from our learning algorithm; we evaluate our learning algorithm from various perspectives and

justify the design decisions underlying the algorithm.

Contributions. In summary, our contributions are as follow:

• We present context tunneling, a new technique for improving k-limited context-sensitive

points-to analysis by carefully maintaining important context elements.

• We present a new data-driven approach for learning context tunneling heuristics. Key tech-

nical contribution is the non-greedy learning algorithm that is able to effectively search for

good heuristics over non-monotonic parameter space of context tunneling.

• We extensively evaluate the effectiveness of context tunneling and our learning approach

with for four flavors of context sensitive analysis for Java.

2 MOTIVATING EXAMPLES
In this section, we illustrate our technique with examples. We describe our technique with k-call-
site-sensitivity and k-object-sensitivity, but it is applicable to other flavors of context-sensitivity

too. The general description is presented in Section 3.

In this section, we restrict our discussion to the traditional k-limited context-sensitive analysis.

Other approaches such as value-based context-sensitivity [Khedker and Karkare 2008; Padhye and

Khedker 2013] may not suffer from the issue described in this section. However, their applicability

to real-world points-to analysis remains to be seen, which is beyond the scope of this paper. On

the other hand, the k-limited method is more widely used in practical settings [Bravenboer and

Smaragdakis 2009; Jeong et al. 2017; Kastrinis and Smaragdakis 2013; Smaragdakis et al. 2011, 2014].

2.1 Call-Site-Sensitivity
Example Code. Suppose that we analyze the example Java code in Fig. 1a using a k-call-site-

sensitive points-to analysis [Smaragdakis and Balatsouras 2015]. The example code has three class

definitions, namely A, B, and C. Classes A and B are empty and class C has two methods: id and

main. Method id is essentially the identity function on the first argument, which takes an object v
and an integer i, and returns the same object after making recursive calls until i becomes 0. In

main, id is invoked twice with different objects. Both method invocations share the same argument

i that comes from the external environment (i.e. user input). The goal of the points-to analysis is

to prove the safety of two type casts at lines 8 and 9.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

140:4 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

1 class A {} class B {}

2 class C {

3 static Object id (Object v, int i){

4 return i >= 0 ? id(v, i-1) : v;

5 }

6 public static void main (){

7 int i = input();

8 A a = (A) id(new A(), i); //Query 1

9 B b = (B) id(new B(), i); //Query 2

10 }

11 }

(a) Example code

main
[·]

id
[8]

id
[9]

id
[8, 4]

id
[9, 4]

id
[8, 4, · · · , 4︸ ︷︷ ︸

k

]

id
[9, 4, · · · , 4︸ ︷︷ ︸

k

]

id
[4, · · · , 4︸ ︷︷ ︸

k

]

(b) Call-graph by k-CFA

main
[·]

id
[8]

id
[9]

(c) Call-graph by 1-CFA with tunneling

Fig. 1. Example and call-graphs constructed by the conventional k-call-site-sensitivity (k-CFA) and our
1-call-site-sensitivity with context tunneling

Conventional Call-Site-Sensitivity. The traditional k-call-site-sensitive analysis fails to prove
the queries no matter what k value is used. Because the value of i can be any integer, the following

set K∞ of infinite number of call-strings can be generated for method id at runtime:

K∞ = {[8], [9], [8, 4], [9, 4], [8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}

where, for example, [8, 4] denotes the context that method id was called along the sequence of

call-sites 8 and 4. The k-call-site-sensitive analysis approximates the call-strings in K∞ by their

suffixes of length up to k . For example, when k = 2, the analysis uses the following setK2 of abstract

contexts:

K2 = {[8], [9], [8, 4], [9, 4], [4, 4]}

where an infinite number of contexts, {[8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}, in K∞ are approx-

imated by their common suffix [4, 4]. The analysis analyzes the method id separately for each

context in K2. Although this approximation ensures termination, the analysis is now unable to

differentiate the two separate calls to id at lines 8 and 9, causing the argument v of id to point

to both objects A and B at the same time when the context becomes [4, 4]. Thus, both objects get

returned to both queries simultaneously, making the analysis fail to prove their cast safety. Note

that the analysis fails to prove the queries for any k values, because all the context strings longer

than k are eventually merged into a single context [4, . . . , 4︸ ︷︷ ︸
k

] (see Fig. 1b).

Context Tunneling. With context tunneling, however, even 1-call-site sensitive analysis be-

comes to prove the queries. The main weakness of the conventional k-context-sensitive analysis
is that it blindly updates the context of a method at every call-site, thereby allowing important

context elements for the method to be easily overwritten by less important ones. In the example,

distinguishing the two call-sites at lines 8 and 9 is essential to proving the queries. However, this

information is eventually lost by repeatedly appending the less important call-site 4 to the context

of id (Fig. 1b). Our technique aims to overcome this weakness by maintaining important context

elements only during analysis. For example, we exclude the call-site 4 from the context strings

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling 140:5

generated for method id and thus approximate the set K∞ to the set KT of contexts:

KT = {[8], [9]}.

Here abstract contexts [8] and [9] in KT denote the sets of concrete contexts {[8], [8, 4], [8, 4, 4], . . .}
and {[9], [9, 4], [9, 4, 4], . . .} in K∞, respectively. The resulting context-sensitive analysis with KT is

able to prove the queries as it differentiates the two calls to id at lines 8 and 9 completely, producing

the call-graph in Fig. 1c.

Challenge. The example shows that the idea of context tunneling is potentially powerful; even 1-

context-sensitivity with tunneling can be as precise as∞-context-sensitivity. The goal of this paper

is to maximize this tremendous, yet untapped, potential of the existing k-context-sensitive analysis.
However, achieving effective context tunneling in practice is challenging. The effectiveness of the

technique is very sensitive to the choice of important context elements. For example, choosing the

call-site 4, rather than call-sites 8 and 9, does not work for the example program. In the worst case,

the analysis precision degenerates into the context-insensitive case (e.g. when selecting no context

elements at all), becoming even inferior to the ordinary k-context-sensitive analysis. Coming up

with a good heuristic rule for choosing important context elements is nontrivial; hand-crafting

such a rule not only requires a huge amount of engineering effort and domain knowledge but also

likely fails to maximize the potential of the technique.

Data-Driven Context Tunneling. We address this challenge with a data-driven approach that

automatically learns a good heuristic rule for context tunneling from a training set of programs.

Our aim is to generate a heuristicH , which takes a program and returns a relation T on methods.

The relation contains a method pair (m1,m2) if the calling context ofm1 is more important than

that of m2. Thus, if (m1,m2) ∈ T , the analysis applies context tunneling when m2 is invoked;

that is, m2 inherits the context of m1 ignoring the current context element. For the k-call-site-
sensitivity example, HΠ produces the relation T = {(id, id)}, which means that tunneling is

applied when id is called from id. As a result, the call-site 4, on which id is called from id, will not
be used as important context elements during analysis. When main calls id, however, the analysis
updates the contexts as the ordinary analysis since (main, id) < T . In our approach, the heuristic

is parameterized and the parameter determines the contents of the relation T . The goal of our

data-driven technique is to characterize the two classes of methods: 1) methods that increase the

analysis precision by passing their contexts to others, and 2) methods that increase the analysis

precision by inheriting contexts from others. Section 4 defines the learning problem and presents

an efficient algorithm to solve the problem.

2.2 Object-Sensitivity
The use of context tunneling is not limited to call-site-sensitivity. Below, we describe a typical

situation where object-sensitivity benefits from context tunneling.

Example Code. Fig. 2a shows a common code pattern that 1-object-sensitivity with a context-

sensitive heap loses precision, which is found frequently in data structure implementations such as

List and Map. In the example code, we have four top-level classes, A, B, C, and ArrayList, and an

inner class ListIter inside of the ArrayList class. The ArrayList class implements a resizable

array. For simplicity, it maintains data in the elementData array and has the addmethod to append

new data at the end of elementData. It also has the iterator method that returns an object of

type ListIter, providing access to elementData. The main method in class C performs usual

allocate-add-retrieve tasks using ListIter. The goal of the points-to analysis is to prove the safety
of two type casts at lines 13 and 14.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

140:6 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

1 class A {} class B {}

2 class C {

3 public static void main (){

4 ArrayList al1 = new ArrayList();//AL1

5 ArrayList al2 = new ArrayList();//AL2

6

7 al1.add(new A());

8 al2.add(new B());

9

10 ArrayList.ListItr it1 = al1.iterator();

11 ArrayList.ListItr it2 = al2.iterator();

12

13 A a = (A)it1.next(); //Query 1

14 B b = (B)it2.next(); //Query 2

15 }

16 }

17

18 class ArrayList{

19 Object[] elementData = new Object[10];

20 int size = 0;

21 void add(Object e){

22 elementData[size++] = e;

23 }

24 ListItr iterator(){

25 return new ListItr(); //IT

26 }

27 class ListItr{

28 int cursor = 0;

29 Object next(){

30 return elementData[cursor++];

31 }

32 }

33 }

(a) Example code

main
[·]

add
[AL1]

add
[AL2]

iterator
[AL1]

iterator
[AL2]

next
[IT]

(b) Call-graph by 1-object-sensitive analysis

main
[·]

add
[AL1]

add
[AL2]

iterator
[AL1]

iterator
[AL2]

next
[AL1]

next
[AL2]

(c) Call-graph by 1-object-sensitive analysis with
tunneling

Fig. 2. Example and call-graphs constructed by the conventional 1-object-sensitivity and our 1-object-
sensitivity with context tunneling

Conventional Object-Sensitivity. Conventional object-sensitivity analyzes different method

calls separately for their base objects (and their heap contexts, if needed) [Smaragdakis et al.

2011]. For example, when we analyze the next method at line 13, 2-object-sensitivity creates

the context [AL1, IT], where IT is the allocation-site of the base object (it1) and AL1 is its heap

context. Likewise, the method invocation at line 14 creates the context [AL2, IT], enabling the

analysis to distinguish the first and second calls to the same method. Using base objects as contexts

makes object-sensitivity more favorable than call-site-sensitivity for object-oriented languages.

However, it still updates contexts unconditionally at every method call and may lose important

context elements when k is not sufficiently large. For example, when we analyze the code with

1-object-sensitivity, the two calls to next are analyzed under the same context [IT] (Fig. 2b). As a
result, both objects A and B get returned to both queries simultaneously, making the analysis fail to

prove the safety of type casting.

Object-Sensitivity with Context Tunneling. With context tunneling, however, even 1-object-

sensitivity can prove the queries. Note that object-sensitivity has a different flavor from call-site-

sensitivity; it updates the context with the heap context of the base object [Milanova et al. 2002,

2005]. Base variables it1 and it2 point to the same heap allocation with different heap contexts: AL1
and AL2. Applying context tunneling for the two method calls to next corresponds to propagating

the heap contexts AL1 and AL2 at lines 13 and 14, respectively, without modification. The resulting

context-sensitive analysis proves the queries with a call-graph shown in Fig. 2c.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling 140:7

3 POINTS-TO ANALYSIS WITH CONTEXT TUNNELING
In this section, we formally describe the idea of context tunneling. In Section 3.1, we describe the

conventional k-context-sensitive points-to analysis in a general setting, so that context tunneling

in Section 3.2 is applicable to various flavors of context-sensitivity.

