N
Check for
Updates

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Effective Unit Test Generation for Java Null Pointer Exceptions

Myungho Lee

Korea University

Republic of Korea
myungho_lee@korea.ac.kr

Yoon-Chan Jhi
Technology Research, Samsung SDS
Republic of Korea
yoonchan jhi@samsung.com

ABSTRACT

In this experience paper, we share our experience on enhancing
automatic unit test generation to more effectively find Java null
pointer exceptions (NPEs). NPEs are among the most common and
critical errors in Java applications. However, as we demonstrate in
this paper, existing unit test generation tools such as RaNpoop and
EvoSurte are not sufficiently effective at catching NPEs. Specifically,
their primary strategy of achieving high code coverage does not
necessarily result in triggering diverse NPEs in practice. In this
paper, we detail our observation on the limitations of current state-
of-the-art unit testing tools in terms of NPE detection and introduce
a new strategy to improve their effectiveness. Our strategy utilizes
both static and dynamic analyses to guide the test case generator
to focus specifically on scenarios that are likely to trigger NPEs.
We implemented this strategy on top of EVOSUITE, and evaluated
our tool, NPETEST, on 108 NPE benchmarks collected from 96 real-
world projects. The results show that our NPE-guidance strategy
can increase EvoSuite’s reproduction rate of the NPEs from 56.9%
to 78.9%, a 38.7% improvement. Furthermore, NPETEST successfully
detected 89 previously unknown NPEs from an industry project.

ACM Reference Format:

Myungho Lee, Jiseong Bak, Seokhyeon Moon, Yoon-Chan Jhi, and Hakjoo
Oh. 2024. Effective Unit Test Generation for Java Null Pointer Exceptions. In
39th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’24), October 27-November 1, 2024, Sacramento, CA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3691620.3695484

1 INTRODUCTION

Null pointer exceptions (NPEs) are one of the most common and fa-
tal errors in Java applications [1-6]. NPE is a critical software defect
because dereferencing a null pointer always makes the program
crash, causing undefined behavior of the entire system. In addition
to the hazardous impacts of NPEs on software, NPEs frequently
occur in practice, making them even more fatal. For example, recent
industry reports [7, 8] on the causes for errors in real-world Java

*Corresponding author.

This work is licensed under a Creative Commons Attribution International 4.0 License.
ASE °24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1248-7/24/10.

https://doi.org/10.1145/3691620.3695484

Jiseong Bak
Korea University
Republic of Korea
js_bak@korea.ac.kr

1044

Seokhyeon Moon
Technology Research, Samsung SDS
Republic of Korea
shyeon.mun@samsung.com

Hakjoo Oh*
Korea University
Republic of Korea
hakjoo_oh@korea.ac.kr

applications, often discussed in technical blogs, show that NPEs
account for the most significant portion of the reported crashes.
Therefore, software testing is mandatory to reduce the risk of NPEs
during the software development process.

Unit Testing. Unit testing has been one of the most widely
used software testing techniques for object-oriented programming
languages such as Java. With well-designed test cases that represent
the usage scenarios of a certain unit to test, unit testing validates
that each unit of the software performs as expected, where a unit is
typically an individual method or object. Due to its characteristics
that enable testing of an individual single unit with diverse usage
scenarios, unit testing helps facilitate software maintainability and
is used to prevent future regressions, which improves overall soft-
ware quality during the development process. From this perspective,
unit tests are widely utilized to detect software defects. However,
finding bug-triggering unit tests is a complex and time-consuming
task, which becomes more difficult with respect to the size and
complexity of software systems.

Automatic Unit Test Generation. To reduce the burdens of
developers on designing unit tests, automatic test case generation
techniques have been proposed with two major approaches: random
testing and search-based software testing. Both methods generate
test cases by automatically synthesizing method call sequences for
the target unit, without assuming existing test drivers.

Random testing is a simple yet effective approach to automati-
cally generating method sequences for object-oriented programs.
It randomly synthesizes a sequence of method calls to generate
test cases. Among various strategies, feedback-directed random
testing has been considered superior to pure random testing, which
is implemented in tools such as Ranpoop [9]. Rather than blindly
generating test cases, RANDoOP leverages the knowledge obtain-
able through the execution of generated test cases. It runs contract
checkers for each generated object to maintain a pool of valid ob-
jects. This feedback-directed approach has become a primary test
generation strategy for programs written in Java and C#.

Search-based software testing (SBST), on the other hand, formu-
lates the test generation as an optimization problem concerning
certain coverage criteria (e.g., branch coverage, exception coverage).
In particular, EvoSUITE [10] is the state-of-the-art SBST tool for
Java, which leverages genetic algorithms (e.g., DynaMOSA [11]
and MOSA [12]) to optimize the test suite. It first randomly gen-
erates the initial population similar to random testing, and then

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695484&domain=pdf&date_stamp=2024-10-27

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

finds an optimal test suite concerning target coverage criteria. Over
the last decade, SBST has been popular and extensively used for
object-oriented programs [13-17].

Observation on NPE Detection. We observed that state-of-
the-art tools, RaNpDoOOP and EVOSUITE, are not sufficiently effective
at catching diverse NPEs in practice. These unit testing techniques
primarily strive for high code coverage with the expectation that
obtaining high code coverage will ultimately lead to bug detec-
tion. Unfortunately, however, we experienced that achieving higher
code coverage does not necessarily result in better NPE-finding
performance; using a highly tuned configuration for EvoSUITE to
increase line coverage from 64.5% to 77.8% on our benchmark pro-
grams ended up improving its NPE-reproduction rate marginally
from 55.7% 56.9% (Section 4.3). This is because software bugs, es-
pecially NPEs, usually occur under certain conditions [18-20]. For
example, NPEs are detected only if the value of the dereferenced
pointer remains null at the time the corresponding buggy state-
ment is executed. Hence, detecting NPEs requires taking one more
step from just achieving high code coverage.

Our Approach. To take unit testing techniques one step further
for effective NPE detection, we propose a new strategy that guides
the testing process to generate test cases that are more likely to
explore NPE-prone regions, where NPE may occur. To this end, our
approach leverages both static and dynamic analyses. We use static
analysis to identify the methods that may trigger NPEs and compute
backward dependencies to pinpoint the statements and variables
that need to be mutated to reach those methods. We utilize dynamic
analysis to gather runtime information and adaptively spend more
testing budget on less explored NPE-related code regions.

Experiments show that our approach significantly improves the
existing unit test generator in terms of NPE detection. We im-
plemented our approach on top of EvoSUITE, and evaluated its
performance on 108 known NPEs collected from 96 real-world
projects [3, 21-24] in comparison with Ranpoop and EvoSUITE. In
summary, NPETEST showed a reproduction rate of 78.9% for those
NPEs while Ranpoop and EvoSUITE achieved 33.7% and 56.9%, re-
spectively. Regarding the number of detected bugs, 12 bugs were
exclusively found by NPETEST, 1 by EvOoSUITE, and 0 by RANDOOP.

We also conducted an industrial case study, applying the three
tools, RaNDoOP, EvOSUITE, and NPETEST, to a software project
actively used and maintained within a large IT company. Through
the case study, we found a total of 91 previously unknown NPEs:
NpeTEST detected 89 NPEs, whereas EvoSulTE and RANDooP de-
tected 82 and 52 NPEs, respectively. This case study prompted the
development team to plan incorporating NPETEST into their devel-
opment pipeline, enhancing overall code security and robustness.

Contributions. We summarize our contributions below:

e Observation: We show that increasing code coverage does not
always lead to better NPE detection. Using highly tuned Evo-
Surte did not meaningfully improve NPE-reproduction rates.

o New Technique: We present NPETEST, a new NPE-detection
strategy for EvoSuITE. To our knowledge, NPETEST is the first
technique for unit test generators that focuses on NPE detection.

1045

Myungho Lee, Jiseong Bak, Seokhyeon Moon, Yoon-Chan Jhi, and Hakjoo Oh

e Evaluation and Comparison: We demonstrate the effective-
ness of NPETEST by evaluating it on 108 real-world NPEs and
comparing it with RANDOOP and EVOSUITE.

e Industrial Case Study: We show that NPETEST can be useful
in industrial contexts by conducting a case study on a software
project actively maintained within a major IT company.

2 MOTIVATING EXAMPLE

Figure 1 describes an NPE found in Qpid Proton-J project!. The
root cause of this NPE is the null literal assigned to the vari-
able amqpType in the deduceTypeFromClass method (line 4, Figure
1b), which is returned without refinement. The NPE is thrown at
line 8 in Figure la, when dereferencing the return value of the
getType method (line 7, Figure la)—which internally calls the
deduceTypeFromClass method shown in Figure 1b and returns
the result directly.

However, the conditions under which the variable amgpType is
not refined during the execution are not trivial. The type of the
first argument should be set properly, which is determined by the
argument of the calculateSize method in Figure 1a. For example,
as shown in Figure 1b, if the type of the first argument when calling
deduceTypeFromClass is an array type, it passes the true branch
at line 5 and amgpType will be redefined, which never triggers NPE.
Also, considering that this method is called in the while loop (line
4, Figure 1a), the input map of the calculateSize method should
contain at least one element.

