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ABSTRACT

We present Adapt, a new white-box testing technique for deep
neural networks. As deep neural networks are increasingly used
in safety-first applications, testing their behavior systematically
has become a critical problem. Accordingly, various testing tech-
niques for deep neural networks have been proposed in recent
years. However, neural network testing is still at an early stage
and existing techniques are not yet sufficiently effective. In this
paper, we aim to advance this field, in particular white-box testing
approaches for neural networks, by identifying and addressing a
key limitation of existing state-of-the-arts. We observe that the
so-called neuron-selection strategy is a critical component of white-
box testing and propose a new technique that effectively employs
the strategy by continuously adapting it to the ongoing testing
process. Experiments with real-world network models and datasets
show that Adapt is remarkably more effective than existing testing
techniques in terms of coverage and adversarial inputs found.

CCS CONCEPTS

•Computer systems organization→Neural networks; • Soft-
ware and its engineering→ Software testing and debugging.
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1 INTRODUCTION

Testing deep neural networks is becoming increasingly important.
Nowadays, deep neural networks are pervasive in many application
domains, including image captioning [25, 36], game playing [28],
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and safety-critical domains such as medical diagnosis [26] and
self-driving cars [2]. Since these applications include deep neural
networks as critical components, ensuring that neural networks
behave as expected has become a pressing issue. In response, re-
cent years have seen a surge of interest in techniques for testing
deep neural networks and identifying their defects before deploy-
ment [12, 18, 22, 24, 31, 32, 34]. Furthermore, because traditional
coverage metrics (e.g. branch coverage) are not suitable for mea-
suring the effectiveness of neural-network testing [24], developing
specialized coverage criteria for deep neural networks continues to
be another active research area [15, 18, 24, 27, 32].

Existing testing techniques for deep neural networks are broadly
classified into grey-box [22, 34] and white-box approaches [12, 24].
Grey-box testing techniques are based on the idea of coverage-
guided fuzzing [37] that has been popular for traditional software,
where neural networks are instrumented to trace coverage informa-
tion and this information is used to generate new test cases that are
likely to increase coverage. On the other hand, white-box testing
techniques exploit the internals of neural networks more aggres-
sively as follows: (1) they select the internal neurons, (2) calculate
the gradients of the outputs of the selected ones (with respect to
the input), and (3) generate new test cases by adding the gradients
to the original test case in the direction of increasing the output
values. Compared to grey-box testing, white-box approaches are
therefore likely to achieve higher coverage and find more defects.

A key ingredient of existing white-box approaches is namely a
neuron-selection strategy. To determine the direction of the mu-
tation, white-box approaches first select a set of internal neurons
and then calculate their gradients. Thus, the ultimate effectiveness
of white-box testing depends on the selection of the neurons in
the first step. A number of heuristic neuron-selection strategies
have been proposed to maximize coverage in a limited time bud-
get. For instance, DeepXplore [24] uses a strategy that randomly
selects unactivated neurons. DLFuzz [12] proposed four different
neuron-selection strategies for prioritizing neurons covered fre-
quently/rarely, neurons with top weights, and neurons near the
activation threshold.

In this paper, we present a new white-box testing technique for
deep neural networks. Our technique differs from previous white-
box techniques in a crucial way. Existing white-box techniques use
the gradients of a select set of internal neurons but the selection is
done by a predetermined strategy. However, in this paper, we show
that using a fixed neuron-selection strategy is a major limitation
of the existing white-box approaches; specifically, we observed
that the performance of the existing approaches is not consistent
across diverse neural network models and coverage metrics. For
instance, although a state-of-the-art tool, DLFuzz, performs well
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for testing LeNet-5 [17] with Top-k Neuron Coverage (TKNC) [18],
we found that DLFuzz becomes inferior even to a naive random
approach for ResNet-50 [13] with TKNC. In this paper, instead of
using a predetermined strategy, we present a new testing technique
that is able to adaptively determine neuron-selection strategies
during the testing process. To do so, we propose a parameterized
neuron-selection strategy and provide an online learning algorithm
to adjust its parameters effectively.

Experimental results show that our new proposal remarkably
improves the effectiveness of white-box testing for neural networks.
We implemented the technique in a tool called Adapt and com-
pared its performance with five existing testing techniques with
two coverage metrics, two datasets, and four real-world neural net-
works. In all experimental settings, Adapt achieved consistently
higher coverage and found more adversarial inputs than existing
techniques. On average, Adapt was 3 times more effective in in-
creasing coverage than other techniques and 6 times more effective
in finding various adversarial inputs.

Contributions. Our contributions are as follow:
• Wepresent a newwhite-box testing approach for deep neural
networks. The key novelty is to combine white-box testing
with an algorithm that adapts the neuron-selection strategy.
• We demonstrate the effectiveness of our approach with five
existing techniques and various experimental settings.
• We provide our implementation as an open-source tool. All
experimental results are reproducible.1

2 PRELIMINARIES

In this section, we provide background on neural networks, cover-
age metrics, and existing white-box testing approaches.

2.1 Deep Neural Networks

A deep neural network (DNN ) is a collection of layers:

DNN = {L1,L2, · · · ,LD }

where D denotes the number of layers called depth. We call L1
the input layer, LD the output layer, and L2, · · · ,LD−1 the hidden
layers. We define a layer Ld ∈ DNN to be a set of neurons:

Ld = {nd,1,nd,2, · · · ,nd,td }

where td indicates the number of neurons in layer Ld . Each neuron
in layer Ld (2 ≤ d ≤ D) is fully connected2 to the preceding layer
Ld−1, where each connection between nd−1,i and nd, j is associated
with a weight wd,i, j ∈ R, where R denotes real numbers. The
weights for neurons in layer Ld (2 ≤ d ≤ D) can be represented by
a td−1 × td -matrixWd as follows:

Wd =



wd,1,1 wd,1,2 · · · wd,1,td
wd,2,1 wd,2,2 · · · wd,2,td
...

. . .
...

wd,td−1,1 wd,td−1,2 · · · wd,td−1,td



1https://github.com/kupl/ADAPT
2For presentation simplicity, we focus on fully-connected neural networks but our
technique is also applicable to convolutional neural networks.

