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Abstract—We present ARES, an automated framework for
writing endurance tests on flash-based storage devices. Since
flash-based storages such as solid-state drives and SD cards
have a limited capacity for processing data write requests, it
is important for manufacturers to accurately test and specify
the maximum amount of data writes that their products are
guaranteed to withstand. Unfortunately, however, writing such
an endurance test is mostly conducted manually in practice,
which is difficult, laborious, and sometimes inaccurate. To ad-
dress this issue, we present ARES, a learning-based automated
approach for generating endurance tests on flash-based storage
devices. ARES is built on two ideas. First, we observe that
the search space of endurance tests can be effectively reduced
by devising abstract relative write patterns. Second, we use a
learning algorithm based on genetic programming in order to find
worse-case write patterns efficiently. The experimental results
demonstrate that ARES is capable of successfully learning high-
quality write patterns. The performance of the learned write
patterns is superior to that of the manual tests designed by
human engineers in Samsung Electronics. Especially for 32GB
USB, ARES identified a write pattern that is 26% more effective
than the manually crafted write pattern that has been used until
recently.

Index Terms—Flash based Storage, Non-functional property
testing, Test input generation, Genetic algorithm

I. INTRODUCTION

Flash-based storages are crucial devices widely used for
reading and storing data. Thanks to the appearance of the
MLC (Multi Level Cell) techniques [1], which enabled a
single cell to store data larger than 1 bit, flash-based storages
can efficiently store data and have become the most popular
devices used in practice. Compared to hard disk drives, flash-
based storages have better random I/O performance, efficient
power consumption, and smaller sizes, etc. Currently, flash-
based storage devices are widely used in PC, mobiles, and
automotives, among others.

Flash-based storages, however, have a limited capacity for
writing data. Though MLC is efficient, it exacerbates this
write endurance problem in flash-based storage devices. If
flash-based storage reaches a certain level of write activity
(also known as write endurance), the stored data is no longer
trusted. This issue is caused because the data storage medium
of flash-based storage has a limited lifespan (program-erase
count [2]). Figure 1 shows the impact of the MLC technology
on the lifespan of flash memory. Figure 1 shows that as
more data is stored in a given cell, the flash memory’s wirte
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Fig. 1: How the endurance of flash memory has changed with
respect to the advance of MLC technology.

endurance declines. Currently, write endurance is regarded
as a major criterion for evaluating the quality of flash-based
storage. Different flash-based storages have varying degrees of
endurance; it is therefore important to accurately specify their
(guaranteed) endurance for users.

The objective of a write endurance test is to quantify the
level of endurance, so that we can check that the devices
satisfy the requirement of market or customers before they are
shipped. A write endurance test takes a flash-based storage and
write pattern (e.g., test case). Then, it measures the amount of
data write that the storage can endure. We note that the primary
goal of the endurance test is to evaluate the firmware’s quality,
rather than the hardware; one of the main jobs of the firmware
is to manage data writes properly.

The success of a write endurance test depends heavily on
the quality of the write patterns it uses. Worst-case write pat-
terns, which mirror the worst-case user scenarios, effectively
consume the devices’ lifespan throughout the test; the write
endurance test aims to find a worst-case write pattern for
a given storage device. Unfortunately, however, discovering
such a write pattern has been manually conducted by field
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Fig. 2: Conventional write endurance test process.

engineers.
Manually designing worse-case write patterns is difficult

and time-consuming. To develop worst-case write patterns, test
engineers need to examine various user scenarios (e.g., work-
load [3]), developer interviews, S/W development documenta-
tion review, and industry standards review. Our experience is
that these are difficult and laborious tasks even for experienced
test engineers, and may lead to human errors.

To address this problem, we present ARES, an automated
technique for generating endurance tests. ARES is developed
with two key ideas. First, we design abstract relative write
patterns. Each abstract relative write pattern represents a set
of concrete write patterns that are likely to show similar perfor-
mance in the write endurance test. Using abstract relative write
patterns instead of concrete write patterns prevents redundant
learning and significantly reduces the search space. In our eval-
uation, the search space is reduced from about 3, 000, 000100

to 33100. The second idea is a learning algorithm based on
genetic programming. The algorithm exploits the structure of
our abstract relative write patterns to effectively learn a good
concrete write pattern (e.g., worst-case write pattern) that will
be used in write endurance test.

