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Abstract
We describe a programming-by-example system
that automatically generates pattern programs from
examples. Writing pattern programs, which pro-
duce various patterns of characters, is one of the
most popular programming exercises for entry-
level students. However, students often find it diffi-
cult to write correct solutions by themselves. In this
paper, we present a method for synthesizing pattern
programs from examples, allowing students to im-
prove their programming skills efficiently. To that
end, we first design a domain-specific language that
supports a large class of pattern programs that stu-
dents struggle with. Next, we develop a synthesis
algorithm that efficiently finds a desired program
by combining enumerative search, constraint solv-
ing, and program analysis. We implemented the al-
gorithm in a tool and evaluated it on 40 exercises
gathered from online forums. The experimental re-
sults and user study show that our tool can syn-
thesize instructive solutions from 1–3 example pat-
terns in 1.2 seconds on average.

1 Introduction
Writing pattern programs is one of the most popular program-
ming exercises for novice programmers, where the task is to
write a program that produces patterns of characters or stars
that are arranged according to some logical rules. Examples
include geometric patterns such as triangles, squares, and par-
allelograms.

Learning to write pattern programs in introductory pro-
gramming courses is important because of two reasons. First,
pattern programs provide excellent opportunities for enhanc-
ing key programming skills that involve nontrivial nested
loops and conditional statements. Secondly, students can ac-
quire logical thinking by trying to discover hidden rules in the
pattern examples.

In this paper, we describe a programming-by-example sys-
tem that automatically learns pattern programs from exam-
ples. Beginners often find it difficult to write correct pattern
programs by themselves. Unfortunately, manually providing
guidance in online/offline classes simply does not scale for
the increasingly large number of students. Our goal is to build

an automated tool that can help students to improve their pro-
gramming skills without human teachers.

To that end, we first studied various online forums and de-
signed a domain-specific language that supports a large class
of pattern programs that students struggle with. Next, we de-
veloped a novel synthesis algorithm that effectively combines
enumerative search, constraint solving, and program analysis.
The crux of our algorithm is the automatic provision of pro-
gram components that are required to write correct programs.
We demonstrate this capability in Section 2.

We implemented our approach in a tool, PAT, and evaluated
it on 40 benchmark problems gathered from online forums.
Some of the benchmarks are challenging even for skilled pro-
grammers, requiring them to discover complex rules hidden
in the patterns. The experimental results show that our ap-
proach is remarkably efficient; PAT can synthesize the de-
sired programs only from 1–3 example patterns in 1.2 sec-
onds on average. Further, our user study with 23 undergrad-
uate students shows that PAT can aid them by providing in-
structive code; 91% responded that programs generated by
PAT have qualities that are higher than or similar to human-
written code, in terms of simplicity and readability.

We summarize our contributions below:

• We present a new programming-by-example system that
automatically synthesizes pattern programs from exam-
ples. We make our tool and data publicly available.1

• We present a novel synthesis algorithm that combines
three techniques: enumerative search, constraint solv-
ing, and program analysis. This combination enables
PAT to efficiently synthesize pattern programs.

• We provide detailed evaluations of the tool with 40 pat-
tern tasks from online forums and 23 students.

2 Illustrative Examples
In this section, we illustrate our tool, PAT, with two program-
ming problems gathered from online forums.

To use our tool, it suffices to provide example patterns only.
Without any other hints from a user, PAT is able to generate
a program that reproduces the patterns while generalizing the
behavior beyond the given examples.

1http://prl.korea.ac.kr/pat

http://prl.korea.ac.kr/pat


Problem 1 (Isosceles Triangle) The first problem is to write
a program that displays isosceles triangles (i.e., triangle with
two equal sides). One possible example pattern is as follows:

F
FFF
FFFFF
FFFFFFF

Given this pattern, PAT takes 0.04 seconds to synthesize a
program below that draws the pattern:

for i in N do:
for j in N − i do: print
for j in 2 ∗ i− 1 do: printF
print

The outermost loop iterates through the rows of the trian-
gle, where N represents the number of the rows to be dis-
played. In each iteration of the rows, two inner loops are used
to print N − i blanks ( ) followed by 2 ∗ i− 1 star symbols
(F). Also, the program puts a newline ( ) upon completion
of each row. In this case, PAT can generate the program from
a single example pattern.
Problem 2 (Hollow square with diagonals) Consider the
problem of generating hollow squares with diagonals inside:

FFFFF FFFFFFF
FF FF FF FF
F F F F F F F
FF FF F F F
FFFFF F F F F

FF FF
FFFFFFF

This problem has remained unanswered in an online forum2

for seven months.
With PAT, however, we can solve this problem in 5.2s.