Assume a t1-dimensional input vector I ∈ Rt1×1 is given. We
can “execute” the neural network with the input I as follows:

V1 = I , Vd = Layerd (Vd−1) (2 ≤ d ≤ D)

where Vd =
〈
vd,1, . . . ,vd,td

〉T
denotes the output of layer Ld and

vd,i the output of neuron nd,i . Layerd is a layer function that takes
the output Vd−1 of the previous layer and produces the output for
the layer Ld as follows:

Layerd (Vd−1) = Activationd (W
T
d Vd−1)

where Activationd is a non-linear activation function for layer Ld .
For instance, the dominant ReLU (Rectified Linear Unit) activation
function [21] is defined as follows:

Activationd (
〈
x1, · · · ,xtd

〉T
) =
〈
max(x1, 0), · · · ,max(xtd , 0)

〉T
Given a neural network DNN and an input vector I ∈ Rt1×1, let

Run(DNN , I ) be the set of output values of hidden layers in DNN
when DNN is executed with I :

Run(DNN , I ) = {V2,V3, · · · ,VD−1}.

Note that Vd denotes the output of all neurons in layer Ld . Thus,
Run(DNN , I ) describes the full internal state of DNN .

2.2 Coverage Metrics

The adequacy and effectiveness of software testing are typically
measured by coverage metrics (coverage criteria). Recently, various
coverage metrics for neural networks have been proposed [15, 18,
24, 32]. In this paper, we evaluate and compare testing techniques
with two metrics: Neuron Coverage (NC) [24] and Top-k Neuron
Coverage (TKNC) [18].

We define a coverage metric, denoted Cov, as a function from
the outcome of Run to a set of coverage identifiers. For example,
the Neuron Coverage (NC) metric uses the locations of neurons as
identifiers (the location of neuron nd,i is (d, i )). NC identifies the
neurons whose output values are greater than a certain threshold
θ . The function Cov for NC is defined as follows:

Cov({V2, · · · ,VD−1})

= {(d, i ) | vd,i > θ ∧vd,i ∈ Vd ∧ d ∈ {2, · · · ,D − 1}}.

The Top-k Neuron Coverage (TKNC) metric is more fine-grained;
it collects the k neurons with the highest output values in each
layer. The coverage function Cov for TKNC is:

Cov({V2, · · · ,VD−1})

=
⋃

d ∈{2, · · · ,D−1}
{(d, i ) | vd,i ∈ argmax

S ⊆Vd∧|S |=k

∑
s ∈S

s}.

In both cases, the coverage ratio is calculated by |Cov( {V2, ...,VD−1 }) |
|L2∪···∪LD−1 |

.
In the rest of this paper, we assume a coverage metric Cov is given.

2.3 White-Box Testing of Neural Networks

One of the main goals of neural network testing is to generate test
cases (i.e. input vectors) that maximize a given coverage metric
(Cov) in a limited testing budget. Assuming that the budget is given
as the number of test cases, denoted n, the objective of testing
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Algorithm 1White-box Testing for Neural Networks

1: procedure TestingDNN(DNN , I ,Cov)
2: C ← Cov(Run(DNN , I ))
3: repeat

4: W ← {I }
5: whileW , ∅ do
6: I ′ ← Pick an input fromW
7: W ← W \ {I ′}
8: N ← Strategy (DNN )
9: for t = 1 to η1 do
10: I ′ ← I ′ + λ · ∂(

∑
n∈N Neuron(n, I ′))/∂I ′

11: O′ ← Run(DNN , I ′)
12: if Cov(O′) ⊈ C ∧ Constraint(I , I ′) then
13: W ← W ∪ {I ′}
14: C ← C ∪ Cov(O′)
15: until testing budget expires (e.g. timeout)
16: return |C |

is to find a set of input vectors T = {I1, . . . , In } that collectively
maximize the coverage:

Find T = {I1, . . . , In } that maximizes ���
⋃
Ii ∈T

Cov(Run(DNN , Ii )))
���.

Existing white-box testing techniques aim to solve this optimiza-
tion problem with a search algorithm guided by the gradient of
internal neurons [8, 12, 24]. Algorithm 1 presents the general archi-
tecture that encapsulates the existing white-box techniques. The
algorithm takes a neural network (DNN ), an initial input vector (I ),
and a coverage metric (Cov). At line 2, the set C is initialized to the
set of neurons covered by the initial input. Initially, the worklistW
is a singleton set {I } (line 4). The algorithm starts by selecting an in-
put I ′ from the worklistW (line 6). At line 8, the function Strategy
takes the DNN and then selects a set N of neurons (in experiments,
we select 10 neurons). At line 10, the algorithm calculates the gradi-
ent of the selected neurons N , and then uses the gradient to adjust
the input in the direction of increasing the selected output values;
the algorithm generates a new input I ′ by adding the gradient mul-
tiplied by the learning rate λ, where Neuron is a function modeled
by the neuron nk,i that takes an input I and calculates the output
of the neuron nk,i which can be written as follows:

Neuron(nd,i , I ) =



wd,1,i
...

wd,td−1,i



T

(Layerd−1 ◦ · · · ◦ Layer2) (I )

At line 12, the algorithm checks whether the new input I ′ is able
to cover new neurons, and whether it satisfies a given constraint
(Constraint) on test cases. For example, Constraint(I , I ′) is true if
L2 distance between I and I ′ is less than a certain threshold. If both
conditions are met, we add the new input vector I ′ to the worklist
W , and also add the newly covered neurons to the setC (lines 13-14).
In the inner loop at lines 9-14, the algorithm repeatedly generates
new input vectors I ′ for η1 times with the same gradient, where η1
is typically small (e.g. η1 = 3 in our experiments). The procedure
described above is repeated until the testing budget expires. Upon
termination, the number of covered neurons (|C |) is returned.

The existing white-box techniques differ essentially in the choice
of the neuron-selection strategy (Strategy). For example, Deep-
Xplore [24] uses a strategy that randomly chooses neurons that
have never been activated, and DLFuzz [12] supports four neuron-
selection strategies. In this paper, we show that the neuron-selection
strategy is a key component of white-box testing and propose a
new testing technique that adaptively employs neuron-selection
strategies.

3 OUR TECHNIQUE

In this section, we present our white-box testing technique for
neural networks. The key feature is continuously learning the
neuron-selection strategy while performing Algorithm 1. To do
so, we present a parameterized neuron-selection strategy and an
online learning algorithm.

3.1 Parameterized Neuron-Selection Strategy

We first parameterize the neuron-selection strategy. The parame-
terized strategy, denoted Strategyp , selects the neurons based on
the parameter, p, which is a vector of real numbers. We define the
strategy as follows:

Strategyp (DNN ) = argmax
S ⊆
⋃
d∈{2, ··· ,D−1} Ld∧|S |=m

(
∑
n∈S

scorep (n))

Intuitively, the strategy takes as input all neurons in the hidden
layers (i.e.