3.1 Conventional k-Context-Sensitive Analysis
Generic Analysis. We first formalize the well-known context-sensitive points-to analysis for

Java [Smaragdakis and Balatsouras 2015], which is a flow-insensitive, field-sensitive, and subset-

based analysis with on-the-fly call-graph construction. To reveal the core idea of context tunneling,

we abstract the baseline analysis so that it is generic in terms of both flavors and depths of context-

sensitivity. For example, the analysis is able to express various context-sensitivity flavors such

as call-site-sensitivity [Shivers 1988], object-sensitivity [Milanova et al. 2005], hybrid context-

sensitivity [Kastrinis and Smaragdakis 2013], and type-sensitivity [Smaragdakis et al. 2011] with

arbitrary depths for calling contexts and heap contexts. In our formalism, such variations are

characterized by the following data:

⟨flavor,maxK,maxH⟩ (maxK ≥ maxH)

where flavor is a function that characterizes the flavor of context-sensitivity (e.g. call-site-sensitivity,
object-sensitivity, etc).maxK andmaxH represent themaximum depths of calling and heap contexts,

respectively. For example, ⟨flavorcall, 1, 0⟩ defines the 1-call-site-sensitive analysis with context-

insensitive heap and ⟨flavorobj, 2, 1⟩ defines the 2-object-sensitive analysis with 1-context-sensitive

heap, and so on. We will shortly define the flavor function for call-site-sensitivity (flavorcall),
object-sensitivity (flavorobj), and type-sensitivity (flavor type).

Programs and Domains. We consider the five types of instructions in Java:

linst → l : inst, inst → x = new C () | x = y | x = y.f | x .f = y | x = y.sig(arg)

where each instruction is associated with a unique label. A labeled instruction (linst) consists of a
label (l) and an instruction (inst). An instruction is object allocation (x = new C ()), move (x = y),
load (x = y.f), store (x .f = y), or method invocation (x = y.sig(arg)). For simplicity, we assume

every method has a single argument (except for the object itself).

The analysis uses the following domains: V is a set of program variables,M is a set of method

identifiers, S is a set of method signatures (method name and type), F is a set of field names, I is a
set of instruction labels, H is a set of abstract heaps, i.e., allocation-sites (H ⊆ I), T is a set of class
types, C is a set of calling contexts, and HC is a set of heap contexts. C and HC will be defined

depending on the flavor of context-sensitivity.

In addition, we assume four auxiliary functions: methof , typeof , classof , and lookup. methof ∈
I→ M maps an instruction label to the method containing the instruction. typeof ∈ H→ T maps

an allocation-site to the type of the allocated object. classof : I → T maps an instruction to its

containing class. lookup ∈ T × S→ M maps a pair of a class type and a signature to the method

that matches the signature inside the class. Given a methodm, we writemthis ,mparam,mreturn for

the ‘this’ variable, formal parameter, and return variable of the method, respectively.

Analysis Output. Given a program, the analysis computes the following information:

• ptsto : V × C→ ℘(H × HC)
• fldptsto : H × HC × F→ ℘(H × HC)
• reachable : M→ ℘(C)

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

140:8 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

l : x = new C () ctx ∈ reachable(methof (l)) hctx = ⌈ctx⌉maxH

(heapl, hctx) ∈ ptsto(x, ctx)

l : x = y ctx ∈ reachable(methof (l))
ptsto(y, ctx) ⊆ ptsto(x, ctx)

l : x = y.f ctx ∈ reachable(methof (l)) (heap, hctx) ∈ ptsto(y, ctx)

fldptsto(heap, hctx, f) ⊆ ptsto(x, ctx)

l : x .f = y ctx ∈ reachable(methof (l)) (heap, hctx) ∈ ptsto(x, ctx)

ptsto(y, ctx) ⊆ fldptsto(heap, hctx, f)

l : x = y.sig(arg) ctx ∈ reachable(methof (l))
(heap, hctx) ∈ ptsto(y, ctx) t = typeof (heap) m = lookup(t , sig)

(e, pctx, _) = flavor (heap, hctx, l, ctx) ctx ′ = ⌈pctx ++ e⌉maxK

ctx ′ ∈ reachable(m) (heap, hctx) ∈ ptsto(mthis, ctx ′)
ptsto(arg, ctx) ⊆ ptsto(mparam, ctx ′) ptsto(mreturn, ctx ′) ⊆ ptsto(x , ctx)

Fig. 3. Conventional context-sensitive points-to analysis

The function ptsto stores points-to sets for local variables: given a variable x ∈ V and a calling

context ctx ∈ C, ptsto(x , ctx) denotes the set of heap objects and their heap contexts that x under

ctx may point to. Other functions are used as intermediate information to compute ptsto: given
heap ∈ H, hctx ∈ HC, and f ∈ F, fldptsto(heap, hctx, f) represents the set of heap objects possibly

pointed to by the field of the heap object, and reachable(m) records the set of calling contexts ofm
under which the methodm is reachable from the entry of the program.

Analysis Rules. Figure 3 presents the analysis rules. The analysis aims to find the smallest

functions of ptsto, fldptsto, and reachable that are closed under the analysis rules, where the order

is defined pointwisely. Rules are defined for each instruction type. For example, the first rule is

responsible for object allocation, where an abstract heap heapl ∈ H is created from the allocation-

site l . Its heap context hctx is obtained from the calling context ctx of the method containing the

instruction, possibly truncated so as to keep the last maxH context elements, i.e., hctx = ⌈ctx⌉maxH .

The operator ⌈·⌉k is used to truncate contexts: ⌈⟨a1,a2, . . . ,an⟩⌉k = ⟨an−k+1, . . . ,an⟩.
The rules for the move, load, and store instructions are intuitive while the last rule for method

invocation needs explanation. Given a method invocation l : x = y.sig(arg), where l denotes the
invocation-site, sig the method signature (name and type), and arg an actual argument, we identify

the calling context ctx of the caller method, (heap, hctx) the receiver object and its heap context

that y points to, t the class type of the object heap, andm the callee method whose signature is

sig and the enclosing class is t . Then we create a new calling context ctx ′ for the callee method

by appending (++) the current context element e to the previous context pctx, i.e., ⌈pctx ++ e⌉maxK ,

possibly truncated to keep the last maxK context elements. We call the previous context pctx the

“parent” context and the new one ⌈pctx ++ e⌉maxK the “child” context.

Context-Sensitivity Flavors. The notions of context elements and parent contexts depend

on the particular flavor of context-sensitivity and are defined by flavor . Given a heap heap ∈
H, heap context hctx ∈ HC, invocation-site invo ∈ I, and calling context ctx ∈ C as input,

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling 140:9

l : x = y.sig(arg) ctx ∈ reachable(methof (l))
(heap, hctx) ∈ ptsto(y, ctx) t = typeof (heap) m = lookup(t , sig)

(e, pctx,p) = flavor (heap, hctx, l, ctx) ctx ′ =
{
⌈pctx ++ e⌉maxK if (p,m) < T
⌈pctx⌉maxK if (p,m) ∈ T

ctx ′ ∈ reachable(m) (heap, hctx) ∈ ptsto(mthis, ctx ′)
ptsto(arg, ctx) ⊆ ptsto(mparam, ctx ′) ptsto(mreturn, ctx ′) ⊆ ptsto(x , ctx)

Fig. 4. Context-sensitive points-to analysis with tunneling

flavor (heap, hctx, invo, ctx) returns the current context element (e) to be used, the parent context

(pctx), and the parent method (p) where pctx is used as a calling context. Various flavors of context-

sensitivity can be obtained by defining flavor appropriately. For example, call-site-sensitivity [Shiv-

ers 1988], object-sensitivity [Milanova et al. 2005], and type-sensitivity [Smaragdakis et al. 2011]

are characterized as follows:

flavorcall (heap, hctx, invo, ctx) = (invo, ctx,methof (invo)) (Call-site-sensitivity)

flavorobj (heap, hctx, invo, ctx) = (heap, hctx,methof (heap)) (Object-sensitivity)

flavor type (heap, hctx, invo, ctx) = (classof (heap), hctx,methof (heap)) (Type-sensitivity)

That is, the defining characteristic of call-site-sensitivity is that it uses invocation-sites (invo) as
context elements, the parent context is the context (ctx) of the caller, and the parent method is the

caller (methof (invo)). In other words, in call-site-sensitivity, the new context is created by appending

the current context element to the calling context of the caller method. Object-sensitivity [Milanova

et al. 2005] differs from call-site-sensitivity in both the context element and the parent context:

it uses allocation-sites (heap) as context elements and the parent context comes from the heap

context (hctx) of the receiver object (heap). The parent method is methof (heap) because the heap
context (hctx) corresponds to the calling context of the method containing the allocation-site.

Type-sensitivity [Smaragdakis et al. 2011] is similar to object-sensitivity except that it uses the

containing classes (i.e. classof (heap)), instead of allocation-sites, as context elements. Hybrid

context-sensitivity [Kastrinis and Smaragdakis 2013] combines call-site-sensitivity (flavorcall) and
object-sensitivity (flavorobj); it uses call-site-sensitivity at static calls and object-sensitivity at virtual
calls.

3.2 Analysis with Context Tunneling
Now we describe context tunneling on top of the generic context-sensitive analysis. We assume

that a binary relation T on methods, called tunneling relation, is given prior to the analysis:

T ⊆ M ×M.

Intuitively, T relates the parent and child methods that require context tunneling. Suppose that a

methodm2 is called during analysis where its parent method ism1. Ifm1 andm2 are related by T ,

i.e., (m1,m2) ∈ T , we apply context tunneling by reusing the context of the parent method (m1) in

analyzing the child method (m2) without creating a new context form2. Given a tunneling relation

T , the analysis rule for performing context tunneling is defined in Figure 4. All the existing rules

except for method calls are carried over to the new analysis without any modifications. The rule

for method call in Figure 3 is replaced by the rule in Figure 4, where the only difference is in the

way of constructing the child context ctx ′. If (p,m) < T (i.e. tunneling disabled), we update the

calling context as the conventional k-context-sensitive analysis does. Otherwise, when (p,m) ∈ T

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

140:10 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

(i.e. tunneling enabled), we just pass the parent context pctx to the child method (i.e. ctx ′ = pctx)
without appending the current context element to pctx.

Although the idea of context tunneling is simple, realizing effective tunneling in practice is

challenging. We found that the performance of context tunneling is very sensitive to the choice

of the tunneling relation; with a good relation, context tunneling is able to improve the baseline

analysis significantly but, with an inappropriate choice, the analysis becomes even inferior to

the context-insensitive analysis. Manually finding a general heuristic rule to generate an optimal

tunneling relation for a given program was difficult for real-world Java programs. The goal of

Section 4 is to address this challenge with a data-driven technique that automatically learns a good

tunneling heuristic from data.

4 LEARNING CONTEXT-TUNNELING HEURISTICS
In this section, we present a machine-learning algorithm specialized for generating good context

tunneling heuristics from a dataset of programs.

4.1 Parametric Program Analysis
Let us first encapsulate our analysis in Section 3 as a parametric program analysis [Liang et al.

2011]. Let P ∈ P be a program to analyze. LetMP be the set of methods in P . Then, we can define

the set RP of all tunneling relations for P as follows:

T ∈ RP = ℘(MP ×MP).

The set RP forms the parameter space of the analysis for P , where an element T ∈ RP — a set of

method pairs — represents a tunneling relation. Abstractions are ordered by set inclusion. For each

pair (m1,m2) of parent and child methods in T , we apply context-tunneling by reusing the calling

context of the parent method (m1) when analyzing the child method (m2) without creating a new

context form2. The abstraction space covers the conventional context-insensitive and -sensitive

analyses: with T = ∅, the analysis becomes an ordinary k-context-sensitive analysis, and with

T = MP ×MP , the analysis equals to the context-insensitive analysis.

We assume that a set QP of assertions is given together with the input program P . For instance,
QP may denote the set of all type casts in P and the analysis attempts to prove that they do not

fail at runtime (i.e. no down-casting failures). Then, we can model points-to analysis for P by the

function FP :

FP ∈ RP → ℘(QP) × N.