Given the two examples above, PAT generates the following:

for i in N do:
for j in N do:

if ( i = 1 || i = N || j = 1 || j = i ||
j = N − i + 1 || j = N): printF

else: print
print

The program prints out F when one of the following con-
ditions holds: the first row (i = 1), the last row (i = N ), the
first column (j = 1), the last column (j = N ), the lower-
right-oriented diagonal (j = i), and the upper-right-oriented
diagonal (j = N − i + 1). PAT accomplishes this by intro-
ducing a conditional statement within the nested loops.

We finish this section by summarizing key features of
PAT demonstrated through the examples:

• PAT is able to quickly generate instructive solutions for a
broad range of pattern programming tasks, which allows
students to benefit without asking questions and waiting
responses in online forums for months.

2http://codeforwin.org/2015/07/c-program-to-print-diamond-
star-pattern.html, accessed 31-Jan-2018

• PAT does not require any hints from a user. PAT auto-
matically infers program components such as integers
necessary for writing the program. By contrast, existing
program synthesizers typically require the user to man-
ually provide such components, which is unrealistic for
end-users. We provide detailed discussion in Section 6.
• PAT works with only few example patterns, minimizing

the burden of writing examples on users. In our experi-
ments, it was enough to provide 1–3 examples to obtain
desired programs.

3 Domain-Specific Language (DSL)
Figure 1 presents our domain-specific language (DSL) for de-
scribing patterns. In program synthesis, choosing a right DSL
is a key to success [Gulwani et al., 2017], as the DSL plays an
important role in balancing expressiveness for a target domain
and efficiency of a synthesis algorithm. General-purpose lan-
guages such as C are excessive for our purpose, only to impair
the efficiency of the synthesis procedure. Thereby, we have
carefully designed our DSL based on pattern programming
tasks that novices struggle with by studying online forums.
Syntax We observed that a large number of pattern programs
share a common structure and therefore made the following
design decisions:

• A program (r) is a single loop (for i in N do c; ) that
iterates through rows of the pattern, where each row is
followed by a newline symbol ( ). Variables N and i
are fixed over the program, which denote the number of
rows and the iterator, respectively.
• The body (c) of the row-loop consists of a sequence of

column loops. A column loop (for j in a do p) iterates
through columns for a times. j is a fixed variable that is
used in all column-loops.
• The body (p) of a column-loop consists of a symbol (l ∈
{F, }) or a conditional expression (if b l1 l2).
• An arithmetic expression (a) is a linear expression (x ∗
N + y ∗ i + z) that only involves variables N and i,
where x, y, and z are integer constants. At first glance,
this seems overly restrictive, but mostF-patterns can be
captured with this expression.
• A boolean expression (b) includes equalities for the be-

ginning of the row (i = 1), the end of the row (i = N )
and the column index (j = a), or a disjunction (b1 || b2).

A program may have holes (♦,4,©,�) during the syn-
thesis process, but the holes never appear in a final program.
Expressiveness Informally, our DSL is able to express pat-
terns with following characteristics:

1. Patterns consisting of straight lines that are inclined at
various angles (e.g., X-pattern in Problem 2).

2. Patterns consisting of subpatterns that are horizontally
aligned (e.g., a subpattern is hidden on the left of the
main pattern in Problem 1, drawn using blanks).