⋃
d ∈{2, · · · ,D−1} Ld ), and selects the top-m neurons ac-

cording to their scores. The number of selected neurons (m) is a
predetermined hyper-parameter (in experiments, we setm to 10).

For scoring, we use a simple method based on linear combination.
To score each neuron in DNN , we first transform each neuron in
the network model DNN into a feature vector. A single feature is a
boolean function on neurons:

Fi : Neurons → {0, 1}

where Neurons denotes the set of all neurons in the model DNN .
For instance, a feature may check whether neurons have been
activated or not. We designed 29 features describing properties of
neurons. With the 29 features, we can convert each neuron n into a
29-dimensional boolean feature vector as follows:

F(n) = ⟨F1 (n), F2 (n), . . . , F29 (n)⟩.

After the transformation, we can score each neuron by calculating
an inner product of the feature vector F(n) and the parameter vector
p that is also 29-dimensional:

scorep (n) = F(n) · p.

After calculating the score of each neuron, we select them neurons
with the highest scores.

Neuron Features. We designed 29 atomic features that describe
characteristics of the neurons in a neural network. We focused on
designing features with simplicity and generality. These features in
Table 1 are categorized into two classes: 17 constant and 12 variable
features. The key difference between constant and variable features
is whether the boolean value of the feature changes during neural
network testing; the value of constant feature for the same neuron
does not change while the value of variable feature may change.
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Table 1: Neuron features

# Description
1 Neuron located in front 25% layers
2 Neuron located in front 25-50% layers
3 Neuron located in front 50-75% layers
4 Neuron located in front 75-100% layers
5 Neuron in a normalization layer
6 Neuron in a pooling layer
7 Neuron in a convolution layer
8 Neuron in a dense layer
9 Neuron in an activation layer
10 Neuron in a layer with multiple input sources
11 Neuron that does not belong to of 5-10 features
12 Neuron with top 10% weights
13 Neuron with weights between top 10% and 20%
14 Neuron with weights between top 20% and 30%
15 Neuron with weights between top 30% and 40%
16 Neuron with weights between top 40% and 50%
17 Neuron with weights in bottom 50%
18 Neuron activated when an adversarial input is found
19 Neuron never activated
20 Neuron with the number of activations (top 10%)
21 Neuron with activation numbers (top 10-20%)
22 Neuron with activation numbers (top 20-30%)
23 Neuron with activation numbers (top 30-40%)
24 Neuron with activation numbers (top 40-50%)
25 Neuron with activation numbers (top 50-60%)
26 Neuron with activation numbers (top 60-70%)
27 Neuron with activation numbers (top 70-80%)
28 Neuron with activation numbers (top 80-90%)
29 Neuron with activation numbers (top 90-100%)

Constant features consist of 11 features describing the layer
where the neuron is located and 6 features describing the neuron
itself. Specifically, the constant features 1-4 describe the relative
positions of layers in the neural network. We designed the features
5-11 describing the layer type to check the importance of differ-
ent layer types. Likewise, we designed the 6 constant features to
evaluate the importance of the weight each neuron has; we did not
deliberately divide the neurons having 50% bottom weights that
are likely to be redundant. All constant features can be extracted
from the given neural network directly without any calculation.

The variable features 18-29 describe the properties of neurons,
where these features continuously change over the testing pro-
cedure. We designed feature 18 to check whether there are key
neurons in generating adversarial inputs. Depending on the num-
ber of activations for each neuron, we have designed features 19-29.
All the variable features can be easily extracted with little overhead.
We also reflected the key insights of existing white-box testing
tools. For example, features 12 and 19 came from the strategies used
in DLFuzz [12] and DeepXplore [24], respectively.

3.2 White-box Testing with Online Learning

Wenow describe our white-box testing technique (Algorithm 2) that
adaptively learns and changes neuron-selection strategies based on

Algorithm 2 Our White-box Testing with Online Learning

1: procedure Adapt(DNN , I ,Cov)
2: C ← Cov(Run(DNN , I ))
3: P ← {p1, · · · ,pη2 | pi ∼ U ([−1, 1]29)}
4: H ← ∅
5: repeat

6: for all p ∈ P do

7: Cp ← ∅
8: W ← {I }
9: whileW , ∅ do
10: I ′ ← Pick an input from W
11: W ← W \ {I ′}
12: N ← Strategyp (DNN )

13: for t = 1 to η1 do
14: I ′ ← I ′ + λ · ∂(

∑
n∈N Neuron(n, I ′))/∂I ′

15: O′ ← Run(DNN , I ′)
16: if Cov(O′) ⊈ C ∧ Constraint(I , I ′) then
17: W ← W ∪ {I ′}
18: C ← C ∪ Cov(O′)
19: Cp ← Cp ∪ Cov(O′)

20: H ← H ∪ {(p,Cp )}
21: H ← Pop(H ,η3)
22: P ← Learning(H )
23: until testing budget expires (e.g. timeout)
24: return |C |

the data accumulated during neural-network testing. In parameter-
ized neuron-selection strategy, a 29-dimensional parameter vector
of real-numbers corresponds to a single neuron-selection strategy.
Hence, we consider a set of parameter vectors as a set of neuron-
selection strategies in Algorithm 2.

Overall Testing Process. Unlike Algorithm 1, Algorithm 2main-
tains the set P of neuron selection strategies in the outer loop at
lines 6-21, and changes the set P based on the accumulated data
H at line 22. The input and output of Algorithm 2 are identical
to the ones in Algorithm 1. At line 3, the algorithm initially gen-
erates η2 random neuron-selection strategies, where U denotes
the probability density function of the continuous uniform distri-
bution. At lines 8-18, for each strategy p, Algorithm 2 performs
exactly the same as in Algorithm 1; the algorithm selects the set N
of neurons (line 12), and generates the new input I ′ by adding the
gradient of the selected neurons N (line 14). Then, algorithm checks
whether the new input is able to cover new identifiers and satisfy
the distance constraint (line 16). At line 20, unlike Algorithm 1,
our technique keeps updating the data H during neural network
testing, where each element in H denotes a tuple of the strategy p
and the covered identifiers Cp by the strategy. At line 21, to use the
latest information accumulated in H as learning data, the algorithm
maintains the size of the data H as η3 by applying the function Pop;
the function returns the set H with the most recently accumulated
η3 elements. Then, it newly generates the set P with the Learning
function (line 22).