Given a program P and a tunneling relation T ∈ RP , FP (T) returns the set Q ⊆ QP of proved

assertions and the analysis time n ∈ N represented by a natural number (e.g. time took to analyze

the program). We define two projection functions: proved(FP (T)) and cost(FP (T)) denote the set
of proved assertions (Q) and the analysis cost (n) of the analysis FP (T), respectively.

Non-Monotonicity. One noticeable property of our analysis is non-monotonicity. Note that

existing parametric program analyses are typically monotone with respect to their parameters; that

is, the analysis precision is monotonically increasing (or decreasing) with respect to the parameters

of the analysis (e.g. [Jeong et al. 2017; Liang and Naik 2011; Liang et al. 2011; Zhang et al. 2014]).

That is, if p ⊑ p ′ then proved(FP (p)) ⊆ proved(FP (p ′)) (or proved(FP (p)) ⊇ proved(FP (p ′))).
For example, in a selective context-sensitive analysis [Jeong et al. 2017], making more methods

context-sensitive always increases precision. In our case, however, the analysis is not monotone

with respect to the parameters (i.e. context-tunneling relations). That is, T ⊆ T ′ does not imply

FP (T) ⊆ FP (T
′) or FP (T) ⊇ FP (T

′). Consequently, neither FP (∅) nor FP (MP × MP) — the

conventional k-context-sensitive analysis and context-insensitive analysis — is the most precise one

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling 140:11

in the parameter space of context tunneling. As we describe in Section 4.4, this unusual property

makes learning challenging; in particular, we cannot use the existing learning algorithms (e.g. [Jeong

et al. 2017; Liang et al. 2011]) that exploit the monotonicity of analysis.

4.2 Machine-Learning Model for Context Tunneling
Our goal is to learn a tunneling heuristic, denotedH , from a dataset of programs, which takes a

program P and returns a tunneling relation for P :

H (P) ∈ ℘(MP ×MP).

To generate such a heuristic automatically, we need to define a space of possible tunneling heuristics,

called model or inductive bias in the machine learning community. A standard method is to define

the space by a generic heuristic with free parameters, reducing the problem of generating a good

heuristic to the problem of finding appropriate parameter values. There is a number of different

ways to define such a parameterized heuristic. For example, we can use a linear combination of

input features [Oh et al. 2015] or a non-linear, disjunctive combination [Jeong et al. 2017]. We take

the latter approach because the non-linear method is known to be more effective for points-to

analysis than the simple linear approach [Jeong et al. 2017].

Following Jeong et al. [2017], we use a boolean formula over atomic features as a model parameter.

Let us assume that a set of atomic features is given:A = {a1,a2, . . . ,an }, where a feature ai describes
a property of methods. It is a function from programs to predicates on methods:

ai (P) : MP → {true, false}.

For example, a feature may express the set of methods that have heap allocation in their bodies.

We shortly present our atomic features in detail. Given a set of atomic features, we can express

more complex features of methods by combining the atomic features. We combine them with a

boolean formula f in disjunctive normal form, i.e., a disjunction of conjunctions of literals:

f =
∨
i

∧
j

li, j

where li, j is a literal: true, false, atomic feature a ∈ A, or their negations. Note that the meaning

of a boolean formula is a set of methods. Given a program P and a formula f =
∨

i
∧

j li, j , let
[[f]]P be the set of methods on which the formula f evaluates to true: [[f]]P =

⋃
i
⋂

j [[li, j]]P where

[[true]]P = MP , [[false]]P = ∅, [[ai]]P = {m ∈ MP | ai (P) (m) = true}, and [[¬ai]]P = MP \ [[ai]]P . In
the rest of this paper, we often represent a formula in disjunctive normal form by a set of sets of

literals. For example, the formula f = (a1∧a2)∨ (¬a3∧a4) can be represented by {{a1,a2}, {¬a3,a4}}.
Our model uses two boolean formulas Π = ⟨f1, f2⟩ and generates the tunneling relation for a

given program P as follows:

HΠ (P) = {(m1,m2) ∈ MP ×MP | m1 ∈ [[f1]]P ∨m2 ∈ [[f2]]P }. (1)

The generated relation includes a pair (m1,m2) of methods ifm1 ∈ [[f1]]P orm2 ∈ [[f2]]P . This
conditions says that we apply context tunneling whenm1 is implied by f1 orm2 by f2. Intuitively,
f1 denotes the set of methods that improve the analysis performance by passing their contexts to

child methods, and f2 describes the methods that benefit by reusing the contexts of their parent

methods. The goal of our learning algorithm is to discover the characteristics of such methods,

represented by boolean combinations (f1 and f2) of features, that maximize the performance of the

heuristic.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

140:12 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

Table 1. Atomic features used in evaluation

Class A (Signature features)

A1 “java” A2 “lang” A3 “sun” A4 “()” A5 “void”

A6 “security” A7 “int” A8 “util” A9 “String” A10 “init”

Class B (Additional features)

B1 Methods contained in nested class B7 Methods containing static method invocation

B2 Methods taking multiple arguments B8 Methods containing virtual method invocation

B3 Methods containing array load B9 Static method

B4 Methods containing local assignments B10 Methods containing a single heap allocation

B5 Methods containing local variables B11 Methods taking an argument of Object type

B6 Methods containing field store B12 Methods containing multiple heap allocations

B13 Methods contained in a large class

Atomic Features. Table 1 shows 23 atomic features we have used in learning. Each feature in

Table 1 describes a syntactic property of Java method definitions. The features are classified into

two types: signature features (Class A) and additional features (Class B). Signature features (A1

– A10) came from the existing work [Jeong et al. 2017] and additional features (B1 – B13) have

been newly designed in this work. Signature features consist of strings that most frequently appear

in method signatures from the DaCapo suite [Blackburn et al. 2006]. For example, the feature A5

(“void”) denotes the set of methods whose signature strings include “void” as a substring. On the

other hand, features B1 – B13 describe slightly higher-level properties. For example, the feature

B1 denotes the set of methods that belong to inner classes. When choosing atomic features, we

focused on collecting as many simple features as possible and let the learning algorithm to discover

meaningful combinations of them automatically. In Section 5.2, we discuss impact of using different

atomic features.

4.3 Optimization Problem
Formally, the learning problem is expressed as an optimization problem. Given program analysis F ,
parameterized heuristicHΠ defined in (1), and training programs P = {P1, . . . , Pm }, our goal is to
find the parameters f1 and f2 that maximize the precision of the analysis over the codebase:

Find Π = ⟨f1, f2⟩ that maximizes

∑
P ∈P

|proved(FP (HΠ (P))) |

such that Π = ⟨f1, f2⟩ satisfies the following constraint on the analysis cost:∑
P ∈P

cost(FP (HΠ (P))) ≤
∑
P ∈P

cost(FP (∅)).

The constraint says that the analysis with context tunneling (FP (HΠ (P))) is at least as scalable as
the baseline analysis without tunneling (FP (∅)).

4.4 Learning Algorithm
In this paper, we present an algorithm that effectively solves the optimization problem. The key chal-

lenge, which makes our algorithm substantially differ from the existing learning algorithms [Jeong

et al. 2017; Liang et al. 2011], is that the analysis F is not monotone with respect to the tunneling

relations. In existing learning algorithms [Jeong et al. 2017; Liang et al. 2011], monotonicity plays a

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling 140:13

Algorithm 1 Overall Algorithm

Input: Static analyzer F , codebase P, atomic features A
Output: Model parameters f1 and f2
1: procedure Learn(F , P, A)
2: f2 ← LearnParameter(2, false, F , P,A) ▷ learn methods for child contexts

3: f1 ← LearnParameter(1, f2, F , P,A) ▷ learn methods for parent contexts

4: return ⟨f1, f2⟩
5: end procedure

central role in finding analysis parameters efficiently. They start from the most precise abstraction,

and iteratively refine the abstraction until a smallest abstraction that satisfies a given constraint is

found; here monotonicity allows the algorithms to safely rule out a large set of abstractions smaller

than any previously failed (constraint-unsatisfying) abstractions. Consequently, these algorithms

follow a (decreasing) chain of parameters and monotonicity ensures that this strategy is optimal.

However, when the analysis is not monotone, simply following a chain of parameters no longer

provides such a guarantee. Our algorithm is able to find a good parameter over the non-monotonic

space of tunneling relations by exploring the search space in a non-greedy way that seeks to

maximize the final benefit, instead of the immediate benefit.

Overall Algorithm. The overall algorithm consists of two phases. It first learns the formula f2,
aiming at characterizing the methods that increase the analysis precision by inheriting contexts

from their parent methods instead of creating their own ones. With the learned f2, the algorithm
continues to learn f1, the set of methods that improves the precision by passing their contexts to

child methods. Those two formulas f1 and f2 become the parameter Π = ⟨f1, f2⟩ of the heuristic
HΠ . Procedure Learn in Algorithm 1 describes the overall procedure. It takes three inputs: a

static analyzer F parameterized by tunneling relations, a set P of training programs, and a set A of

atomic features. The algorithm calls the same subroutine, LearnParameter, twice with different

parameters. Note that the formula f2 learned in the first phase is used in the second phase at line 3.

In the rest of this section, we write Π(i) when Π = ⟨f1, f2⟩ for f1 (when i = 1) or f2 (when i = 2),

and write Π[fi 7→ д] for ⟨д, f2⟩ (when i = 1) or ⟨f1,д⟩ (when i = 2).

Learning a Single Parameter. Procedure LearnParameter in Algorithm 2 takes four inputs:

index i indicating the formula to learn (i.e. i = 1, 2 when learning f1, f2, respectively), learned
formula f2 (if any), static analyzer F , training programs P, and atomic features A. At line 3, we
initialize the parameter Π = ⟨f1, f2⟩, where both f1 and f2 are false in the beginning (when we

learn f2). Note that, at this point, the heuristicHΠ indicates performing the conventional k-context-
sensitive analysis without context tunneling. The goal of the algorithm is to discover a heuristic

HΠ′ that maximally increases the precision of the baseline analysis without sacrificing its scalability.

Our strategy to do so is to identify what we call seed features and iteratively refine them to maximize

their effectiveness. We say a ∈ (A∪¬A) is a seed feature if it describes methods for which applying

context tunneling has potential to improve the precision of the baseline analysis. We define the

predicate SeedFeature as follows:

SeedFeature(a, i,Π, F , P) =
(⋃
P ∈P

proved(FP (HΠ[fi 7→a] (P))) \ proved(FP (HΠ (P)))
)
, ∅

In words, Π denotes the current baseline heuristic (e.g. conventional analysis without tunneling in

the beginning). Let A = proved(FP (HΠ (P))) be the set of queries proved by the baseline analysis.