The first- and second features can be captured because, in our
DSL, arithmetic expressions are linear and programs can have
multiple inner column-loops, respectively.

http://codeforwin.org/2015/07/c-program-to-print-diamond-star-pattern.html
http://codeforwin.org/2015/07/c-program-to-print-diamond-star-pattern.html


r ::= for i in N do (c; )

c ::= for j in a do p | c1; c2 | �
p ::= l (l ∈ {F, }) | if b l1 l2 | ©
a ::= x ∗N + y ∗ i + z (x, y, z ∈ Z) | ♦
b ::= i = 1 | i = N | j = a | b1 || b2 | 4

Figure 1: Syntax of the DSL

A[[x ∗N + y ∗ i + z]](m) = x ∗m(N) + y ∗m(i) + z

B[[i = 1]](m) =
(
m(i) = 1

)
B[[i = N ]](m) =

(
m(i) = m(N)

)
B[[j = a]](m) =

(
m(j) = A[[a]](m)

)
B[[b1 || b2]](m) = B[[b1]](m) ∨ B[[b2]](m)

P[[l]](m) = l (l ∈ {F, })

P[[if b l1 l2]](m) =

{
l1 if B[[b]](m) = true
l2 if B[[b]](m) = false

C[[for j in a do p]](m) =
A[[a]](m)
•

k=1
P[[p]](m[j 7→ k])

C[[c1; c2]](m) =
(
C[[c1]](m)

)(
C[[c2]](m)

)
Figure 2: Semantics of the DSL

However, PAT may not be able to write patterns in which
subpatterns are vertically aligned, since those patterns usually
require multiple outer loops while our program has only one
outer loop. Nevertheless, PAT can be useful in those cases,
too. For example, imagine a pattern where an upper half is a
triangle and a lower half is a square. Even if a student does
not know how to write a corresponding solution at once, it
is relatively easy to observe that different pattern rules may
be needed to implement each of two subpatterns (triangle and
square) and thereby two outer loops may be needed to write
a total solution. Then, based on this observation, the student
can get a final solution by separately applying PAT to each
subpattern and combining the results.
Semantics A program in our DSL evaluates to a string over
Σ = {F, , }. The semantics is formally defined in Fig-
ure 2. Let X be a set of program variables, i.e., X = {i, j,N}.
A memory state m is a partial function from variables to in-
tegers (Z), i.e., m ∈ M = X → Z. Then, the semantics
of the DSL is defined by the functions A[[a]] : M → Z,
B[[b]] : M → B (= {true, false}), P[[p]] : M → Σ, and
C[[c]] : M → Σ∗. We write • for string concatenations, i.e.,
n•

k=1
Ak = A1 · · ·An. Semantics of holes is undefined.

Synthesis Problem Suppose we are given a set of example
patterns E ⊂ Σ∗. Then, our goal is to find a complete pro-
gram in the DSL that correctly describes the given patterns.
Formally, we aim to find the body c of the outer loop such
that

∀e ∈ E .
m(N)
•

k=1

((
C[[c]](m[i 7→ k])

) )
= e

where m = [N 7→ rowe] and rowe is the number of rows
(i.e., the number of s) in each example e.

4 Synthesis Algorithm
Now we present our algorithm for efficiently solving the syn-
thesis problem, which combines enumerative search, con-
straint solving, and static program analysis.

Algorithm 1 Synthesis Algorithm

Input: A set of examples E
Output: A program consistent with E

1: W ← {s0} where s0 = �
2: Γ← a candidate set of integer triplets
3: repeat
4: Pick the smallest state s from W
5: if s is a terminal state then
6: if solution(s) then return

(
for i in N do (s; )

)
7: else
8: W ←W ∪ next(s)

9: until W = ∅

4.1 Enumerative Search
Enumerative search has been used as one of the most effective
ways in program synthesis [Udupa et al., 2013; Feser et al.,
2015; Lee et al., 2016; So and Oh, 2017; Feng et al., 2017].
Below, we transform the synthesis problem to a state-search
problem and describe a basic enumerative algorithm for it.
Search Problem Suppose a synthesis task E is given. We
define a transition system (S, , s0, F ) where S is a set of
states, ( ) ⊆ S × S is a transition relation, s0 ∈ S is an
initial state, and F ⊆ S is a set of final solution states.