Our evaluation results show that ARES is effective at learn-
ing high-quality write patterns that perform better than existing
manually crafted write patterns used in Samsung Electronics.
We use ARES to produce worst write patterns for 32GB USB
flash drive and 256GB micro SD Card, two popular flash-
based storage devices used in practice. For the two storages,
ARES produced write patterns that perform better than those
developed by test engineers in Samsung. Especially for 32GB
USB, the learned write pattern was significantly (26%) more
effective than the baseline, the manually crafted write pattern.

Contributions. Our contributions are summarized as follows:

• We present ARES, an automated technique for generating
write endurance tests. The key ideas are our abstract
relative write patterns to reduce search space and our
learning algorithm that uses abstract relative write pat-
terns to effectively search qualified write patterns.

• We experimentally demonstrate the effectiveness of
ARES in comparison with existing manually designed
write patterns that have been used in industry.

II. PRELIMINARIES

In this section, we introduce the write endurance test in
detail and related terms.

Flash-based storage. Flash-based storages are popular devices
that store data in flash memories. Solid State Drive [4] and
USB flash drive [5] are representative flash-based storages.
Multi Media Card [6], Universal Flash Storage [7], embedded
in mobile [8], automotive [9], and IoT [10], also belong to
flash-based storages. A flash-based storage consists of flash
memory [11], controller, and firmware where a controller
processes instructions, and firmware operates the hardware.

Sector. A sector is the minimum unit space in flash-based
storages that stores user data. A unit space is 512KBytes or
4096KBytes.

Address. Addresses are the locations of sectors where each
sector has a unique address. The write endurance test uses
addresses for writing data on the corresponding sectors.

Workload. Workloads are sequences of read and write, and
describe user scenarios. In our evaluation, we consider work-
loads as described in JESD219 [12] including various user
scenarios in practice. Note that different storage devices (e.g.,
USB flash drive vs SSD) have varying user scenarios. The
write endurance test should consider suitable user scenarios.

Write pattern. A write pattern is a sequence of write requests
that affects (e.g., declines) the endurance of flash-based stor-
ages.

A. Write Endurance

The endurance of a flash-based storage presents the amount
of data writes that the storage can endure. A storage de-
vice has a finite endurance, and the write endurance of
the storage is determined by write patterns [3], [13] to be
processed. Endurance-critical write patterns make the storage
have smaller write endurance.

B. Write Endurance Test

The objective of a write endurance test is to determine the
endurance guarantee of flash-based storages. Figure 2 presents
the write endurance test process used in Samsung Electronics.
A write endurance test takes a flash-based storage and a write
pattern. The storage device iteratively processes the write
pattern until the device uses all of its lifespan. Then, the write
endurance test returns the amount of written data that the given
storage endured. Note that the success of the write endurance
test depends heavily on the quality of the used write pattern as
guaranteed write endurance can be found with well-designed
write patterns reflecting worst-case user scenarios. Our goal
is to automatically generate high-quality write patterns for the
endurance test.



III. METHOD

In this section, we present ARES, a new approach for
learning write patterns for write endurance test. We first model
flash-based storages and write endurance test (Section III-A).
Then, we illustrate how ARES automatically generates good
write patterns (Section III-B and III-C).

A. Problem

We model a flash-based storage (Storage) as a triple:

Storage = Sector ×Age × Lifespan.

Sector ⊆ 2N denotes the set of sector addresses in the
storage, Age ⊆ N the spent endurance (i.e., program-erase
count) of the storage, and Lifespan ⊆ N the maximum
number of program-erase cycle that the storage can endure.
We define two projection functions Age and Lifespan: Age(s)
and Lifespan(s) denote the age and lifespan of the storage
s, respectively. A write pattern w is a sequence of sector
addresses (e.g., 〈a1, a2, . . . , al〉 ∈ Nl). We assume the length
(e.g., l) of write pattern is given.

In write endurance testing, the given write pattern iteratively
increases the age of the given storage. We model an iteration
of the endurance test as follows:

Test : Storage ×WritePattern → N.