Figure 1c is an NPE-triggering test case written by developers,
which leads to NPE whose stack trace is in Figure 1d. By adding
the element in the mapping variable map at line 5, this test case
can enter inside the while loop, which satisfies the first step to
trigger the NPE. Additionally, the instantiation of Map<Integer,
Object> causes the Object type (i.e., Class<Object>) to be passed
to the first parameter of the deduceTypeFromClass method. This
parameter bypasses the condition at line 5 in Figure 1b as its type is
not an array type, leading deduceTypeFromClass to return null,
which triggers an NPE in Figure 1a.

In order to generate such test cases triggering the NPE, unit test
generation tools must focus on mutating various types for generic
type parameters of Map and find an appropriate one that bypasses
the branch conditions in deduceTypeFromClass not to refine the
value of amgpType. Although EvoSuITE, the state-of-the-art unit
test generation tool, We found that EvoSuITE and RaNDooP failed
to generate such test cases due to the large space of test cases and
statements to be mutated. Additionally, due to the large space of
the methods to be tested, problematic methods to focus on should
be determined carefully for better efficiency.

NpETEST follows such direction in generating test cases via static
and dynamic analyses. First, our static analysis identifies statements
(e.g., Lines 4-5 in Figure 1c) in test cases that are highly correlated
with problematic method arguments and variables (e.g., “map” vari-
able) that are likely to occur NPEs. Second, NPETEST mutates test
cases that explore NPE-related regions (e.g., Line 8 in Figure 1a)
more aggressively than the other test cases with the aid of dy-
namic analysis. More specifically, NPETEST monitors a sequence of
called methods during execution for each generated test case and

!https://github.com/apache/qpid-proton-j

1

Effective Unit Test Generation for Java Null Pointer Exceptions

class MapType {
EncoderImpl encoder;
int calculateSize(final Map<?, ?> map) {
for (Entry e : map.entrySet()) {
Object k = e.getKey();
if (fixedKeyType == null) {
AMQPType t = encoder.getType(k);
enc = t.getEncoding(k); // NPE
1333

(a) MapType.java

DecoderImpl dec = new DecoderImpl();
EncoderImpl enc = new EncoderImpl(dec);
MapType mapt = new MapType(enc, dec);
Map<Integer, Object> map = new HashMap<>();
map.put(@, new Object());
mapt.getEncoding(map);

(c) Test case that triggers the NPE

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

class EncoderImpl {
AMQPType<?> deduceTypeFromClass(
Class<?> cl, Object o) {
AMQPType<?> amgpType = null;
if (cl.isArray()) {
amgpType = _arrayType;
Yelse { /x ... %/}
return amgpType;}

(b) EncoderImpl.java

java.lang.NullPointerException
at MapType.calculateSize(MapType.java:8)
at MapType.getEncoding(...)
at TestCase.test(TestCase.java:8)

(d) The stack trace from NPE-triggering test case

Figure 1: An NPE from the project Apache Qpid Proton-j’s revision 02998b3

prioritizes the test cases covering the NPE-related methods (e.g.,
“calculateSize” method in Figure 1d). With the help of static and
dynamic analyses, NPETEST indicates the problematic methods and
statements in the test case to focus on for mutation and successfully
generates test cases triggering NPEs.

3 APPROACH

In this section, we present our approach to guide unit test generators
for better NPE detection. NPETEST consists of two components: (1)
static analysis which identifies NPE-prone regions and performs
dependency analysis to track the statement of test case relevant
to NPE-prone regions, and (2) dynamic analysis which gathers
runtime information to adaptively update the guidance.

3.1 Search-Based Software Testing

Algorithm 1 shows the simplified test case generation process
of EVOSUITE, a search-based software testing (SBST) tool, which
NPETEST relies on. Initially, the algorithm identifies the coverage
goals covGoals (Line 1), which serve as objectives to guide the
test case generations. It also builds an initial parent population by
randomly generating N test cases (Line 2). The algorithm then gen-
erates offspring population from the parent population by randomly
applying various mutation operators such as statement crossover,
insertion, deletion, and change (Line 4). Subsequently, it evaluates
all test cases within both parent and offspring populations by com-
puting their fitness values with respect to each of covGoals. The
promising TCs are selected as the next parentTCs, for further test
case exploration (Line 5). In addition, the algorithm can dynami-
cally update covGoals to guide test case generations toward more
promising code regions, thereby achieving more covGoals (Line 6).
Once the given time-budget expires (Line 7), the algorithm returns
the set of test cases, each of which covers at least one coverage goal,
as the final solution (Lines 8-9).

Workflow of NPETEST. Algorithm 2 outlines the workflow of
our approach, NPETEST, which builds upon EvoSurTk (Algorithm 1).

1046

Algorithm 1 Simplified Test Case Generation Process - EVOSUITE

Input: A class under test (CUT) C and a time-budget timeout.
Output: A set of test cases TCs.

1: covGoals < getGoals(C)

2: parentTCs « buildInitPopulation(C)

3: repeat

4 childTCs « genTests(parentTCs)

5 parentTCs « updateSet(parentTCs|J childTCs, covGoals)

6 covGoals < updateGoals(C, covGoals)

7. until timeout reached

8: TCs « getSolution(parentTCs, covGoals)

9: return TCs

Algorithm 2 NPE Guided Strategy - NPETEST

Input: A class under test (CUT) C and a time-budget timeout.
Output: A set of test cases TCs.

1: R « staticAnalysis(C) > Static analysis
2: covGoalsnpg < getNPEGoals(C, R)

3: M « getNPEFunctions(C,R) > Remove NPE-free methods
4: TCs « buildInitPopulation(C, M)

5: repeat

6: TC « genNPETC(TCs, M, R) > Dynamic & Static analyses
7: TCs « updateSet({TC} |J TCs, covGoalsnpE)

8: M « updateMUTs(TC, covGoalsnpg) > Dynamic analysis
9: TCs « computeTCScore(TCs, M) > Dynamic analysis
10: until timeout reached

-
_

: TCs « getSolution(TCs, covGoals)
: return TCs

—
I

NPETEST leverages both static and dynamic analyses to generate
more NPE-triggering test cases (Lines 1-3, 6 and 8).

NrETEST first performs static analysis on the given class C (Line
1) and identifies NPE-prone methods (R) where NPE can be trig-
gered. The results R contain the information of the NPE-prone
regions, represented by program locations where NPE may occur,

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

and the method arguments that are highly related to those regions.
With an analysis result R, NPETEST computes the coverage goals
covGoalsnpg, which additionally has a coverage goal for NPE detec-
tion (Line 2). It also collects a set of callable NPE-prone methods M
that are identified by the static analyzer (Line 3).

In contrast to EvoSulTE, which relies on random selection of
test cases and their statements to produce offspring populations,
NPETEST uses static and dynamic analyses to selectively choose test
cases and statements that are likely to trigger NPEs when mutated
(Line 6). In addition, after updating the population based on the
NPE detection coverage goals (Line 7), NPETEST refines the set
of methods under test M by removing those for which all NPEs
have been detected, allowing it to concentrate on methods with
undetected NPEs (Line 8). Then, NPETEST computes the testcase-
level NPE-likely score which indicates how likely the NPE may occur.

3.2 Static Analysis

Our static analyzer is (1) to identify all NPE-prone regions and
the methods in a class under test (CUT) and (2) to prioritize the
statements to be mutated in a given test case.

Language. We designed static analyzer to follow the general
definition of the Java language. A program P is a sequence of classes,
where a class C is a sequence of methods. A method m consists of a
return type, a sequence of parameters, and a sequence of statements.
The type of each method and variable is either a primitive type (e.g.,
boolean) or a reference type (e.g., array). We consider a statement
S and an expression E as follows:

S — x=E|returnE|if ES; Sy | whileES|S1; S2|€
E — newC() |call(m)| Eg==Ez|n|null |x|EE]..

where a variable x can be either a local or a field variable in a class.
In this paper, we consider each generated test case TC as a unique
method that follows the grammar above. We assume that the names
of each class and method are uniquely defined.

Path Construction. Given a CUT, we first construct a control-
flow graph (CFG) of each method from a codebase, where each node
represents an atomic statement. Based on the CFG, we compute a
set Texp of a pair of target expression exp and a line number loc (i.e,,
(exp, loc) € Texp) for each method m. We gather the expression into
a set Teyp if it satisfies at least one of the following conditions:

(1) An expression E; in a form of “E;.Ep".
(2) An invocation of a method which is an NPE-prone method.
(3) A return variable when the return type is a reference type.

Using the set Texp, we classify any methods as NPE-safe methods if
no target expressions exist in a method m (i.e., Texp(m) == 0) or all
target expressions only satisfy the last condition (3).

Example 1. Consider the methods presented in Figure 2. For
each method, a set of collected target expressions are as follows:

Texp(addEdge) : {(getEdge(src), 3), (src, 4), (getEdge(target), 5)},
Texp(getEdge) : {(vertexMap, 2), (vertexMap, 5), (ec, 7)}.