• States: A state s ∈ S is a column-loop statement c that
possibly has holes (♦,4,©, �).
• Initial State: An initial state s0 is a column-loop hole �.
• Transition Relation: Transition relation ( ) ⊆ S × S

determines next states directly reachable from the cur-
rent state. Figure 3 shows the relation as a set of in-
ference rules, where  a,  b,  p, and  denote the
one-step transition of arithmetic expressions, boolean
expressions, symbols, and column-loops, respectively.
That is, holes are replaced with any other syntactic com-
ponents of the same type. Given a state s, we write
next(s) for the set of all immediate following states from
s, i.e., next(s) = {s′ | s s′}.
• Solution States: Let us write s 6 to denote a terminal

state, i.e., a state without holes. Then, a state s is a solu-
tion of the synthesis problem iff s is a terminal state and
it is consistent with all of the given examples:

solution(s) ⇐⇒
s 6 ∧ ∀e ∈ E .

m(N)
•

k=1

((
C[[s]](m[i 7→ k])

) )
= e.

In the transition relation for arithmetic holes

♦ a x ∗N + y ∗ i+ z
(x, y, z) ∈ Γ

we assume that a finite set Γ ⊂ Z×Z×Z of integer triples is
given at the moment, which will be described in Section 4.2.
Note that, with this assumption, the successors (i.e., next(s))
of a state s are always finite.
Search Algorithm Algorithm 1 shows the basic architec-
ture of our synthesis algorithm. The algorithm initializes the
workset W with s0 (line 1). Then, at line 2, we compute the
set of integer triples Γ that will be used in programs (Sec-
tion 4.2). We pick and remove the smallest sized state s from



a a a′

j = a b j = a′
b1  b b

′
1

b1 || b2  b b
′
1 || b2

b2  b b
′
2

b1 || b2  b b1 || b′2
b b b

′

if b l1 l2  p if b′ l1 l2

a a a′

for j in a do p for j in a′ do p

p p p′

for j in a do p for j in a do p′
c1  c′1

c1; c2  c′1; c2

c2  c′2

c1; c2  c1; c′2 ♦ a x ∗N + y ∗ i + z
(x, y, z) ∈ Γ 4 b i = 1

4 b i = N 4 b j = ♦ 4 b 4 || 4 © p l © p if4 l1 l2
(l1 6= l2)

�  for j in ♦ do© �  �;�

Figure 3: Transition relation ((x, y, z) ∈ Γ, l ∈ {F, })

W (line 4), where the sizes are estimated by our heuristic cost
model based on the principle of Occam’s razor. If the chosen
state is a solution state, we return a program where a body c
is that state (line 6). Otherwise, we obtain next states of s,
add them to the workset (line 8), and then repeat the loop.

A standard way of improving enumerative search is to
prune away syntactically different but semantically equiva-
lent program states (e.g., [Feser et al., 2015; Lee et al., 2016;
So and Oh, 2017]). We use three techniques to do so.

First, we exclude states that have unsatisfiable (i.e., always
false) expressions, by checking boolean satisfiability. For ex-
ample, consider a state below:(

�; for j in N − i do {if (j = N − i+ 1)F }
)
.

Note that the condition (j = N − i+ 1) is unsatisfiable since
the enclosing loop iterates only N − i times (i.e., N − i <
N − i + 1). Pruning the above state is safe, due to the enu-
merative search for a simpler and semantically equivalent al-
ternative (�; for j in N − i do ). Secondly, we simplify a
state that has syntactically the same boolean expressions. For
example, (i = 1 || i = 1 || 4) is simplified to (i = 1 || 4).
Lastly, we reorder boolean expressions in a particular order.
For instance, assuming (i = −) precedes (j = −) in the or-
der, (j = 1 || i = 1) is rewritten as (i = 1 || j = 1). These
three optimizations are implicitly conducted by next(s).

4.2 Constraint Solving for Inferring Integers
A key feature of our algorithm is that the set Γ ⊂ Z× Z× Z
of integer component triples is automatically inferred from
example patterns. Achieving this consists of two steps. First,
we generate constraints that encode necessary conditions for
solutions. Secondly, we solve the constraints using an off-
the-shelf SMT solver to obtain a model (i.e., Γ).