Given a storage s and a write pattern w, Test returns an integer
presenting the age increased (e.g., ∆Age(s)) during the test.
The endurance test iteratively runs Test(s, w) until the age of
the stoarge reaches its lifespan (e.g., Age(s) ≥ Lifespan(s)).
Then, the endurance test returns the total amount of written
data as the endurance of the storage s.

Goal. For a given length l and storage s, our goal is to find
an effective write pattern w = 〈a1, a2, . . . , al〉 that would
maximize the increased age in the endurance test:

argmax
w

Test(s, w).

Note that good write patterns effectively increase the age
in each iteration; they make the storage s retire with small
numbers of iterations in the endurance test.

Challenge. Write patterns have a huge search space; a naive
search algorithm is impractical to find good write patterns. If
there are |S| addresses in the given flash-based storage s and
the length of the write pattern is l (e.g., |w| = l), the search
space poses |S|l. For example in a 32GB NAND flash-based
storage (|S| ≈ 6, 000, 000), the search space of write pattern
poses about 6, 000, 000l. A naive search algorithm would fail
to learn effective write patterns.

B. Our Approach

The first idea of ARES is our two-step abstractions of write
patterns to reduce the search space. We first define (normal)
concrete write patterns on which we define abstractions. We
define concrete write patterns as follows:

WritePattern : Addr l

where addresses are natural numbers (Addr ⊆ N). A concrete
write pattern w ∈ WritePattern is a sequence of addresses
in the given storage device s. For example in the endurance
test (e.g., Test), a concrete write pattern w = 〈i, i, i, i, i〉 writes
data five times at the i’th sector of the storage s.

Relative write pattern. The first abstraction is our relative write
patterns RelWritePattern defined as follows:

RelWritePattern : ∆Addr l

where ∆Addr ⊆ N presents how each address in the con-
crete write pattern changes. A relative write pattern w =
〈∆a1,∆a2, . . . ,∆al〉 presents a set of concrete write patterns:

[[〈∆a1,∆a2, . . . ,∆al〉]]RelWritePattern =

{〈a1, a2, . . . , al〉 ∈WritePattern |
∀i ∈ [2, l]. ai − ai−1 = ∆ai}.

For example, concrete write patterns 〈1, 2, 3, 4, 5〉 ∈
WritePattern and 〈2, 3, 4, 5, 6〉 ∈ WritePattern be-
long to the same relative write pattern 〈0, 1, 1, 1, 1〉 ∈
RelWritePattern because all the addresses in the concrete
write patterns are increased by 1.

Relative write patterns are designed to exploit the behav-
ior of the firmware in flash-based storage. The firmware in
Flash-based storages uses an address mapping policy based
on address locality (e.g., Delta FTL [14] and LAST [15]).
Address locality is a tendency of memory addresses that an
address is likely to be accessed if an adjacent one is accessed;
the firmware is designed to consider relative addresses (e.g.,
whether the addresses in the write are adjusted) rather than
absolute addresses.

We also experimentally checked concrete write patterns
have the following property:

∀s.(∀i ∈ [2, l].ai − ai−1 = a′i − a′i−1) =⇒
Test(s, 〈a1, a2, . . . , al〉) ≈ Test(s, 〈a′1, a′2, . . . , a′l〉)

where 〈a1, a2, . . . , al〉 and 〈a′1, a′2, . . . , a′l〉 are two different
concrete write patterns. That is, concrete write patterns be-
longing to the same relative write pattern are likely to show
similar performance. Using relative write patterns instead of
concrete ones would reduce the search space without losing a
chance to find qualified write patterns. Note that though using
relative write patterns reduces the search space (e.g., from
|S|l into |S|l−1), the search space is still impractical (e.g.,
6, 000, 000l−1). We need the following additional abstraction
to make the learning practical.

Abstract relative write pattern. As an additional (second-step)
abstraction, we define abstract relative write patterns:

̂RelWritePattern : ∆̂Addr
l
.