Let B = proved(FP (HΠ[fi 7→a] (P))) be the set of queries proved by the analysis that applies context

tunneling to the methods implied by the feature a. We call a seed if B includes at least one query

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

140:14 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

Algorithm 2 Learning a Single Parameter

Input: Index i of parameter to learn, parameter f2, static analyzer F , codebase P, atomic features A

Output: ith parameter fi
1: procedure LearnParameter(i, f2, F , P,A)
2: f1 ← false
3: Π ← ⟨f1, f2⟩
4: W ← {a ∈ (A ∪ ¬A) | SeedFeature(a, i,Π, F , P)} ▷ collect seed features

5: whileW , ∅ do
6: s ← ChooseSeed(i,Π, F , P,W) ▷ pick a seed feature fromW with highest potential

7: W ←W \ {s}
8: c ← RefineSeed(s, i,Π,A, F , P) ▷ refine seed feature s
9: Π′ ← Π[fi 7→ fi ∨ c] ▷ new parameter to be evaluated

10: if BetterHeuristicFound(Π,Π′, P) then ▷ check whether new parameter improves

11: Π ← Π′ ▷ update parameter

12: end if
13: end while
14: return Π(i) ▷ return fi
15: end procedure

Algorithm 3 Refining a Seed Feature

Input: Seed feature s , parameter index i , parameters Π, atomic features A, static analyzer F , codebase P
Output: refined conjunction c
1: procedure RefineSeed(s , i , Π, A, F , P)
2: c ← s ▷ initial conjunction

3: Failed ← ∅ ▷ Failed will maintain features that fail to refine c
4: while (a ← ChooseRefiner(A, fi , c, P, Failed)) , false do ▷ iteratively refine conjunction c
5: c ′ ← c ∧ a ▷ refine c with a
6: Π′ ← Π[fi 7→ fi ∨ c] ▷ old parameter

7: Π′′ ← Π[fi 7→ fi ∨ c
′
] ▷ new (refined) parameter

8: if Prec+ (Π′,Π′′, P) ∧ HasPotential(Π′′,Π, P) then ▷ precision improved

9: c ← c ′

10: else if Prec= (Π′,Π′′, P) ∧ Cost− (Π′,Π′′, P) then ▷ cost reduced without precision loss

11: c ← c ′

12: else
13: Failed ← Failed ∪ {a} ▷ record failed attempt

14: end if
15: end while
16: return c
17: end procedure

not inA, i.e., B \A , ∅. At line 4 of Algorithm 2, we collect all such seed features and they constitute

the initial worksetW .

In the loop at lines 5–13, we iterate to refine each seed feature. At line 6, theChooseSeed function
chooses the seed feature that has the highest potential:

ChooseSeed(i,Π, F , P,W) = argmax

a∈W

���
⋃
P ∈P

proved(FP (HΠ[fi 7→fi∨a] (P))) \ proved(FP (HΠ (P)))
���

Among the seed features inW , we pick a feature a ∈ W that maximizes the number of queries

provable with the feature (i.e. Π[fi 7→ fi ∨a]) but unprovable withtout it (Π). Note that we evaluate

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling 140:15

the potential of a feature by the number of exclusively provable queries, not by the total number of

provable queries. That is, we do not choose the feature

argmax

a∈W ′

���
⋃
P ∈P

proved(FP (HΠ[fi 7→fi∨a] (P)))
���

whereW ′ = {a ∈W |
���
⋃
P ∈P

proved(FP (HΠ[fi 7→fi∨a] (P)))
��� >

���
⋃
P ∈P

proved(FP (HΠ (P)))
���} (2)

which maximizes the immediate precision benefit. Instead, we deliberately choose a feature that

has a small (or even negative) immediate benefit but may lead to greater benefit after refinement.

This is a key decision point that our algorithm makes in order to maximize the performance in the

long run, when the analysis is not monotone with respect to its parameter space. Existing learning

algorithms designed with monotonicity in mind [Jeong et al. 2017; Liang et al. 2011] do not explore

the search space this way—they simply seek immediate benefit— and not appropriate for learning

context tunneling heuristics. We discuss the effect of our search strategy in Section 5.2 in detail.

Once we choose seed s , we refine it to maximize its potential benefit by conjoining other features

(line 8). Procedure RefineSeed is responsible for refining s and returns a conjunctive clause

s ∧a1∧ · · · ∧ak . When the refinement procedure finishes, we update the parameter with the refined

clause and check whether the refined heuristic indeed produces improved performance (lines 9 and

11). Because we pick an atomic feature at the beginning of a clause refinement phase solely based

on its potential, overall precision of intermediate clauses can be lower than the baseline. We accept

the refined clause only if adding them to the formula improves the precision while satisfying the

cost constraint, which is checked by the BetterHeuristicFound predicate:

BetterHeuristicFound(Π1,Π2, P) =∑
P ∈P

|proved(FP (HΠ1
(P))) | <

∑
P ∈P

|proved(FP (HΠ2
(P))) |∧

∑
P ∈P

cost(FP (HΠ2
(P))) ≤

∑
P ∈P

cost(FP (∅))

If a better heuristic is found, we update the parameter and go back to line 5 where the next seed

feature is selected and refined. Note that the loop always terminates as the worksetW never grows

after line 4.

Refining a Seed Feature. Algorithm 3 presents the procedure for refining a seed feature (s).
The conjunction is initially s (line 2) and iteratively refined in the loop at lines 4–15. At line 4, we

choose a refiner (i.e. an atomic feature) a from A and conjunct c with a, resulting in c ∧ a (line

5).When refining the current clause c , the algorithm behaves conservatively by choosing the feature

a that strengthens c as little as possible. We define the ChooseRefiner function as follows:

ChooseRefiner(A, f , c, P, Failed) = argmax

a∈(A∪¬A)\(c∪Failed)

∑
P ∈P

|[[f ∨ (c ∧ a)]]P |

Note that we exclude the features in the current clause c and those failed in the previous refinement

steps (Failed), which ensures that the refinement loop always terminates. At lines 5–7, c and c ′

denote the current and refined clauses, respectively, and Π′,Π′′ are the corresponding, current and
refined parameters. At lines 8–12, the performance of the refined parameter is evaluated on the

training programs. The refined parameter is accepted if it improves the analysis precision (lines

8–9) or it improves the scalability while retaining the precision (lines 10–11). Otherwise (lines

12–13), we do not refine the current clause c and store the feature a in Failed. The predicates Prec+,

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

140:16 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

Prec=, and Cost− are defined as follows:

Prec+ (Π1,Π2, F , P) =
∑

P ∈P |proved(FP (HΠ1
(P))) | <

∑
P ∈P |proved(FP (HΠ2

(P))) |
Prec= (Π1,Π2, F , P) =

∑
P ∈P |proved(FP (HΠ1

(P))) | =
∑

P ∈P |proved(FP (HΠ2
(P))) |

Cost− (Π1,Π2, F , P) =
∑

P ∈P cost(FP (HΠ1
(P)) >

∑
P ∈P cost(FP (HΠ2

(P)))

Because our goal is to find a conjunctive clause c that helps increase precision of the baseline

analysis (i.e. analysis with Π), we additionally check whether the refined heuristic has potential to

improve the precision at line 15:

HasPotential(Π1,Π2, F , P) =
(⋃
P ∈P

proved(FP (HΠ1
(P))) \ proved(FP (HΠ2

(P)))
)
, ∅

HasPotential returns true iff the heuristic with Π1 proves queries that cannot be proved by the

heuristic with Π2.

5 EVALUATION
In this section, we experimentally evaluate our techniques. We aim to answer the following research

questions:

• Effectiveness of context tunneling: How effective is context tunneling in practice? How

much does context tunneling improve the performance of the state-of-the-art pointer analysis?

• Necessity and efficacy of our learning approach: Is learning necessary to find good

context-tunneling heuristics? How effectively does the non-greedy algorithm help to find

good tunneling heuristics? How sensitive is the algorithm to the choice of atomic features?

• Learned heuristics: What insight do the learned heuristics provide about context tunneling?

Setting. We implemented our approach in Doop [Bravenboer and Smaragdakis 2009], a widely

used framework for points-to analysis for Java [Jeong et al. 2017; Kastrinis and Smaragdakis 2013;

Smaragdakis et al. 2011; Tan et al. 2016, 2017]. The Doop framework provides four kinds of context-

sensitivity: hybrid context-sensitivity [Kastrinis and Smaragdakis 2013], object-sensitivity [Mi-

lanova et al. 2002, 2005], type-sensitivity [Smaragdakis et al. 2011], and call-site-sensitivity [Smarag-

dakis and Balatsouras 2015]. Hybrid context-sensitivity is currently considered the state-of-the-art,

which selectively combines object-sensitivity and call-site-sensitivity to enjoy the benefits of both

approaches [Kastrinis and Smaragdakis 2013]. Thus, our primary objective is to apply context

tunneling to hybrid context-sensitivity, aiming at advancing the state-of-the-art, but we also show

that context tunneling is useful for other types of context-sensitivity as well. In short, we consider

the following 12 context-sensitive analyses for Java (all analyses use 1-context-sensitive heap):

• Hybrid context-sensitivity
1
:

– S1objH, S2objH: 1 and 2-hybrid-context-sensitivity with 1 context-sensitive heap

– S1objH+T: S1objH with context tunneling

• Object-sensitivity:

– 1objH, 2objH: 1 and 2-object-sensitivity with 1 context-sensitive heap

– 1objH+T: 1objH with context tunneling

• Type-sensitivity:

– 1typeH, 2typeH: 1 and 2-type-sensitivity with 1 context-sensitive heap

– 1typeH+T: 1typeH with context tunneling

• Call-site-sensitivity

– 1callH, 2callH: 1 and 2-call-site-sensitivity with 1 context-sensitive heap

– 1callH+T: 1callH with context tunneling

1
We write S1objH to mean Selective 1-object-sensitive hybrid A in original paper [Kastrinis and Smaragdakis 2013].

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling 140:17

All experiments were done on a machine with Intel i7 CPU and 16 GB RAM running on Ubuntu

14.04 64bit operating system and JDK 1.6.0_30.

Benchmarks. We used the DaCapo 2006-10-MR2 benchmark suite [Blackburn et al. 2006],

a standard benchmark for evaluating Java points-to analysis [Jeong et al. 2017; Kastrinis and

Smaragdakis 2013; Smaragdakis et al. 2011, 2014; Tan et al. 2016, 2017; Thiessen and Lhoták 2017].

Following Jeong et al. [2017] and Smaragdakis et al. [2014], we split ten programs in DaCapo into 4

small (luindex, lusearch, antlr, pmd) and 6 large (eclipse, xalan, fop, chart, bloat, jython)
programs. We did not use hsqldb because 1-context-sensitive points-to analysis did not scale (with

5,400s timeout) when a conservative reflection analysis is used. On the 4 small programs, we ran our

learning algorithm to obtain a tunneling heuristic for each analysis and then the learned heuristic

was evaluated on the 6 large programs. For a precision metric, we report the number of type casts

proven to be safe.

5.1 Effectiveness of Context Tunneling
Column S1objH+T of Table 2 presents the highlight of our results. It shows that context tunneling

significantly improves the precision and scalability of the state-of-the-art hybrid context-sensitivity.

We generated S1objH+T by applying context tunneling to S1objH, where a tunneling heuristic was

learned by running Algorithm 1 on the training set of programs (luindex, lusearch, antlr, pmd).
Table 2 compares the performance of S1objH+T and S1objH on both training and test programs.

On the training set, S1objH+T was much more precise and scalable than the baseline (S1objH). For
example, while S1objH analyzes lusearch in 79s and reports 850 may-fail casts, our analysis with

context tunneling (S1objH+T) reduces the analysis time and the number of alarms to 37s and 380,

respectively. The improvement becomes more dramatic in the (larger) test programs. For example,

S1objH reports 2,290 alarms and takes 1,299s in analyzing chart. Our analysis (S1objH+T) reduces
the number of alarms to 876 while only taking 73s.

Remarkably, S1objH+T is even better than S2objH (2-hybrid-context-sensitivity) in both precision

and scalability on all benchmark programs. S2objH is currently considered the state-of-the-art points-

to analysis for Java as it provides most precise results while scaling well to large programs [Jeong

et al. 2017; Kastrinis and Smaragdakis 2013; Tan et al. 2016]. Our result shows that S1objH+T can

supplant the state-of-the-art. For example, when analyzing chart, S2objH takes 488s and reports

915 may-fail casts while S1objH+T reduces the numbers into 73s and 876, respectively.

Note that recent approaches [Jeong et al. 2017; Tan et al. 2016] aiming at enhancing S2objH do

so by compromising either precision or scalability. Tan et al. [2016] presented Bean, a technique

for improving the precision of object-sensitivity. Jeong et al. [2017] presented a technique for

performing selective context-sensitivity, which applies context-sensitivity only to a selected set of

methods. Both approaches have been used primarily for improving S2objH. However, Bean increases

the precision at the expense of scalability [Tan et al. 2016] and the technique by Jeong et al. [2017]

improves the scalability at the expense of precision. Our analysis, S1objH+T, increases both the

precision and scalability of S1objH at the same time.

