
NPEX: Repairing Java Null Pointer Exceptions without Tests
Junhee Lee

Korea University
Republic of Korea

junhee_lee@korea.ac.kr

Seongjoon Hong∗
Korea University
Republic of Korea

seongjoon@korea.ac.kr

Hakjoo Oh†
Korea University
Republic of Korea

hakjoo_oh@korea.ac.kr

ABSTRACT

We present NPEX, a new technique for repairing Java null pointer
exceptions (NPEs) without tests. State-of-the-art NPE repair tech-
niques rely on test suites written by developers for patch validation.
Unfortunately, however, those are typically future test cases that are
unavailable at the time bugs are reported or insufficient to identify
correct patches. Unlike existing techniques, NPEX does not require
test cases; instead, NPEX automatically infers the repair specifica-
tion of the buggy program and uses the inferred specification to
validate patches. The key idea is to learn a statistical model that pre-
dicts how developers would handle NPEs by mining null-handling
patterns from existing codebases, and to use a variant of symbolic
execution that can infer the repair specification from the buggy
program using the model. We evaluated NPEX on real-world NPEs
collected from diverse open-source projects. The results show that
NPEX significantly outperforms the current state-of-the-art.

ACM Reference Format:

Junhee Lee, Seongjoon Hong, and Hakjoo Oh. 2022. NPEX: Repairing Java
Null Pointer Exceptions without Tests. In 44th International Conference on
Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3510003.3510186

1 INTRODUCTION

Null pointer exceptions (NPEs) are perhaps the most infamous
bug in Java. NPEs represent a serious flaw of a program because
dereferencing a null pointer always causes the program to crash.
Furthermore, NPEs are highly prevalent in real-world Java appli-
cations [2, 8, 9, 32, 55, 72]. For example, NPEs take up 37.2% and
40.2% of crashes in open-source projects [32] and Android appli-
cations [55], respectively, and recent studies show that NPEs are
the most prevailing uncaught exception in production environ-
ments [2, 72]. Yet, fixing NPEs remains challenging because simply
avoiding crashes is often incorrect and finding a correct fix out of a
wide range of candidates is nontrivial.

∗The first and second authors contributed equally to this work.
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510186

Generate-and-ValidateAPRApproaches. Over the last decade,
automated program repair (APR) techniques have shown promise
in addressing the challenge of bug fixing [21, 24, 29, 37, 38, 43, 53,
59, 60, 66, 68]. Most existing APR techniques follow the conven-
tional generate-and-validate approach, which alternates the two
phases: (1) patch generation and (2) patch validation. In the patch
generation phase, a candidate patch is selected from a pre-defined
search space, and in the patch validation phase, the correctness of
the candidate patch is checked by running the patched program on
a set of test cases. This process is repeated until a plausible patch
that passes all test cases is found.

VFix [67] is the current state-of-the-art for repairing NPEs. Its
novel feature is to use value-flow information of programs to accu-
rately localize suspicious statements and reduce the search space of
candidate patches appropriately for NPEs. The reduced patch space
improves the efficiency of the generate-and-validate process and
also increases the chances of finding correct patches. As a result,
VFix has been shown to outperform existing APR techniques such
as GenProg [59], ACS [66], CapGen [60], Nopol [68], SimFix [21],
and NPEfix [13] when evaluated for NPEs [67].

Our Approach. In this paper, we present a new approach, called
NPEX, for repairing NPEs. Like existing APR techniques, NPEX fol-
lows the standard generate-and-validate approach. The difference,
though, is that NPEX replaces the test-based patch validation phase
of the existing approach by a novel technique that can validate
patches without relying on test cases.

We avoid using test cases as a validation oracle for two reasons.
First, because test cases are typically unavailable at the time a bug
is reported [25], they cannot be effectively used by a repair tool
that aims to fix the bug as soon as it is detected. Furthermore, using
a test suite as a repair specification is likely to produce incorrect
patches fitted only to the given tests [28, 54, 69]. For example, as
we demonstrate in this paper, even the-state-of-the-art VFix, which
reduces incorrect patches using a customized patch space, often
fails to fix diverse NPEs due to overfitting.

We use two key ideas to validate NPE patches without tests. First,
we use a statistical model that predicts how developers would han-
dle NPEs. To learn such a model, we collect various null-handling
patterns available in existing codebases. For example, from null-
handling code (x != null)? x.m() : 0, we extract the knowl-
edge that the expected return value of x.m() is 0 when x is null
and therefore an NPE occurs at x.m(). We then generalize this
pattern using program-independent features for expressions and
surrounding contexts. Second, we use the model to infer the ex-
pected behavior of a buggy program. To this end, we use a variant
of symbolic execution that interprets NPE-triggering expressions in
the buggy program using the model’s prediction. The result of this
symbolic execution is used as the repair specification of the buggy

https://doi.org/10.1145/3510003.3510186
https://doi.org/10.1145/3510003.3510186

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Junhee Lee, Seongjoon Hong, and Hakjoo Oh

(a) Buggy program
1 boolean compare(int row, Column<?> temp, Column<?> org) {

2 Object o1 = org.get(row);

3 Object o2 = temp.get(temp.size() - 1);

4 return o1.equals(o2); // NPE

5 }

(b) NPE-triggering input
int missing = IntColumnType.missingValueIndicator();

Table t1 = Table.create("T1",

IntColumn.create("Id", 0, 0),

IntColumn.create("ChildId", missing, missing));

t1.dropDuplicateRows(); // compare is invoked inside

(c) NPEX-generated patch (= developer’s patch)
(-) return o1.equals(o2);

(+) return o1 == null ? o2 == null : o1.equals(o2);

Figure 1: An NPE bug (line 4) and developer patch

program; given a candidate patch during the generate-and-validate
process, we analyze the behavior of the patched program to check
if it satisfies the inferred specification.

The evaluation results show that our approach substantially
improves upon the current state-of-the-art. We implemented our
approach as a tool, NPEX, using existing methods for fault localiza-
tion and patch generation [13, 67]. We used 119 NPE bugs collected
from prior work [36, 41, 67] as well as open-source projects, and
compared the performance of NPEX with two state-of-the-art tech-
niques, VFix [67] and Genesis [36], for repairing NPEs. The results
show that NPEX can correctly fix 51% of those bugs even without
test cases while Genesis and VFix fixed 22% and 42%, respectively,
with test cases.

Contributions. We summarize our contributions below:
• We present a new technique for validating NPE patches with-
out test cases. The key idea is to infer the expected behavior
of a buggy program by combining statistical learning and
symbolic execution.
• WepresentNPEX, an end-to-end patch generation system for
Java NPEs. NPEX is able to fix NPEs given a buggy program
and crashing input only.
• We demonstrate the effectiveness of NPEX in comparison
with current state-of-the-arts. Our results are reproducible;
the source code of NPEX and the benchmarks are publicly
available.1

2 OVERVIEW

This section motivates and illustrates NPEX with examples.

2.1 Motivating Example

Figure 1 describes an NPE bug2 found in project tablesaw. Method
compare in Figure 1(a) checks if two objects associated with temp
and org are equivalent. The NPE occurs when dereferencing o1, i.e.,

1https://github.com/kupl/npex
2https://github.com/jtablesaw/tablesaw/commit/65596d8

1 String m(Object obj, String valueIfNull) {

2 // if (obj==null) return valueIfNull; // developer patch

3 Class cls = obj.getClass(); // NPE

4 String name = cls.getCanonName();

5 if (name == null) { return valueIfNull; }

6 else { return name; }

7 }

Figure 2: A buggy program (simplified from Apache Com-

mons Lang) and the developer patch (commented out).

1 if (obj == null)

2 return null;

3 Class cls = ...;

4 String name = ...;

1 if (obj == null)

2 return valueIfNull;

3 Class cls = ...;

4 String name = ...;

P1 (incorrect) P2 (correct)

Figure 3: Candidate patches

o1.equals(o2), at line 4, where o1 is null if elements are missing
at position row of org. In practice, NPEs are typically reported with
bug-triggering input only; in this case, the bug report was given3
with the single NPE-triggering input shown in Figure 1(b).

Given the buggy program (Figure 1(a)) and NPE-triggering input
(Figure 1(b)), NPEX generates the patch in Figure 1(c), which is
exactly the same as the developer’s patch. Note that producing
the correct patch is nontrivial because there are various ways of
avoiding the NPE. For example, all the following candidate patches
eliminate the NPE when inserted right before line 4, but their se-
mantics differs from that of the developer patch:
• if (o1 == null) return false;
• if (o1 == null) return true;
• if (o1 == null) o1 = new Object();

To exclude these incorrect patches, NPEX automatically infers
the expected specification of the buggy program and validates
candidate patches against it. In this case, NPEX infers that “when
o1 is null, compare should return true if o2 is null and false
otherwise”. None of the incorrect patches satisfy this specification
and are therefore rejected by NPEX.

Existing test-based techniques, e.g., VFix [67] and Genesis [36],
do not work well when the test suite only includes the crashing
input. VFix would generate the first incorrect patch, if(o1 ==
null) return false, since its ranking heuristic prioritizes patches
that skip statements containing NPEs and return default values.
Genesis generated a patch that implements a logic to remove all
Columns with a missing value, which is obviously incorrect.

2.2 How NPEXWorks

The distinctive feature of NPEX is in the patch validation phase.
We explain how NPEX validates patches with the buggy program
in Figure 2, where method invocation obj.getClass() at line 3

3https://github.com/jtablesaw/tablesaw/issues/798

https://github.com/kupl/npex
https://github.com/jtablesaw/tablesaw/commit/65596d8
https://github.com/jtablesaw/tablesaw/issues/798

NPEX: Repairing Java Null Pointer Exceptions without Tests ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

raises an NPE when variable obj is not initialized. The method m
is supposed to return the canonical name of the obj’s class. When
obj or its canonical name (name) is null, however, m is expected to
return the default value (valueIfNull).

Assume that we are given the variable obj at line 3 as the fault
expression. Assume further that two candidate patches, P1 and P2 ,
in Figure 3 are generated during the repair process. While both
patches succeed to eliminate the given NPE, P1 is incorrect because
it returns null, instead of valueIfNull, when obj is null, which
violates the intended behavior of the method. The goal of NPEX is
to invalidate 𝑃1 while validating the correctness of 𝑃2.

Learning aNull-HandlingModel. NPEX uses a statistical null-
handling model to validate patches, which is learned from existing
codebases and used to repair new, unseen buggy programs. The
null-handling model, denotedM, predicts how developers would
handle an NPE by inferring an alternative expression to replace
the NPE-triggering expression. For example, it infers that, when
obj is null, the entire NPE-triggering expression obj.getClass()
at line 3 should be interpreted as if it were the expression null.
Also, when cls is null, the model infers that the NPE-triggering
expression cls.getCanonName() at line 4 should be interpreted as
null. In summary, when instantiated for the example program in
Figure 2, the modelM can be treated as the following function:

M =

{
null.getClass() ↦→ null

null.getCanonName() ↦→ null

}
. (1)

NPEX learns such a model by mining various null-handling
patterns available in codebases. The intuition is that existing null-
handling patterns written by developers are good references for han-
dling NPEs (and inferring alternative expressions). For instance, con-
sider the null-handling code snippet available in project rapidoid4:

(args[i] != null) ? args[i].getClass() : null

from which we find that expression null can be alternatively used
for the NPE-triggering expression, args[i].getClass(), when
args[i] is null. Generalizing this, we learn the first replacement

null.getClass() ↦→ null (2)

of the modelM in (1). The codebase may have different patterns
for the same method getClass. For example, the following pattern
is also available in rapidoid:

obj != null ? obj.getClass() : Object.class

from which we infer the following:

null.getClass() ↦→ Object.class.