∆̂Addr ⊆ N is an abstracted one from ∆Addr with Table I
which maps a relative address ∆a ∈ ∆Addr into the corre-
sponding abstract relative address ∆̂a ∈ ∆̂Addr . For example,
an abstract relative address 4 ∈ ∆̂Addr presents a set of



TABLE I: Table that maps ∆a ∈ ∆Addr to ∆̂a ∈ ∆̂Addr .

∆̂a Category Criterian

0 Overwrite ∆a = 0
1 Seq. forward ∆a = 1
2 Seq. backward ∆a = −1

3

Jump forward

1 < ∆a ≤ 2
4 2 < ∆a ≤ 8
5 8 < ∆a ≤ 16
6 16 < ∆a ≤ 32
7 32 < ∆a ≤ 64
8 64 < ∆a ≤ 128
9 128 < ∆a ≤ 256
10 256 < ∆a ≤ 512
11 512 < ∆a ≤ 1024
12 1024 < ∆a ≤ 16384
13 16384 < ∆a ≤ 32768
14 32768 < ∆a ≤ 65536
15 65536 < ∆a ≤ 131072
16 131072 < ∆a ≤ 262144
17 262144 < ∆a

18

Jump backward

−1 > ∆a ≥ −2
19 −2 > ∆a ≥ −8
20 −8 > ∆a ≥ −16
21 −16 > ∆a ≥ −32
22 −32 > ∆a ≥ −64
23 −64 > ∆a ≥ −128
24 −128 > ∆a ≥ −256
25 −256 > ∆a ≥ −512
26 −512 > ∆a ≥ −1024
27 −1024 > ∆a ≥ −16384
28 −16384 > ∆a ≥ −32768
29 −32768 > ∆a ≥ −65536
30 −65536 > ∆a ≥ −131072
31 −131072 > ∆a ≥ −262144
32 −262144 > ∆a

relative addresses {3,4,5,6,7,8} ⊆ ∆Addr because the abstract
relative address 4 corresponds to 2 < ∆a ≤ 8 in Table I. Note
that any relative address ∆a ∈ ∆Addr can be mapped into an
abstract relative address i ∈ [0, 32] in Table I. An abstract rel-
ative write pattern 〈∆̂a1, ∆̂a2, . . . , ∆̂al〉 ∈ ̂RelWritePattern
presents a set of relative write patterns as follows:

[[〈∆̂a1, ∆̂a2, . . . , ∆̂al〉]] ̂RelWritePattern
=

{〈∆a1,∆a2, . . . ,∆al〉 ∈ RelWritePattern |
∀i ∈ [1, l].∆ai ∈ Table I (∆̂ai)}

where Table I (∆̂ai) presents the set of ∆a that corresponds to
the abstract relative address ∆̂ai. Note that an abstract relative
write pattern ˆ̂w ∈ ̂RelWritePattern also can be concretized
into a set of concrete write patterns as follows:

γ( ˆ̂w) = {w | w ∈ [[ŵ]]RelWritePattern ,

ŵ ∈ [[ ˆ̂w]] ̂RelWritePattern
}.

We designed Table I based on the observation of [16] and
our domain knowledge. Kim et al. [16] present that the size of
the cluster block, cluster page, and read/write buffer affect the
performance of flash-based storages. It shows that the values
of relative addresses affects the performance of the storage.
Based on the observation, we designed our abstract relative

Algorithm 1 Our Learning Algorithm

Require: A storage s, write pattern length l, population n
Ensure: A concrete write pattern w

1: procedure LEARN(s)
2: wbest ← 〈0, 0, ..., 0〉 . length = l
3: { ˆ̂w1, ˆ̂w2, . . . , ˆ̂wn} ← GenerateInitial(n)
4: W ← { ˆ̂w1, ˆ̂w2, . . . , ˆ̂wn}
5: score ← λ ˆ̂w.0
6: while Age(s) ≥ Lifespan(s) do
7: (w′best , score)← EVALUATE(W, s, score)
8: if Test(s, wbest′) > Test(s, wbest ) then
9: wbest ← w′best

10: { ˆ̂w′1, . . . ,
ˆ̂w′n} ←GENERATEOFFSPRING(score, n)