Learning. The idea of Learning is to identify “crucial” neuron-
selection strategies from the accumulated data H and then generate
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new strategies by combining the features of those crucial strategies.
To do so, the learning procedure (Learning) consists of two steps:
Extract and Combine.

In the Extract step, the goal is to collect the set S of crucial strate-
gies from H , where the size of S is fixed by a hyper-parameter η4.
Collecting S is done in the following two steps. First, we collect the
set S1 of strategies from H that collectively maximize the number
of covered identifiers. Let H∗ be all the possible such subsets of H
whose sizes are bounded by η4:

H∗ = argmax
H ′⊆H∧|H ′ | ≤η4

|
⋃

(_,Cp )∈H ′
Cp |

where argmax produces the set of all arguments that maximize
the given objective, i.e., argmaxд (x ) f (x ) = {x | д(x ) ∧ ∀y. f (y) ≤
f (x )}.3 With H∗, we can define the set S1 of strategies as follows:

S1 = {p | (p, _) ∈ argmin
H ′∈H∗

|H ′ |}

where argmin arbitrarily picks a smallest H ′ ∈ H∗ when it is not
unique. Intuitively, the set S1 denotes the minimum set of strategies
that collectively maximize the number of covered identifiers. If the
size of the set S1 is less than η4, we additionally collect the set S2 of
η4 − |S1 | strategies with the maximal number of covered identifiers.
That is, we aim to find the set S2 defined as follows:

S2 = {p | (p, _) ∈ argmax
H ′⊆H∧( |H ′ |=η4−|S1 |)

∑
(_,Cp )∈H ′

|Cp |}.

Note that, because we collect S1 and S2 from the set H , a single
strategy p can be an element of both S1 and S2. In this case, we
assume such a strategy is more promising than the strategies ex-
clusively contained in one of the two sets. Thus, we define the final
set S to be the following:

S = {{p | p ∈ S1}} ∪ {{p | p ∈ S2}}

where the notation {{}} indicates multisets that allow duplicated
elements.

For example, suppose that the accumulated data H is the follow-
ing:

H = {(p1, {i1, i2, i3, i4}), (p2, {i2, i4}), (p3, {i1, i3}),
(p4, {i3, i4, i5}), (p5, {i1, i3, i4}), (p6, {i5, i6})}

where each element in H consists of a tuple of a strategy and the
corresponding covered identifiers. When the hyper-parameter η4
is 3, the set S1 of crucial strategies is as follows:

S1 = {p1,p6}

where S1 is the minimum set of the strategies that collectively
maximize the number of covered identifiers (i.e., {i1, i2, i3, i4, i5, i6}).
Then, we additionally collect the set S2 with η4 − |S1 | strategies
with the maximal number of covered identifiers, where η4 is 3 and
|S1 | is 2. That is, the set S2 corresponds to a singleton set {p1} where
p1 has the maximal coverage in H . Finally, we can obtain the set S
that includes all the strategies in S1 and S2:

S = {{p1,p6,p1}}.

The intuition behind this step is to extract the set S capturing the
core knowledge in the accumulated data H .
3Elsewhere in this paper, we assume argmax and argmin return a single argument
since the result is a singleton set or the choice is unimportant.

In the Combine step, we generate new strategies by combining
the features of the strategies in S, where the number of strategies
to generate is given as the hyper-parameter η2. This step has a
genetic-algorithm flavor and repeats the next four phases until we
have η2 new strategies.

(1) We randomly sample two strategies from S. For instance,
suppose that the strategies, p1 and p6, are sampled, where
we assume each strategy is represented by a 5-dimensional
vector of real-numbers as follows:

p1 = ⟨0.2, 0.6,−0.3, 0.9,−0.4⟩
p6 = ⟨−0.1,−0.7, 0.2, 0.5,−0.8⟩ .

(2) We generate a new strategyp′, a parameter vector, by mixing
the two selected strategies. The i-th component of the new
vectorp′ is chosen randomly from the i-th components of the
two vectors. For instance, if the first and third components
of p′ are obtained from p1, and other components are from
p6, the newly generated strategy p′ will be as follows:

p′ = ⟨0.2,−0.7,−0.3, 0.5,−0.8⟩ .

(3) We add a small random noise to each component of the
newly generated strategy p′:

p′ = ⟨0.25,−0.72,−0.3, 0.51,−0.82⟩

where the noise is sampled from the normal distribution
N (0, 0.22). This step aims to enable exploration of the space
of possible strategies without changing the new strategy too
much; hence, we use a relatively small standard deviation.

(4) Finally, we clip the newly generated strategy p′ to ensure
that the new one is in the proper range (e.g., [−1, 1]29).

As the entire procedure (Algorithm 2) is going on, our technique
is able to generate effective neuron-selection strategies based on
the accumulated data H , thereby achieving high coverage.

Hyperparameters. Our algorithm involves five hyperparame-
tersm, η1, η2, η3, and η4. The first hyperparameterm denotes the
number of neurons that the strategy (Strategy) selects for the gradi-
ent calculation. Assigning the appropriate value tom is important.
For instance, with small m (e.g. m = 3), we failed to make any
notable influence on the inputs; with large m (e.g. m = 30), the
generated input was often too far from the original one. In the
experiments, with trial and error, we setm to 10 (we used the same
value for other white-box testing techniques: DLFuzz and DeepX-
plore). The second hyper-parameter η1 is the number of times that
the set of selected neurons is used for generating new inputs. Note
that because Algorithm 2 continuously adds the gradient value
η1 times to new input I ′ on line 14, the larger the value of η1, the
greater the distance between the original input I and the new one I ′.
We manually set the η1 to 3 so that the distance is not too far. The
third one η2 represents the number of new strategies to generate
after learning at line 22 in Algorithm 2. Intuitively, as the size of
the η2 increases, the number of learning trials (line 22) during the
entire testing budget decreases. That is, η2 determines how often
the algorithm performs the learning procedure. In experiments,
we set η2 to 100 to perform the learning procedure multiple times
during the total testing budget. Forth, η3 denotes the size of the
set H to be used as the learning data (line 21 in Algorithm 2). For
instance, if η3 is 10, we only use the most recently accumulated 10
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Table 2: Datasets and DNN models

Dataset Model # of Neurons # of Layers Accuracy

MNIST LeNet-4 148 9 0.985

LeNet-5 268 10 0.988

ImageNet VGG-19 16,168 26 0.713

ResNet-50 94,123 177 0.764

elements in H as learning data. We set η3 to 300 in our experiments.
Fifth, η4 denotes the number of effective strategies to select from
the learning data H for generating new strategies. Intuitively, if
the size of the η4 is very small (e.g., η4=2), we will generate new
strategies that are similar to the most effective top-2 ones in the
learning data. In experiments, we set η4 to 50. In this work, we
manually tuned these hyper-parameters and left automatic tuning
as future work.