When applying the model, we resolve the conflict by choosing
the most appropriate one based on the surrounding code context
(Section 3.1); for our example, we assumed the pattern in (2) was
chosen. The knowledge for handling getCanonName can be inferred
from the following code snippet in project dozer5:

destCls != null ? destCls.getCanonName() : null

from which we obtain the second replacement in (1).

4https://github.com/rapidoid/rapidoid
5https://github.com/DozerMapper/dozer

Specification Inference. Once a model is learned, we can use
it to infer the expected behavior of a buggy program. To do so,
we run a variant of symbolic execution on the buggy program
that interprets NPE-triggering expressions using the null-handling
model. The result of this symbolic execution will be used as the
repair specification against which we validate candidate patches.

Consider the buggy method m in Figure 2. Our symbolic exe-
cution begins with the initial state (𝜋init , 𝜎init), where 𝜋init is the
initial path condition, i.e., 𝜋init = ∅, and 𝜎init is the initial symbolic
store, i.e., 𝜎init = [obj ↦→ 𝛼, valueIfNull ↦→ 𝛽], that maps formal
parameters to fresh symbols 𝛼 and 𝛽 .

At line 3, we encounter themethod invocation, obj.getClass(),
whose base variable obj is the fault expression that causes the NPE.
The key difference between normal symbolic execution and our
variant is that we interpret such an NPE-triggering expression
(obj.getClass()) using the alternative expression inferred by the
null-handling model. For example, the model in (1) infers null as
the alternative expression for obj.getClass() when obj is null.
Thus, our symbolic execution produces the following two states as
output of line 3:

𝑠1 = (𝜋1, 𝜎1) = (𝛼 = null, 𝜎init [cls ↦→ null])
𝑠2 = (𝜋2, 𝜎2) = (𝛼 ≠ null, 𝜎init [cls ↦→ f (𝛼)])

State s1 represents the output of the NPE-triggering execution
where obj is null (denoted by path condition 𝛼 = null). In this
case, store 𝜎1 is obtained using the null-handling model as follows:

𝜎1 = 𝜎init [cls ↦→ M(null.getClass())] = 𝜎init [cls ↦→ null]

where we inferred the expected meaning of the method invocation
usingM. State s2 represents the normal execution where no NPE
occurs. We use an uninterpreted function symbol to represent the
return value of the external method; f (𝛼) denotes the symbolic
value that obj.getClass() evaluates to.

With s1 and s2 as input states, symbolic execution of line 4 results
in the following output states:

s3 = (𝜋3, 𝜎3) = (𝛼 = null, 𝜎1 [name ↦→ null])
s4 = (𝜋4, 𝜎4) = (𝛼 ≠ null, 𝜎2 [name ↦→ g(f (𝛼))])

Note that the execution with s1 encounters a new NPE because cls
holds null in s1 and method getCanonName is called on it. Thus, we
use the null-handling model again to infer the expected behavior
of null.getCanonName and obatin store 𝜎3 as follows:

𝜎3 = 𝜎1 [name ↦→ M(null.getCannonName)] = 𝜎1 [name ↦→ null] .

State s4 is the result of executing line 4 with input state s2, where
g(f (𝛼)) is the symbolic value representing cls.getCanonName().

We complete symbolic execution by analyzing the if statement at
line 5 with states s3 and s4 as input, which produces the following
three states as output:

s5 = (𝛼 = null, 𝜎3 [ret ↦→ 𝛽])
s6 = (𝛼 ≠ null ∧ g(f (𝛼)) = null, 𝜎4 [ret ↦→ 𝛽])
s7 = (𝛼 ≠ null ∧ g(f (𝛼)) ≠ null, 𝜎4 [ret ↦→ g(f (𝛼))])

The input state s3 results in s5 taking only the true branch as the
value of name is null in s3. With s4, we consider both true and false
branches, producing s6 and s7, respectively. Finally, we obtain the

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Junhee Lee, Seongjoon Hong, and Hakjoo Oh

symbolic summary 𝑆m of method m by removing information about
local variables in those states:

𝑆m =


(𝛼 = null, 𝜎init [ret ↦→ 𝛽]),
(𝛼 ≠ null ∧ g(f (𝛼)) = null, 𝜎init [ret ↦→ 𝛽]),
(𝛼 ≠ null ∧ g(f (𝛼)) ≠ null, 𝜎init [ret ↦→ g(f (𝛼))])


We consider the symbolic summary 𝑆m as the repair specification of
the buggymethod m. That is, our repair specification is the summary
of the instrumented semantics of the buggy method m where each
NPE-triggering expression is replaced by an alternative expression
using the null-handling model.

Patch Validation. Now we validate candidate patches against
the inferred specification 𝑆m. We conclude that a candidate patch
is correct iff running a normal symbolic execution on it produces
a summary equivalent to 𝑆m. For example, the summary 𝑆1 of the
incorrect patch 𝑃1 in Figure 3 is computed as follows:

𝑆1 =


(𝛼 = null, 𝜎init [ret ↦→ null])
(𝛼 ≠ null ∧ g(f (𝛼)) = null, 𝜎init [ret ↦→ 𝛽]),
(𝛼 ≠ null ∧ g(f (𝛼)) ≠ null, 𝜎init [ret ↦→ g(f (𝛼))])


Note that 𝑆1 and 𝑆m do not agree with the return value, (ret) when
𝛼 is null, i.e., 𝜎init [ret ↦→ null] ≠ 𝜎init [ret ↦→ 𝛽], concluding that
patch 𝑃1 does not satisfy the repair specification. By contrast, sym-
bolic execution of the correct patch P2 produces a summary exactly
equivalent to 𝑆𝑚 . We can check the equivalence of summaries using
an off-the-shelf SMT solver.

3 OUR PATCH VALIDATION TECHNIQUE

In this section, we describe how NPEX validates patches in detail.
Our approach consists of two phases: (1) learning a null handling
model (Section 3.1) from a codebase, and (2) validating candidate
patches using the model (Section 3.2).

Programs. A Java program 𝑃 ∈ Pgm is a sequence of class dec-
larations, where a class declaration is a pair of a class name and a
sequence of method declarations. A method declaration consists
of a return type, a method name, a formal parameter, and a body
statement. We write 𝑝𝑚 and body(𝑚) for the parameter and body
statement of method 𝑚, respectively. A type 𝑇 is either a primi-
tive type (we only consider int for simplicity) or a reference type
for custom classes (𝐶). We consider the usual statements (𝑆) and
expressions (𝐸) in Java:

𝑆 → 𝑥 = 𝑒 | return 𝑒 | if 𝐸 𝑆1 𝑆2 | while 𝐸 𝑆 | 𝑆1; 𝑆2 | 𝜖
𝐸→ 𝑛 | null | 𝑥 | 𝑥 .𝑚(𝑦) | new 𝐶 () | 𝐸1 ? 𝐸2 : 𝐸3 | 𝐸1 == 𝐸2

We do not consider field access (𝑥 .𝑦) because it is very rare to
directly access public fields in real-world Java programs; fields are
typically accessed via getter methods that our language supports.
We assume the program is statically typed and write type(𝑒) for the
type of expression 𝑒 . We assume that method names are unique. The
body of a while statement may include control statements break or
continue. A variable is either a local or this. We write 𝐸NPE for
the set of expressions where NPEs may occur; in our language, 𝐸NPE
represents the set of method invocations, i.e., 𝑥 .𝑚(𝑦), where NPEs
occur when 𝑥 is a null pointer.

3.1 Learning a Null-Handling Model

The goal of the learning phase is to learn a null-handling model

M ∈ Pgm × 𝐸NPE → 𝐸

from a dataset of programs. Given a program 𝑃 ∈ Pgm and its NPE-
triggering expression 𝑒NPE ∈ 𝐸NPE,M𝑃 (𝑒NPE) predicts an alternative
expression that can be used as a substitute for 𝑒NPE to correctly
handle the NPE. We construct the model in the following steps.

Collecting Null-Handling Patterns. The first step is to collect
a dataset D of null-handling patterns from a codebase. Let P =

{𝑃1, 𝑃2, . . . , 𝑃𝑚} be a collection of programs. The dataset D is of the
type D ⊆ Pgm × 𝐸NPE × 𝐸. That is, D is a set of tuples (𝑃, 𝑒NPE, 𝑒)
where 𝑃 ∈ P is a program in the codebase, 𝑒NPE is an NPE expression
in 𝑃 , and 𝑒 is an expression that is alternatively used in 𝑃 when
𝑒NPE causes an NPE.

To collect the dataset D, we traverse the abstract syntax tree of
each program 𝑃 ∈ P and observe how NPEs are handled. For exam-
ple, from ternary expression of the form 𝑥 == null ? 𝑒 : 𝑥 .𝑚(𝑦),
we collect tuple (𝑃, 𝑥 .𝑚(𝑦), 𝑒), meaning that, when 𝑥 is a null
pointer and hence an NPE occurs at expression 𝑥 .𝑚(𝑦), we can
alternatively use expression 𝑒 instead of 𝑥 .𝑚(𝑦). When collecting
null-handling patterns, we mainly consider such ternary expres-
sions as the NPE-triggering expression (𝑥 .𝑚(𝑦)) and the correspond-
ing alternative expression (𝑒) are clearly identifiable. Note that
other several null-handling patterns can be translated to ternary
expressions. For example, boolean expression 𝑥 == null | | 𝑥 .𝑚(𝑦)
is translated into 𝑥 == null ? true : 𝑥 .𝑚(𝑦) and represented by
tuple (𝑃, 𝑥 .𝑚(𝑦), true).