For both methods addEdge and getEdge, since Teyp is not empty
and the target expressions in each set are not the return variables

1047

Myungho Lee, Jiseong Bak, Seokhyeon Moon, Yoon-Chan Jhi, and Hakjoo Oh

except for the variable “ec” in getEdge method, they are NPE-prone
methods at this moment.

With the set Texp, we construct a finite set Set(Info,,;) of path
information Info,,,
mation of a method mis a tuple (path, isNull, exp), where path is a
sequence of statements, isNull is a mapping variable from reference
variables to boolean values, and exp is a single target expression
from Texp,(m). Note that each reference variable in isNull is initially
assigned to true. A path path is obtained by adding relevant state-
ments via backward propagation starting from the target expression
exp until the propagation meets one of the following conditions:

j, for each target expression. Each path infor-

(1) The propagation reaches to the entry point of the method.
(2) expisinaform of method invocation (e.g., call() in call().z()).
(3) call(m’) when the method m” has side-effects on exp.

(4) x = E where x is the firstly defined variable relevant to exp.
(5) E in a branch condition is relevant to exp.

For simplicity, we assume that the invocation of any methods
(call()) in the method m does not have side effects on the target
expression exp.

Nullable Path Identification. To analyze whether the target
expression can be null in a given path, we define a null checker
(© : S x isNull — isNull), which follows the rules below:

O(x = null,isNull)
O(x =y, isNull)

O(x := new C(), isNull)
O(x := call(m”), isNull)
O(x == null, isNull)
O(=(x == null),isNull)

isNull[x > true]

isNull[x — isNull[y]]
isNull[x + false]
[
[

= isNull[x — Ret,,;(m")]
isNull[x > true],

isNull[x +— false],

where Ret,,,;;(m) indicates whether the method m may return null.
© updates the mapping variable isNull until it reaches the end
of the path. If isNull[exp] remains false for all paths towards the
given target expression exp, we can conclude that NPE never occurs
when dereferencing the expression exp. Otherwise, there may exist
NPE if there exists at least one path where the value of exp remains
true. If the target expression exp in a method m’ is a return variable,
we update Ret,,;;(m") with the value of isNull(exp). Note that all
target expressions in isNull are initially set to true.

Example 2. Consider the expression (ec, 7) of Texp(getEdge)
in the Example 1. We can build paths towards ec as follows:

path; — (ec,7) :
[ec = new Edge<>(edgeFactory, vertex); return ec],
pathy — (ec,7) : [!(ec null); return ec 1,

At the entry of pathj, the checker © maps the variable ec to false
in isNull; the instantiation of a constructor call always returns a
non-null object. Since all paths towards the return statement result
in non null, Ret,,; of the method getEdge is set to false. With
this analysis result, NPETEST can infer that addEdge method is an
NPE-safe method; getEdge method never returns null (i.e., Ret,,;
is false), and line 3 and 5 in Figure 2a are safe from NPEs.

NPE-likely Score Computation. After nullable path identifi-
cation is done on all methods, we compute the NPE-likely score

Effective Unit Test Generation for Java Null Pointer Exceptions

public boolean addEdge(V src, V target, E e) {
if (src == null) return false;
getEdge(src).addEdge(e);
if (!src.equals(target)) {
getEdge(target).addEdge(e);

} 6

return true; }

(a) addEdge method

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

public Edge<V, E> getEdge(V vertex) {
Edge<V, E> ec = vertexMap.get(vertex);
if (ec == null) {
ec = new Edge<>(edgeFactory, vertex);
vertexMap.put(vertex, ec);
}

return ec; }

(b) getEdge method

Figure 2: A simplified code example

Snpe(m) for the given method m as follows:

|mayNull(Set(Infopath))|

SPath(m) = |5€t(1nfopa,h)|
SNpE(M) = Span(m) + D" Snpe(m)
m €P(m)

where @(m) is the set of methods invoked in the given method m.
mayNull(Set(Infopath)) returns a set of path information whose
isNull[exp] returns true; in other words, it returns a set of paths
that may cause NPEs. This NPE-likely score Snpg is later used
for test case selection during mutation; a test case which calls the
methods with higher S npg is more likely to be selected for mutation.

Mutation Target Selection. We first define a test case TC with
n statements as a quadruple (Stmts, MUT, S7¢, §), where Stmts isa
sequence of statements (i.e., < S1, Sg, ... Sp >) and MUT represents
method under test in the test case TC. Stc and § are the weight
annotated on the given test case TC and a set of executed methods
when running TC, respectively.

Besides nullable path identification, we perform dependency
analysis to obtain parameter variables of the method m which have
dependency on any exp in Texp(m). Based on the paths we con-
structed, we backwardly compute the dependencies and the map-
ping variable P which maps a method m to a set of indices of the
parameters of m, where the parameters have dependencies on the
target expressions exp.

Given a test case TC for mutation, instead of randomly selecting
statements to be mutated, NPETEST selects statements and variables
that can trigger NPEs in a method MUT (Line 6 in Algorithm 2).
More precisely, NPETEST first identifies the arguments Args of MUT
which are located on the same indices in P(MUT). From the state-
ment S, which invokes MUT, it computes backward dependencies
by propagating the sequence of statements Stmts to collect all state-
ments that have dependency on Args. Then, for mutation, NPETEST
selects statements and variables from the collected set of statements
instead of a set of all statements Stmts.

3.3 Dynamic Analysis

The goal of dynamic analysis is to guide the mutation generation
process to actively explore NPE-prone methods by monitoring the
execution results of test cases. Instrumentation of EvoSuITE allows
NPETEST to dynamically obtain a set of executed method calls §
for each test case, as well as the information of exceptions caused
during execution.

java -jar ./evosuite.jar -Dsearch_budget 300 -class [TARGET_CLASS]
-projectCP [CLASS_PATH] -Dassertions false
-Dcatch_undeclared_exceptions false -generateMOSuite
-Dalgorithm=DynaMOSA -Dstatistics_backend=NONE
-Dshow_progress=false -Dnew_statistics=false -Dcoverage=false
-Dinline=true -Dp_functional_mocking=0.8
-Dp_reflection_on_privagte=0.5 - ...

Figure 3: Fine-tuned options for EvOSUITE

Method Under Test Refinement. Using the information of
runtime exceptions, NPETEST dynamically refines the set of meth-
ods under test. More precisely, NPETEST maintains a set of target
expressions for each method (i.e., (exp, loc) € Texp). If NPEs occur
during test case execution, NPETEST gathers the information of
the method m and the NPE-triggered error location loc from the
runtime exception error logs, and removes the corresponding target
expression exp from Texp(m) (Line 8 in Algorithm 2). By dynami-
cally pruning out the method m of which all NPEs are detected (i.e.,
Texp(m) == 0), our dynamic analyzer enables unit test generators to
spend more time on the NPE-related methods that have not been
explored enough.

Testcase-level NPE-likely Score Computation. Using the
aforementioned sequence of executed method calls, NPETEST cal-
culates and maintains testcase-level NPE-likely score (i.e., Stc). For
each test case TC, a quadruple of (Stmts, S7c, m, §), we compute
Stc as the sum of Snpg of all methods executed over TC execution
(i.e. STc = Y, Snpe(m)). All test cases are annotated with the com-

S

me
puted Stc (Line 9 in Algorithm 2), and NPETEST performs weighted
sampling based on the score Stc to select the test case from the
population to be mutated (Line 6).

4 EVALUATION

In this section, we experimentally evaluate NPETEST. to answer the
following three research questions.

e RQ1: How effectively can NPETEST generate unit tests that
detect the known NPEs? How does it compare to the existing
unit test generators?

e RQ2: What is the correlation between code coverage and the
ability to find NPEs? Is achieving high code coverage effective
for NPE detection?

e RQ3: Can NPETEST actually help software developers willing
to ensure the software quality in the industry?

1048

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Myungho Lee, Jiseong Bak, Seokhyeon Moon, Yoon-Chan Jhi, and Hakjoo Oh

Table 1: Benchmarks collected from prior works [3, 21-24]. Projectyep: # of reproducible projects in our experimental environ-
ment. NPE: # of known NPEs from reproducible projects Projectrep. NPE¢est: # of NPEs occured in a test case itself. NPEygide: #
of NPEs triggered outside of the target project (e.g., Map library), Nulliesi: # of NPEs triggered by passing null directly to the
argument of method, Null, t;ackable: # of NPEs that is hard to track the source of Null, Duplicated: # of duplicated NPEs

Excluded NPEs Final benchmarks
Source Project Projectrep NPE NPEtest NPEgyiside Nulltest Nullypgrackable Duplicated Project NPE
NPEX [3] 59 59 65 0 0 7 1 0 53 57
GENESIS [23] 16 14 14 0 2 3 0 0 9 9
BEaRs [21] 18 18 20 1 4 7 0 0 8 8
BuGSwaRrM [22] 76 60 68 22 6 2 5 5 21 28
DEeFECTS4] [24] 26 10 11 0 1 2 0 2 5 6
Total 195 161 178 23 13 21 6 7 96 108

4.1 Evaluation Setting

We implemented NPETEST on top of the latest version of EvoSUITE [10],

which was last updated in February 2024 on GitHub at the time
of writing. For performance comparison with existing unit test
generation tools, we selected EvoSuUITE [10] and RANDoOOP [9] as
baselines, where both tools are widely adopted in the field of unit
test generation with their exceptional performance. In particular,
EvoSurTe demonstrated its performance superiority at the Inter-
national Workshop on Search-Based Software Testing (i.e., SBST),
an annual unit test generation tool competition, winning 10 out of
12 competitions since 2013. RANDOOP, on the other hand, is a well-
established test case generation tool built upon feedback-directed
random testing. We conducted 25 evaluation experiments for each
tool with a time budget of 5 minutes on the benchmark classes
where NPEs occurred, using a total of 125 minutes of CPU time for
each benchmark. All experiments were done on a Linux machine
running Ubuntu 20.04 with 64 CPUs and 256GB memory, powered
by AMD Ryzen Threadripper 3990X 64-Core Processor.