Specifically, given a set E of examples, we generate for-
mula ΦE =

∧
e∈E(φe ∧ ϕe), where φe and ϕe are generated

as follows:

1. φe constrains the number of iterations of column-loops.
Note that every column-loop in a solution program can-
not iterate beyond the columns of each given example e.
Also, a column-loop iterates at least zero times. Com-
bining these two conditions, we generate

φe =

rowe∧
i=1

0 ≤ x ∗ rowe + y ∗ i+ z ≤ colie

where colie denotes the number of columns (up to the
position right before a newline) at ith row in an exam-
ple e ∈ E . The linear expression in φe is an arithmetic
expression a (Figure 1) where N is replaced with rowe.

2. ϕe limits the values of z so that the absolute value of z
is smaller than the number of rows in each example:

ϕe = −rowe < z < rowe.

The second conditionϕe is intended to rewrite a large value
of z by a small one with additional variables (N or i). We do
this rewriting because programs with smaller constant terms
are likely to generalize better than those with larger constant
terms do. We can still find solution programs even with this
extra condition, when we can represent an expression with a
large z (≥ |rowe|) by expressions with small zs (< |rowe|).
For example, supposing the number of rows of a given ex-
ample is 5 (i.e., rowe = 5), we can rewrite an arithmetic
expression 6 by N + 1.

Note that solving the constraint ΦE always produces a fi-
nite number of integer triples Γ. To see why, first observe that
ΦE has a series of inequalities over x, y, and z, connected by
conjunctions. Then, we need to show that any two of x, y, z
are finitely bounded through the inequalities: in our case, y
and z. We explain y-case first. Assuming the number of rows
in each example is at least two (i.e., ∀e ∈ E .rowe ≥ 2), we
can conclude the range of y is finite from φe, because only the
coefficients of ys vary in each conjunct of φe, and each con-
junct in φe has both a lower- and upper bound (0 and colie,
respectively). For example, from φe in Example 1 (i.e., the
first four conjuncts), we get −1 ≤ y ≤ 2. Secondly, from ϕe,
we can easily see that z also has a finite range.

Example 1 Consider the Problem 1 in Section 2. We can
generate constraints that correspond to the given example:

0 ≤ 4 ∗ x+ 1 ∗ y + z ≤ 4 ∧ 0 ≤ 4 ∗ x+ 2 ∗ y + z ≤ 5 ∧
0 ≤ 4 ∗ x+ 3 ∗ y + z ≤ 6 ∧ 0 ≤ 4 ∗ x+ 4 ∗ y + z ≤ 7 ∧

−4 < z < 4

where rowe = 4, and col1e through col4e are 4,5,6,7, respec-
tively. Solving the constraints, we get Γ = { (-1, 1, 3), (-1, 2,
2), (-1, 2, 3), (0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, -1),
(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 2, -2), (0, 2, -1), (1,
-1, 0), (1, -1, 1), (1, 0, -3), (1, 0, -2), (1, 0, -1), (1, 0, 0), (1,
1, -3), (1, 1, -2), (1, 1, -1), (2, -1, -3) }. Observe that (1,-1,0)
and (0,2,-1) appears in the solution program.

4.3 Pruning using Static Program Analysis
We observed that many candidates encountered during the
enumerative search can never reach solution states, only hin-
dering search for solutions. A common example is given in
Example 2. Our goal is to effectively prune away this type
of candidates in a safe manner. To achieve the goal, we de-
sign a static analysis, which enables us to identify states that
eventually fail to be solutions, and perform pruning using it.



Â[[x ∗N + y ∗ i + z]](m̂) = x∗̂m̂(N) +̂ y∗̂m̂(i) +̂ z

B̂[[i = 1]](m̂) = m̂(i) =̂ 1

B̂[[i = N ]](m̂) = m̂(i) =̂ m̂(N)

B̂[[j = a]](m̂) = m̂(j) =̂ Â[[a]](m̂)

B̂[[b1 || b2]](m̂) = B̂[[b1]](m̂) ∨̂ B̂[[b2]](m̂)

P̂[[l]](m̂) = {l}

P̂[[if b l1 l2]](m̂) =


{l1} ∪ {l2} (B̂[[b]](m̂) = >B̂)