11: W ← { ˆ̂w′1, . . . ,
ˆ̂w′n}

12: return wbest

1: procedure EVALUATE({ ˆ̂w1, ˆ̂w2, . . . , ˆ̂wn}, s, score)
2: max ← 0
3: wbest ← 〈0, 0, ..., 0〉
4: for i = 1 to n do
5: wi ← ChooseConcrete( ˆ̂wi)
6: score ← λ ˆ̂w. if ˆ̂w = ˆ̂wi then Fitness(s, wi) else

score(ˆ̂w)
7: if Test(s, wi) > max then
8: wbest ← wi

9: max← Test(s, wi)

10: return (wbest , score)

1: procedure GENERATEOFFSPRING(score, n)
2: {( ˆ̂w1, ˆ̂w′1), . . . , ( ˆ̂wn

2
, ˆ̂w′n

2
)} ← ChooseOld(score, n)

3: O ← ∅
4: for i = 1 to n

2 do
5: ( ˆ̂wnew , ˆ̂w′new )← CrossOver( ˆ̂wi, ˆ̂w′i)
6: O ← O ∪ { ˆ̂wnew , ˆ̂w′new}
7: return O

addresses, which are clusters of relative addresses where
relative addresses in the same cluster would result in similar
effect in the endurance test. Therefore, an abstract relative
write pattern ˆ̂w presents a set of concrete write patterns γ( ˆ̂w)
that would show similar performance in the write endurance
test.

In the learning procedure, the search space is drastically
reduced by devising abstract relative write patterns. In a 32GB
NAND flash-based storage used in our evaluation, for example,
the search space is reduced from 6, 000, 000l into (33)l.

C. Learning Write Patterns

Now we present our learning procedure that learns a qual-
ified concrete write pattern for write endurance test. Our
algorithm is an instance of the conventional genetic algo-
rithm [17]; our algorithm iteratively produces and evaluates
offspring abstract relative write patterns. In this section, we
call abstract relative write patterns as abstract write patterns
for brevity.



The goal of our algorithm is to learn a qualified concrete
write pattern w that maximizes the fitness function [17] defined
as follows:

Fitness(s, w) =
Test(s, w)

Lifespan(s)
. (1)

where s is the given training storage. Fitness(s, w) presents
how effectively the write pattern w makes the storage s retire.

LEARN in Algorithm 1 presents the overall learning process.
The algorithm takes a training storage s, length of write
pattern l, and population size n as inputs. The algorithm
iteratively enumerates n different write patterns with length
l and evaluates them on the storage s. The iteration ends
when the storage retires (Age(s) ≥ Lifespan(s)). Then, it
returns the learned concrete write pattern wbest that performed
the best throughout the learning. Note that the length of
the write pattern l and the population size n are tunable
hyperparameters; we chose l and n as 100 and 24, respectively,
with our experience.

The algorithm first generates an initial concrete write pattern
(e.g., 〈0, 0, . . . , 0〉 at line 2) and abstract write patterns (line 3).
GenerateInitial(n) randomly generates n different abstract
write patterns { ˆ̂w1, ˆ̂w2, . . . , ˆ̂wn}, and they are used as the
initial work set W . score maps each abstract write pattern
to its score, which is initialized as λ ˆ̂w.0 (line 5).

At lines 6-11, the algorithm iteratively evaluates abstract
write patterns and generates offspring abstract write patterns
for the next iteration. At line 7, the algorithm evaluates the
abstract write patterns in W where EVALUATE(W, s, score)
returns a qualified concrete write pattern w′best produced
during the evaluation. If the newly produced concrete write
pattern w′best shows a better performance than the existing
best-performed one wbest (line 8), w′best becomes the best
concrete write pattern wbest (line 9). After evaluating W , the
algorithm generates new n different offspring abstract write
patterns for the next iteration (lines 10-11). The loop ends if
the age of the given training storage s spends all its lifespan
(Age(s) ≥ Lifespan(s)). Note that the loop is guaranteed
to be finished as the age of the storage s (e.g., Age(s))
monotonically increases whenever EVALUATE(W,S, score) is
invoked. The age of the storage s eventually reaches the
lifespan (Lifespan(s)). Then, the algorithm returns wbest

as a learned concrete write pattern.
EVALUATE in Algorithm 1 presents how abstract write

patterns in W = { ˆ̂w1, ˆ̂w2, . . . , ˆ̂wn} are evaluated. In lines 4-
9, the algorithm iteratively produces a concrete write pattern
from each abstract write pattern. ChooseConcrete chooses a
concrete write pattern belongs to the given abstract write
pattern ˆ̂w:

ChooseConcrete( ˆ̂w) ∈ γ( ˆ̂w).