Generalization. Once we collect null-handling patterns, we
generalize them by abstracting alternative expressions. The main
purpose of this step is to discard program-dependent information
such as local variable and user-defined class names. We also make
the dataset more amenable to learning by considering a finite subset
of alternative expressions. The output of this step is the following:

D̂ ⊆ Pgm × 𝐸NPE × 𝐸

where 𝐸 denotes abstract expressions defined as follows:

𝐸 = ND ∪ {null, ARG, NEW} ∪ {ARG == �̂� | �̂� ∈ ND ∪ {null}} ∪ {⊤}

Here, ND denotes a finite set of integers that frequently appear in
the dataset D. NPEX uses ND = {−1, 0, 1} because they were the
top-3 most popular integers in D. We do not distinguish names
of method arguments and represent them by an abstract element,
denoted ARG. A new expression (new𝐶 ()) is abstracted to NEWwhere
its type information (𝐶) is discarded. An equality test (𝐸1 == 𝐸2) is
abstracted into ARG == �̂� when 𝐸1 is an argument variable and 𝐸2
is generalized to a literal in ND ∪ {null}. We discard other cases
and simply represent them by ⊤. Specifically, we define function
𝛼 ∈ 𝐸NPE × 𝐸 → 𝐸 for generalization as follows:

𝛼 (𝑒NPE, 𝑒) =
𝑒 · · · 𝑒 ∈ ND ∪ {null}
NEW · · · 𝑒 = new 𝐶 ()
ARG · · · 𝑒NPE = 𝑥 .𝑚(𝑦) ∧ 𝑒 = 𝑦

ARG == 𝑛 · · · 𝑒NPE = 𝑥 .𝑚(𝑦) ∧ 𝑒 = (𝑦 == 𝑛) ∧ 𝑛 ∈ ND ∪ {null}
⊤ · · · otherwise

NPEX: Repairing Java Null Pointer Exceptions without Tests ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

With 𝛼 , the generalized dataset D̂ is obtained as follows:

D̂ = {(𝑃, 𝑒NPE, 𝛼 (𝑒NPE, 𝑒)) | (𝑃, 𝑒NPE, 𝑒) ∈ D}.

Feature Representation. Next, we represent NPE expressions
as feature vectors to generate the training data D:

D ⊆ {0, 1}𝑛 × 𝐸.
To do so, we assume 𝑛 boolean features: Φ = {𝜙1, 𝜙2, . . . , 𝜙𝑛},
where each feature 𝜙𝑖 : Pgm × 𝐸NPE → {0, 1} is a predicate on
program and NPE expression pairs and describes characteristics
of an NPE expression and its surrounding code context. For in-
stance, a feature may describe whether an NPE expression belongs
to a try/catch block. We write Φ(𝑃, 𝑒NPE) for the feature vector
of (𝑃, 𝑒NPE): Φ(𝑃, 𝑒NPE) = ⟨𝜙1 (𝑃, 𝑒NPE), 𝜙2 (𝑃, 𝑒NPE), . . . , 𝜙𝑛 (𝑃, 𝑒NPE)⟩.
With Φ, we can generate the training data D as follows:

D = {(Φ(𝑃, 𝑒NPE), �̂�) | (𝑃, 𝑒NPE, �̂�) ∈ D̂}.
We use 31 features in Table 1. Here, each feature is a predicate

on method calls, 𝑥 .𝑚(𝑦), since 𝐸NPE denotes the set of method invo-
cations in our language. The features are divided into three classes:
method name features, method body features, and context features.
The method name features describe which keywords appear in the
name (𝑓) of the called method. We used 20 keywords as the name
features. To select these keywords, we collected all the method
names from our codebase, split them into keywords by the camel
case, and ranked the top 20 by their frequency. The method body
features check whether a body statement contains a specific AST
component. We designed those two classes of features to identify
what kind of methods is invoked. For example, features #8 and
#27 are strong indicators for getter methods. The context features
capture the syntactic code contexts around an NPE expression.

Training a Model. From the training data D, we train a proba-
bilistic multi-label classifier to learn a probability distribution over
𝐸 for a given feature vector. Let Pr be the learned probability distri-
bution; given a program 𝑃 , an NPE expression 𝑒NPE, and abstract
expression �̂� ∈ 𝐸, Pr(�̂� | Φ(𝑃, 𝑒NPE)) denotes the probability of the
alternative expression of 𝑒NPE being �̂� . We computed Pr using an
off-the-shelf learning algorithm for Random Forest Classifier.

We can construct the null-handling modelM from Pr, with an
additional process that concretizes an abstract expression into a
type-compatible concrete expression. We define 𝛾 : 𝐸NPE × 𝐸 →
𝐸 ∪ {⊥} for concretization, which converts an abstract expression
into a concrete expression as follows:

𝛾 (𝑥 .𝑚(𝑦), �̂�) =



𝑛 · · · �̂� = 𝑛 ∧𝑇 = int
null · · · �̂� = null ∧𝑇 ≠ int
new 𝐶 () · · · �̂� = NEW ∧𝑇 = 𝐶

𝑦 · · · �̂� = ARG ∧ type(𝑦) = 𝑇

𝑦 == 𝑒 · · · �̂� = ARG == 𝑒 ∧𝑇 = int
⊥ · · · otherwise

where 𝑇 denotes the type of expression 𝑥 .𝑚(𝑦). With 𝛾 , our null-
handling modelM : Pgm × 𝐸NPE → 𝐸 is defined as follows:

M𝑃 (𝑒NPE) = 𝛾 (𝑒NPE, argmax
𝑒∈C

Pr(�̂� | Φ(𝑃, 𝑒NPE)))

where C = {�̂� ∈ 𝐸 | 𝛾 (𝑒NPE, �̂�) ≠ ⊥} is the set of concretizable
expressions and we pick one with the highest probability.

Table 1: Features for method invocations

Class # Description

Name
Features

1
-
20

1."Code", 2."hash", 3."append", 4."equals", 5."on",
6."Error", 7."Success", 8."get", 9."set", 10."is",
11."add". 12."close", 13."Empty", 14."Value",
15."put" 16."String", 17."to", 18."remove",
19."write", 20."contains"

Body
Features

21 return type is void
22 method returns a literal
23 thrown exceptions are annotated
24 null check expression exists
25 method returns a constructor call
26 method is the base of another invocation
27 method returns a field

Context
Features

28 caller method is private
29 null pointer is assigned to an array
30 null pointer is assigned to a field
31 null pointer is assigned to a public field

3.2 Validating Patches using the Model

Next we use the model to validate the correctness of a candidate
patch. To this end, we first infer the correctness specification of
a buggy program using the learnt null-handling model and then
check if the patch candidate satisfies the inferred specification.

Specification Inference. We use the null-handling model to
infer the correct behavior of a buggy program. Suppose a buggy
program 𝑃NPE ∈ Pgm is given and the buggy (NPE-triggering) ex-
pression in 𝑃NPE is 𝑥NPE .𝑚(𝑦), where 𝑥NPE is the fault variable whose
value is null along the buggy trace. For simplicity, we assume there
is only a single NPE in the buggy program. Suppose also that a null-
handling modelM learned from an existing codebase is given. The
goal of specification inference is then to infer the desired behavior
of the buggy program when the NPE is correctly fixed.

We infer the correctness specification by running a variant of
symbolic execution on the buggy program and interpreting the NPE-
triggering expression (𝑥NPE .𝑚(𝑦)) using the null-handling model.
To this end, we first define a normal symbolic execution procedure
and explain how to extend it to use the null-handling model.

We consider the output of symbolic execution as the specification
of the input program. The output of our symbolic execution is a
table Σ from methods to summaries:

Σ ∈ SumTable = Method → Summary

where a summary is defined as follows:

𝑆 ∈ Summary = P(State)
s ∈ State = PC × Store
𝜋 ∈ PC = P(SymVal × {=,≠} × SymVal)
𝜎 ∈ Store = Var → SymVal
𝑣 ∈ SymVal = Z + Class + {null} + Symbol

A summary (Summary) is a set of program states (State) and a state
consists of a path condition (PC) and a store (Store). A path condition
is a collection of branch conditions, where a branch condition is an
equality of symbolic values or its negation. A store is a map from

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Junhee Lee, Seongjoon Hong, and Hakjoo Oh

variables to symbolic values. Symbolic values include integers, class
types, null, and symbols representing method parameters.

For scalability, we have designed our symbolic execution, de-
noted SymExec : Pgm → SumTable, to be compositional and
bounded [11]. It analyzes each method of a program only once
by calculating its summary in isolation using summaries of callee
methods. Loops and recursive call cycles are unrolled finite times
prior to the analysis. For presentation simplicity, we assume that
method names are unique (i.e., no method overriding and overload-
ing) and ternary expressions are converted to if statements. With
these assumptions, it is enough to define symbolic execution for
the following subset of statements and expressions:

𝑆 → 𝑥 := 𝑒 | return 𝑥 | if (𝑥 == 𝑦) 𝑆1 𝑆2 | 𝑆1; 𝑆2
𝐸 → 𝑛 | null | 𝑥 | 𝑥 .𝑓 (𝑦) | new 𝐶 ()

The procedure SymExec is defined as follows, which computes
method summaries in a bottom-up manner:

SymExec(P) = [mi ↦→ F (body(mi),Σi, si
init)]

n
i=1

where𝑚1, . . . ,𝑚𝑛 are a sequence of methods sorted according to
the reverse topological order of the call-graph, Σ𝑖 is the partial
summary table for methods𝑚1, . . . ,𝑚𝑖−1, and the initial state s𝑖init
is defined by (∅, [𝑝𝑚𝑖

↦→ 𝛼𝑚𝑖
]) which indicates that the formal

parameter 𝑝𝑚𝑖
of method𝑚𝑖 is bound to a fresh symbolic value

𝛼𝑚𝑖
. The semantic function F : Stmt×SumTable×State→ P(State)

is defined in a standard manner as follows:
F (x := n,Σ, (𝜋, 𝜎)) = {(𝜋, 𝜎 [x ↦→ n])}
F (x := null,Σ, (𝜋, 𝜎)) = {(𝜋, 𝜎 [x ↦→ null])}
F (x := y,Σ, (𝜋, 𝜎)) = {(𝜋, 𝜎 [x ↦→ 𝜎 (y)])}
F (x := new C (),Σ, (𝜋, 𝜎)) = {(𝜋, 𝜎 [x ↦→ C])}
F (x := y.m(z),Σ, (𝜋, 𝜎)) = {(𝜋 ∪ 𝜋 i

m, 𝜎 [x ↦→ 𝜎 i
m (retm]))}i

F (S1; S2,Σ, s) =
⋃{F (S2,Σ, s′) | s′ ∈ F (S1,Σ, s)}

F (if(x == y) S1 S2,Σ, (𝜋, 𝜎)) = F (S1,Σ, s1) ∪ F (S2,Σ, s2)

where 𝑠1, 𝑠2 = (𝜋 ∪ {𝜎 (𝑥) = 𝜎 (𝑦)}, 𝜎), (𝜋 ∪ {𝜎 (𝑥) ≠ 𝜎 (𝑦)}, 𝜎) and
(𝜋𝑖𝑚, 𝜎𝑖𝑚) ∈ Σ(𝑚) [𝛼𝑚 ↦→ 𝜎 (𝑧)].

Now we describe how we infer the repair specification of a
buggy program 𝑃NPE. We do so by analyzing 𝑃NPE with a variant of
symbolic execution, denoted SymExecxNPE

M , where 𝑥NPE refers to the
localized fault variable that causes the NPE we aime to fix andM is
the null-handling model. The overall procedure remains the same:

SymExecxNPE
M (P) = [mi ↦→ FxNPE

M (body(mi),Σi, si
init)]

n
i=1 .