Options for EvoSurTE. In addition to the essential parame-
ters such as target class and time budget, users can also configure
EvoSurTe with over 30 optional parameters to fine-tune its per-
formance. This presents challenges in finding optimal parameter
settings, as it requires significant effort for tuning optimal parame-
ters, which is beyond the scope of this paper. Therefore, we utilized
the parameter settings set by the EvoSUITE team?, which are cho-
sen for their demonstrated effectiveness in maximizing line/branch
coverage and bug detection ratio. The EvOSUITE team has used
these settings to participate in the SBST competitions, where they
have achieved success by winning the competition 10 times out of
12 from 2013 to 2024 [25-27]. Figure 3 shows the fine-tuned options
we used for our evaluation.

Benchmarks. To evaluate the effectiveness of our technique
on NPE detection, we collected real-world NPE benchmarks from
the literature, which have been used in the prior works [3, 4, 21, 23].
These benchmark projects have been discussed in the recent APR
(Automatic Program Repair) work that targets NPEs [3]. We also

Zhttps://www.youtube.com/watch?v=Vwxu6TtzBYs&t=19879s

1049

collected benchmark projects from a static analysis study [28],
which are composed of 76 and 26 NPEs from BugSwarmM [22] and
DErECTs4] [24], respectively. All benchmarks are provided with the
buggy version of each project, a test case triggering the NPEs, and
the line number where NPE occurs. In total, we gathered 195 buggy
projects that can be built with Maven.

Table 1 shows a detailed explanation of our benchmark selection.
Specifically, we manually investigated each benchmark program
with the given NPE-triggering test cases and excluded the bench-
marks in which we failed to build or reproduce NPEs in our experi-
mental environment. We also excluded NPEs that are not located in
the source code of programs and whose null values originate from
literal null in the test case or Java native code. After removing
duplicated NPEs, we finally collected 96 buggy projects with 108
known NPEs for our benchmark suite.

4.2 Effectiveness of NPETEST

Table 2 shows the average reproduction rates over 25 trials to gen-
erate NPE-triggering test cases. As a main metric to evaluate bug-
finding abilities of test case generation tools, we define the repro-
duction rate as the frequency with which the NPE is detected among
a fixed number of iterations (25 trials in our experiment); that is, the
reproduction rate represents the probability of tools to detect NPEs.
We used this metric because the reproduction rate can provide
more detailed information about the performance improvement
for each unique bug. More specifically, using the reproduction rate
makes it possible to identify which specific NPEs were detected
more effectively (i.e., with a higher reproduction rate).

For simplicity, we excluded the results in a table when all three
tools failed to detect the known NPEs among all trials, which re-
mains 74 known NPEs in total. In summary, NPETEST, on aver-
age, succeeded to generate test cases detecting the known NPEs
with 45.2% and 22.4% more reproduction rates than RANDOOP and
EvOSUITE, respectively. In terms of the number of NPEs detected in
any of the 25 trials, NPETEST found 73 NPEs while Ranpoop and
EvoSuITE detected 25 and 59 NPEs, respectively. We computed the
p-value for the Mann-Whitney U test on our experimental results,
where the p-value was 0.0003. Hence, we could conclude that our
results were statistically significant at a = 0.05.

Effective Unit Test Generation for Java Null Pointer Exceptions

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 2: The reproduction rate results for 25 trials on benchmark projects gathered from the prior studies [3, 21-24]. The
projects where all three tools failed to detect NPEs are excluded from this table. Project: The name of the buggy project with its
abbreviated NPE-labeling ID (if necessary). The number in a parenthesis represents each unique NPE in the same project.

Project ‘ Randoop EvoSuite NPETest ‘ Project ‘ Randoop EvoSuite NPETest ‘ Project ‘ Randoop EvoSuite NPETest
NPEX
Activiti-c45 0 0 24 Hivemall-04fa 0 68 100 Log4j_2-7441 100 100 100
Aries_JPA 0 100 80 Http-f633(1) 0 0 88 Ninja-16aa 100 64 100
Avro 100 100 100 Http-£633(2) 0 0 76 Nutz-87a4 0 76 100
Commons_Conf 100 100 100 Http-£633(3) 0 72 84 OpenNLP-6079 0 100 100
Commons_DBCP 100 16 100 Http-f633(4) 0 72 84 OpenPDF-a89d 0 100 100
Commons_Pool 0 92 100 IoTDB-9bce 0 40 40 PDFBox-5558 100 100 100
CXF-2094 100 56 84 Jest-f34f 0 8 0 Qpid-0299 (1) 0 0 16
Directory 0 80 100 jsoup-8b83 100 40 100 Qpid-0299 (2) 0 0 88
Easy_Rules 0 64 100 jsoup-b841 0 100 100 Sharding-82b1 0 0 4
Fastjson-650a 0 8 64 JSqlParser 0 68 96 Sharding-9833 0 40 100
Feign-9c5a 0 0 28 Karaf-b92d 0 0 28 Sharding-c08f 0 8 8
FOP-10e0d1c2 100 40 100 Log4j_2-5b7b 0 0 16 ZooKeeper 0 16 32
Hessian_Lite 0 100 96 Log4j_2-6a23 100 100 100
BugSwarm
ACS_Commons 0 0 64 OkHttp-9361(2) 0 9% 100 | REST-1546(5) 100 100 100
Artemis_odb 100 100 76 Petergeneric 0 100 100 REST-2078 0 40 100
BungeeCord-1303 0 100 100 REST-1546(1) 0 28 88 Universal-1724(1) 100 0 56
Byte-1405 100 92 100 REST-1546(2) 100 20 92 Universal-1724(2) 100 0 64
Byte_Buddy-9579 100 100 100 REST-1546(3) 100 100 100 Universal-6766 0 64 72
Dubbo-4166 100 88 100 REST-1546(4) 100 100 100 Yamcs-1863 0 76 100
OKkHttp-9361(1) 0 88 100
Defects4] Genesis Bears
Cli-30 0 28 100 Activiti-31¢c8 0 24 92 Bears-189 0 100 100
Cli-30 0 32 80 Checkstyle-be8 0 60 80 Bears-222 0 20 40
Csv-11 0 80 72 Dataflow]JavaSDK 0 0 8 Bears-56 100 100 100
Csv-9 100 72 92 JavaPoet-aee5 100 100 100 Bears-70 0 0 28
Math-70 100 100 100 Javaslang-0dab 100 100 100 Bears-88 0 100 92
Math-79 0 76 100 Jongo-9743 0 0 4
Average [337% 56.9% 78.9%

As shown in Table 2, NPETEST generally shows the highest repro-
duction rate over 70 NPEs benchmarks. For instance, on “Fastjson-
650a" from NPEX benchmark suite, NPETEST could successfully
generate NPE-detecting test-cases for 16 times over 25 trials (i.e.,
16/25 = 0.64) while EvoSUITE showed the reproduction rate of 8%.
RaNDoOP, however, failed to detect NPEs within the time-budget.
On other benchmark program, “Hivemall-04fa", NPETEST succeeded
to generate NPE-triggering test cases in all trials while EvoSuITE
was able to detect the corresponding NPE 17 out of 25 trials.

Surprisingly, RaANDOOP, a random-based testing tool, shows the
best performance on some of the NPE benchmarks. On “Com-
mons_DBCP" from BucSwaRM, for instance, RANDoOP successfully
generated the test cases for detecting NPEs in all 25 trials when
the reproduction rate of EvOoSUITE was only 16%. NPETEST could
always detect the NPE in all 25 trials.

One interesting point from Table 2 is that RaNDoOP shows either
100% or 0% reproduction rate for NPE detection on our benchmark
suite. We observed that the benchmark programs which RANpoop
shows 100% are the cases where the NPEs are triggered with a
trivial and simple method sequence.

DriverAdapterCPDS c = new DriverAdapterCPDS();
c.toString();

For example, a test case above is an NPE-triggering test case for
the benchmark project “Commons_DBCP". The constructor call in

1050

this test case take no argument, which makes it easy to synthesize.
EvoSuITE, however, frequently failed to generate such test case
as shown in Table 2; The reproduction rate of EvoSurTe for this
project is 16%. This example shows that existing test case generators
are not specially designed for efficient NPE detection.