Table 2 and 3 show that context tunneling is useful for other types of context-sensitivity as well;

overall, context tunneling enabled 1-object-sensitivity, 1-type-sensitivity, and 1-call-site-sensitivity

to perform better than their counterparts with k = 2. However, hybrid context-sensitivity benefitted

the most from our technique. This is because hybrid context-sensitivity provides the best precision

when we use deeper context-sensitivity (k = 2) in baseline analyses. Such result implies that we

have more chance to find tunneling relations for higher precision than others.

The results show that context tunneling also improves memory consumption. Context tunneling

can reduce memory consumption because increased precision reduces spurious facts (e.g., spurious

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

140:18 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

Table 2. Effectiveness of context tunneling for hybrid context-sensitivity and object-sensitivity. In all metrics,
lower is better. Entries with “-” mean that the analysis did not terminate within the given time budget (5400
sec.). For precision metrics, we count may-fail casts, virtual calls that have multiple targets, and reachable
methods. For cost metrics, we measure number of call-graph edges and analysis time.

Hybrid Context Sensitivity Object Sensitivity

S1objH+T S1objH S2objH 1objH+T 1objH 2objH

T
r
a
i
n
i
n
g
p
r
o
g
r
a
m
s

luindex

may-fail casts 371 783 415 462 796 496

analysis time(s) 34 66 36 37 51 37

reachable mthds 7,700 7,907 7,702 7,702 7,876 7,702

call-graph-edges 0.2M 0.5M 0.9M 0.3M 0.5M 1M

lusearch

may-fail casts 380 850 420 469 812 508

analysis time(s) 37 79 63 41 56 64

reachable mthds 8,342 8,580 8,344 8,344 8,526 8,344

call-graph-edges 0.2M 0.5M 2M 0.3M 0.5M 2.1M

antlr

may-fail casts 483 956 530 570 985 611

analysis time(s) 47 85 50 50 67 45

reachable mthds 8,712 8,917 8 ,714 8,714 8,886 8,714

call-graph-edges 0.2M 0.6M 0.9M 0.3M 0.6M 1M

pmd

may-fail casts 713 1,217 761 812 1,210 846

analysis time(s) 53 129 56 57 77 57

reachable mthds 9,086 9,322 9,090 9,090 9,277 9,090

call-graph-edges 0.3M 0.7M 1.3M 0.3M 0.6M 1.3M

T
e
s
t
i
n
g
p
r
o
g
r
a
m
s

eclipse

may-fail casts 586 1,061 625 698 1,092 729

analysis time(s) 41 129 49 47 94 51

poly v-calls 1,180 1,404 1,179 1,181 1,395 1,179

reachable mthds 9,195 9,461 9,188 9,197 9,408 9,188

call-graph-edges 0.3M 0.8M 1.4M 0.4M 0.8M 1.5M

xalan

may-fail casts 572 1,129 623 680 1,055 720

analysis time(s) 64 187 465 400 179 2,047

poly v-calls 1,628 1,916 1,624 1,633 1,861 1,628

reachable mthds 10,325 10,560 10,327 10,336 10,511 10,336

call-graph-edges 0.4M 1M 9M 1.9M 1M 35M

fop

may-fail casts 1,080 1,975 1,107 1,253 1,968 1,270

analysis time(s) 121 916 513 176 1,797 428

poly v-calls 2,081 2,733 2,041 2,063 2,650 2,047

reachable mthds 14,374 15,741 14,373 14,376 15,733 14,373

call-graph-edges 1M 3.2M 12.1M 1.6M 3.9M 11.4M

chart

may-fail casts 876 2,290 915 1,011 2,226 1,055

analysis time(s) 73 1,299 488 107 2248 316

poly v-calls 1,614 2,792 1,614 1,616 2,670 1,614

reachable mthds 12,503 16,037 12,510 12,510 15,977 12,510

call-graph-edges 0.5M 2.6M 11M 0.7M 3.2M 11.3M

bloat

may-fail casts 1,251 1,931 1,326 1,374 1,911 1,407

analysis time(s) 464 707 2,211 463 557 2,314

poly v-calls 1,668 2,075 1,650 1,652 2,071 1,650

reachable mthds 9,928 10,159 9,914 9,914 10,116 9,914

call-graph-edges 1.4M 2.1M 35M 1.4M 1.9M 35.3M

jython

may-fail casts 837 1,308 - - - -

analysis time(s) 425 730 >5,400 >5,400 >5,400 >5,400

poly v-calls 1,394 1,619 - - - -

reachable mthds 10,626 11,012 - - - -

call-graph-edges 1.1M 2.1M - - - -

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling 140:19

Table 3. Effectiveness of context tunneling for type-sensitivity and call-site-sensitivity. All notations and
measures are the same with those in Table 2.

Type Sensitivity Call-Site Sensitivity

1typeH+T 1typeH 2typeH 1callH+T 1callH 2callH

T
r
a
i
n
i
n
g
p
r
o
g
r
a
m
s

luindex

may-fail casts 575 888 624 784 837 796

analysis time(s) 37 43 34 60 50 348

reachable mthds 7,706 7,884 7,704 7,879 7,953 7,902

call-graph-edges 0.1M 0.2M 0.3M 0.2M 0.3M 9.2M

lusearch

may-fail casts 616 926 664 843 938 875

analysis time(s) 40 45 36 62 52 364

reachable mthds 8,348 8,536 8,346 8,551 8,626 8,575

call-graph-edges 0.1M 0.2M 0.3M 0.2M 0.3M 9.3M

antlr

may-fail casts 707 1,061 753 945 1,037 995

analysis time(s) 59 56 50 98 75 430

reachable mthds 8,718 8,894 8,716 8,885 8,961 8,910

call-graph-edges 0.1M 0.2M 0.3M 0.3M 0.4M 9.5M

pmd

may-fail casts 949 1,302 995 1,200 1,273 1,216

analysis time(s) 63 65 58 103 78 454

reachable mthds 9,096 9,290 9,094 9,296 9,371 9,319

call-graph-edges 0.1M 0.2M 0.3M 0.2M 0.4M 9.4M

T
e
s
t
i
n
g
p
r
o
g
r
a
m
s

eclipse

may-fail casts 839 1,191 876 1,073 1,154 1,098

analysis time(s) 43 60 45 111 94 574

poly v-calls 1,246 1,440 1,247 1,399 1,507 1,402

reachable mthds 9,234 9,451 9,220 9,444 9,511 9,443

call-graph-edges 0.2M 0.3M 0.4M 0.3M 0.4M 10.5M

xalan

may-fail casts 907 1,229 950 1,137 1,203 1,143

analysis time(s) 75 77 80 142 121 672

poly v-calls 1,673 1,890 1,685 1,858 1,967 1,903

reachable mthds 10,383 10,560 10,375 10,539 10,613 10,560

call-graph-edges 0.2M 0.3M 0.9M 0.3M 0.4M 9.8M

fop

may-fail casts 1,690 2,133 1,728 1,977 2,070 1,998

analysis time(s) 143 496 212 508 420 3,480

poly v-calls 2,349 2,712 2,370 2,522 2,665 2,582

reachable mthds 15,386 15,794 15,363 15,108 15,217 15,129

call-graph-edges 0.6M 1M 4M 0.4M 0.5M 10.6M

chart

may-fail casts 1,451 2,449 1,502 2,376 2,485 2,410

analysis time(s) 92 422 95 618 400 4,339

poly v-calls 1,752 2,731 1,775 2,698 2,892 2,783

reachable mthds 13,294 16,018 13,280 16,020 16,134 16,022

call-graph-edges 0.2M 0.6M 0.8M 0.4M 0.6M 10.7M

bloat

may-fail casts 1,692 2,037 1,723 1,949 2,007 -

analysis time(s) 71 87 73 785 634 >5400

poly v-calls 1,772 2,139 1,896 1,925 2,129 -

reachable mthds 9,952 10,128 9,956 10,113 10,200 -

call-graph-edges 0.3M 0.3M 0.8M 0.4M 0.6M -

jython

may-fail casts 1,118 1,440 - 1,331 1,388 1,344

analysis time(s) 603 431 >5400 188 163 841

poly v-calls 1,459 1,665 - 1,565 1,705 1,616

reachable mthds 10,768 11,117 - 10,987 11,066 11,006

call-graph-edges 0.6M 0.6M - 0.3M 0.5M 10M

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

140:20 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

call-graph edges). For example, while 1objH generated 0.5 million call-graph edges for lusearch,
S1objH+T generated 0.2 million edges, confirming that more than a half of the call-graph edges in

the 1objH analysis are spurious.

5.2 Efficacy of Learning Algorithm
The key enabler for effective context tunneling is our learning algorithm. In this subsection, we

discuss our learning approach from various perspectives.

Necessity of learning. One important lesson we learned from this work is that using an auto-

mated learning algorithm is essential for discovering effective tunneling heuristics. Any simple

heuristic we could come up with manually did not achieve good-enough performance. For example,

we tried all “single-feature” heuristics with the parameters in {⟨f1, f2⟩ | (f1 = false∧ f2 = a) ∨ (f1 =
a∧ f2 = false),a ∈ A∪¬A}, where A is the set of atomic features in Table 1. Among the 92 (4× |A|)
such heuristics, the B1 feature with ⟨f1 = false, f2 = B1⟩ was most effective for the family of object-

based context-sensitivities (i.e. 1objH, S1objH, 1typeH). By using the B1 feature alone, however, we

managed to reduce the total of 9,694 alarms of S1objH to 7,218 and the analysis time from 3,968s to

1,367s for the test programs. We failed to further improve its precision substantially with manual

tuning. On the other hand, our algorithm effectively refined the feature to the following:

f2: (B1 ∧ B5 ∧ ¬A6 ∧ ¬A9 ∧ ¬B13 ∧ A1 ∧ ¬A3) ∨ (B9 ∧ ¬A6 ∧ A1 ∧ B5 ∧ B4 ∧
¬B6∧¬A9∧¬A3∧¬A10∧¬A4∧A8∧¬B1) ∨ (B13∧ B5∧¬B3∧¬A6∧¬B9∧
B4 ∧ ¬A9 ∧ ¬B10 ∧ ¬B6 ∧ ¬A3 ∧ ¬A5 ∧ ¬B8 ∧A4 ∧A8 ∧A2 ∧ B7 ∧ ¬B1)

Note that our algorithm not only was able to refine the feature (i.e. the first conjunct containing

B1), but also found room for further improvement with ¬B1 (i.e. the second and third conjuncts).

With this refinement, the precision of the heuristic improved significantly, reducing the number of

alarms from 7,218 to 5,202, finally outperforming S2objH . Discovering such a complex heuristic

manually is totally nontrivial for real-world programs.

Impact of non-greedy strategy. Our algorithm is able to find a good heuristic because it ex-

plores the search space in a non-greedy manner. That is, it seeks to maximize the final performance

of heuristics rather than blindly pursuing the immediate improvement. To see the impact of this

strategy, we compared our algorithm against a greedy algorithm that maximizes the immediate ben-

efit. We made this greedy version of our algorithm by modifying the ChooseSeed and HasPotential
functions, so that they measure the potential of a heuristic based on the total number of proved

queries, not on the number of exclusively proved queries. Precisely, the ChooseSeed is redefined

as in Eq. 2 and the HasPotential is changed to return true always. With this strategy, the learning

algorithm becomes to always favor a parameter that maximally improves the current heuristic; it

never explores parameters that are worse than the current one.