At line 6, the score of each abstract write pattern ˆ̂wi is
measured by the fitness of the chosen belonging concrete write
pattern wi (i.e., Fitness(wi, s)). It updates wbest if the produced
concrete write pattern shows better performance (lines 7-10)
than the existing best-scored one. After the iterations, it returns

Fig. 3: How 2-point crossover [18] operation works.

the best concrete write pattern wbest , produced during the
iterations, and the score of it score.

GENERATEOFFSPRING presents how the learning procedure
generates n different offspring abstract write patterns from the
previously generated (parents) abstract write patterns. It first
chooses n

2 pairs of parent abstract write patterns with Choose-
Old (line 2) which chooses top-n qualified (e.g., elitism [19])
abstract write patterns as follows:

{ ˆ̂w | |{ ˆ̂w′ | score( ˆ̂w′) ≥ score( ˆ̂w)}| ≤ n}.

Then, it randomly combines the chosen qualified abstract
write patterns into n

2 pairs of parent abstract write patterns
{( ˆ̂w1, ˆ̂w′1), ( ˆ̂w2, ˆ̂w′2), . . . , ( ˆ̂wn

2
, ˆ̂w′n

2
)}. In lines 4-6, the algo-

rithm iteratively generates two offspring write patterns from a
pair of parent write patterns with CrossOver( ˆ̂wi, ˆ̂w′i). Figure 3
presents how CrossOver( ˆ̂wi, ˆ̂w′i) generates offsprings from the
two parents. It first randomly pick two addresses p1, p2 ∈ [1, l]
(p1 < p2) where l is the length of abstract write patterns.
Then, it swaps the abstract relative addresses between p1 and
p2 of the two parent abstract write patterns; the two changed
abstract write patterns become the new offspring abstract write
patterns. From the n

2 pairs of parent abstract write patterns, the
algorithm generates n new offspring abstract write patterns.

We use 2-point crossover to figure out and combine key
subpatterns. Suppose a subpattern 〈∆̂ai, ∆̂ai+1, . . . , ∆̂aj〉 of
an abstract relative write pattern ˆ̂w = 〈∆̂a1, . . . , ∆̂al〉 (1 ≤
i ≤ j ≤ l) is a key subpattern that makes the belonging
concrete write patterns (i.e., γ( ˆ̂w)) effective. Then, two points
p1 and p2 satisfying p1 ≤ i ∧ j ≤ p2 keep the key sub
pattern and produce a new abstract relative write pattern.
The produced write pattern, including the key subpattern,
will have a high score, and the algorithm will preserve such
key subpatterns. Eventually, the algorithm can combine such
suitable subpatterns into an ideal one.

IV. EVALUATION

In this section, we evaluate ARES. This section aims to
answer the following three research questions:
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Fig. 4: Performance comparison of the write patterns produced from ARES against the baselines developed by domain experts

• Effectiveness of ARES: Does ARES produce competi-
tive write patterns compared to the existing state-of-the-
art write patterns manually designed by experts in the
industry?

• Necessity of our abstraction schemes: Are our abstrac-
tions (relative write patterns and abstract relative write
patterns) necessary to generate qualified write patterns in
the learning?

• Learned write pattern: What are the learned abstract
relative write patterns? Can we get insight from them?

A. Effectiveness of ARES

Now, we experimentally demonstrate the effectiveness of
ARES by comparing the performance of the learned write
patterns, produced by ARES, against baselines.

Baseline concrete write patterns. As baselines, we use the
write patterns designed by test engineers in Samsung Elec-
tronics. Note that the baselines have been actually used in
Samsung for write endurance testing. As benchmarks, we use
32GB USB flash drive and 256GB micro SD card, which are
two popular types of flash-based storage devices in practice.