Additionally, we investigated the cases where all the tools failed
to detect NPEs, and observed that those cases are related to the
restricted search space for test case generation. As an example,
the test case below triggers NPE in the PatriciaTrie class from
Apache Commons Collections revision 796114ea:

Trie<String, Integer> trie = new PatriciaTrie<Integer>();
trie.put("aa", 1); trie.put("ab", 1);

SortedMap<String, Integer> prefixMap = trie.prefixMap("a");
prefixMap.clear();

This test case has an extra method call (clear at line 4) with a return
value of MUT (prefixMap at line 3). The clear method is a virtual
method defined in Java native library, but it indirectly calls a method
belonging to an inner class of PatriciaTrie, which triggers an
NPE inside the inner class class of PatriciaTrie. If a test case
generator contains the methods from the Java native library for test
case generation, this NPE-triggering test case can be synthesized
somehow. It, however, will result in intractably large search space,
which might negatively affect the overall performance.

Figure 4 illustrates the number of unique NPEs detected by each
tool. As shown in the Figure 4, NPETEST could find 14 more NPEs

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

12 35 NPETest
1 EvoSuite
2 23 Randoop

Figure 4: A Venn diagram illustrating the number of unique
NPEs found by each tool.

Table 3: The number of unique NPEs detected by each unit
test generation tool with different time budgets.

Time Tools NPEX BugSwarm Defects4] Genesis Bears | Total
Randoop 10 10 2 2 1 25
5min | EvoSuite 29 16 6 4 4 59
NPETest 37 19 6 6 5 73
Randoop 10 10 2 2 1 25
10 min | EvoSuite 29 16 6 5 5 61
NPETest 37 19 6 6 6 74
Randoop 10 10 2 2 1 25
30 min | EvoSuite 29 17 6 6 5 62
NPETest 37 19 6 6 6 74
Table 4: Bug-finding ability of EvoSurTe with different set-
tings. EVOSUITE p, r: EVOSUITE with no fine-tuned options.
Tool NPEX BucSwarMm DEerecTs4] GENEsis Bears | Total
EvoSulTe 50.7% 68.0% 64.7% 47.3% 64.0% | 56.9%
EvOSuITEp.f | 48.8% 62.7% 83.3% 453% 60.0% | 55.7%

which EvoSurTe failed to detect. However, NPETEST could not gen-
erate any test cases triggering the known NPE in “Jest-f34f" bench-
mark from NPEX while EvoSuITE could detect the corresponding
NPE. The interesting point is that the reproduction rate of EvOSUITE
for this benchmark was only 8%, which means that EvoSUITE also
struggled to generate NPE-triggering test cases. We investigate the
case and observed that imprecision of our static analyzer misdi-
rected NPETEST into focusing on other methods rather than the
one in which the known NPE occurs. NPETEST failed to detect NPE
in “Jest-f34f" due to both incorrect instructions and difficulties in
generating NPE-triggering test cases.

Performance Across Varying Time Budgets. Table 3 rep-
resents the number of unique bugs detected by each tool when
different time-budget is given. As shown in the table, extending
the testing time may enhance the NPE detection ability of the unit
test generation tool; however, the improvement remains relatively
modest. In particular, the results of RANDOOP remained the same
regardless of the time budgets, and NPETEST and EvoSUITE could
successfully detect 1 and 3 more NPEs when longer time budget is
given. Additionally, the reproduction rates of the newly detected
NPEs were not particularly high. For instance, the reproduction rate
of an NPE in “Bears-46”, detected with an extended time budget,
was below 20% for both NPETEST and EvoSuITE. These experimen-
tal results indicate that the correlation between longer testing time
and NPE detection is insignificant, highlighting the need for NPE-
guided approaches to effectively detect NPEs.

1051

Myungho Lee, Jiseong Bak, Seokhyeon Moon, Yoon-Chan Jhi, and Hakjoo Oh

100.0
90.0
80.0 74.0

67.0

70.0 3.4

60.0
50.0
40.0
30.0
20.0
10.0

0.0

NPEX Bears Defects4] Total

EvoSuitep,y

BugSwarm Genesis
EvoSuite
Figure 5: A graph for an average line coverage of EVvOSUITE

and EVoSUITEp, r on each benchmark suite.

4.3 Correlation between Code Coverage and
NPE Detection

To observe the correlation between code coverage and NPE detec-
tion ability, we evaluated EvoSuiTE with different options. More
specifically, EvOSUITE is evaluated with the (highly tuned) options
we discussed in Section 4.1 while EVOSUITEp, ¢ uses the default
options without tuning. Likely to Table 2, we additionally evaluated
EvOSUITEp, ¢ with 25 trials and a time budget of 5 minutes for each
benchmark. Figure 5 and Table 4 demonstrate the performance
difference when using EvoSurte with different options in terms
of code coverage and reproduction rate of NPEs, respectively. We
chose line coverage, which is fundamentally measured by EvOSUITE,
as the metric for code coverage comparison.

As demonstrated in Figure 5, the fine-tuned option could greatly
enhance the performance of code coverage. EvoSUITE achieved
line coverage of 77.8% on average while EVOSUITEp, showed
64.5%, which is a 20.8% improvement. In contrast, considering the
reproduction rate for NPE detection, the use of highly tuned options
in EvoSUITE yielded only a mere improvement, as shown in Table 4.
More precisely, the tuned options increased the reproduction rate
from 55.7% to 56.9%, representing a 2.2% improvement.

Code Coverage of NPETEST. Interestingly, NPETEST achieved
less code coverage than EvoSurTe and EVOSUITEp, ¢ while it showed
the best performance on NPE detection in Table 2. Even with spe-
cialized fine-tuning options to achieve high coverage, NPETEST
showed 1.3% less line coverage compared to EvoSUITEp, . The
reason for low line coverage is that NPETEST has smaller search
space (i.e., methods under test) than EvoSurTe. First, as described
in Section 3.2, NPETEST analyzes all methods of a given target class,
distinguishes those without NPE candidates, and then removes
them from a set of methods under test (MUT). Therefore, NPETEST
never tests the NPE-free methods unless they are called from other
NPE-prone methods. For example, on a program “ZooKeeper” from
NPEX benchmark, NPETEST achieved 40.4% line coverage while
EvoSurTe achieved 59.3%. The number of public methods is 116,
and NpETEST initially maintained 89 methods which is 76.8% out
of total MUTs (i.e., method under test) while EvoSuITE has 116
methods. Second, NPETEST monitors the execution result of each
generated test cases and eliminates any MUT in which all NPE
candidates are detected (Section 3.3). NPETEST performs this elim-
ination regardless of the remaining code regions in methods to
cover, which leads to lower line coverage than EVOSUITE.

Effective Unit Test Generation for Java Null Pointer Exceptions

4.4 Industrial Case Study

NPETest
8 29 o

EvoSuite
1 51 Randoop

Figure 6: A Venn diagram illustrating the number of unique
NPEs found by each tool on an industrial project.

To compare the practical feasibility of the three subject tools, we
conducted a case study focusing on a proprietary cryptographic
library used within an IT company. We selected this library for its
moderate complexity and comprehensive development and testing
standards. It consists of 84 public classes and 13,669 lines of code,
with a 76% line coverage achieved through manually written unit
tests. The library is utilized for critical security functions, such
as database encryption, and is certified under ISO/IEC 15408 (CC
certification) [29].

The development and testing processes of the library included:

e Unit Testing and Coverage: Ensuring functionality validation
and achieving targeted line/branch coverage through unit tests.

o Peer Code Review: Rigorous review of each pull request with
active developer participation.

e Code Quality Metrics: Employing metrics like Cyclomatic
Complexity [30] to keep code maintainable.

The tools NPETEST, EvOSUITE, and RANDOOP were executed on
the library, allocating 5 minutes per class. To address the tools’
non-deterministic nature, the experiment was repeated 25 times.
Surprisingly, the tools revealed a total of 91 previously unknown
NPEs, all of which were confirmed as true positives by the library
development team after reviewing the stack traces and the unit
tests generated by the tools. Figure 6 illustrates the number of
NPEs detected by each tool. NPETEST found 89 NPEs, including 9
that EvoSUITE missed and 37 RANDOOP missed. On the other hand,
EvoSurte and RaANDoOP detected 82 and 52 NPEs, respectively, with
EvoSurrte finding only 2 additional NPEs not detected by NPETEST.
The result corroborates our previous evaluation results: NPETEST
is also more effective at detecting NPEs within the industrial library
than the other tools.

Figure 7 shows an NPE of the subject library detected by NPETEST.
To avoid exposing proprietary code, we anonymized it. An NPE at
Line 15 was detected through a unit test generated by NPETEST. This
exception arose at line 15 due to the improper handling of the re-
turn value from encodings.get (getNodeText (doc, ENCODING)).
This value was passed to the setEncodingType method defined
at line 8. Specifically, since the return value of getNodeText (doc,
ENCODING) was not in the HashMap encodings, encodings.get
returned null. Consequently, setEncodingType (int) received null
as an argument, which triggered the NPE.