The extended semantic function FxNPE
M (S, Σ, (𝜋, 𝜎)) is defined in the

same way as F except for the following two cases. The first case is
when 𝑆 is an NPE-triggering statement, i.e., 𝑥 := 𝑦.𝑚(𝑧), where 𝑦
is the fault variable 𝑥NPE. In this case, FxNPE

M (S,Σ, (𝜋, 𝜎)) produces

F (S,Σ, (𝜋nonnull, 𝜎)) ∪ F (x :=MP (y.m(z)),Σ, (𝜋NPE, 𝜎))

where𝜋nonnull = 𝜋∪{𝜎 (𝑥NPE) ≠ null} and𝜋NPE = 𝜋∪{𝜎 (𝑥NPE) ==
null}. The former describes states where the fault variable is not
null, hence they normally execute the invocation. The latter de-
scribes states where the fault variable is null. In this case, we
interpret the NPE-triggering expression using the output of the
model M. The second case is when 𝑆 is 𝑥 := 𝑦.𝑚(𝑧) and the
base variable y is not the fault variable but evaluates to null, i.e.,
(𝜎 (𝑦) == null) ∈ 𝜋 . This happens when the prediction of the

model in the former case returns null, i.e.,M𝑃NPE (𝑦.𝑚(𝑧)) = null.
If a new NPE is introduced by the model, we apply the model again:

FxNPE
M (S,Σ, (𝜋, 𝜎)) = F (x :=MPNPE (y.m(z)),Σ, (𝜋, 𝜎)) .

Example 3.1. Note that we infer procedural summaries not only
for the faulty method, but also for its callers. Let us consider the
following code that uses null pointers across procedure boundaries.

1 A foo(p) { return p.hoo(0); // NPE }

2 int goo(z) {

3 A x = this.foo(z);

4 return x.goo(); }

Suppose that NPE occurs at line 1 because p is null and the alterna-
tive expression inferred by the model is null for the NPE-triggering
expression p.hoo(0). Then, the inferred procedural summary of
foo is {(𝛼foo = null, [retfoo ↦→ null])}, where 𝛼foo and retfoo
denote the symbolic parameter and return variable, respectively.
Then, the return value null propagates to caller’s variable x. So
the modelM is applied again at line 4, and we get the summary
of goo as {(𝛼goo = null, [retgoo ↦→ v])} where we assume 𝑣 is the
alternative value for x.goo() obtained by the modelM.

Specification Validation. The next step is to validate candi-
date patches against the inferred specification. Let 𝑃NPE be a buggy
program and 𝑃

cand
be a patch candidate.Wewould like to determine

whether 𝑃
cand

is a correct patch of 𝑃NPE. We do this by checking
the equivalence: SymExecxNPE

M (PNPE) ≡ SymExec(P
cand
), where the

left-hand side denotes the inferred repair specification of the buggy
program.We say that two summary tables Σ1 and Σ2 are equivalent,
denoted Σ1 ≡ Σ2, if the following holds for all methods𝑚:∧

(𝜋1,𝜎1) ∈Σ1 (𝑚)

∧
(𝜋2,𝜎2) ∈Σ2 (𝑚)

𝜋1 ∧ 𝜋2 =⇒ 𝜎1 = 𝜎2

where we assume the symbolic value for the formal parameter of
method𝑚 is consistently named (e.g., 𝛼𝑚). Intuitively, the formula
checks if all output states are equal in the inferred specification and
the summary of the candidate patch.

Note that we check the equivalence not only for the patched
method but also for its callers. A patch could implement correct
semantics for the patched method, but incorrect semantics for its
callers. For example, consider the program in Example 3.1. A patch
that modifies p.hoo(0) to p == null ? null : p.hoo() is
correct for method foo, but it introduces a new NPE in goo. In this
case, we can successfully reject this patch by checking the semantic
equivalence for goo as well.

4 NPEX

NPEX is an end-to-end repair tool based on our idea in Section 3.
In this section, we describe other details of NPEX.

Implementation. We implemented NPEX in 4,200 lines of Java
and 7,400 lines of OCaml codes. Our fault localization algorithm and
symbolic execution are implemented on top of the Infer [20] frame-
work. We also used the Spoon [49] library to parse Java programs
and transform source codes.

Overall Algorithm. Algorithm 1 describes the overall algo-
rithm of NPEX. Given a buggy program 𝑃NPE, an NPE stack trace

NPEX: Repairing Java Null Pointer Exceptions without Tests ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

(𝑥NPE, 𝜏), and a null-handling modelM as input, the algorithm pro-
duces a set of validated patches to fix the bug. At line 1, it first runs
the buggy program with the crashing input to get the fault variable
𝑥NPE and stack trace 𝜏 . At line 2, the buggy program 𝑃NPE is analyzed
by our variant of symbolic execution, SymExecxNPE

M , which returns
the repair specification, Σinferred , of the buggy program. At line 3,
we compute a set 𝑋 of candidate faults. We iterate each candidate
fault 𝑥 ′NPE in 𝑋 , and accumulate validated patches in Patches. At
line 6, we enumerate patches with given fault 𝑥 ′NPE, and for each
patch 𝑃patched , we compute its summary table Σpatched by normal
symbolic execution. If the summary table of 𝑃patched is equivalent
to the inferred specification Σinferred , we add it to Patches.

Fault Localization. Our fault localization is similar to that of
VFix [67] in that it tracks the dataflow of a given null pointer. Given
the fault expression 𝑥NPE and stack trace 𝜏 only, FaultLocalization
computes a set of null pointer expressions that may be alias to 𝑥NPE
for each method in the stack trace 𝜏 . We do not rank each fault and
returns the set of all the computed faults, as we validate patches
by inferred specifications rather than relying on a patch ranking
heuristic. We implemented a light-weight pointer analysis on top
of Infer to compute alias information.

Patch Enumeration. Given the localized fault expression 𝑥NPE,
PatchEnumeration enumerates patches based on pre-defined tem-
plates. We used the following templates from prior work [13, 67]:
• SKIP: (i) if (𝑥NPE != null) 𝑆 , or (ii) if (𝑥NPE == null) fb
• REPLACE: 𝑥NPE == null? 𝑒 : 𝑒NPE
• INIT: if (𝑥NPE == null) 𝑥NPE = 𝑒

SKIP skips a statement or a block (𝑆) containing an NPE (SKIP-
(i)), or inserts a control flow break (fb): break, continue, return
𝑒 , or throw 𝐸𝑥𝑛 (SKIP-(ii)). REPLACE substitutes an expression
involving the fault expression (𝑒NPE) with a ternary with an al-
ternative expression (𝑒). INIT initializes a null pointer to a fresh
object obtained by calling a constructor (𝑒). For expressions (𝑒),
we used frequent expressions in null-handling patterns collected
from our training database. We collected the top-3 frequent ex-
pressions for each of primitive types and common class types (e.g.,
java.util.ArrayList). We synthesize exceptions (𝐸𝑥𝑛) from ex-
ceptions thrown around the fault expression within its class. We
implemented PatchEnumeration using the Spoon library’s source
code transformation.

Scalable Symbolic Execution. We implemented symbolic ex-
ecution on top of the Infer’s bottom-up analysis framework. We
took advantage of the bottom-up analysis to analyze only the parts
of programs related to each patch in the validation phase. Although
the analysis is bottom-up, it was nontrivial to implement a scalable
symbolic executor that works for real-world applications while
supporting the full Java language including dynamic dispatch, ex-
ception handling, field accesses, etc., Thus, we designed a path
merging heuristic to further accelerate the analysis; we only dis-
tinguished error states where an NPE occurs while merging other
NPE-irrelevant states. We treated results of an invocation for an
external function as an uninterpreted symbol assuming it has no
side-effect. For the Java Library Class methods (e.g, the String meth-
ods), we modeled the effect of each method. We unrolled each loop
of programs twice.

Algorithm 1 The NPEX Algorithm

Input: Buggy program 𝑃NPE, NPE stack trace (𝑥NPE, 𝜏), modelM
Output: A set Patches of validated patches
1: 𝑥NPE, 𝜏 ← RunProgram(𝑃NPE, 𝐼) ⊲ Fault variable and stack

trace
2: Patches← ∅
3: Σinferred ← SymExecxNPE

M (PNPE) ⊲ Spec inference
4: X← FaultLocalization(𝑃NPE, 𝜏)
5: for 𝑥 ′NPE ∈ X do

6: for Ppatched ∈ PatchEnumeration(PNPE, x ′NPE) do
7: Σpatched ← SymExec(Ppatched)
8: if (Σpatched ≡ Σinferred) then ⊲ Spec validation
9: Patches← Patches ∪ {Ppatched }
10: end if

11: end for

12: end for

13: return Patches

Null-handling Model. We implemented null-handling code
mining and feature extraction using Spoon. We collected null-
handling patterns of more various syntactic forms than ternary
described in Section 3.1. For example, we additionally collected
null-handles of the following form:

y = 𝑒; . . . if (𝑥NPE != null) { y = 𝑥NPE.foo(); }

where we interpreted 𝑒 as an alternative value for foo.

Use Cases of NPEX. NPEX can be used in many application
scenarios. First of all, Note that NPEX does not require a failing
“test”; instead, NPEX only requires a stack trace (or a crashing input
to obtain the stack trace). In the context of NPEs, a failing “test” is
a pair of a crashing, NPE-triggering input and the corresponding
expected output. What NPEX requires is the crashing input, which
is available when NPEs are detected and confirmed. On the other
hand, we do not require the expected output, which is typically un-
available at the time NPEs are reported; it is provided by a developer
later when the reported NPE is fixed.

Because NPEX only requires a stack trace (crashing input), it
can be used in many practical scenarios to automatically fix NPEs
as soon as they are detected. For example, we can use NPEX to fix
NPEs detected by automatic testing tools or static bug-finders. Also,
NPEX can be used to fix NPEs reported in issue tracking systems.

Stack traces are usually available when NPEs are detected and
reported. For example, when NPEs are found by testing tools, stack
traces are immediately available from the crashes. Also, static bug-
finders usually provide error traces (stack traces) for reported bugs.
When NPE bugs are reported in issue tracking systems, it is typical
that users include a crashing input or stack trace in the bug report.

5 EVALUATION

In this section, we evaluate NPEX in comparison with state-of-the-
art techniques for repairing NPEs.

5.1 Setup

Benchmark Selection. We used four different benchmark sets:
• VFixBM: 30 NPE bugs from [67].

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Junhee Lee, Seongjoon Hong, and Hakjoo Oh

• GenBM: 16 NPE bugs from [36].
• BearsBM: 14 NPE bugs from Bears [41].
• OurBM: 59 NPE bugs from open-source repositories.