4 EXPERIMENTS

We implemented our technique in a tool, called Adapt, using
Python 3.6.3, Tensorflow 1.14.0 [1], and Keras 2.2.4 [6] without
any modification of the frameworks. We evaluated Adapt to an-
swer the following research questions:
• Coverage: How effectively does Adapt increase coverage
metrics across various DNN models and datasets? How does
it compare to existing testing techniques?
• Adversarial Inputs: How effectively does Adapt find ad-
versarial inputs compared to existing techniques? Is there
strong correlation between coverage metrics and defects?
• Learned Insight: Is there any learned insight that should
be considered while testing deep neural networks?

All experiments were done on a machine with two Intel Xeon
Processors (E5-2630), 192GB RAM, and a NVIDIA GTX 1080 GPU.

4.1 Experimental Setup

We used two datasets and four neural network models in Table 2,
which have been used in prior work [8, 12, 24, 34]. MNIST [17] is
a classical dataset of hand-written digits with 10 classes and Ima-
geNet [7] is a huge collection of real-world images with 1,000 class
labels. For each dataset, we used two pre-trained models: LeNet-4
and LeNet-5 [17] for MNIST, and VGG-19 [29] and ResNet-50 [13]
for ImageNet. In particular, VGG-19 and ResNet-50 are widely used
in practice when, for example, extracting the embedding of the
images in various tasks such as style transfer [10, 14], image cap-
tioning [35], and visual question answering [9].

We comparedAdaptwith five state-of-the-art testing techniques
for DNNs: four white-box and one grey-box approaches. The white-
box approaches include DeepXplore [24], two instances of DL-
Fuzz [12], and a random baseline. These techniques mainly differ
in the neuron-selection strategy (Strategy) in Algorithm 1. DeepX-
plore randomly selects unactivated neurons. DeepXplore originally
performs differential testing requiring multiple DNNs without la-
beled data but we used it with a single DNN and labeled data
in our experiments. We instantiated DLFuzz with two strategies:
DLFuzzBest denotes the strategy that performed best in the prior

work [12] and DLFuzzRR the strategy that combines the three pro-
posed strategies in a round-robin fashion, excluding one strategy
that is not compatible with Top-k Neuron Coverage (TKNC) [18].
We included a random strategy Random, which selects neurons ran-
domly. All white-box testing tools select 10 neurons for gradient cal-
culation, as we metioned earlier. We also compare TensorFuzz [22],
an available state-of-the art grey-box testing tool.

We used two well-known coverage metrics: Neuron Coverage
(NC) [24] and Top-k Neuron Coverage (TKNC) [18]. For the former,
we set θ to 0.5 and 0.25 for small (LeNet-4, LeNet-5) and large
(VGG-19, ResNet-50) models, respectively. For the latter, we set k
to 3 and 30 for small and large models, respectively. As an initial
input, we used 20 inputs randomly selected from the corresponding
testset of datasets for two small models, LeNet-4 and LeNet-5, and
10 randomly chosen images from the 2002 test images provided by
DeepXplore [24] for two large models, VGG-19 and ResNet-50. All
images are initially correctly classified, which means two models
for each dataset classify the images to the same labels. For each
input, we allocated 10 minutes and 1 hour as a testing budget for
small and large models, respectively. Note that we allocated the
same testing budget for Adapt (Algorithm 2) and other existing
tools (Algorithm 1); that is, the learning cost inAdapt is included in
the budget. All the techniques, including Adapt, performed testing
while maintaining the L2-distance between the initial and mutated
inputs within 0.05 on average. All numerical values are average
over all images tested, except the values with explicit mentions.

4.2 Coverage

Figure 1 shows thatAdapt can achieve remarkably higher coverage
than existing techniques across all metrics and DNN models. For
example, Adapt was able to achieve 67.8% NC on VGG-19 while
the second best technique (DLFuzzRR) achieved 49.5%; Adapt cov-
ered almost 3,000 more neurons than DLFuzzRR during the same
time period. Likewise, Adapt managed to achieve 7.8% TKNC for
ResNet-50, while no other existing tools can achieve the higher
coverage than 6%, even though the initial coverage is 5.6%. Our tool
successfully achieved the highest coverage on small models as well.
For instance, ours increased NC by 7.8% and 10.6% more, compared
to the second best technique of each model: DeepXplore (Lenet-4)
and DLFuzzRR (Lenet-5).

Compared to the larger models (VGG-19 and ResNet-50), the
smaller models (LeNet-4 and LeNet-5) converged remarkably fast.
This is because a small model requires much less time for its exe-
cution than the larger model. For instance, we observed that our
tool generated about 3 times more inputs when testing LeNet-4
with NC than when testing ResNet-50 with NC, even though we
allocated 6 times more time budget to larger models than smaller
ones.

Note that, except for Adapt, existing testing tools have unstable
performance. For example, DLFuzzRR achieved the highest neuron
coverage for LeNet-5, but DeepXplore outperforms other existing
techniques for LeNet-4. Regarding TKNC, all existing techniques
are inferior even to the random baseline (Random) for LeNet-4 and
LeNet-5. Figure 1 also shows that TensorFuzz, a grey-box technique,
is overall less effective than white-box techniques.
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Figure 1: Effectiveness for increasing NC and TKNC metrics
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Table 3: Effectiveness for finding adversarial inputs

Metric With Neuron Coverage With Top-k Neuron Coverage
Dataset Model Technique Mutations Adv. Inputs Labels Seeds Mutations Adv. Inputs Labels Seeds

MNIST

LeNet-4

Adapt 31888.9 950.9 73 20/20 38320.4 955.8 48 16/20

TensorFuzz 74881.0 0.0 0 0/20 73515.8 0.0 0 0/20
Random 34988.6 192.3 38 17/20 32394.8 178.8 33 14/20
DeepXplore 38191.6 30.2 26 14/20 38083.0 11.1 15 7/20
DLFuzzBest 33895.5 542.2 3 3/20 32857.7 1079.7 1 1/20
DLFuzzRR 34223.8 423.9 33 16/20 32934.0 41.1 20 12/20