Figure 5 shows that our non-greedy strategy has significant impact on the final quality of learned

heuristics. It depicts how the precision of the current heuristic changes over time during the

learning algorithm. The x-axis reports progress of the learning procedure
2
and the y-axis reports

the precision in terms of the number of unproven queries on the training set of programs (lower is

better). Note that our algorithm (black solid line) repeatedly explores parameters that are much

worse than the current one but doing so enables to find a good parameter in the end. With the

greedy strategy (red dotted line), the algorithm converges to suboptimal outcomes. Crucially, the

heuristics learned by this greedy algorithm could not beat the conventional 2-context-sensitive

approaches on test programs.

2
We collected refinements that passed the condition at line 10 in Algorithm 2 for better understanding.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling 140:21

0 2 0 4 0 6 0 8 0 1 0 0
1 9 0 0

2 0 0 0

2 1 0 0

2 2 0 0

2 3 0 02 5 0 0
3 0 0 0
3 5 0 0
4 0 0 0

S 1 o b j H (3 , 8 0 6)

ma
y-f

ail
ca

sts

P r o g r e s s (%)

 N o n - g r e e d y s t r a t e g y
 G r e e d y s t r a t e g y

(a) Hybrid context-sensitivity

0 2 0 4 0 6 0 8 0 1 0 0
2 8 0 0

2 9 0 0

3 0 0 0

3 1 0 0

3 6 0 0

4 0 0 0

4 4 0 0

1 t y p e H (4 , 1 7 7)

ma
y-f

ail
ca

sts

P r o g r e s s (%)

 N o n - g r e e d y s t r a t e g y
 G r e e d y s t r a t e g y

(b) Type-sensitivity

Fig. 5. Impact of our non-greedy learning strategy.

Table 4. Generalization to other benchmarks

Benchmarks

S1objH+T S1objH S2objH

may-fail casts time(s) may-fail casts time(s) may-fail casts time(s)

JPC 1,593 230 2,595 2,578 1,627 1,597

checkstyle 474 80 902 111 508 158

Generality of learned heuristics. The algorithm is able to learn heuristics that do not overfit

to training data and generalize well to unseen programs. Tables 2 and 3 show that the context-

tunneling heuristics learned with the small programs (luindex, lusearch, antlr, pmd) in the

DaCapo suite perform well on the large programs (eclipse, xalan, fop, chart, bloat, jython).
We also checked the generality of the heuristics beyond the DaCapo benchmarks. We evaluated the

learned heuristic for S1objH+T on two large applications, JPC3 and checkstyle4. Table 4 shows
that our heuristic substantially outperforms both S1objH and S2objH for these programs.

Impact of using more features. Our algorithm is likely to produce a better heuristic as more

diverse features are used. We evaluated our algorithm with 1) the A features only, 2) the B features

only, and 3) the A and B features. We learned a heuristic for each set of features from the training

programs, and then evaluated its performance on the test programs. Table 5 presents the results.

Overall, using all of the A and B features was most effective. The high-level features (B) primarily

helped to increase the precision of the learned heuristic. However, using the B features alone

was unable to find scalable heuristics. Additionally using the low-level features (A) enabled the

algorithm to refine the B features delicately, generating a heuristic outstanding in both precision

and scalability.

Learning cost. Our learning algorithm took 53 – 137 hours to generate the heuristics used in

Table 2 and 3. For hybrid context-sensitivity, it took 57 hours in total (21 hours for generating

the parameter f1 and 36 hours for f2). For object-sensitivity, the algorithm required 26 hours

for f1 and 28 hours for f2. For type-sensitivity, it took 76 hours for f1 and 61 hours for f2. For

3
http://jpc.sourceforge.net/home_home.html

4
http://checkstyle.sourceforge.net

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

http://jpc.sourceforge.net/home_home.html
http://checkstyle.sourceforge.net

140:22 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

Table 5. Impact of using more features

Benchmarks

Baseline(S1objH) With A only With B only With A and B

alarms time(s) alarms time(s) alarms time(s) alarms time(s)

eclipse 1,061 129 807 69 583 47 586 41

xalan 1,129 187 866 179 585 137 572 64

fop 1,975 916 1,250 179 1,102 163 1,080 121

chart 2,290 1,299 1,200 120 887 98 876 73

bloat 1,931 707 1,634 1,156 1,250 548 1,251 464

jython 1,308 730 1,039 379 844 3,747 837 425

Total 9,694 3,968 6,796 2,082 5,251 4,740 5,202 1,188

Table 6. Tradeoff between learning cost and performance.

Learning Cost eclipse xalan fop chart bloat jython

Full learning

54 hours

alarms 586 572 1,080 876 1,251 837

(⟨f1, f2⟩) time(s) 41 64 121 73 464 425

Approximate

29 hours

alarms 605 588 1,099 897 1,317 855

(⟨false, f2⟩) time(s) 33 54 90 57 335 367

call-site-sensitivity, the algorithm took 53 hours in total (24 hours for f1 and 29 hours for f2). Our
algorithm was most expensive for type-sensitivity because it found relatively a large set of seed

features and required more iterations to refine all of them (see Figure 5b).

Our algorithm is expensive, but it is useful because learning occurs off-line and only consumes

machine-time. In particular, generating such a heuristic manually would require much more

expensive human costs. Nonetheless, we could reduce the learning cost by approximation. One

possible way is to only learn the formula f2 and then merely set f1 to false. The resulting parameter

⟨false, f2⟩makes the heuristic less discerning, giving sub-optimal results, but the learning cost can be

halved. Table 6 shows this trade-off between learning cost and optimality. Overall, S1objH+T learned

with the approximate learning is less precise and slightly faster than the analysis with full learning.

5.3 Learned Heuristics
The learned features in Appendix A hint at when and where context tunneling is useful in practice.

For example, our learning algorithm automatically discovered the characteristics of methods that

benefit from deeper (k ≥ 2) object-sensitivity, which was originally conjectured by Milanova et al.

[2005]. Milanova et al. [2005] stated that deeper object-sensitivity may be useful for methods that

belong to sub-objects. Consider the code snippet that defines a composite class using a sub-object:

1 class A {} class B {}

2 class SubObject {

3 Object id(Object v) { return v; }

4 }

5 class CompositeClass {

6 public SubObject att;

7 public CompositeClass(){

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling 140:23

8 att = new SubObject(); //SO

9 }

10 }

11 class Main{

12 public static void main(String[] args){

13 CompositeClass cc1 = new CompositeClass(); //CC1

14 CompositeClass cc2 = new CompositeClass(); //CC2

15 A a = (A)cc1.att.id(new A()); //Query 1

16 B b = (B)cc2.att.id(new B()); //Query 2

17 }

18 }

To prove the safety of two down-casting queries at lines 15 and 16, two method calls to id should

be analyzed separately. However, object-sensitivity with k = 1 fails to prove the queries because

the analysis merges the two contexts into the same context [SO]. On the other hand, deeper object-

sensitivity (e.g., k = 2) can accommodate the composite class’s allocation sites along with the one

of sub-objects ([CC1, SO] and [CC2, SO]), concluding that each invocation of id returns one of A or

B, not both. Here, we can apply context tunneling instead of using deeper context; the sub-objects’

method should inherit the context from the parent method, i.e., the constructor of CompositeClass,
instead of updating the context. In other words, contexts of the constructor CompositeClass are
important and they should be propagated without modification. By doing so, object-sensitivity with

k = 1 and context tunneling can prove the queries. Our learning algorithm captured this situation

automatically. It produced the f1 formula for object-sensitivity with the following conjunction:

· · · ∨ (A8∧B5∧¬B3∧A1∧¬A6∧¬A3∧¬B9∧B4∧¬A9∧¬B11∧¬A2∧¬B7∧
¬B1 ∧ ¬B8 ∧ B12 ∧ B10 ∧ ¬B13 ∧ B6 ∧A5 ∧A10 ∧A7 ∧ ¬A4)

Note the four underlined atomic features: A10 for constructor methods, B12 and B10 for methods

with heap allocations, and B6 for methods containing field store. Combining these features denotes

a set of constructor methods that allocate heaps inside and store something into their member

attributes, which describes methods such as one given above.

5.4 Threats to Validity
• The DaCapo suite we used for training may not be representative. We presented the results

for other benchmarks beyond DaCapo as well, but it still may not be inclusive.

• Using different sets of features may produce different results. Although we have evaluated

our approach with a number of combinations of atomic features, the results might be different

if a totally different set of atomic features is used. In particular, our learning algorithm would

be unable to work if atomic features do not have any potentials as described in Section 4.4.

• Using a different type of queries, may produce different results as we have learned heuristics

with may-fail-casts in mind.

6 RELATEDWORK
Points-to analysis has a large body of past literature[Chatterjee et al. 1999; Hind 2001; Kastrinis

and Smaragdakis 2013; Lhoták and Hendren 2006, 2008; Liang and Harrold 1999; Liang et al. 2005;

Might et al. 2010; Milanova et al. 2002, 2005; Sharir and Pnueli 1981; Shivers 1988; Smaragdakis and

Balatsouras 2015; Smaragdakis et al. 2011; Whaley and Lam 2004; Wilson and Lam 1995]. Below,

we discuss prior works that are closely related to ours.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

140:24 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

6.1 Context-Sensitive Analysis
To our knowledge, all existing techniques for context-sensitive analyses (e.g. [Jeong et al. 2017;

Karkare and Khedker 2007; Kastrinis and Smaragdakis 2013; Khedker and Karkare 2008; Milanova

et al. 2002, 2005; Oh et al. 2014; Padhye and Khedker 2013; Sharir and Pnueli 1981; Shivers 1988;

Smaragdakis et al. 2011, 2014; Tan et al. 2016; Wei and Ryder 2015; Whaley and Lam 2004]) suffer

from the problemwe tackle in this paper. All of those techniques update the calling contexts at every

call-site and therefore may lose important context elements when k-limiting is used. For example,

techniques for varying context depths adaptively [Jeong et al. 2017; Oh et al. 2014; Smaragdakis

et al. 2014; Wei and Ryder 2015] have proven their effectiveness for tuning the performance of

context-sensitivity. However, the primary goal of these techniques is to selectively analyze methods

with appropriate k values, rather than to be selective in context construction.

The technique, called Bean, by Tan et al. [2016] is similar to ours in that it aims to improve preci-

sion of k-object-sensitive points-to analysis without increasing k . The idea is to identify “redundant”
context elements by running a pre-analysis and building a so-called object allocation graph. An

object allocation graph is analogous to a call-graph in call-site-sensitivity and captures how context

strings are generated during an object-sensitive analysis. The technique identifies redundant nodes

in the graph, which can be removed without reducing the number of distinct contexts; in fact,

this technique guarantees to result same or more distinct contexts than conventional analysis

with same k . The redundant nodes are excluded when selecting heap contexts for an object. The

main focus of Bean is in choosing good heap contexts and therefore it still suffers from the core

problem we tackle in this paper; that is, Bean always append the last context element to the parent

context on method calls (i.e. it uses the last rule in Figure 3, not Figure 4). As the result, when

k = 1 for example, Bean analyzes every method under the same calling context as the ordinary

1-object-sensitive analysis. The goal of context tunneling is to mitigate this problem.

Merging equivalent contexts [Xu and Rountev 2008] or abstract heaps [Tan et al. 2017] also have

been studied to increase scalability of context-sensitive points-to analysis. Xu and Rountev [2008]

first defines a fine-grained notion of context equivalence that guarantees to increase scalability

without losing original analysis’s precision, which is ∞-context-sensitivity. Based on the equiv-

alence, the paper introduces its abstracted version to extend scalability even further at the cost

of precision. Tan et al. [2017] merges two abstract heaps if their fields-points-to-graphs indicate

that any field access sequence (i.e., o. f .д. · · · .h) ends up with same typed objects for two graphs.