{l1} (B̂[[b]](m̂) = t̂rue)

{l2} (B̂[[b]](m̂) = f̂alse)

Ĉ[[for j in a do p]](m̂) =

{ (
P̂[[p]](m̂[j 7→ >Â])

)∗ (Â[[a]](m̂) = >Â)
Â[[a]](m̂)
•

k=1
P̂[[p]](m̂[j 7→ k]) otherwise

Ĉ[[c1; c2]](m̂) =
(
Ĉ[[c1]](m̂)

)(
Ĉ[[c2]](m̂)

)
Figure 4: Abstract semantics

Designing analysis In order to identify failure candidates, we
first define abstract semantic functions in Figure 4: Â[[a]] :

M̂ → Ẑ, B̂[[b]] : M̂ → B̂, P̂[[p]] : M̂ → 2Σ, and Ĉ[[c]] :

M̂ → 2Σ∗ . An abstract memory state m̂ ∈ M̂ is a mapping
from variables to abstract integers (Ẑ), where Ẑ = {>Â} ∪ Z
with a partial order z1 vẐ z2 ⇐⇒ (z2 = >Â). B̂ =

{>B̂, t̂rue, f̂alse} is abstract boolean values with a partial
order b1 vB̂ b2 ⇐⇒ (b2 = >B̂).

A key component in designing the analysis is to define
sound semantics for holes, in order to over-approximate all
possible concrete behaviors of terminal states reachable from
a current candidate state. For the arithmetic- and boolean ex-
pressions holes (♦, 4), we conservatively assign top values,
i.e., Â[[♦]](m̂) = >Â and B̂[[4]](m̂) = >B̂. For the symbol
hole (©), we take the union of F and , i.e., P̂[[©]](m̂) =
{F}∪{ }. Lastly, we compute the column-loop hole (�) as
Kleene Star on star and blank, i.e., Ĉ[[�]] =

(
{F} ∪ { }

)∗
.

A novel aspect is that we use regex operations for over-
approximations of string values.
Pruning with analysis Suppose a set of examples E ⊂ Σ∗ is
given, and we are exploring a candiate s. Then, we prune the
candidate if the following predicate pruned(s) holds:

pruned(s) ⇐⇒ ∃e ∈ E .e 6∈
m̂(N)
•

k=1

((
Ĉ[[c]](m̂[i 7→ k])

)
{ }

)
where m̂ = [N 7→ rowe]. That is, we prune the candidate iff
the over-approximated result obtained by running the analysis
on the candidate does not contain the desired output (i.e., the
given example) for some examples e ∈ E , since all further
search of such the candidate will fail to produce solutions.
Example 2 Suppose the pattern example of Problem 1 in
Section 2 is given. Then, a candidate

(
(for j in i do F);�

)
needs not be searched further, because the analysis result on
the candidate (the right below, starting withF) does not con-
tain the expected output (the left below, starting with ):

F · · · 6∈ F({F} ∪ { })∗ · · ·
We finalize our synthesis algorithm by revising next(s):

next(s) = if pruned(s) then ∅ else {s′ | s s′}

5 Evaluation
Experimental setup To demonstrate the effectiveness of our
approach, we collected 40 benchmarks from several online
forums. These problems are comprised of various geomet-
ric patterns that are helpful for students’ learning, including
challenging ones. All of the experiments were conducted on
MacBook Pro with Intel Core i7 and 16GB of memory.
Algorithm performance The experimental results show that
our synthesis algorithm is remarkably efficient; PAT solves
the benchmarks 1.2 seconds on average, only from 1–3 ex-
amples (the column “Final” and “Ex” in Table 1). How-
ever, when we performed only the enumerative search (Sec-
tion 4.1, 4.2) without our program-analysis-guided pruning
(Section 4.3), seven of the benchmarks timed out (> 1 hour),
as shown in the column “Enum” in Table 1. Assuming the
running time of each of the seven benchmark as 1 hour, the
average running time becomes 737.9 seconds (x615 slow-
down). This result indicates two things. First, although our
DSL is restrictive to introductory pattern programs, its search
space is never trivial, hence an effective pruning method
should be applied. Secondly, our pruning is powerful to dra-
matically cut down on the search space.