LeNet-5

Adapt 35601.6 3974.5 109 20/20 36483.6 3202.9 91 20/20

TensorFuzz 89290.4 0.0 0 0/20 90024.1 0.0 0 0/20
Random 30686.7 225.3 39 17/20 32994.7 215.8 36 16/20
DeepXplore 36188.1 39.0 37 17/20 34952.9 88.9 23 12/20
DLFuzzBest 31659.3 2.0 4 4/20 33006.6 0.2 2 2/20
DLFuzzRR 32742.3 183.8 45 18/20 33776.3 182.6 31 15/20

ImageNet

VGG-19

Adapt 12028.6 5301.0 265 10/10 11926.1 3322.7 300 10/10

TensorFuzz 15173.1 0.0 0 0/10 12911.8 0.0 0 0/10
Random 12778.1 1135.0 56 6/10 13005.6 126.2 10 4/10
DeepXplore 10210.6 695.4 25 5/10 9077.9 163.6 15 4/10
DLFuzzBest 12888.5 4713.2 9 8/10 12246.3 5091.5 6 5/10
DLFuzzRR 11844.7 2131.0 100 9/10 12139.4 673.2 65 7/10

ResNet-50

Adapt 8469.3 1925.1 15 5/10 8302.2 1721.2 38 6/10

TensorFuzz 9237.0 0.0 0 0/10 9464.0 0.0 0 0/10
Random 9256.5 713.0 10 5/10 8916.4 137.1 5 3/10
DeepXplore 6541.3 658.7 10 5/10 6832.9 146.3 6 4/10
DLFuzzBest 8357.8 597.6 8 5/10 9087.0 61.1 3 3/10
DLFuzzRR 8435.0 1095.2 11 6/10 9026.4 167.5 3 3/10
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Figure 2: The number of distinguishable labels found

4.3 Adversarial Inputs

While conducting the experiments in terms of coverage in Sec-
tion 4.2, we found that Adapt is highly effective in finding ad-
versarial inputs as well. Table 3 reports the average number of
mutations per image (Mutations), the average number of adver-
sarial inputs found per image (Adv. Inputs), the total number of
incorrectly classified labels (Labels), and the number of initial inputs
(Seeds) from which adversarial inputs were found. An incorrectly
classified label consists of an original image and a found label. That
is, we consider two adversarial inputs differently, which classified

into the same label but came from different input source. Overall,
Adapt outperforms existing techniques in almost all metrics; on
average, Adapt succeeded to find 4.9 times more adversarial in-
puts, 6.4 times more incorrectly classified labels, and 2.0 times more
seed images than existing techniques. Out of 24 metrics, Adapt
ranked at the first place in 21 metrics. In terms of the number of
the labels found, no existing techniques could beat Adapt. Adapt
is also able to find adversarial inputs from 86% of the given inputs
on average, while the best technique (DLFuzzRR) among existing
techniques can found adversarial inputs from only 69%. DLFuzzBest
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Label: pomeranian cowboy hat spider monkey

(a) Images found during testing with NC
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Label: grasshopper chainlink fence long-horned beetle

Label: house finch acorn mongoose

(b) Images found during testing with TKNC

Figure 3: Images with incorrectly classified labels found exclusively by Adapt.

oddly found a lots of adversarial inputs, while the number of labels
and the number of seed inputs from which adversarial inputs are
found are relatively small. This is becuase DLFuzzBest selects most
activated neurons, which are fixed as the testing procedure goes by,
which results in generating a huge amount of similar inputs without
any variety. Although the grey-box testing tool, TensorFuzz, which
does not calculate the gradients of the outputs of internal neurons,
is on average 1.7 times faster than Adapt, it failed to generated any
adversarial inputs across all experiments.

Figure 2 shows that Adapt successfully found the various in-
correct labels compared to existing techniques. The Venn diagram
represents the relationship between first (red), second (green), and
third (blue) ranked tools in terms of variety of labels. With NC,
Adapt could find 69 more incorrect labels while testing LeNet-5
compared to DLFuzzRR, which is second best technique among
existing techniques. For ResNet-50, Adapt found all the labels that
second best (DeepXplore) and third best (Random) found and 32
labels more. In total, Adapt found 611 more labels that no other
techniques could find. Figure 3 shows the some examples with in-
correctly classified labels found exclusively by Adapt (all existing
testing techniques totally failed to find those incorrect labels). In
particular, the adversarial images found for VGG-19 and ResNet-50
were visually indistinguishable from the original ones.

Correlation betweenCoverage andAdversarial Inputs. From
Figure 1 and Table 3, we can notice that coverage and variety of

labels are highly correlated, while coverage and the number of ad-
versarial inputs are not correlated strongly. In testing VGG-19 with
NC, the order of coverage value of each technique exactly matches
the order of the number of the labels found by each technique.

In Figure 2, we can find that the effectiveness of coverage metrics
is correlated with the size of the model to test. NC is more helpful
than TKNC in finding diverse inputs for small models, like LeNet-4
and LeNet-5, TKNC is more useful in finding diverse inputs for
larger models, like VGG-19 and ResNet-50. For instance, Adapt
could find 109 incorrect labels from LeNet-5 with NC, but only 91
labels with TKNC. On the other hand, Adapt only could find 15
labels from ResNet-50 with NC, but found 38 labels with TKNC.

4.4 Learned Insights

Figure 4 shows the changes of the weights of the top-3 (red) and
bottom-3 (blue) features of the strategies that our algorithm col-
lected while testing each model with NC, where fi indicates the i-th
element of the parameterized neuron-selection strategies. The top
features mean the properties of neurons which should be selected to
increase coverage, and the bottom features are characteristics that
neurons that should not be selected have. The solid lines represent
the medium value of the feature and the colored areas represent the
value from the top 20% to 80% of the collected strategies. As testing
goes by, the solid lines were being skewed toward one direction,
and the colored areas were becoming narrower, which means that



ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA Seokhyun Lee, Sooyoung Cha, Dain Lee, and Hakjoo Oh

0 200 400 600
−1

0

1
f 4

0 200 400 600
−1

0

1
f 14

0 200 400 600
−1

0

1
f 18

0 200 400 600
−1

0

1
f 2

0 200 400 600
−1

0

1
f 21

0 200 400 600
time (s)

−1

0

1
f 20

LeNet-4

0 200 400 600
−1

0

1
f 4

0 200 400 600
−1

0

1
f 14

0 200 400 600
−1

0

1
f 18

0 200 400 600
−1

0

1
f 2

0 200 400 600
−1

0

1
f 13

0 200 400 600
time (s)