This approach demonstrated that it brings little or no negative impact on precision but scales deep

context sensitive analysis.

6.2 Parametric and Data-driven Program Analysis
Our work presents a new instance of parametric program analysis. Previously, parametric program

analyses have been used for context-sensitivity [Jeong et al. 2017; Liang and Naik 2011; Liang et al.

2011; Oh et al. 2014; Tan et al. 2017; Zhang et al. 2014], flow-sensitivity [Oh et al. 2015], variable

clustering for relational analysis [Heo et al. 2016], and widening thresholds [Cha et al. 2016].

Typically, the goal of these analyses is to find a parameter which is as scalable as possible while

sacrificing as little precision as possible. For example, Jeong et al. [2017]; Liang et al. [2011]; Oh et al.

[2014, 2015]; Smaragdakis et al. [2014] sacrifice the precision of full flow- or context-sensitivity to

obtain tractable scalability. Heo et al. [2016] compromises the full precision of relational analysis

and cluster variables whose relationships should be kept during analysis. Hassanshahi et al. [2017]

and Tan et al. [2017] aim to find appropriate heap abstraction that scales well without losing

precision too much. In this paper, we propose a new knob, called context tunneling, which is able

to improve both precision and scalability of the conventional context-sensitive analysis.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling 140:25

From the perspective of data-driven program analysis, our work presents a new learning algo-

rithm for disjunctive model that is applicable even when the underlying analysis is not monotone

with respect to the parameter space. Recently, data-driven approaches to program analysis have

been popular to address the challenge of generating program-analysis heuristics [Chae et al. 2017;

Heo et al. 2016, 2017; Jeong et al. 2017; Oh et al. 2015; Wei and Ryder 2015]. In particular, Jeong

et al. [2017] recently proposed an algorithm with disjunctive model based on boolean formulas

and used the model to learn a heuristic to determine appropriate context depths for each method.

This algorithm drastically reduces the search space by exploiting the monotonicity of the analysis

(i.e. applying deeper context-sensitivity will never decrease precision). Our approach is based on

the disjunctive model proposed by [Jeong et al. 2017] but uses a different, non-greedy algorithm

for learning context tunneling heuristics. The learning algorithm by Oh et al. [2015] is applica-

ble to non-monotone analyses, but its applicability is limited to analysis heuristics based on the

linear combination of input features. Chae et al. [2017] solves an orthogonal problem, automatic

generation features for learning heuristics, where feature programs are generated by running a

program reducer and get abstracted to features represented by abstract data-flow graphs. However,

it remains to be seen whether the technique is applicable beyond intraprocedural settings.

7 CONCLUSION AND FUTUREWORK
Developing a precise and scalable context-sensitive analysis is a major challenge in program analysis

research. This paper demonstrates that we can effectively address this challenge by applying context

tunneling, which carefully maintains the k most important context elements, as opposed to the

traditional approaches that simply maintain the k most recent ones. Experimental results with four

flavors of context-sensitivity show that the new approach improves the state-of-the-art points-to

analyses remarkably in both precision and scalability. To achieve this, we developed a new machine-

learning algorithm specialized for generating context-tunneling heuristics automatically from a

dataset of programs.

We believe that the use of context tunneling is not limited to points-to analysis for Java. As future

work, we plan to apply context tunneling to static analysis for dynamic languages or control-flow

analysis for functional languages, where deeper context-sensitivity (e.g., k > 5) is known to be

greatly beneficial [Kashyap et al. 2014; Park and Ryu 2015]. Our conjecture is that the same (or

even higher) precision can be obtained with smaller k values if they use context tunneling.

ACKNOWLEDGMENTS
This work was supported by Samsung Research Funding & Incubation Center of Samsung Elec-

tronics under Project Number SRFC-IT1701-09.

REFERENCES
Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien

Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint

Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’14). ACM, New York, NY, USA, 259–269. DOI:http://dx.doi.org/10.1145/2594291.2594299

Dzintars Avots, Michael Dalton, V. Benjamin Livshits, and Monica S. Lam. 2005. Improving Software Security with a C

Pointer Analysis. In Proceedings of the 27th International Conference on Software Engineering (ICSE ’05). ACM, New York,

NY, USA, 332–341. DOI:http://dx.doi.org/10.1145/1062455.1062520
Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,

Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.

Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and BenWiedermann. 2006. The

DaCapo Benchmarks: Java Benchmarking Development and Analysis. In Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems, Languages, and Applications (OOPSLA ’06). ACM, New York, NY,

USA, 169–190. DOI:http://dx.doi.org/10.1145/1167473.1167488

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

http://dx.doi.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/1062455.1062520
http://dx.doi.org/10.1145/1167473.1167488

140:26 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. 2015. Selective Control-flow Abstraction via Jumping. In

Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2015). ACM, New York, NY, USA, 163–182. DOI:http://dx.doi.org/10.1145/2814270.2814293

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specification of Sophisticated Points-to Analyses. In

Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA ’09). ACM, New York, NY, USA, 243–262. DOI:http://dx.doi.org/10.1145/1640089.1640108

Sooyoung Cha, Sehun Jeong, and Hakjoo Oh. 2016. Learning a Strategy for Choosing Widening Thresholds from a Large
Codebase. Springer International Publishing, Cham, 25–41. DOI:http://dx.doi.org/10.1007/978-3-319-47958-3_2

Kwonsoo Chae, Hakjoo Oh, Kihong Heo, and Hongseok Yang. 2017. Automatically Generating Features for Learning

Program Analysis Heuristics. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017).

Ramkrishna Chatterjee, Barbara G. Ryder, and William A. Landi. 1999. Relevant Context Inference. In Proceedings of the
26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’99). ACM, New York, NY, USA,

133–146. DOI:http://dx.doi.org/10.1145/292540.292554
Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. 2008. Effective Typestate Verification in the

Presence of Aliasing. ACM Trans. Softw. Eng. Methodol. 17, 2, Article 9 (May 2008), 34 pages. DOI:http://dx.doi.org/10.
1145/1348250.1348255

Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping Zhou, Bing Xie, and Hong Mei. 2015. Safe Memory-

leak Fixing for C Programs. In Proceedings of the 37th International Conference on Software Engineering - Volume 1 (ICSE
’15). IEEE Press, Piscataway, NJ, USA, 459–470. http://dl.acm.org/citation.cfm?id=2818754.2818812

Behnaz Hassanshahi, Raghavendra Kagalavadi Ramesh, Padmanabhan Krishnan, Bernhard Scholz, and Yi Lu. 2017. An

Efficient Tunable Selective Points-to Analysis for Large Codebases. In Proceedings of the 6th ACM SIGPLAN International
Workshop on State Of the Art in Program Analysis (SOAP 2017). ACM, New York, NY, USA, 13–18. DOI:http://dx.doi.org/
10.1145/3088515.3088519

Kihong Heo, Hakjoo Oh, and Hongseok Yang. 2016. Learning a Variable-Clustering Strategy for Octagon from Labeled Data
Generated by a Static Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg, 237–256. DOI:http://dx.doi.org/10.1007/
978-3-662-53413-7_12

Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. 2017. Machine-Learning-Guided Selectively Unsound Static Analysis. In

Proceedings of the 39th International Conference on Software Engineering. ACM.

Michael Hind. 2001. Pointer Analysis: Haven’t We Solved This Problem Yet?. In Proceedings of the 2001 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE ’01). ACM, New York, NY, USA, 54–61.

DOI:http://dx.doi.org/10.1145/379605.379665
Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. 2017. Data-Driven Context-Sensitivity for Points-to Analysis.

Proceedings of the ACM on Programming Languages 1, OOPSLA (2017).

Bageshri Karkare andUday P. Khedker. 2007. An Improved Bound for Call Strings Based Interprocedural Analysis of Bit Vector

Frameworks. ACM Trans. Program. Lang. Syst. 29, 6, Article 38 (Oct. 2007). DOI:http://dx.doi.org/10.1145/1286821.1286829
Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons, John Sarracino, Ben Wiedermann, and Ben

Hardekopf. 2014. JSAI: A Static Analysis Platform for JavaScript. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2014). ACM, New York, NY, USA, 121–132. DOI:http://dx.doi.
org/10.1145/2635868.2635904

George Kastrinis and Yannis Smaragdakis. 2013. Hybrid Context-sensitivity for Points-to Analysis. In Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13). ACM, New York, NY,

USA, 423–434. DOI:http://dx.doi.org/10.1145/2491956.2462191
Uday P. Khedker and Bageshri Karkare. 2008. Efficiency, Precision, Simplicity, and Generality in Interprocedural Data Flow

Analysis: Resurrecting the Classical Call Strings Method. In Proceedings of the Joint European Conferences on Theory and
Practice of Software 17th International Conference on Compiler Construction (CC’08/ETAPS’08). Springer-Verlag, Berlin,
Heidelberg, 213–228. http://dl.acm.org/citation.cfm?id=1788374.1788394

Junhee Lee, Seongjoon Hong, and Hakjoo Oh. 2018. MemFix: Static Analysis-Based Repair of Memory Deallocation Errors

for C. In The 26th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering.

Ondřej Lhoták and Laurie Hendren. 2006. Context-Sensitive Points-to Analysis: Is It Worth It?. In Proceedings of the
15th International Conference on Compiler Construction (CC’06). Springer-Verlag, Berlin, Heidelberg, 47–64. DOI:http:
//dx.doi.org/10.1007/11688839_5

Ondřej Lhoták and Laurie Hendren. 2008. Evaluating the Benefits of Context-sensitive Points-to Analysis Using a BDD-based

Implementation. ACM Trans. Softw. Eng. Methodol. 18, 1, Article 3 (Oct. 2008), 53 pages. DOI:http://dx.doi.org/10.1145/
1391984.1391987

Donglin Liang and Mary Jean Harrold. 1999. Efficient Points-to Analysis for Whole-program Analysis. In Proceedings of
the 7th European Software Engineering Conference Held Jointly with the 7th ACM SIGSOFT International Symposium on

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

http://dx.doi.org/10.1145/2814270.2814293
http://dx.doi.org/10.1145/1640089.1640108
http://dx.doi.org/10.1007/978-3-319-47958-3_2
http://dx.doi.org/10.1145/292540.292554
http://dx.doi.org/10.1145/1348250.1348255
http://dx.doi.org/10.1145/1348250.1348255
http://dl.acm.org/citation.cfm?id=2818754.2818812
http://dx.doi.org/10.1145/3088515.3088519
http://dx.doi.org/10.1145/3088515.3088519
http://dx.doi.org/10.1007/978-3-662-53413-7_12
http://dx.doi.org/10.1007/978-3-662-53413-7_12
http://dx.doi.org/10.1145/379605.379665
http://dx.doi.org/10.1145/1286821.1286829
http://dx.doi.org/10.1145/2635868.2635904
http://dx.doi.org/10.1145/2635868.2635904
http://dx.doi.org/10.1145/2491956.2462191
http://dl.acm.org/citation.cfm?id=1788374.1788394
http://dx.doi.org/10.1007/11688839_5
http://dx.doi.org/10.1007/11688839_5
http://dx.doi.org/10.1145/1391984.1391987
http://dx.doi.org/10.1145/1391984.1391987

Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling 140:27

Foundations of Software Engineering (ESEC/FSE-7). Springer-Verlag, London, UK, UK, 199–215. http://dl.acm.org/citation.

cfm?id=318773.318943

Donglin Liang, Maikel Pennings, and Mary Jean Harrold. 2005. Evaluating the Impact of Context-sensitivity on Andersen’s

Algorithm for Java Programs. In Proceedings of the 6th ACM SIGPLAN-SIGSOFTWorkshop on Program Analysis for Software
Tools and Engineering (PASTE ’05). ACM, New York, NY, USA, 6–12. DOI:http://dx.doi.org/10.1145/1108792.1108797

Percy Liang and Mayur Naik. 2011. Scaling Abstraction Refinement via Pruning. In Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’11). ACM, New York, NY, USA, 590–601. DOI:
http://dx.doi.org/10.1145/1993498.1993567

Percy Liang, Omer Tripp, and Mayur Naik. 2011. Learning Minimal Abstractions. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM, New York, NY, USA, 31–42.