After the experiments, we manually checked that all of the
synthesized programs are correct. Also, as demonstrated in
Section 2, the generated programs are explainable, under-
standable and instructive, capturing core pattern rules of the
given pattern examples.
User study We also evaluated PAT with 23 undergraduates,
who have taken the introductory programming course, in or-
der to inspect whether PAT is actually helpful to students. The
study proceeded as follows. We first requested the students
to solve several pattern programming problems, and submit
their code in the C language. After receiving the code, we
asked the students to freely use PAT in our web demo page
for one day. Finally, we asked four survey questions:

Q1. Programs generated by PAT are overall simple and easy
to understand.

Q2. Compared to their own submitted programs, programs
generated by PAT are simpler and easier to understand.

Q3. PAT helps to learn programming.

Q4. PAT is easy to use.

These questions were designed to evaluate code qualities of
PAT (Q1, Q2), helpfulness in learning programming (Q3),
and usability (Q4). Note that Q2 is a rigorous version of Q1,
in that the students can answer to Q1 just by running PAT for
certain patterns and observing generated solutions, without
efforts to solve problems. Especially for Q3, we requested
to describe reasons for their answers, allowing multiple re-
sponses. In the demo page, programs written by PAT were
displayed after converted into C from our DSL.

Table 2 shows results of our survey. For Q1 and Q2, the
students highly appreciated both code simplicity and read-
ability of PAT. Notably, for Q2, 91% responded that PAT’s
programs have higher or similar qualities, compared to code
written by themselves. We believe that reasons for this result
may come from our simple DSL design and our search strat-
egy, which prefers a small-sized candidate first (Section 4.1).



No Description Ex Time (sec)
Final Enum

1 Square 2 0.0 0.0
2 Hollow square 2 0.1 3.2
3 Parallelogram 2 0.0 0.1
4 Hollow parallelogram 2 0.5 ⊥
5 Mirrored parallelogram 2 0.0 0.1
6 Hollow mirrored parallelogram 2 0.6 2724.4
7 Right triangle 2 0.0 0.0
8 Hollow right triangle 3 0.0 0.1
9 Mirrored right triangle 2 0.0 0.0

10 Hollow mirrored right triangle 3 0.1 0.5
11 Inverted right triangle 2 0.0 0.0
12 Hollow inverted right triangle 2 0.0 0.0
13 Inverted mirrored right triangle 2 0.0 0.0
14 Hollow inverted mirrored right triangle 2 0.1 0.6
15 Isosceles triangle 1 0.0 0.2
16 Hollow isosceles triangle 2 0.1 2.4
17 Invereted isosceles triangle 2 0.0 0.1
18 Hollow inverted isosceles triangle 1 0.3 5.6
19 Rectangle with an empty trapezoid 2 1.0 298.9
20 Inverted rectangle with an empty trapezoid 2 1.2 610.5
21 Obtuse triangle 2 0.0 0.1
22 Hollow obtuse triangle 2 0.3 5.7
23 Mirrored obtuse triangle 2 0.0 0.0
24 Hollow mirrored obtuse triangle 2 0.1 3.4
25 Inverted obtuse triangle 1 0.0 0.1
26 Hollow inverted obtuse triangle 2 0.2 4.6
27 Inverted mirrored obtuse triangle 2 0.0 0.0
28 Hollow inverted mirrored obtuse triangle 2 0.2 6.3
29 V-pattern 2 0.0 0.4
30 Trapezoid 2 0.1 0.9
31 Hollow trapezoid 2 2.4 ⊥
32 Inverted trapezoid 2 0.1 0.8
33 Hollow inverted trapezoid 2 3.0 ⊥
34 Combination of #4 and #10 3 24.8 ⊥
35 Combination of #6 and #8 2 1.0 ⊥
36 Hollow square with diagonals 2 5.2 ⊥
37 N-pattern 2 0.4 73.2
38 Inclined N-pattern 2 0.6 186.9
39 W-pattern 2 4.2 ⊥
40 Bow-tie pattern 2 0.6 385.3

Average 1.2 > 737.9

Table 1: Performance of PAT. ⊥ denotes timeout (> 1 hour).