Settings. We implemented ARES on top of our write en-
durance test tool used in Samsung. In the write endurance
test, we directly propagate the concrete write patterns to the

flash-based storage through USB 3.0 ports without using file
systems to remove the effects of file systems in the endurance
test. Input storages are initialized as a full dirty state where
all the sectors are written with valid data, which is a standard
setting in write endurance test [3], [12]. All experiments were
done on Intel Core i7-8750H CPU and 16 GB RAM on
Windows 10. The learning took about 4 days for 32GB USB
flash drives and 15 days for 256GB micro SD cards. Note that
ARES is an offline approach, and we believe the learning cost
(e.g., 15 days) is reasonable as ARES automatically generates
write patterns without human effort.

In our evaluation, we consider the following two types of
write endurance test:

• Workload-based: It considers only the write patterns
belonging to enterprise endurance test workloads in
JESD219 [12]. It assumes the storage device will be
used for specific purposes, such as servers and data
centers. The workloads contain write patterns that likely
appear in the specific scenarios. ARES produced only
the write patterns that belong to JESD219 in the learning
procedure.

• Workload-free: It can use all the write patterns without
considering specific scenarios. ARES considers all the
write patterns in the learning procedure. Note that this



endurance test also has been actively used for testing
various storage devices in practice.

TABLE II: Performance comparison between write patterns
produced from ARES and the baselines.

Device workload-based workload-free

ARES Baseline ARES Baseline

32GB USB flash drive 159K 162K 47K 64K
256GB micro SD Card 2,718K 2,739K 251K 257K

Table II compares the performance of the write patterns
produced from ARES against the baselines. The number in
the table presents the amount of written data until the storage
s (32GB USB flash drive or 256GB micro SD Card) uses all
its lifespan (e.g., Age(s)/Lifespan(s) ≥ 1). In the workload-
free test for a 32GB USB flash drive, for example, the write
pattern produced from ARES made the storage retire after
the amount of written data exceeded about 47K unit bytes,
while the baseline write pattern made the storage retire after
64K unit bytes. For the metric, the lower is the better because
an effective write pattern makes the storage retire with small
amount of data write.

Results. Table II shows that ARES successfully generated
better write patterns than the baselines developed by do-
main experts. For all cases, the write patterns produced from
ARES shows better performance than the baselines. Especially
for the workload-free endurance test for the 32GB USB flash
drive, the write pattern produced by ARES is about 26%
(47k vs 64k) more effective than the baseline. ARES is
significantly more effective than the baselines for this case
because the search space is not limited to specific workloads
(user scenarios); ARES successfully found endurance-critical
write patterns that the domain experts missed.

Figure 4 presents how effectively the baselines and the
learned write patterns increase the age of the storages. In the
figures, the black and red lines correspond to the learned write
patterns and the baselines, respectively. The X-axis presents
the amount of written data during the endurance test, and Y-
axis presents how much lifespan is spent.

B. Necessity of Our Abstraction Schemes

Now, we demonstrate the necessity of our abstraction
schemes. Figure 5 shows our abstract relative write patterns
( ̂RelWritePattern) are essential for learning qualified wrtie
patterns (in 32GB USB flash drive workload-free). In Figure 5,
X-axis presents the learning progress, and Y-axis presents the
performance of the learned best write pattern. The red, orange,
and grey-colored lines present how the performance (fitness) of
the learned best write pattern (wbest in Algorithm 1) changes
over the learning process. In the figure, the red-colored line
corresponds to our approach that uses abstract relative write
patterns ( ̂RelWritePattern) in the learning procedure. Grey
and orange-colored lines present learning that uses relative
write patterns (RelWritePattern) and concrete write patterns
(WritePattern), respectively. The blue dotted line corresponds
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to the baseline (existing manually designed state-of-the-art
concrete write pattern).

As Figure 5 shows, only ARES with abstract relative write
pattern (red line) successfully learned a write pattern that
performs better than the baseline (blue dotted line). However,
learning without our abstract relative write patterns (orange
and grey lines) produced far less effective write patterns than
the baseline. It shows our abstract relative write patterns
effectively reduced the search space; the learning found a high-
quality write pattern.