Since serverMsg comes from a remote server, the running ap-
plication should validate serverMsg before using it. Without vali-
dation, an invalid serverMsg could compromise the running appli-
cation’s functionality and system integrity. In this case, the invalid

1052

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

class CryptoPolicySVO {
static Map<String, Integer> encodings = new HashMap<>();
static {
encodings.put("BASE64", 1); encodings.put("HEX", 2); }

private int encoding;
private void setEncodingType(int encoding) {
this.encoding = encoding; }

public CryptoPolicySVO deserialize(String serverMsg) {
Document doc = parseXML(serverMsg);
CryptoPolicySVO svo = new CryptoPolicySVO();
svo.setAlogithmType(getNodeText (doc, ALGORITHM));
svo.setEncodingType(encodings.get(getNodeText (doc,
ENCODING))); // triggers NPE

;ééurn svo; }
Figure 7: An NPE example from the industrial case study.

encoding triggers the NPE, causing the application to terminate
abnormally. Furthermore, this NPE reveals a security risk due to
inadequate validity checks on a security policy, which an attack
could exploit by sending maliciously crafted policies to gain unau-
thorized access and compromise system integrity. We believe this
case study demonstrates NPETEST’s ability to detect critical errors
that may have been overlooked during the development process.

Although all 91 NPEs were confirmed as true positives by the
development team, the number of detected NPEs was surprising
given the rigorous development process. To understand why such
errors were not caught during development, we interviewed the de-
velopment team and obtained several reasons for these oversights.

Firstly, developers sometimes intentionally omit null checks
at the beginning of every method, considering this practice ineffi-
cient. However, this can lead to vulnerabilities, especially in public
methods. Secondly, to achieve unit test coverage, private methods
were exposed as public. This was based on the assumption that the
library users would not misuse them, coupled with a misplaced
belief that their mandatory obfuscation tool would prevent misuse
by obfuscating the names of those former private methods, making
them hard to find. This practice can expose critical functionalities,
compromising security. Finally, developers expected users to strictly
follow the example code scenarios, underestimating the users’ cre-
ativity. This oversight does not account for the myriad ways users
might employ the code, leading to unanticipated vulnerabilities.

Although these practices were likely adopted due to the com-
plexities of developing software within an industrial setting, we
recommended the following changes to prevent recurrence of these
issues.

o Validate parameters in public methods. At least, use annotations
like @onNull, which assist IDEs and static analyzers in identi-
fying potential NPEs without impacting runtime performance.
Maintain private methods’ visibility. Exposing them solely for
testing compromises design integrity. If target coverage is not
achievable through public methods, explore possibilities of un-
reachable code or engage in further QA discussions, rather than
considering a redesign.

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

o Clearly define method contracts in Javadoc, outlining valid us-
age scenarios such as context initialization and method call
sequence. Implement internal state tracking to ensure adher-
ence to these guidelines.

e Encourage the use of Optional, empty strings, empty collec-
tions, or the null object pattern instead of returning null to
avoid null usage.

Through the case study and our recommendations for addressing
the identified issues, the developers have not only acknowledged an
improvement in their understanding on secure coding practices but
also plan to incorporate NPETEST into the development pipeline,
thereby enhancing overall code security and robustness.

5 DISCUSSION

5.1 Lessons Learned

We now summarize lessons learned from our experiments on the
NPE detection capabilities of state-of-the-art unit test generators.

Lesson 1 - The current unit test generators are not suffi-
cient for NPE detection. Unit testing techniques have been widely
used to verify that each unit of software behaves as expected or
to detect bugs. However, as shown in RQ1, EvoSurTe failed to
detect NPEs that could easily be detected by the random testing
tool RaNDOOP [9], and only detected 59 out of 108 NPEs in total.
NpeTEST, which utilizes static and dynamic analyses on EVOSUITE,
could detect 73 unique NPEs. These experimental results show that
the current unit test generators are not sufficient for NPE detection,
and adopting an additional approach like NPETEST can significantly
improve bug detection capability.

Lesson 2 - Achieving high code coverage is not necessary
to improve NPE detection capability. The recent technical stud-
ies [31, 32] in unit testing techniques strive for high code cover-
age with the expectation that it will detect more bugs. Achiev-
ing high code coverage, however, does not always result in better
NPE-detection ability. As shown in RQ2, while fine-tuned option
parameters of EVOSUITE increased the achieved line coverage by
20.8%, it could only improve the reproduction rate of NPE detection
by 2.2%. In contrast, NPETEST achieved 18.8% less line coverage
than EvoSUITE, but was able to detect 15 more unique NPEs that
EvoSurte failed to find, and showed a 22.4% higher reproduction
rate on average. In line with our observation, several studies [33-35]
in the field of software testing, including fuzzing techniques, have
claimed that code coverage has an insignificant correlation with
bug detection. Along with these studies, our experimental results
also indicate that achieving high code coverage does not necessarily
contribute to the improvement of NPE detection capability.

Lesson 3 - The importance of an integrated approach to
detecting NPEs in industrial software development. The case
study emphasizes the importance of adopting a comprehensive
approach to detecting NPEs in industrial software development.
Despite the rigorous testing and development process in place,
the three subject tools were able to detect a significant number of
previously unknown NPEs, highlighting the limitations of manual
testing and code reviews. Furthermore, our interviews revealed

1053

Myungho Lee, Jiseong Bak, Seokhyeon Moon, Yoon-Chan Jhi, and Hakjoo Oh

that certain development practices, although well-intentioned, can
inadvertently introduce vulnerabilities. By integrating automated
testing tools like NPETEST into the development pipeline, in ad-
dition to the manual testing and code reviews, we believe that
developers can proactively identify and address potential NPEs.

5.2 Limitation

In addition to its low code coverage described in Section 4.3, NPETEST
has inherent limitations in detecting other types of bugs than NPEs.
More precisely, through static and dynamic analysis, NPETEST in-
tentionally skips testing methods that are free of NPEs or those for

which all NPEs have been detected throughout the testing process,

potentially missing bugs that exist in the skipped methods. We in-
vestigated Java standard runtime exceptions detected by NPETEST

and EvoSurTE, and found that both tools found 6 runtime exception

types (e.g., “NegativeArraySizeException”). Although the number

of different bug types discovered by each tool was the same, we

observed that NPETEST failed to detect certain non-NPE bugs which

EvoSurTE successfully identified. For example, considering the “Ar-
rayIndexOutOfBounds” runtime exception, NPETEST only detected

25 bugs while EvoSurte found 32 bugs. Among the exceptions

NPETEST failed to detect, three exceptions occurred in NPE-free

methods that were not the testing targets of NPETEST. Other excep-
tions arose in methods where NPETEST ceased generating test cases

during testing because it had detected all identified NPEs in those

methods. Given that NPETEST is specialized and focused on NPE

detection, we consider its limitations in non-NPE bug detection

and low code coverage to be manageable, especially in light of the

improvements made in NPE detection.

5.3 Threats to Validity

(1) To evaluate the best performance of EVOSUITE, we used a set
of fine-tuned options from SBST 22 [25]. Because we conducted
our evaluations on a set of benchmark programs different from
the one used in SBST’22, these values for options may not be ap-
propriate to achieve the best performance of EVOSUITE on some
of our benchmarks. However, note that finding optimal parameter
settings of EvOSUITE for each benchmark is a challenging task [26]
and is beyond the scope of this paper. (2) As we mentioned in
Section 4.1, we eliminated the programs we failed to build in our
experiment settings. The experiment results may become different
from what we have observed in our experiment if those programs
were properly built and used for our evaluation. (3) We conducted
our experiments for 5 minutes on each benchmark with 25 trials.
The time-budget for experiments may not be sufficient to achieve
the best performance of both EvoSurTe and NpETEST.

6 RELATED WORK

Static Analysis to Find NPEs. Static analysis has been extensively
studied to find and prevent bugs in development process. As one
of the most common and fatal errors in Java applications, much
research on detecting NPEs with static analysis approach have been
introduced [5, 36-45]. Based on their approaches to statically ana-
lyze NPEs, these researches can be classified into two groups [28]:
static bug detectors and type-based null safety checkers.

Effective Unit Test Generation for Java Null Pointer Exceptions

Static bug detectors designed for NPEs mainly use dataflow anal-
ysis to find null dereferences [36-42]. For example, INFER [36] is
the static analyzer that uses bi-abduction analysis to detect null
pointer dereferences, memory leaks, etc. INFER performs disjunctive
analysis with maintaining limited set of disjunctive paths. Similar
to INFER, SPOTBUGS [37] also utilizes dataflow analysis tailored for
Java programs, but it also uses pattern matching algorithms for
error detection.

Type-based null safety checkers leverage a pluggable type system,
which is implemented via annotation syntax in Java [5, 43-45]. For
instance, NULLAwAY [5] detects any possible violations of nulla-
bility annotation (e.g., whether nullable values can be passed to
the method parameter annotated with @onNull). NULLAWAY is
an open source tool and being maintained by Uber, allowing users
to set configuration that affects the assumption of nullability of
unannotated variables.

Our work also performs static analysis based on dataflow analy-
sis, to prioritize NPE-prone methods in test generation. Our focus,
however, differs from the other static bug detectors such as INFER,
which focus on locating exact bug location. Our static analysis is to
calculate the scores of each method based on how much the method
is exposed to NPE-related paths, which states that NPEs may occur
in the method.