Agree Neutral Disagree
Q1 87% (20) 9% (2) 4% (1)
Q2 52% (12) 39% (9) 9% (2)
Q3 74% (17) 13% (3) 13% (3)
Q4 78% (18) 22% (5) 0% (0)

Table 2: Responses from users. (n) shows the actual number.

In particular, for the benchmark #39, our manual study on
the 10 correct submissions reveals that, only two success-
fully captured core pattern rules. The remaining eight were
composed of messy rules without core rules, although they
are somehow correct; the worst case solution consisted of 54
lines in C with 7 inner loops (vs. 18 lines with one inner loop
by PAT). For Q3, 74% agreed that PAT is helpful in learning
programming. For Q4, no negative answers were reported.

We further examined reasons behind students’ answers for
Q3. 74% (17 students) answered “Agree” for following rea-
sons: improving programming skills by learning instructive
code generated by PAT (71%, 12/17), realtime-feedback with-
out asking to human instructors (65%, 11/17), and role as an
automated teacher for shy students who are reluctant to ask
in classrooms (47%, 8/17).

In contrast, among the three students who disagreed with
Q3, one expressed that PAT’s code are hard to follow, which
conflicts with the majority. The rest two disagreed, worrying

about students’ blind reliance on PAT without enough endeav-
ors to solve problems. However, we still believe that PAT can
be helpful under proper guidance of instructors, e.g., allowing
to use PAT only after submitting assignments.

Finally, we collected additional feedback for future im-
provements: translations into other languages (e.g., Java), and
dealing with more complex patterns. The former can be eas-
ily done. For the latter, we believe that extending PAT to solve
programming-competition-level pattern problems, which re-
quire to write complicated recursive functions with nontrivial
arguments 3, is one interesting research direction.

6 Related Work
Automatic programming tutor There have been a number
of researches on building intelligent programming tutor sys-
tems that aim to help novice programmers: generating feed-
back on semantic errors in students’ submissions [Kim et al.,
2016; Singh et al., 2013; Gulwani et al., 2014; Kaleeswaran
et al., 2016], step-by-step hint generation for Haskell [Gerdes
et al., 2017] and Python [Rivers and Koedinger, 2017], and
many others. Our work differs from prior works in two ways.
First, PAT can help students who do not know how to start
writing programs by synthesizing solutions from examples,
while prior works aim at producing feedback on code already
written by students. Secondly, to the best of our knowledge,
PAT is the first automatic tutor that helps to practice pattern
programs.
Comparisons with other synthesis approaches In many
program synthesis applications, the DSL has played a key
role in speeding up search process by reasonably restricting
search space on target domains: automating string manipula-
tion in spreadsheet [Gulwani, 2011; Kini and Gulwani, 2015;
Raza et al., 2015; Wu and Knoblock, 2015; Ellis and Gul-
wani, 2017], automated data extraction [Raza and Gulwani,
2017], and transformations on tree data structures [Yagh-
mazadeh et al., 2016], etc. In this context, we designed the
DSL for efficiently synthesizing pattern programs.

Technically, our algorithm differs from previous works in
two aspects. First, most notably, by applying constraint solv-
ing, PAT can automatically infer integer components, which
will be used in a solution program, without manual provision
from end-users. By easing burden on users in this way, we be-
lieve that our idea of applying constraint solving for inferring
program components can benefit many other program synthe-
sizers, e.g., [Wang et al., 2017; So and Oh, 2017]. Secondly,
we developed an effective and safe pruning method that per-
forms static program analysis using regex operations.

7 Conclusion
In this paper, we presented a new programming-by-example
system that synthesizes pattern programs from examples. We
first carefully designed the DSL for efficiently synthesizing
a variety of pattern programs. Next, we developed a novel
synthesis algorithm that combines enumerative search, con-
straint solving, and program analysis. We demonstrated the
effectiveness of our approach with 40 pattern tasks, and the
helpfulness with 23 students.

3e.g., https://www.acmicpc.net/problem/2447

https://www.acmicpc.net/problem/2447
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