VFixBM,GenBM, andBearsBM came frompriorwork.VFixBM con-
sists of 30 NPE bugs, of which 15 is fromDefects4J [23] and another
15 from open-source repositories collected by the authors of VFix.
We note that the structures of the projects in VFixBM are mod-
ified by the authors of VFix to easily run VFix. They removed
the build system in the original projects, and wrote a compilable
Main.java that acts as a test suite. We used VFixBM as they are pro-
vided without any modification. We also collected NPE bugs used
for evaluating Genesis [36] and contained in Bears [41]. Both of
these benchmarks consist of NPE bugs collected from open-source
projects in GitHub and use the apache maven project management
system6. From [36, 41], we only collected benchmarks that can be
built in our environment and parsed by Spoon [49] and Infer [20].
Finally, we excluded benchmarks that already exist in different
benchmark sets, leading to 16 and 14 NPE bugs in GenBM and
BearsBM, respectively.

In addition, we tried to collect more diverse NPE bugs from
open-source projects and constructed OurBM as the result. We
used two sources: (1) the top-200 Java repositories in GitHub sorted
by the number of stars and (2) repositories under the Apache project
page7. Among them, we only considered projects that can be built
by the maven system. From those repositories, we collected 4472
commits whose messages contain keywords "NPE" or "Null Pointer
Exception", where we only considered recent commits up to 5 years
ago. We then searched for reproducible NPE bugs in a similar way
as Bears was collected [41]; we only ran NPE-triggering test cases
to check whether an NPE is reproducible in the buggy version
(i.e., the parent revision of the collected commit) and the error is
removed in the fixed version. Also, we excluded benchmarks that
Spoon or Infer fail to handle. Finally, we excluded benchmarks that
are already contained in the three benchmark sets above, which led
to a total of 59 NPE bugs in OurBM.

In total, we used 119 unique NPE bugs and all of them come with
test suites written by developers to check patch correctness. All
experiments were done on a machine running Ubuntu 18.04 with
20 CPUs and 128GB memory, powered by Intel Xeon Gold 6230
processor.

Tool Selection and Setup. We evaluated NPEX in comparison
withVFix [67] andGenesis [36], two state-of-the-art techniques for
repairing NPEs. VFix is the most recent technique, which is NPE-
specific and known to be significantly more effective than existing
APR techniques such as NPEFix [13], Nopol [68], CapGen [60],
and ACS [66]. Genesis is a data-driven technique that can effec-
tively fix NPEs using an NPE-specific patch space learned from
human patches. We included Genesis as it was not evaluated in
prior work [67].We also considerNPEXbase , which is the baseline of
NPEX that uses the conventional test-based patch validation instead
of our new approach; NPEXbase uses exactly the same techniques
for fault localization and patch generation as NPEX (Section 4). We
included NPEXbase to see the net effect of our key contribution

6https://maven.apache.org/
7https://github.com/apache/

(automatic specification inference and validation). In the evalua-
tion, we excluded NPEFix [13], another recent technique to fix
NPEs, because it was reported that VFix significantly outperforms
NPEFix on VFixBM [67]. Also, the results of NPEXbase hint at the
performance of NPEFix for other benchmarks, as they use similar
patch templates and the same patch validation method (i.e., test
cases). In summary, we used the following tools in evaluation:
• NPEX: our technique (without test cases)
• NPEXbase : the baseline of NPEX (with test cases)
• VFix: a state-of-the-art for fixing NPEs (with test cases)
• Genesis: a data-driven technique for NPEs (with test cases)

For NPEX, we only used the single NPE-triggering test con-
tained in each benchmark, and did not use other test cases. Instead,
NPEX used a null-handling model learned from 571 Java projects.
We collected these projects starting from the top-1000 Java projects
based on the number of stars and excluding ones that are not built
with maven or Spoon. We also excluded projects contained in the
four benchmark sets in order to ensure that the training and test
sets do not overlap. For NPEXbase , we used the same setting as
NPEX except that NPEXbase uses test cases.

We obtained Genesis from the replication package released by
the authors8. When running Genesis, we used the search space
learned for NPE, which is also provided in the replication package.
Specifically, we used the space named npe-space-vo because it has
been reported as the best among others [35]. Genesis takes as input
a list of passing and failing test cases, which is used for fault local-
ization and patch validation. Because several benchmarks contain
multiple failing tests other than the NPE-triggering test, we only
used tests in the NPE-triggering test case’s class as input so that
the Genesis can precisely localize the target NPE. Although Gene-
sis used bugs with more than 50 test cases in [36], we observed that
no performance degradation occurred due to this setting, compared
to the original numbers reported in [36].

We obtained the executable binary (JAR) of VFix via personal
communication with the authors. Running VFix was nontrivial as
it requires not only a stack trace and null pointer (fault) expression
but also a runnable main class with an entry point which acts
as a test suite. Therefore, running VFix on GenBM, BearsBM,
and OurBM was particularly challenging. We had to manually
write the Main class for each bug, had to resolve the classpath for
dependencies and set up testing environments by hand without
aids of build systems and testing frameworks. We also encountered
several internal errors of VFix running on those benchmarks but
we could not debug them as source code is unavailable. As a result,
though we did our best, we ended up with 27 out of 89 benchmarks
in GenBM, BearsBM, and OurBM. For those 27 benchmarks, we
prepared stack traces and null pointer expressions by running NPE-
triggering test cases.

Correctness Criteria. We say a patch is correct if it is semanti-
cally equivalent to the developer’s patch. We manually investigated
each of the generated patches to check the correctness. Follow-
ing Genesis [36], we ignored log messages and error messages
of exceptions in the judgement. VFix often failed to convert an
IR (intermediate representation) to source code. In this case, we

8http://www.cs.toronto.edu/~fanl/program_repair/genesis-rep/index.html

https://maven.apache.org/
https://github.com/apache/
http://www.cs.toronto.edu/~fanl/program_repair/genesis-rep/index.html

NPEX: Repairing Java Null Pointer Exceptions without Tests ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 2: Evaluation results. #R: the number of bugs for which each tool was successfully ran. #G: the number of patchess

successfully generated and validated by each tool. #C: the number of correct patches. Prec: precision (
#𝐶
#𝐺). FixR: fix rate (

#𝐶
#𝑅).

Benchmarks NPEX NPEXbase Genesis [36] VFix [67]
Name #Bug #R #G #C Prec FixR #R #G #C Prec FixR #R #G #C Prec FixR #R #G #C Prec FixR

VFixBM 30 30 28 19 68 % 63 % 30 30 6 20 % 20 % 0 n/a n/a n/a n/a 30 26 20 77 % 67 %
GenBM 16 16 16 10 63 % 63 % 16 14 3 21 % 19 % 16 11 8 73 % 50 % 2 2 1 50 % 50 %
BearsBM 14 14 11 6 55 % 43 % 14 10 3 30 % 21 % 14 9 3 33 % 21 % 2 1 0 0 % 0 %
OurBM 59 59 44 26 59 % 44 % 59 47 16 34 % 27 % 59 33 9 27 % 15 % 23 15 3 20 % 13 %
Total 119 119 99 61 62 % 51 % 119 101 28 28 % 24 % 89 53 20 38 % 22 % 57 44 24 55 % 42 %

manually translated the generated IR to the source code with the
same semantics, and then checked the correctness. We re-evaluated
the patches labeled by existing works with the same criteria above.
We found that 4 of VFix-generated patches labeled as correct by
the authors are actually incorrect under the criteria (i.e., patches
were not semantically equivalent to the developer’s fix). Thus, we
labeled them as incorrect in our evaluation.9

5.2 Results

Table 2 shows the evaluation results. Out of 119 bugs, NPEX gener-
ated and validated patches for 99 bugs (#G), and among them 61
were correct, leading to a fix rate of 51% (61119) and a precision (i.e.,
how precisely generated patches turned out to be correct) of 62%
(6199). On the other hand, NPEXbase , which does not use our patch
validation but relies on a test suite, resulted in a fix rate of 24% and
a precision of 28%, which shows that our patch validation is much
more effective than conventional test-based validation.

Meanwhile, Genesis generated 53 patches out of 89 bugs and
20 were correct among those, leading to a fix rate of 22% (2089) and a
precision of 38% (2053).We could not runGenesis onVFixBM because
it has no build system and testing framework which are required
to run Genesis.

We could successfully run VFix for 57 benchmarks and VFix gen-
erated 44 patches in total. The number of correct patches out of
44 were 24, leading to a fix rate of 42% (2457) and a precision of
55% (2444). Most of the correct patches produced by VFix were from
VFixBM (20 out of 24). For other benchmarks (GenBM, BearsBM,
OurBM), VFix generated 18 patches and 4 among them were cor-
rect, leading to a fix rate of 15% and a precision of 22%, which are
substantially lower than the fix rate of 67% and the precision of
77% for VFixBM. This is because, most of the correct patches in
VFixBM are similar in that they simply skip statements or blocks
that contain NPEs, for which the VFix’s ranking heuristic works
well. However, other benchmark sets contain NPE bugs that require
more diverse fix strategies (e.g., returning a non-default value or
replacing an existing expression). By contrast, NPEX consistently
shows good performance over the four benchmark sets.

Scalability. The sizes of programs in our benchmarks range
from 2K to 340KLoC (75KLoC on average). Excluding the build
time by Infer, NPEX took 173.8 seconds to fix a bug on average.
Specifically, it took 65 seconds for fault localization, 25.8 seconds
for specification inference, and 84.0 seconds for validating patch
candidates on average. Note that the time cost for running tests,

9We made these cases publicly available for verification.

(a) Buggy Program
1 public List getJpaAnnotated(Class c, ...) {

2 final List jpaAnnotated = new ArrayList<>();

3 while (c != Object.class) {

4 for (Field f: c.getDeclaredFields()) { // NPE

5 jpaAnnotated.add(...);

6 }

7 c = c.getSuperclass()

8 ...

9 return jpaAnnoated;

10 }

(b) Developer’s test case
1 List members = ...getJpaAnnotated(TestInterface.class, ...);

2 Assert.assertEquals(0, members.size());

Figure 4: A simplified code snippet containing an NPE (line

4) from the project Apache aries-jpa’s revision 7712046

a frequent performance bottleneck in generate-and-validate ap-
proaches, is zero for NPEX because it does not use test cases at
all. Running test cases was very expensive for some benchmarks.
For example, project commons-pool_41f4e41 took 3 minutes for
a single run of the test suite, which must be repeated many times
during the repair process and hence caused timeout (1 hour) for
Genesis.