Unit Test Generation. Unit testing is a crucial step of the soft-
ware development process, ensuring the reliability and robustness
of software systems. To streamline unit testing, many studies have
presented various approaches for automatically generating test
cases by synthesizing arbitrary method call sequences.

Random testing explores the vast search space of possible method
sequences in a random manner. The search space consists of the pa-
rameter spaces of each method, possible values and API sequences
to create an instance of each type [46]. In theory, exhaustive search
can be achieved through backtracking, covering the entire search
space. Our approach is also closely related to this line of approach
in that we heuristically define parameter search space in seed test
generation. One of the most representative tools is feedback-guided
random testing tool Ranpoor [9], which uses dynamic feedback
from contract checkers to maintain valid object pools.

On the other hand, search-based testing not only generates
method sequences randomly, but also applies optimizations to
guide test code generations towards achieving more coverage goals.
SBST approaches formulate test genearation problems as opti-
mization problems and employ genetic algorithms to solve them.
EvoSurTe [10], a widely-used SBST tool, incorporates several so-
phisticated genetic algorithms for test code generations [10-12, 47].
Over the past decade, EvoSuITE has undergone significant evolu-
tion, driven by researchers and practitioners. Notably, DynaMOSA,
the current default algorithm of EvoSuITE and an evaluation sub-
ject of this paper, has achieved the highest code coverage and bug
detection ratio (i.e, mutation kill ratio) among the presented genetic
algorithms for test code generation [11].

In addition, Rojas et al. [48] has investigated the impact of seed-
ing strategies on SBST, with large-scale empirical analysis [48]. We
adopt several key concepts such as seeding strategy introduced in
the research aiming to improve SBST, especially for NPE detection.

1054

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Static Analysis-Guided Unit Test Generation. Static analysis
has been used to enhance test generation algorithm. Especially, for
NPE, Romano et al. [49] took search-based approach to find NPE,
which focuses on covering NPE-related paths obtained by static null
dereference analysis designed by Nanda and Sinha [41]. Particularly,
the search-based approach is used to generate test inputs, most of
which are of primitive types. Thus, this work does not consider the
situation where creation of fresh object states is required to trigger
NPEs, which our approach does.

EvoObj [50] uses static analysis to facilitate complex object cre-
ation and evaluates effectiveness by improving EVOSUITE in terms
of branch coverage. In random testing context, Ma et al. [51] uses
static analyses to improve RaANDoop. For example, it, prior to test
generation, performs impurity analysis to find methods that can
alter the states of the objects, and uses them when selecting meth-
ods to mutate test cases. Ma et al. [51] implemented GRT (Guided
Random Testing), an extended version of RANDOOP leveraging
static and dynamic analyses. Our work is similar to GRT in that
we performs pre-analysis before generating test, but our analysis is
focusing on finding NPE-prone program paths.

7 CONCLUSION

Null pointer exceptions (NPEs) are one of the most common er-
rors in Java applications. Although several approaches have been
proposed to generate test cases for Java, finding NPEs via testing
still remains a significant challenge despite its importance. In this
experience paper, we presented NPETEST, a strategy for unit testing
techniques specialized for NPE detection. To this end, we proposed
static and dynamic analysis techniques, guiding the test case gen-
erators to find test cases which explore NPE-prone regions more
efficiently. Experimental results demonstrated that NPETEST can
significantly improve the NPE-detection ability of the state-of-the-
art unit test generators.

DATA AVAILABILITY

The artifact of NPETEST is publicly available in Zenodo ® and
GitHub?. It includes all benchmarks, tools, and the experimental
results in Section 4, except the industrial case study.

ACKNOWLEDGEMENT

This work was supported by Samsung SDS, Institute of Information
& communications Technology Planning & Evaluation (IITP) grant
funded by the Korea government(MSIT) (No.2020-0-01337,(SW
STAR LAB) Research on Highly-Practical Automated Software
Repair, 40%), ICT Creative Consilience Program through the In-
stitute of Information & Communications Technology Planning
& Evaluation(II'TP) grant funded by the Korea government(MSIT)
(IITP-2024-2020-0-01819, 10%), the National Research Foundation
of Korea(NRF) grant funded by the Korea government(MSIT)(No.
2021R1A5A1021944, 20%), and the Institute of Information & Com-
munications Technology Planning & Evaluation(IITP) grant funded
by the Korea government(MSIT) (No.RS-2022-11220277, Develop-
ment of SBOM Technologies for Securing Software Supply Chains,
10%).

Shttps://doi.org/10.5281/zenodo.13371822
“https://github.com/kupl/NPE TestArtifact

ASE

’24, October 27-November 1, 2024, Sacramento, CA, USA

REFERENCES

(1]

[2

R. Coelho, L. Almeida, G. Gousios, A. van Deursen, Unveiling exception han-
dling bug hazards in android based on github and google code issues, in: 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories, 2015, pp.
134-145. doi:10.1109/MSR. 2015. 20.

S. H. Tan, Z. Dong, X. Gao, A. Roychoudhury, Repairing crashes in android apps,
in: Proceedings of the 40th International Conference on Software Engineering,
2018, pp. 187-198.

[3] J. Lee, S. Hong, H. Oh, Npex: Repairing java null pointer exceptions without

(4]

&

=

~
=

(9]

[10

[11]

[12]

(13

[14]

[15]

[17]

(18]

[19]

[20

[21]

tests, in: 2022 IEEE/ACM 44th International Conference on Software Engineering
(ICSE), 2022, pp. 1532-1544. doi:10.1145/3510003.3510186.

X. Xu, Y. Sui, H. Yan, J. Xue, Vfix: Value-flow-guided precise program repair for
null pointer dereferences, in: Proceedings of the 41st International Conference
on Software Engineering, ICSE ’19, IEEE Press, 2019, p. 512-523. URL: https:
//doi.org/10.1109/ICSE.2019.00063. doi:10.1109/ICSE.2019.00063.

S. Banerjee, L. Clapp, M. Sridharan, Nullaway: Practical type-based null safety
for java, in: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/FSE 2019, Association for Computing Machinery, New
York, NY, USA, 2019, p. 740-750. URL: https://doi.org/10.1145/3338906.3338919.
doi:10.1145/3338906.3338919.

N. Karimipour, J. Pham, L. Clapp, M. Sridharan, Practical inference of nulla-
bility types, in: Proceedings of the 31st ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software Engi-
neering, ESEC/FSE 2023, Association for Computing Machinery, New York,
NY, USA, 2023, p. 1395-1406. URL: https://doi.org/10.1145/3611643.3616326.
doi:10.1145/3611643.3616326.

A. Zhitnitsky, The top 10 exception types in production java applications —
based on 1b events, 2016. https://www.harness.io/blog/10-exception-types-in-
production-java-applications.

N. Andrews, We crunched 1 billion java logged errors - here’s what causes 97% of
them, 2021. https://www.overops.com/blog/we-crunched-1-billion-java-logged-
errors-heres-what-causes-97-of-them-2/.

C. Pacheco, S. K. Lahiri, M. D. Ernst, T. Ball, Feedback-directed random test
generation, in: 29th International Conference on Software Engineering (ICSE’07),
2007, pp. 75-84. doi:10.1109/ICSE. 2007.37.

G. Fraser, A. Arcuri, Whole test suite generation, IEEE Transactions on Software
Engineering 39 (2013) 276-291. doi:10.1109/TSE.2012.14.

A. Panichella, F. M. Kifetew, P. Tonella, Automated test case generation as a
many-objective optimisation problem with dynamic selection of the targets,
IEEE Transactions on Software Engineering 44 (2018) 122-158. doi:10.1109/TSE.
2017.2663435.

A. Panichella, F. M. Kifetew, P. Tonella, Reformulating branch coverage as a
many-objective optimization problem, in: 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST), 2015, pp. 1-10. doi:10.
1109/ICST.2015.7102604.

G. Fraser, M. Staats, P. McMinn, A. Arcuri, F. Padberg, Does automated white-
box test generation really help software testers?, in: Proceedings of the 2013
International Symposium on Software Testing and Analysis, ISSTA 2013, Asso-
ciation for Computing Machinery, New York, NY, USA, 2013, p. 291-301. URL:
https://doi.org/10.1145/2483760.2483774. doi:10.1145/2483760.2483774.

G. Fraser, A. Arcuri, A large-scale evaluation of automated unit test generation
using evosuite, ACM Trans. Softw. Eng. Methodol. 24 (2014). URL: https://doi.
org/10.1145/2685612. doi:10.1145/2685612.

S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, A. Arcuri, Do automatically
generated unit tests find real faults? an empirical study of effectiveness and
challenges (t), in: 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2015, pp. 201-211. doi:10.1109/ASE. 2015. 86.

J. M. Rojas, M. Vivanti, A. Arcuri, G. Fraser, A detailed investigation of the
effectiveness of whole test suite generation, Empirical Software Engineering
(2016) 1-42. URL: http://dx.doi.org/10.1007/s10664-015-9424-2. doi:10.1007/
s10664-015-9424-2.

M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, J. Benefelds, An industrial
evaluation of unit test generation: Finding real faults in a financial application,
in: 2017 IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP), 2017, pp. 263-272. doi:10.
1109/ICSE-SEIP.2017.27.