−1

0

1
f 20

LeNet-5

0 1200 2400 3600
−1

0

1
f 2

0 1200 2400 3600
−1

0

1
f 23

0 1200 2400 3600
−1

0

1
f 3

0 1200 2400 3600
−1

0

1
f 1

0 1200 2400 3600
−1

0

1
f 19

0 1200 2400 3600
time (s)

−1

0

1
f 4

VGG-19

0 1200 2400 3600
−1

0

1
f 4

0 1200 2400 3600
−1

0

1
f 12

0 1200 2400 3600
−1

0

1
f 10

0 1200 2400 3600
−1

0

1
f 2

0 1200 2400 3600
−1

0

1
f 11

0 1200 2400 3600
time (s)

−1

0

1
f 13

ResNet-50

Figure 4: Top-3 and bottom-3 features learned by our algorithm during testing each model with NC

the learning algorithm extracts the characteristics of strategies,
which increase coverage, well.

f4, which indicates the layers located in the back 25% of the
network, is learned as the most important feature that neurons to
select should have, and f2, which indicates the layers located rela-
tively front of the network, is included in bottom-3 features in most
cases (LeNet-4, LeNet-5, and ResNet-50). This trend indicates that
neurons with higher expressive ability, which means that neurons
are located in deeper convolutional layers [38], should be selected
while testing the deep neural networks. This can explain the results
from VGG-19, which has a few fully-connected layers at the back
of the network; neurons with f2 and f3, which represent the convo-
lutional layers that located at relatively back, should be considered,
and neurons with f4, which includes the last fully-connected layers,
should be discarded.

f10, which indicates the layers with multiple input sources and
no other networks have, is one of the top-3 features that should be
selected for testing ResNet-50, while no other features that related to
the type of the layer did not show any trend across all experiments.
This implies that the layers with multiple input sources should be
considered when testing a deep neural network that contains them
as their components; the neurons that located in the layers with
residual connection in ResNet-50 are examples of the neuron with
multiple input sources.

LeNet-4 and LeNet-5 showed very similar results; their top-3
features and two of bottom-3 features exactly match. From these
results, we can infer that neurons with moderately high weights
(f14) and neurons that activated when the given objective is satisfied
(f18) should be considered carefully while testing small models,
like LeNet-4 and LeNet-5. In addition, neurons that activated a lot
(f20 and f21) should not be selected. These are not consistent with
DLFuzz’s selection strategies [12] which selects the neurons that
activated a lot or neurons with biggest weights; on the other hand,
the other strategy of DLFuzz (f12, neurons with top 10% weights) is
included in top-3 strategies in the results of ResNet-50.

The overall trends of the features of the collected strategies dur-
ing test procedure with TKNC are similar with those with NC. For
instance, neurons with higher expressiveness are important in both
cases. This represents that there are some common characteristics
that two metrics share.

5 RELATEDWORK

DNN Testing. Unlike existing gradient-based white-box tech-
niques, Adapt uses an adaptive neuron-selection strategy. DeepX-
plore [24] proposed the first white-box differential testing algorithm
to generate inputs which can cause inconsistencies between the set
of DNNs. The tool uses gradient ascent as an input generation algo-
rithm, which uses random selection as a neuron selection strategy.
The following approach, DLFuzz [12], enabled testing with a single
DNN. They use gradient ascent like the former, using four fixed
heuristics to select neurons. DeepFault [8] presented a new fault
localization-based testing approach by using a neuron-selection
strategy based on suspiciousness metric.

Another white-box approach, DeepConcolic [31], tests DNN us-
ing concolic testing, which has proven to be effective in small neural
networks. However, its applicability to real-world sized networks
needs to be examined. DeepMutation [19] analyzes the robustness
of the model by mutating the dataset and the model with its self-
designed heuristics. It chooses the layers for the heuristics while
Adapt chooses neurons for the gradient calculation. They also have
not been confirmed as applicable to real scale models such as Ima-
geNet models.MODE [20] focuses on a different problem; it aims
to pick the mis-trained layer and create the input that generates
the bug during the learning process.

Grey-box testing techniques are largely based on coverage-guided
fuzzing. DeepTest [33] presented a testing method for detecting
erroneous behaviors of autonomous car models. They mimic what
would happen in the physical world and generate input by applying
a set of natural image transformations randomly. DeepHunter [34]
performed misbehavior detection of DNNs as well as model quality
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evaluation and defect detection in quantization settings based on
multiple pluggable coverage criteria feedback. TensorFuzz [22] de-
bugged neural networks by using logit-based coverage and adding
additive random noise.

Existing coverage metrics are largely divided into the coverage
applied to the weights of the trained model and the coverage ap-
plied based on the changes of the weights during the training. In the
former case, in addition to NC [24] and TKNC [18], there is a Top-k
Neuron Pattern (TKNP) [18] that measures the different kinds of
activated scenarios by recording the patterns of top-k neurons per
layer. There is also a coverage metric inspired from the classical
MC/DC [30]. The latter case includes k-multisection Neuron Cover-
age (KMNC) [18], Neuron Boundary Coverage (NBC) [18], Strong
Neuron Activation Coverage (SNAC) [18], and Surprise Coverage
(SC) [15]. In this paper, we used only the former cases using the
pre-trained weights of real-world models. However, our approach
is in principle applicable to other coverage metrics as well.

Using Gradients to Attack DNNs. Gradients, which can also
be used to increase the probability of a particular class, have been
used for generating inputs that fool neural networks by generating
adversarial examples [3, 11, 16, 23]. They are similar to white-box
testing in that they calculate a gradient through an objective func-
tion and attempt to find a malfunctioning input. However, they
differ from the testing approaches as they aim to find common
misbehaving inputs and do not take into account the logic inside
the model. The emphasis of testing techniques is on systematically
examining the logic of the model and explore various internal states.

Software Testing with Learning. Combining software testing
and learning is not new. For example, Cha et al. [4, 5] used learning
to generate search heuristics of concolic testing automatically. To
our knowledge, however, existing works target traditional software
and Adapt is the first tool that uses learning for DNN testing.

6 CONCLUSION

Since deep neural networks are used in safety-critical applications,
testing safety properties of deep neural networks is important. Al-
though many testing techniques have been introduced recently,
there is no technique that is sufficiently effective across differ-
ent models and coverage metrics. In this paper, we present a new
white-box technique, calledAdapt, that performs well regardless of
models and metrics, via parameterizing the neuron-selection strat-
egy and learning appropriate parameters online. Experimentally,
we demonstrated that Adapt is significantly more effective than
existing white-box and grey-box techniques in increasing coverage
and finding adversarial inputs. As future work, we plan to apply
our technique to various models, domains, and coverage metrics.