Case Study. We observed that test cases written by develop-
ers are often incomplete in practice, and VFix and Genesis easily
produce incorrect patches in such cases. For example, consider Fig-
ure 4, which describes an NPE found in project aries-jpa10 and
the test case written by the developer. Method getJpaAnnotated
(Figure 4(a)) collects all the declared fields of the input class ob-
ject c retrieving its super classes. An NPE occurs at line 4 because
c.getSuperclass() at line 7 may return null in case the super
class is an interface. In this case, the developer wrote a single test
case (the assertion in Figure 4(b)) for the purpose of patch valida-
tion, which first exposes the NPE and then checks if the length of
the returned list equals to 0. This test case is incomplete as it only
checks the execution where the loop iterates only once, while the
fully expected behavior of the method is that it retrieves all the
super classes until c.getSuperclass() returns Object.class or
null. With this incomplete specification, Genesis and VFix gener-
ated the following patches that pass the test case but are incorrect:

10https://github.com/apache/aries-jpa/commit/771204

https://github.com/apache/aries-jpa/commit/771204

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Junhee Lee, Seongjoon Hong, and Hakjoo Oh

if (c.getSuper...() != null)

while (c != ...) { ... }

while (c != ...) {

if (c == null)

return new ArrayList();

Fix by Genesis Fix by VFix

By contrast, NPEX generated the following patch that is semanti-
cally equivalent to the developer’s fix, which was possible because
NPEX can automatically infer the expected specification from the
buggy code rather than relying on test cases.

while (c != ...) {

if (c == null) break;

while (c != Object.class

&& c != null) {

Fix by NPEX Fix by developer

Limitations ofNPEX. Nextwe discuss limitations of NPEX iden-
tified from the evaluation. First, NPEX failed because of unsup-
ported fix patterns. In Figure 5, for example, the developer fixed an
NPE by changing the type of a local variable from int to double.
This is because the fault of this NPE is due to unsafe type conver-
sion from double to int. Because of this unsafe conversion, the
method distance returns NaN value, which causes the condition at
line 9 to produce false, and therefore cluster is null at line 11.

We also identified a limitation of our specification inference. This
happened when another fault exists in the buggy program other
than the NPE to be fixed. For example, the program in Figure 6 has
an NPE at line 4 since iterable can be null NPEX inferred the
incorrect specification for this program: “if iterable is null, then,
throw NullPointerException”, which was computed by interpret-
ing the NPE expression iterable.iterator() as null using the
learned model and symbolically executing the constructor at line 6,
which is through this(...) at line 4. However, there was another
bug in the constructor at line 6. On the other hand, NPEX could
infer a correct specification if IllegalArgumentException were
thrown at line 8.

Validated Patches. We observed that NPEX can successfully
validate various patches beyond simple ternary forms. Interestingly,
all 21 patches fixed and validated correctly by NPEX were in the
forms of SKIP or INIT. In other words, NPEX rejected all ternary
patches even though we used ternary null handling code for specifi-
cation mining. These bugs require SKIP or INIT patches to fix NPEs,
since simply replacing an NPE expression to a ternary expression
introduced a new NPE.NPEX inferred correct specification which is
semantically equivalent to SKIP or INIT patches (e.g., Section 2.2).

Falsely Validated Patches. We manually investigated 38 (99-
61, Table 2) false positive cases (i.e., incorrect patches accepted by
the patch validator) during manual assesment of validated patches.
Those cases were classified into the following cases:
• (26 cases) Inference of correct specification failed due to the
existence of faults other than the target NPE (as decribed in
Limitations of NPEX).
• (2 cases) Correct specification is inferred, but an incorrect
patch is validated due to the imprecision of static symbolic
execution.
• (10 cases) The learnt null-handling model returns wrong
alternative expressions.

1 double distance(int[] p1, int[] p2) {

2 (-) int sum = 0;

3 (+) double sum = 0;

4 for (int i = 0; i < p1.length; i++) { sum += ...; }

5 return Math.sqrt(sum); // return NaN

6 }

7 void assignPointsToClusters(T point) {

8 Cluster cluster = null;

9 if (point.distance(...) < Double.MAX_VALUE) // false

10 cluster = ...;

11 cluster.addPoint(p) // NPE

12 }

Figure 5: An NPE bug (line 11) and the developer patch (sim-

plified code snippet Math-79 in Defects4J)

1 public IteratorReader(Iterable<String> iterable) {

2 (+) if (iterable == null)

3 (+) throw new IllegalArgumentException("...");

4 this(iterable.iterator()); // NPE

5 }

6 public IteratorReader(Iterator<String> iterator) {

7 if (iterator == null)

8 (-) throw new NullPointerException();

9 (+) throw new IllegalArgumentException("...");

10 this.iterator = iterator;

11 }

Figure 6: An NPE bug (line 4) and the developer patch (sim-

plified from opengrok-6a95adb)

While the first case is the limitation of NPEX, we expect that the
other cases can be resolved. The second case could be resolved by
standard techniques to improve symbolic execution such as more
advanced state merging heuristics. The third case could be resolved
by refining the null-handling model with more features and training
dataset.

6 RELATEDWORK

We discuss prior work closely related to ours. We focus on auto-
mated program repair (APR) approaches [16, 45], rather than tech-
niques for detecting and mitigating NPEs (e.g., [6, 12, 39, 42, 47]).

APR techniques are broadly classified into general-purpose and
special-purpose techniques. Special-purpose techniques are applica-
ble to particular kinds of bugs. For example, FootPatch [58] can fix
heap-related bugs such as resource leaks, memory leaks, and null
dereferences. SAVER [18], MemFix [30], and LeakFix [14] are tech-
niques for fixing memory leaks, use-after-frees, and double-frees in
C programs. Other special-purpose techniques have been proposed
to fix common and important classes of bugs, e.g., concurrency
bugs [1, 22, 33, 34], buffer/integer overflows [7, 19, 46, 52], error-
handling bugs [57], and performance bugs [5, 51]. VFix [67] and

NPEX: Repairing Java Null Pointer Exceptions without Tests ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

NPEFix [13] are NPE-specific techniques. NPEX is also specialized
for fixing NPEs with its novel patch validation approach.

General-purpose approaches [21, 24, 26, 27, 29, 37, 38, 43, 44,
48, 53, 59, 60, 66] are applicable to any kinds of bugs, where most
techniques rely on test cases to validate patches. General-purpose
approaches are further classified into generate-and-validate [21,
24, 37, 38, 59] and semantics-based approaches [26, 27, 43, 44, 48].
Generate-and-validate techniques use search algorithms (e.g., ge-
netic programming [59]) to iteratively generate candidate patches
from a patch space until plausible patches that pass the given test
suite are found. Semantics-based approaches explore the search
space implicitly by generating constraints on correct patches and
using SMT solvers to synthesize satisfying patches. Although these
techniques are general, they are less effective for fixing specific
types of bugs such as NPEs as demonstrated by Xu et al. [67].

To mitigate overfitting [28, 54, 69], existing APR techniques
are often combined with patch prioritization [3, 21, 38, 50, 60, 63,
64]. For example, CapGen [60] uses context information of code
(AST nodes) to rank correct patches before merely plausible ones.
Prophet [38] learns a probabilistic model of correct code from a
dataset of human-written patches collected from open-source soft-
ware repositories, and uses the model to rank candidate patches
based on the probability of being correct. VFix uses a heuristic
that ranks NPE patches by solving a graph congestion problem.
We believe these ranking techniques can be combined with our
approach to better identify correct NPE patches.

Recently, various data-driven techniques have emerged to en-
hance program repair [10, 17, 31, 40, 61]. NPEX lies in this line of
research, where we use data to learn a null-handling model. Notable
existing data-driven techniques related to fixing NPEs are Gene-
sis and Getafix. Genesis [36] uses data, a set of human patches, for
search space inference. In particular, Genesis can fix NPEs using
a specialized search space learned from existing data. Getafix [4]
aims to quickly generate human-like fixes for bugs detected by
static analyzers. To do so, Getafix uses repair templates learned
from past human patches and suggests the most appropriate fix for
a given bug. Compared to NPEX, Getafix is more focused on the
patch generation phase while relying on a simple ranking heuristic
to select correct patches. As a result, one limitation of Getafix is that
it cannot precisely infer the expected behavior of buggy code [4],
which is particularly important for repairing NPEs. Our patch vali-
dation technique could be used with Getafix to better suggest NPE
fixes.

Ourwork also lies in the line of work on identifying test-overfitted
patches [15, 56, 62, 65, 70, 71]. Tan et al. [56] proposed a set of com-
mon syntactic patterns for incorrect patches, which can be used to
prevent specific classes of patches that are likely to be incorrect.
ODS [71] trains a statistical model to predict overfitted patches
based on features that describe syntactic characteristics of correct
patches. Fix2Fit [15] focused on avoiding patches that cause crashes
beyond the given input, by generating new test inputs using a grey-
box fuzzing technique. Xiong et al. [65] proposed a technique to
validate patches by measuring similarity or dissimilarity between a
buggy program and a patched program for newly generated test
inputs. Compared to these work, the goal of NPEX is focused on
NPEs and presents a new approach based on learning and symbolic
execution.

7 CONCLUSION

While NPEs are recurring and critical bugs in Java applications,
automatically repairing NPEs still remains a significant challenge.
The main difficulty is in identifying correct fixes out of a wide range
of plausible patches that pass but overfitted to test cases, a central
open problem in automated program repair.

In this paper, we presented a new approach to address this chal-
lenge. Instead of relying on test cases, our approach infers the
expected behavior of a buggy program by combining learning and
symbolic execution, and validates candidate patches against the
inferred repair specification. We implemented our approach in a
tool, NPEX, and showed that NPEX can fix diverse real-world NPEs
more effectively than state-of-the-art test-based techniques.

Future Work. Although we focused on NPEs in this paper, our
approach could be generalized to other faults. Note that the core
idea of NPEX consists of two general components: (1) learning of
error-handling model from codebases, and (2) validating patches
using symbolic execution. The second component (symbolic execu-
tion) is already reusable for other types of faults once appropriate
“error-handling model” is given. Instantiating the first component
(learning of error-handling model) for each different fault is less
obvious and will be interesting future work.

A good starting point for generalization would be the class of
faults whose alternative semantics can be easily captured from
error-handling code. For example, Class Cast Exceptions (CCEs),
yet another common runtime error in Java, are such a case. In Java
projects, developers handle CCEs in a way similar to NPEs, i.e.,
using ternary expressions with type checking guard and alternative
expression. In this case, the idea of NPEX can be reused without
significant changes.

ACKNOWLEDGMENTS

This work was partly supported by Institute of Information &
communications Technology Planning & Evaluation (IITP) grant
funded by the Korea government(MSIT) (No.2020-0-01337,(SW
STAR LAB) Research on Highly-Practical Automated Software Re-
pair and No.2021-0-00758, Development of Automated Program
Repair Technology by Combining Code Analysis and Mining) and
the MSIT(Ministry of Science and ICT), Korea, under the ICT Cre-
ative Consilience program (IITP-2022-2020-0-01819) supervised by
the IITP(Institute for Information & communications Technology
Planning & Evaluation), and the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT)
(No.2021R1A5A1021944).

REFERENCES

[1] Christoffer Quist Adamsen, Anders Møller, Rezwana Karim, Manu Sridharan,
Frank Tip, and Koushik Sen. 2017. Repairing Event Race Errors by Controlling
Nondeterminism. In Proceedings of the 39th International Conference on Software
Engineering (Buenos Aires, Argentina) (ICSE ’17). IEEE Press, Piscataway, NJ,
USA, 289–299. https://doi.org/10.1109/ICSE.2017.34

[2] Nick Andrews. [n.d.]. We Crunched 1 Billion Java Logged Errors – Here’s What
Causes 97% of Them. https://www.overops.com/blog/we-crunched-1-billion-
java-logged-errors-heres-what-causes-97-of-them-2/.