DOI:http://dx.doi.org/10.1145/1926385.1926391
V. Benjamin Livshits and Monica S. Lam. 2003. Tracking Pointers with Path and Context Sensitivity for Bug Detection in

C Programs. In Proceedings of the 9th European Software Engineering Conference Held Jointly with 11th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC/FSE-11). ACM, New York, NY, USA, 317–326. DOI:
http://dx.doi.org/10.1145/940071.940114

Matthew Might, Yannis Smaragdakis, and David Van Horn. 2010. Resolving and Exploiting the k-CFA Paradox: Illuminating

Functional vs. Object-oriented Program Analysis. In Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’10). ACM, New York, NY, USA, 305–315. DOI:http://dx.doi.org/10.1145/
1806596.1806631

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2002. Parameterized Object Sensitivity for Points-to and Side-effect

Analyses for Java. In Proceedings of the 2002 ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’02). ACM, New York, NY, USA, 1–11. DOI:http://dx.doi.org/10.1145/566172.566174

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized Object Sensitivity for Points-to Analysis for

Java. ACM Trans. Softw. Eng. Methodol. 14, 1 (Jan. 2005), 1–41. DOI:http://dx.doi.org/10.1145/1044834.1044835
Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective Static Race Detection for Java. In Proceedings of the 27th ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’06). ACM, New York, NY, USA, 308–319.

DOI:http://dx.doi.org/10.1145/1133981.1134018
Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. 2014. Selective Context-sensitivity Guided

by Impact Pre-analysis. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’14). ACM, New York, NY, USA, 475–484. DOI:http://dx.doi.org/10.1145/2594291.2594318

Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. 2015. Learning a Strategy for Adapting a Program Analysis via Bayesian

Optimisation. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2015). ACM, New York, NY, USA, 572–588. DOI:http://dx.doi.org/10.1145/2814270.
2814309

Rohan Padhye and Uday P. Khedker. 2013. Interprocedural data flow analysis in Soot using value contexts. In Proceedings of
the 2nd ACM SIGPLAN International Workshop on State Of the Art in Java Program analysis, SOAP 2013, Seattle, WA, USA,
June 20, 2013. 31–36. DOI:http://dx.doi.org/10.1145/2487568.2487569

Changhee Park and Sukyoung Ryu. 2015. Scalable and Precise Static Analysis of JavaScript Applications via Loop-

Sensitivity. In 29th European Conference on Object-Oriented Programming (ECOOP 2015) (Leibniz International Proceedings
in Informatics (LIPIcs)), John Tang Boyland (Ed.), Vol. 37. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,

Germany, 735–756. DOI:http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.735
Micha Sharir and Amir Pnueli. 1981. Two approaches to interprocedural data flow analysis. Prentice-Hall, Englewood Cliffs,

NJ, Chapter 7, 189–234.

O. Shivers. 1988. Control Flow Analysis in Scheme. In Proceedings of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation (PLDI ’88). ACM, New York, NY, USA, 164–174. DOI:http://dx.doi.org/10.1145/
53990.54007

Gagandeep Singh, Markus Püschel, and Martin Vechev. 2018. Fast Numerical Program Analysis with Reinforcement Learning.

In Computer Aided Verification, Hana Chockler and Georg Weissenbacher (Eds.). Springer International Publishing, Cham,

211–229.

Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Found. Trends Program. Lang. 2, 1 (April 2015), 1–69.
DOI:http://dx.doi.org/10.1561/2500000014

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick Your ContextsWell: Understanding Object-sensitivity.

In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11).
ACM, New York, NY, USA, 17–30. DOI:http://dx.doi.org/10.1145/1926385.1926390

Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspective Analysis: Context-sensitivity, Across

the Board. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’14). ACM, New York, NY, USA, 485–495. DOI:http://dx.doi.org/10.1145/2594291.2594320

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

http://dl.acm.org/citation.cfm?id=318773.318943
http://dl.acm.org/citation.cfm?id=318773.318943
http://dx.doi.org/10.1145/1108792.1108797
http://dx.doi.org/10.1145/1993498.1993567
http://dx.doi.org/10.1145/1926385.1926391
http://dx.doi.org/10.1145/940071.940114
http://dx.doi.org/10.1145/1806596.1806631
http://dx.doi.org/10.1145/1806596.1806631
http://dx.doi.org/10.1145/566172.566174
http://dx.doi.org/10.1145/1044834.1044835
http://dx.doi.org/10.1145/1133981.1134018
http://dx.doi.org/10.1145/2594291.2594318
http://dx.doi.org/10.1145/2814270.2814309
http://dx.doi.org/10.1145/2814270.2814309
http://dx.doi.org/10.1145/2487568.2487569
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.735
http://dx.doi.org/10.1145/53990.54007
http://dx.doi.org/10.1145/53990.54007
http://dx.doi.org/10.1561/2500000014
http://dx.doi.org/10.1145/1926385.1926390
http://dx.doi.org/10.1145/2594291.2594320

140:28 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

Y. Sui, D. Ye, and J. Xue. 2014. Detecting Memory Leaks Statically with Full-Sparse Value-Flow Analysis. IEEE Transactions
on Software Engineering 40, 2 (Feb 2014), 107–122. DOI:http://dx.doi.org/10.1109/TSE.2014.2302311

Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-Object-Sensitive Pointer Analysis More Precise with Still k-Limiting. In

Static Analysis, Xavier Rival (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 489–510.

Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and Precise Points-to Analysis: Modeling the Heap by Merging Equivalent

Automata. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2017). ACM, New York, NY, USA, 278–291. DOI:http://dx.doi.org/10.1145/3062341.3062360

Rei Thiessen and Ondřej Lhoták. 2017. Context Transformations for Pointer Analysis. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM, New York, NY, USA,

263–277. DOI:http://dx.doi.org/10.1145/3062341.3062359
Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman. 2009. TAJ: Effective Taint Analysis of Web

Applications. In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’09). ACM, New York, NY, USA, 87–97. DOI:http://dx.doi.org/10.1145/1542476.1542486

Shiyi Wei and Barbara G. Ryder. 2015. Adaptive Context-sensitive Analysis for JavaScript. In 29th European Conference on
Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic. 712–734. DOI:http://dx.doi.org/10.
4230/LIPIcs.ECOOP.2015.712

John Whaley and Monica S. Lam. 2004. Cloning-based Context-sensitive Pointer Alias Analysis Using Binary Decision

Diagrams. In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation
(PLDI ’04). ACM, New York, NY, USA, 131–144. DOI:http://dx.doi.org/10.1145/996841.996859

Robert P. Wilson and Monica S. Lam. 1995. Efficient Context-sensitive Pointer Analysis for C Programs. In Proceedings of
the ACM SIGPLAN 1995 Conference on Programming Language Design and Implementation (PLDI ’95). ACM, New York,

NY, USA, 1–12. DOI:http://dx.doi.org/10.1145/207110.207111
Guoqing Xu and Atanas Rountev. 2008. Merging Equivalent Contexts for Scalable Heap-cloning-based Context-sensitive

Points-to Analysis. In Proceedings of the 2008 International Symposium on Software Testing and Analysis (ISSTA ’08). ACM,

New York, NY, USA, 225–236. DOI:http://dx.doi.org/10.1145/1390630.1390658
Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2017. Machine-Learning-Guided Typestate Analysis for Static Use-

After-Free Detection. In Proceedings of the 33rd Annual Computer Security Applications Conference (ACSAC 2017). ACM,

New York, NY, USA, 42–54. DOI:http://dx.doi.org/10.1145/3134600.3134620
Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. 2014. On Abstraction Refinement for Pro-

gram Analyses in Datalog. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’14). ACM, New York, NY, USA, 239–248. DOI:http://dx.doi.org/10.1145/2594291.2594327

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

http://dx.doi.org/10.1109/TSE.2014.2302311
http://dx.doi.org/10.1145/3062341.3062360
http://dx.doi.org/10.1145/3062341.3062359
http://dx.doi.org/10.1145/1542476.1542486
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.712
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.712
http://dx.doi.org/10.1145/996841.996859
http://dx.doi.org/10.1145/207110.207111
http://dx.doi.org/10.1145/1390630.1390658
http://dx.doi.org/10.1145/3134600.3134620
http://dx.doi.org/10.1145/2594291.2594327

Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling 140:29

A LEARNED FORMULAS
Following tables show the learned tunneling heuristics. Each row means a conjunctive formula, and

each formula has one seed feature, which is underlined. We denote positive and negative features

using “T” and “F”, respectively, and an empty space means “don’t care”.

A.1 Hybrid context-sensitivity

Signature Features (A) Other Features (B)

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12 13

f1
T F F T F F F F F T T F F T F T

T F F F T F T T F T F F F T T F F F T F T F

f2

T F F F T T F

T F F F T F F F T T F T

T F T F F T F F F T T F T F F F T

A.2 Object-sensitivity

Signature Features (A) Other Features (B)

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12 13

f1

F F F T F F F F T F F F T T T F F F T F T F

T F F T F F F F F F F F T T F F F F T F F

T F F F T F T T F T F T F T T T F F F T F T F

T T F F F F F T F F F F T T F F F T T

f2
T F F F T T T F

T T T F T T F F T T F T F T T T T T F F F T T

A.3 Call-site-sensitivity

Signature Features (A) Other Features (B)

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12 13

f1

T F F T T F F T T F F F T T F F F F F F F T

F T F F T T F F F F F F

T T F F F T F F F T T T F T T T F T F T

f2

F F F T T F F F

T F F T F T T T F F F

T F F F F T F T T F F F F F F F

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

140:30 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

A.4 Type-sensitivity

Signature Features (A) Other Features (B)

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12 13

f1

T F F F F T F F F F T T F F F T T

T F F T T F F T F T F F F F T F F F F F F T T

T T F F T F F F F T F T F T T T F F F F F T T

T F F F T F T T F T F F F T T T F F T F T F

F F F F F F T F F F F T F T T F F T F F F T T

T F F F T F T T F T F T F T T T F F F T F T F

F F T T T F F F F T F F F F T F F F F F F T F

F F F F T T T F T T

T F F T F F F T F F F F F T T F F T F F F T T

F F F F T F F F F F F T T F F F F T

f2

T F F F T T T F F

T T F F F T F F T F F T F F T F

T T F F F F F F T T T F F F T

T F F F T F F F F T F T T T F F F F

F F F F F T F F T F T T F F F F F

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Call-Site-Sensitivity
	2.2 Object-Sensitivity

	3 Points-to Analysis with Context Tunneling
	3.1 Conventional k-Context-Sensitive Analysis
	3.2 Analysis with Context Tunneling

	4 Learning Context-Tunneling Heuristics
	4.1 Parametric Program Analysis
	4.2 Machine-Learning Model for Context Tunneling
	4.3 Optimization Problem
	4.4 Learning Algorithm

	5 Evaluation
	5.1 Effectiveness of Context Tunneling
	5.2 Efficacy of Learning Algorithm
	5.3 Learned Heuristics
	5.4 Threats to Validity

	6 Related Work
	6.1 Context-Sensitive Analysis
	6.2 Parametric and Data-driven Program Analysis

	7 Conclusion and Future Work
	Acknowledgments
	References
	A Learned formulas
	A.1 Hybrid context-sensitivity
	A.2 Object-sensitivity
	A.3 Call-site-sensitivity
	A.4 Type-sensitivity