ACKNOWLEDGMENTS

This work was partly supported by Institute of Information & com-
munications Technology Planning & Evaluation (IITP) grant funded
by the Korea government(MSIT) (No.2020-0-01337,(SW STAR LAB)
Research on Highly-Practical Automated Software Repair) and Sam-
sung Research Funding & Incubation Center of Samsung Electronics
under Project Number SRFC-IT1701-09.

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-scale Machine
Learning. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI’16). 265–283.

[2] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[3] N. Carlini and D. Wagner. 2017. Towards Evaluating the Robustness of Neural
Networks. In 2017 IEEE Symposium on Security and Privacy (S&P’17). 39–57.

[4] Sooyoung Cha, Seongjoon Hong, Junhee Lee, and Hakjoo Oh. 2018. Automati-
cally Generating Search Heuristics for Concolic Testing. 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE) (2018), 1244–1254.

[5] Sooyoung Cha and Hakjoo Oh. 2019. Concolic Testing with Adaptively Changing
Search Heuristics. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2019). 235âĂŞ245.

[6] François Chollet et al. 2015. Keras. https://keras.io.
[7] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A

large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition. 248–255.

[8] Hasan Ferit Eniser, Simos Gerasimou, and Alper Sen. 2019. DeepFault: Fault
Localization for Deep Neural Networks. In Fundamental Approaches to Software
Engineering (FASE’19). 171–191.

[9] Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell,
and Marcus Rohrbach. 2016. Multimodal Compact Bilinear Pooling for Visual
Question Answering and Visual Grounding. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing (EMNLP’16). 457–468.

[10] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2016. Image style transfer
using convolutional neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR’16). 2414–2423.

[11] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In International Conference on Learning Repre-
sentations (ICLR’15).

[12] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. DLFuzz:
Differential Fuzzing Testing of Deep Learning Systems. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE’18). 739–743.

[13] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’16). 770–778.

[14] Xun Huang and Serge Belongie. 2017. Arbitrary style transfer in real-time
with adaptive instance normalization. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV’17). 1501–1510.

[15] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding Deep Learning System Test-
ing Using Surprise Adequacy. In Proceedings of the 41st International Conference
on Software Engineering (ICSE’19). 1039–1049.

[16] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2017. Adversarial examples
in the physical world. In The International Conference on Learning Representations
(ICLR’17).

[17] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE (1998), 2278–2324.

[18] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and YadongWang. 2018. DeepGauge:
Multi-granularity Testing Criteria for Deep Learning Systems. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering
(ASE’18). 120–131.

[19] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei Xu, Chao Xie,
Li Li, Jianjun Zhao Yang Liu, and Yadong Wang. 2018. DeepMutation: Mutation
Testing of Deep Learning Systems. CoRR abs/1805.05206 (2018).

[20] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
2018. MODE: Automated Neural Network Model Debugging via State Differential
Analysis and Input Selection.

[21] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Re-
stricted Boltzmann Machines. In Proceedings of the 27th International Conference
on International Conference on Machine Learning (ICML’10). 807–814.

[22] Augustus Odena, Catherine Olsson, David Andersen, and Ian J. Goodfellow. 2019.
TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing. In
Proceedings of the 36th International Conference on Machine Learning (ICML’19).
4901–4911.

[23] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. 2016.
The Limitations of Deep Learning in Adversarial Settings. In 2016 IEEE European
Symposium on Security and Privacy. 372–387.

https://keras.io


ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA Seokhyun Lee, Sooyoung Cha, Dain Lee, and Hakjoo Oh

[24] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP’17). 1–18.

[25] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew Stevens,
and Lawrence Carin. 2016. Variational Autoencoder for Deep Learning of Images,
Labels and Captions. In Proceedings of the 30th International Conference on Neural
Information Processing Systems (NIPS’16). 2360–2368.

[26] Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta,
Tony Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya, et al.
2017. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep
learning. arXiv preprint arXiv:1711.05225 (2017).

[27] J. Sekhon and C. Fleming. 2019. Towards Improved Testing For Deep Learning.
In 2019 IEEE/ACM 41st International Conference on Software Engineering: New
Ideas and Emerging Results (ICSE’19). 85–88.

[28] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. Nature 550
(2017), 354.

[29] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In 3rd International Conference on
Learning Representations (ICLR’15).

[30] Youcheng Sun, Xiaowei Huang, and Daniel Kroening. 2018. Testing Deep Neural
Networks. CoRR abs/1803.04792 (2018).

[31] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill,
and Rob Ashmore. 2019. DeepConcolic: Testing and Debugging Deep Neural Net-
works. In Proceedings of the 41st International Conference on Software Engineering:

Companion Proceedings (ICSE’19). 111–114.
[32] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill,

and Rob Ashmore. 2019. Structural Test Coverage Criteria for Deep Neural Net-
works. In Proceedings of the 41st International Conference on Software Engineering:
Companion Proceedings (ICSE’19). 320–321.

[33] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated
Testing of Deep-neural-network-driven Autonomous Cars. In Proceedings of the
40th International Conference on Software Engineering (ICSE’18). 303–314.

[34] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: A Coverage-
guided Fuzz Testing Framework for Deep Neural Networks. In Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’19). 146–157.

[35] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell: Neural
image caption generation with visual attention. In International conference on
machine learning (ICML’15). 2048–2057.

[36] Q. You, H. Jin, Z.Wang, C. Fang, and J. Luo. 2016. Image Captioning with Semantic
Attention. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’16). 4651–4659.

[37] MichaÅĆ Zalewski. 2007. American fuzzy lop. http://lcamtuf.coredump.cx/afl/
[38] Matthew D. Zeiler and Rob Fergus. 2014. Visualizing and Understanding Convolu-

tional Networks. In European conference on computer vision (ECCV’14). 818–833.

http://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Deep Neural Networks
	2.2 Coverage Metrics
	2.3 White-Box Testing of Neural Networks

	3 Our Technique
	3.1 Parameterized Neuron-Selection Strategy
	3.2 White-box Testing with Online Learning

	4 Experiments
	4.1 Experimental Setup
	4.2 Coverage
	4.3 Adversarial Inputs
	4.4 Learned Insights

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