[3] Moumita Asad, Kishan Kumar Ganguly, and Kazi Sakib. 2019. Impact Analysis
of Syntactic and Semantic Similarities on Patch Prioritization in Automated
Program Repair. In 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 328–332. https://doi.org/10.1109/ICSME.2019.00050

https://doi.org/10.1109/ICSE.2017.34
https://www.overops.com/blog/we-crunched-1-billion-java-logged-errors-heres-what-causes-97-of-them-2/
https://www.overops.com/blog/we-crunched-1-billion-java-logged-errors-heres-what-causes-97-of-them-2/
https://doi.org/10.1109/ICSME.2019.00050

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Junhee Lee, Seongjoon Hong, and Hakjoo Oh

[4] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
Learning to Fix Bugs Automatically. Proc. ACM Program. Lang. 3, OOPSLA, Article
159 (Oct. 2019), 27 pages. https://doi.org/10.1145/3360585

[5] A. Banerjee, L. K. Chong, C. Ballabriga, and A. Roychoudhury. 2018. EnergyPatch:
Repairing Resource Leaks to Improve Energy-Efficiency of Android Apps. IEEE
Transactions on Software Engineering 44, 5 (May 2018), 470–490. https://doi.org/
10.1109/TSE.2017.2689012

[6] Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. 2019. NullAway: Practical
Type-based Null Safety for Java. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019). ACM, New York, NY,
USA, 740–750. https://doi.org/10.1145/3338906.3338919

[7] Xi Cheng, Min Zhou, Xiaoyu Song, Ming Gu, and Jiaguang Sun. 2017. IntPTI:
Automatic Integer Error Repair with Proper-type Inference. In Proceedings of
the 32Nd IEEE/ACM International Conference on Automated Software Engineering
(Urbana-Champaign, IL, USA) (ASE 2017). IEEE Press, Piscataway, NJ, USA, 996–
1001. http://dl.acm.org/citation.cfm?id=3155562.3155693

[8] Maciej Cielecki, Jundefineddrzej Fulara, Krzysztof Jakubczyk, and Łukasz
Jancewicz. 2006. Propagation of JML Non-Null Annotations in Java Programs.
In Proceedings of the 4th International Symposium on Principles and Practice of
Programming in Java (Mannheim, Germany) (PPPJ ’06). Association for Comput-
ing Machinery, New York, NY, USA, 135–140. https://doi.org/10.1145/1168054.
1168073

[9] Roberta Coelho, Lucas Almeida, Georgios Gousios, and Arie van Deursen. 2015.
Unveiling Exception Handling Bug Hazards in Android Based on GitHub and
Google Code Issues. In 2015 IEEE/ACM 12th Working Conference on Mining Soft-
ware Repositories. 134–145. https://doi.org/10.1109/MSR.2015.20

[10] Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang.
2020. Hoppity: Learning Graph Transformations to Detect and Fix Bugs in
Programs. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.
net/forum?id=SJeqs6EFvB

[11] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.
2019. Scaling Static Analyses at Facebook. Commun. ACM 62, 8 (July 2019),
62–70. https://doi.org/10.1145/3338112

[12] Kinga Dobolyi and Westley Weimer. 2008. Changing Java’s Semantics for Han-
dling Null Pointer Exceptions. In 2008 19th International Symposium on Software
Reliability Engineering (ISSRE). 47–56. https://doi.org/10.1109/ISSRE.2008.59

[13] T. Durieux, B. Cornu, L. Seinturier, and M. Monperrus. 2017. Dynamic patch
generation for null pointer exceptions using metaprogramming. In 2017 IEEE
24th International Conference on Software Analysis, Evolution and Reengineering
(SANER). 349–358. https://doi.org/10.1109/SANER.2017.7884635

[14] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping Zhou,
Bing Xie, and Hong Mei. 2015. Safe Memory-leak Fixing for C Programs. In
Proceedings of the 37th International Conference on Software Engineering - Volume
1 (Florence, Italy) (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 459–470. http:
//dl.acm.org/citation.cfm?id=2818754.2818812

[15] Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury. 2019. Crash-avoiding
program repair. In Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 8–18.

[16] L. Gazzola, D. Micucci, and L. Mariani. 2019. Automatic Software Repair: A
Survey. IEEE Transactions on Software Engineering 45, 1 (Jan 2019), 34–67. https:
//doi.org/10.1109/TSE.2017.2755013

[17] Jacob Harer, Onur Ozdemir, Tomo Lazovich, Christopher P. Reale, Rebecca L.
Russell, Louis Y. Kim, and Sang Peter Chin. 2018. Learning to Repair Software
Vulnerabilities with Generative Adversarial Networks. In Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò
Cesa-Bianchi, and Roman Garnett (Eds.). 7944–7954. https://proceedings.neurips.
cc/paper/2018/hash/68abef8ee1ac9b664a90b0bbaff4f770-Abstract.html

[18] Seongjoon Hong, Junhee Lee, Jeongsoo Lee, and Hakjoo Oh. 2020. SAVER: Scal-
able, Precise, and Safe Memory-Error Repair. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). 271–283. https://doi.org/10.1145/
3377811.3380323

[19] Zhen Huang, David Lie, Gang Tan, and Trent Jaeger. 2019. Using Safety Properties
to Generate Vulnerability Patches. In 2019 IEEE Symposium on Security and Privacy
(SP). 539–554. https://doi.org/10.1109/SP.2019.00071

[20] Facebook Inc. 2018. A tool to detect bugs in Java and C/C+++/Objective-C code
before it ships. Available: https://fbinfer.com.

[21] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping Program Repair Space with Existing Patches and Similar Code.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis (Amsterdam, Netherlands) (ISSTA 2018). Association for
Computing Machinery, New York, NY, USA, 298–309. https://doi.org/10.1145/
3213846.3213871

[22] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. 2011. Automated
Atomicity-violation Fixing. In Proceedings of the 32Nd ACM SIGPLAN Conference

on Programming Language Design and Implementation (San Jose, California, USA)
(PLDI ’11). ACM, New York, NY, USA, 389–400. https://doi.org/10.1145/1993498.
1993544

[23] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(San Jose, CA, USA) (ISSTA 2014). ACM, New York, NY, USA, 437–440. https:
//doi.org/10.1145/2610384.2628055

[24] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
Patch Generation Learned from Human-written Patches. In Proceedings of the
2013 International Conference on Software Engineering (San Francisco, CA, USA)
(ICSE ’13). IEEE Press, Piscataway, NJ, USA, 802–811. http://dl.acm.org/citation.
cfm?id=2486788.2486893

[25] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Martin Monper-
rus, Jacques Klein, and Yves Le Traon. 2019. IFixR: Bug Report Driven Program
Repair. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Machinery,
New York, NY, USA, 314–325. https://doi.org/10.1145/3338906.3338935

[26] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. JFIX: Semantics-based Repair of Java Programs via Symbolic PathFinder.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis (Santa Barbara, CA, USA) (ISSTA 2017). ACM, New York, NY,
USA, 376–379. https://doi.org/10.1145/3092703.3098225

[27] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. S3: Syntax- and Semantic-guided Repair Synthesis via Programming by
Examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (Paderborn, Germany) (ESEC/FSE 2017). ACM, New York, NY, USA,
593–604. https://doi.org/10.1145/3106237.3106309

[28] Xuan-Bach D. Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018. Over-
fitting in Semantics-Based Automated Program Repair. In Proceedings of the
40th International Conference on Software Engineering (Gothenburg, Sweden)
(ICSE ’18). Association for Computing Machinery, New York, NY, USA, 163.
https://doi.org/10.1145/3180155.3182536

[29] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering 38, 1 (2012), 54–72. https://doi.org/10.1109/TSE.2011.104

[30] Junhee Lee, Seongjoon Hong, and Hakjoo Oh. 2018. MemFix: Static Analysis-
based Repair of Memory Deallocation Errors for C. In Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (Lake Buena Vista, FL, USA)
(ESEC/FSE 2018). ACM, New York, NY, USA, 95–106. https://doi.org/10.1145/
3236024.3236079

[31] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. DLFix: Context-Based Code
Transformation Learning for Automated Program Repair. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South
Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA,
602–614. https://doi.org/10.1145/3377811.3380345

[32] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang
Zhai. 2006. Have Things Changed Now? An Empirical Study of Bug Charac-
teristics in Modern Open Source Software. In Proceedings of the 1st Workshop
on Architectural and System Support for Improving Software Dependability (San
Jose, California) (ASID ’06). Association for Computing Machinery, New York,
NY, USA, 25–33. https://doi.org/10.1145/1181309.1181314

[33] Huarui Lin, Zan Wang, Shuang Liu, Jun Sun, Dongdi Zhang, and Guangning
Wei. 2018. PFix: Fixing Concurrency Bugs Based on Memory Access Patterns. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (Montpellier, France) (ASE 2018). ACM, New York, NY, USA, 589–600.
https://doi.org/10.1145/3238147.3238198

[34] Haopeng Liu, Yuxi Chen, and Shan Lu. 2016. Understanding and Generating
High Quality Patches for Concurrency Bugs. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (Seattle,
WA, USA) (FSE 2016). Association for Computing Machinery, New York, NY, USA,
715–726. https://doi.org/10.1145/2950290.2950309

[35] Fan Long, Peter Amidon, and Martin Rinard. 2016. Automatic inference of code
transforms and search spaces for automatic patch generation systems. (2016).

[36] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic inference of code
transforms for patch generation. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
September 4-8, 2017. ACM, 727–739.