Investigating faults missed by test suites achieving high code coverage, Journal
of Systems and Software 144 (2018) 106—-120.

H. Hemmati, How effective are code coverage criteria?, in: 2015 IEEE International
Conference on Software Quality, Reliability and Security, 2015, pp. 151-156.
doi:10.1109/QRS. 2015. 30.

P. S. Kochhar, D. Lo, J. Lawall, N. Nagappan, Code coverage and postrelease
defects: A large-scale study on open source projects, IEEE Transactions on
Reliability 66 (2017) 1213-1228. doi:10.1109/TR.2017.2727062.

F. Madeiral, S. Urli, M. Maia, M. Monperrus, Bears: An extensible java bug
benchmark for automatic program repair studies, 2019, pp. 468-478. doi:10.

1055

[22]

[23

[24

[25

[26]

[27]

@
&

[34

[35

[40]

[42

Myungho Lee, Jiseong Bak, Seokhyeon Moon, Yoon-Chan Jhi, and Hakjoo Oh

1109/SANER.2019.8667991.

D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y. Liu, P. T. Devanbu,
B. Vasilescu, C. Rubio-Gonzélez, Bugswarm: mining and continuously growing
a dataset of reproducible failures and fixes, in: ICSE, IEEE / ACM, 2019, pp.
339-349.

F. Long, P. Amidon, M. Rinard, Automatic inference of code transforms for patch
generation, in: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, Association for Computing Machinery,
New York, NY, USA, 2017, p. 727-739. URL: https://doi.org/10.1145/3106237.
3106253. doi:10.1145/3106237.3106253.

R. Just, D. Jalali, M. D. Ernst, Defects4j: A database of existing faults to en-
able controlled testing studies for java programs, in: Proceedings of the 2014
International Symposium on Software Testing and Analysis, ISSTA 2014, Asso-
ciation for Computing Machinery, New York, NY, USA, 2014, p. 437-440. URL:
https://doi.org/10.1145/2610384.2628055. doi:10.1145/2610384. 2628055.

S. Schweikl, G. Fraser, A. Arcuri, Evosuite at the sbst 2022 tool competition, in:
2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing
(SBST), 2022, pp. 33-34. doi:10.1145/3526072.3527526.

A. Arcuri, G. Fraser, Parameter tuning or default values? an empirical investiga-
tion in search-based software engineering, Empirical Software Engineering 18
(2013) 594-623.

J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, A. Arcuri, Combining multiple
coverage criteria in search-based unit test generation, in: Search-Based Soft-
ware Engineering: 7th International Symposium, SSBSE 2015, Bergamo, Italy,
September 5-7, 2015, Proceedings 7, Springer, 2015, pp. 93-108.

D. A. Tomassi, C. Rubio-Gonzélez, On the real-world effectiveness of static bug
detectors at finding null pointer exceptions, in: 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2021, pp. 292-303. doi:10.
1109/ASE51524.2021.9678535.

ISO/IEC, ISO/IEC 15408-1:2009, 2009. https://www.iso.org/standard/50341.html.
A. H. Watson, T. J. McCabe, Structured testing: A testing methodology using
the cyclomatic complexity metric, 1996. http://www.mccabe.com/pdf/mccabe-
nist235r.pdf.

Y.Lin, Y. S. Ong, J. Sun, G. Fraser, J. S. Dong, Graph-based seed object synthesis for
search-based unit testing, ESEC/FSE 2021, Association for Computing Machinery,
New York, NY, USA, 2021, p. 1068-1080. URL: https://doi.org/10.1145/3468264.
3468619. doi:10.1145/3468264.3468619.

C. Lemieux, J. P. Inala, S. K. Lahiri, S. Sen, Codamosa: Escaping coverage plateaus
in test generation with pre-trained large language models, in: 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE), IEEE, 2023, pp.
919-931.

L. Inozemtseva, R. Holmes, Coverage is not strongly correlated with test suite
effectiveness, in: Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, Association for Computing Machinery, New York, NY,
USA, 2014, p. 435-445. URL: https://doi.org/10.1145/2568225.2568271. doi:10.
1145/2568225.2568271.

P. S. Kochhar, D. Lo, J. Lawall, N. Nagappan, Code coverage and postrelease
defects: A large-scale study on open source projects, IEEE Transactions on
Reliability 66 (2017) 1213-1228. doi:10.1109/TR.2017.2727062.

M. Béhme, L. Szekeres, J. Metzman, On the reliability of coverage-based fuzzer
benchmarking, in: Proceedings of the 44th International Conference on Software
Engineering, ICSE ’22, Association for Computing Machinery, New York, NY,
USA, 2022, p. 1621-1633. URL: https://doi.org/10.1145/3510003.3510230. doi:10.
1145/3510003.3510230.

F. Inc., A tool to detect bugs in java and c/c+++/objective-c code before it ships,
2022. Available: https://fbinfer.com.

spotbugs community, Spotbugs, 2023. Available: https://spotbugs.github.io.

D. Hovemeyer, W. Pugh, Finding bugs is easy, SIGPLAN Not. 39 (2004) 92-106.
URL: https://doi.org/10.1145/1052883.1052895. doi:10.1145/1052883.1052895.
A. Loginov, E. Yahav, S. Chandra, S. Fink, N. Rinetzky, M. Nanda, Verifying
dereference safety via expanding-scope analysis, in: Proceedings of the 2008
International Symposium on Software Testing and Analysis, ISSTA ’08, Asso-
ciation for Computing Machinery, New York, NY, USA, 2008, p. 213-224. URL:
https://doi.org/10.1145/1390630.1390657. doi:10.1145/1390630.1390657.

R. Madhavan, R. Komondoor, Null dereference verification via over-approximated
weakest pre-conditions analysis, in: Proceedings of the 2011 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages and
Applications, OOPSLA 11, Association for Computing Machinery, New York,
NY, USA, 2011, p. 1033-1052. URL: https://doi.org/10.1145/2048066.2048144.
doi:10.1145/2048066.2048144.

M. G.Nanda, S. Sinha, Accurate interprocedural null-dereference analysis for java,
in: Proceedings of the 31st International Conference on Software Engineering,
ICSE "09, IEEE Computer Society, USA, 2009, p. 133-143. URL: https://doi.org/10.
1109/ICSE.2009.5070515. doi:10.1109/ICSE. 2009.5070515.

L. Dillig, T. Dillig, A. Aiken, Static error detection using semantic inconsistency
inference, SIGPLAN Not. 42 (2007) 435-445. URL: https://doi.org/10.1145/1273442.
1250784. doi:10.1145/1273442.1250784.

Effective Unit Test Generation for Java Null Pointer Exceptions

[43]

[44]

[45]

[48] J. M. Rojas, G. Fraser, A. Arcuri,

F. Inc., Eradicate | infer, 2022. Available: https://fbinfer.com/docs/checker-

eradicate.

W. Dietl, S. Dietzel, M. D. Ernst, K. Muslu, T. W. Schiller, Building and using

pluggable type-checkers, in: 2011 33rd International Conference on Software

Engineering (ICSE), 2011, pp. 681-690. doi:10.1145/1985793.1985889.

M. M. Papi, M. Ali, T. L. Correa, J. H. Perkins, M. D. Ernst, Practical pluggable

types for java, in: Proceedings of the 2008 International Symposium on Software

Testing and Analysis, ISSTA °08, Association for Computing Machinery, New

York, NY, USA, 2008, p. 201-212. URL: https://doi.org/10.1145/1390630.1390656.

doi:10.1145/1390630.1390656.

C. Csallner, Y. Smaragdakis, Jcrasher: An automatic robustness tester for java,

Softw., Pract. Exper. 34 (2004) 1025-1050. doi:10.1002/spe . 602.

A. Arcuri, Many independent objective (mio) algorithm for test suite generation,

in: Search Based Software Engineering: 9th International Symposium, SSBSE

2017, Paderborn, Germany, September 9-11, 2017, Proceedings 9, Springer, 2017,

pp. 3-17.

Seeding strategies in search-

Software Testing, Verification and Re-
URL: https://onlinelibrary.wiley.com/

based unit test generation,
liability 26 (2016) 366-401.

1056

[49]

[50]

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

doi/abs/10.1002/stvr.1601. doichttps://doi.org/10.1002/stvr.1601.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1601.
D. Romano, M. Di Penta, G. Antoniol, An approach for search based testing
of null pointer exceptions, in: 2011 Fourth IEEE International Conference on
Software Testing, Verification and Validation, 2011, pp. 160-169. doi:10.1109/
ICST.2011.49.

Y. Lin, Y. S. Ong, J. Sun, G. Fraser, J. S. Dong, Graph-based seed object synthesis
for search-based unit testing, in: Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2021, Association for Computing Machinery,
New York, NY, USA, 2021, p. 1068-1080. URL: https://doi.org/10.1145/3468264.
3468619. doi:10.1145/3468264.3468619.

L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, R. Ramler, Grt: Program-analysis-
guided random testing (t), in: 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2015, pp. 212-223. doi:10.1109/ASE .
2015.49.