[37] Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition
Synthesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (Bergamo, Italy) (ESEC/FSE 2015). ACM, New York, NY, USA, 166–178.
https://doi.org/10.1145/2786805.2786811

[38] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning
Correct Code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (St. Petersburg, FL, USA) (POPL ’16).
ACM, New York, NY, USA, 298–312. https://doi.org/10.1145/2837614.2837617

https://doi.org/10.1145/3360585
https://doi.org/10.1109/TSE.2017.2689012
https://doi.org/10.1109/TSE.2017.2689012
https://doi.org/10.1145/3338906.3338919
http://dl.acm.org/citation.cfm?id=3155562.3155693
https://doi.org/10.1145/1168054.1168073
https://doi.org/10.1145/1168054.1168073
https://doi.org/10.1109/MSR.2015.20
https://openreview.net/forum?id=SJeqs6EFvB
https://openreview.net/forum?id=SJeqs6EFvB
https://doi.org/10.1145/3338112
https://doi.org/10.1109/ISSRE.2008.59
https://doi.org/10.1109/SANER.2017.7884635
http://dl.acm.org/citation.cfm?id=2818754.2818812
http://dl.acm.org/citation.cfm?id=2818754.2818812
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1109/TSE.2017.2755013
https://proceedings.neurips.cc/paper/2018/hash/68abef8ee1ac9b664a90b0bbaff4f770-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/68abef8ee1ac9b664a90b0bbaff4f770-Abstract.html
https://doi.org/10.1145/3377811.3380323
https://doi.org/10.1145/3377811.3380323
https://doi.org/10.1109/SP.2019.00071
https://fbinfer.com
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/1993498.1993544
https://doi.org/10.1145/1993498.1993544
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
http://dl.acm.org/citation.cfm?id=2486788.2486893
http://dl.acm.org/citation.cfm?id=2486788.2486893
https://doi.org/10.1145/3338906.3338935
https://doi.org/10.1145/3092703.3098225
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3180155.3182536
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/3236024.3236079
https://doi.org/10.1145/3236024.3236079
https://doi.org/10.1145/3377811.3380345
https://doi.org/10.1145/1181309.1181314
https://doi.org/10.1145/3238147.3238198
https://doi.org/10.1145/2950290.2950309
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2837614.2837617

NPEX: Repairing Java Null Pointer Exceptions without Tests ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

[39] Fan Long, Stelios Sidiroglou-Douskos, and Martin Rinard. 2014. Automatic Run-
time Error Repair and Containment via Recovery Shepherding. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Edinburgh, United Kingdom) (PLDI ’14). Association for Com-
putingMachinery, New York, NY, USA, 227–238. https://doi.org/10.1145/2594291.
2594337

[40] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. CoCoNuT: Combining Context-Aware Neural Translation Models
Using Ensemble for Program Repair. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual Event, USA)
(ISSTA 2020). Association for ComputingMachinery, New York, NY, USA, 101–114.
https://doi.org/10.1145/3395363.3397369

[41] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. 2019.
BEARS: An Extensible Java Bug Benchmark for Automatic Program Repair Stud-
ies. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 468–478. https://doi.org/10.1109/SANER.2019.8667991

[42] Ravichandhran Madhavan and Raghavan Komondoor. 2011. Null Dereference
Verification via Over-Approximated Weakest Pre-Conditions Analysis. In Pro-
ceedings of the 2011 ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications (Portland, Oregon, USA) (OOPSLA
’11). Association for Computing Machinery, New York, NY, USA, 1033–1052.
https://doi.org/10.1145/2048066.2048144

[43] SergeyMechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. DirectFix: Looking
for Simple Program Repairs. In Proceedings of the 37th International Conference on
Software Engineering - Volume 1 (Florence, Italy) (ICSE ’15). IEEE Press, Piscataway,
NJ, USA, 448–458. http://dl.acm.org/citation.cfm?id=2818754.2818811

[44] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings of the
38th International Conference on Software Engineering (Austin, Texas) (ICSE ’16).
ACM, New York, NY, USA, 691–701. https://doi.org/10.1145/2884781.2884807

[45] Martin Monperrus. 2018. Automatic Software Repair: A Bibliography. ACM
Comput. Surv. 51, 1, Article 17 (Jan. 2018), 24 pages. https://doi.org/10.1145/
3105906

[46] Paul Muntean, Martin Monperrus, Hao Sun, Jens Grossklags, and Claudia Eckert.
2019. IntRepair: Informed Repairing of Integer Overflows. IEEE Transactions on
Software Engineering (2019), 1–1. https://doi.org/10.1109/TSE.2019.2946148

[47] Mangala Gowri Nanda and Saurabh Sinha. 2009. Accurate Interprocedural Null-
Dereference Analysis for Java. In 2009 IEEE 31st International Conference on
Software Engineering. 133–143. https://doi.org/10.1109/ICSE.2009.5070515

[48] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish
Chandra. 2013. SemFix: Program Repair via Semantic Analysis. In Proceed-
ings of the 2013 International Conference on Software Engineering (San Fran-
cisco, CA, USA) (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 772–781. http:
//dl.acm.org/citation.cfm?id=2486788.2486890

[49] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. 2016. Spoon: A library for implementing analyses and transformations
of java source code. Software: Practice and Experience 46, 9 (2016), 1155–1179.

[50] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. 2017. Elixir:
Effective object-oriented program repair. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). 648–659. https://doi.org/
10.1109/ASE.2017.8115675

[51] Marija Selakovic and Michael Pradel. 2015. Poster: Automatically Fixing Real-
World JavaScript Performance Bugs. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 2. 811–812. https://doi.org/10.1109/
ICSE.2015.260

[52] Alex Shaw, Dusten Doggett, and Munawar Hafiz. 2014. Automatically Fixing C
Buffer Overflows Using Program Transformations. In Proceedings of the 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN ’14). IEEE Computer Society, Washington, DC, USA, 124–135. https://doi.
org/10.1109/DSN.2014.25

[53] Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard. 2015.
Automatic Error Elimination by Horizontal Code Transfer Across Multiple Ap-
plications. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Portland, OR, USA) (PLDI ’15). ACM, New
York, NY, USA, 43–54. https://doi.org/10.1145/2737924.2737988

[54] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the
Cure Worse Than the Disease? Overfitting in Automated Program Repair. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering
(Bergamo, Italy) (ESEC/FSE 2015). ACM, New York, NY, USA, 532–543. https:
//doi.org/10.1145/2786805.2786825

[55] Shin Hwei Tan, Zhen Dong, Xiang Gao, and Abhik Roychoudhury. 2018. Repair-
ing Crashes in Android Apps. In Proceedings of the 40th International Conference

on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association for Com-
putingMachinery, New York, NY, USA, 187–198. https://doi.org/10.1145/3180155.
3180243

[56] Shin Hwei Tan, Hiroaki Yoshida, Mukul R Prasad, and Abhik Roychoudhury. 2016.
Anti-patterns in search-based program repair. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
727–738.

[57] Yuchi Tian and Baishakhi Ray. 2017. Automatically Diagnosing and Repairing
Error Handling Bugs in C. In Proceedings of the 2017 11th Joint Meeting on Foun-
dations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017). ACM,
New York, NY, USA, 752–762. https://doi.org/10.1145/3106237.3106300

[58] Rijnard van Tonder and Claire Le Goues. 2018. Static Automated Program Repair
for Heap Properties. In Proceedings of the 40th International Conference on Software
Engineering (Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY, USA, 151–162.
https://doi.org/10.1145/3180155.3180250

[59] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically Finding Patches Using Genetic Programming. In Proceedings of the
31st International Conference on Software Engineering (ICSE ’09). IEEE Computer
Society, Washington, DC, USA, 364–374. https://doi.org/10.1109/ICSE.2009.
5070536

[60] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-Aware Patch Generation for Better Automated Program Repair. In Pro-
ceedings of the 40th International Conference on Software Engineering (Gothenburg,
Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY, USA,
1–11. https://doi.org/10.1145/3180155.3180233

[61] Martin White, Michele Tufano, Matías Martínez, Martin Monperrus, and Denys
Poshyvanyk. 2019. Sorting and Transforming Program Repair Ingredients via
Deep Learning Code Similarities. In 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 479–490. https:
//doi.org/10.1109/SANER.2019.8668043

[62] Qi Xin and Steven P Reiss. 2017. Identifying test-suite-overfitted patches through
test case generation. In Proceedings of the 26th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis. 226–236.

[63] Qi Xin and Steven P. Reiss. 2017. Leveraging syntax-related code for automated
program repair. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). 660–670. https://doi.org/10.1109/ASE.2017.8115676

[64] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018.
Identifying Patch Correctness in Test-Based Program Repair. In Proceedings of
the 40th International Conference on Software Engineering (Gothenburg, Sweden)
(ICSE ’18). Association for Computing Machinery, New York, NY, USA, 789–799.
https://doi.org/10.1145/3180155.3180182

[65] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018.
Identifying patch correctness in test-based program repair. In Proceedings of the
40th international conference on software engineering. 789–799.

[66] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and Lu
Zhang. 2017. Precise Condition Synthesis for Program Repair. In Proceedings of the
39th International Conference on Software Engineering (Buenos Aires, Argentina)
(ICSE ’17). IEEE Press, Piscataway, NJ, USA, 416–426. https://doi.org/10.1109/
ICSE.2017.45

[67] Xuezheng Xu, Yulei Sui, Hua Yan, and Jingling Xue. 2019. VFix: Value-flow-
guided Precise Program Repair for Null Pointer Dereferences. In Proceedings
of the 41st International Conference on Software Engineering (Montreal, Quebec,
Canada) (ICSE ’19). IEEE Press, Piscataway, NJ, USA, 512–523. https://doi.org/10.
1109/ICSE.2019.00063

[68] Jifeng Xuan, Matias Martinez, Favio DeMarco, Maxime Clément, Sebastian Lame-
las Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2017.
Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs. IEEE
Transactions on Software Engineering 43, 1 (2017), 34–55. https://doi.org/10.1109/
TSE.2016.2560811

[69] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. 2017. Better Test Cases
for Better Automated Program Repair. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017).
ACM, New York, NY, USA, 831–841. https://doi.org/10.1145/3106237.3106274

[70] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. 2017. Better test cases
for better automated program repair. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. 831–841.

[71] He Ye, Jian Gu, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2021.
Automated classification of overfitting patches with statically extracted code
features. IEEE Transactions on Software Engineering (2021).

[72] Alex Zhitnitsky. [n.d.]. The Top 10 Exception Types in Production Java Ap-
plications – Based on 1B Events. https://www.overops.com/blog/the-top-10-
exceptions-types-in-production-java-applications-based-on-1b-events/.

https://doi.org/10.1145/2594291.2594337
https://doi.org/10.1145/2594291.2594337
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1109/SANER.2019.8667991
https://doi.org/10.1145/2048066.2048144
http://dl.acm.org/citation.cfm?id=2818754.2818811
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/3105906
https://doi.org/10.1145/3105906
https://doi.org/10.1109/TSE.2019.2946148
https://doi.org/10.1109/ICSE.2009.5070515
http://dl.acm.org/citation.cfm?id=2486788.2486890
http://dl.acm.org/citation.cfm?id=2486788.2486890
https://doi.org/10.1109/ASE.2017.8115675
https://doi.org/10.1109/ASE.2017.8115675
https://doi.org/10.1109/ICSE.2015.260
https://doi.org/10.1109/ICSE.2015.260
https://doi.org/10.1109/DSN.2014.25
https://doi.org/10.1109/DSN.2014.25
https://doi.org/10.1145/2737924.2737988
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1145/3180155.3180243
https://doi.org/10.1145/3180155.3180243
https://doi.org/10.1145/3106237.3106300
https://doi.org/10.1145/3180155.3180250
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1109/SANER.2019.8668043
https://doi.org/10.1109/SANER.2019.8668043
https://doi.org/10.1109/ASE.2017.8115676
https://doi.org/10.1145/3180155.3180182
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1109/ICSE.2019.00063
https://doi.org/10.1109/ICSE.2019.00063
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1145/3106237.3106274
https://www.overops.com/blog/the-top-10-exceptions-types-in-production-java-applications-based-on-1b-events/
https://www.overops.com/blog/the-top-10-exceptions-types-in-production-java-applications-based-on-1b-events/

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivating Example
	2.2 How NPEX Works

	3 Our Patch Validation Technique
	3.1 Learning a Null-Handling Model
	3.2 Validating Patches using the Model

	4 NPEX
	5 Evaluation
	5.1 Setup
	5.2 Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