C. Learned Write Patterns

Now, we discuss what the learned abstract write patterns
look like, and the insight obtained. Figure 6 presents distri-
butions of ∆̂a in the learned best scored (e.g., Score( ˆ̂w) in
Algorithm 1) abstract relative write patterns. For all cases, a
majority of ∆̂a in the best abstract relative write patterns are
in {13, 14, 15, 16, 17} or {28, 29, 30, 31, 32} where such ∆̂a
corresponds to ∆a > 16384 or ∆a ≤ −16384 in Table I. It
shows that qualified write patterns consist of many long (e.g.,
|∆a| ≥ 16384) jumps.
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From the observation, we manually designed a write pattern
that consists of only long jumps. Blue-colored line in Figure 7
presents the performance of the write pattern. As Figure 7
shows, however, the long jump write pattern (blue-colored) is
less effective than the baseline (red-colored). It implies that
the short jumps in the learned write pattern (black-colored)
also play important roles; various types of jumps should be
combined to become better than the baseline. As future work,
our next step will be to determine which combinations are
most crucial.

D. Effectiveness of Abstract Relative Write Patterns

We conducted an additional experiment to check whether
abstract relative patterns represent similar concrete write pat-
terns (e.g., {w | w ∈ γ( ˆ̂w)}) that show similar performance
(i.e., Fitness(s, w)) in the endurance test. We generate four
abstract relative write patterns ˆ̂wa, ˆ̂wb, ˆ̂wc, and ˆ̂wd. For each
abstract relative write pattern, we randomly produced ten
belonging concrete write patterns (e.g., {w1

a, w
2
a, . . . , , w

10
a } ⊆

γ( ˆ̂wa)). Then, we compare the performance of the belonging
concrete write patterns to check whether they show similar per-
formance. Figure 8 show the performance of the concrete write
patterns. The x-axis presents the performance (Fitness(s, w)).
The blue, orange, green, and red-colored dots present concrete
write patterns belong to ˆ̂wa, ˆ̂wb, ˆ̂wc, and ˆ̂wd, respectively.
As Figure 8 shows, the four abstract relative write patterns
are qualified abstractions that the belonging concrete write
patterns show similar performance. For example, the standard
deviation of the blue, orange, green, red dots are 3e − 5,
5e − 5, 1e − 4, and 3e − 5, respectively. It shows that
the abstraction scheme is well-designed; our abstract relative
write patterns effectively reduced the search space without
significantly losing a chance of finding good concrete write
patterns.

V. RELATED WORKS

In this section, we discuss prior works related to ARES. To
our knowledge, writing endurance tests for flash-based storage
have been conducted manually not only in Samsung but also
in other companies, and therefore ARES represents the first
attempt to automate the process in an industry context.

Industry standard for write endurance test. In our evaluation,
ARES is evaluated under workload-based, which belongs to
industry standard, and workload-free. JEDEC (Joint Electron
Device Engineering Council), a semiconductor engineering
trade organization and standardization organization, presents
JESD218 and JESD219 as write endurance test standards
for flash-based storages. JESD218 [3] describes the write
endurance requirements and test methods, and JESD219 [12]
specifies the workload characteristics to be considered in the
endurance test. JEDEC standards are widely used in represen-
tative manufacturers such as Samsung Electronics, SK Hynix,
Micron Technology, Western Digital Technologies, and Kioxia
Corporation. The standard, however, is designed to test SSD;
the standard is inappropriate for flash-based storages such as
USB flash drives. Further, JESD219 describes workloads for
only two applications: enterprise and client. Note that the
applications of flash-based storage are not limited to these
two cases. The usage of flash-based storage is constantly
expanding. For example, machine learning processes [20],
[21] use flash-based storage devices. The storages also need
to be tested under workload-free that does not have specific
user scenarios, and our evaluation shows that ARES is very
effective in this case (e.g., Figure 4a).

Learning inputs for software testing. Machine learning tech-
niques have been used for generating qualified inputs for
testing. Like ARES, GA-Prof [22] uses genetic algorithms to
find test inputs that maximize the elapsed execution time of the
Application Under Test(AUT). SMARTEST [23] learns lan-
guage models that guide symbolic execution to effectively find
vulnerable inputs (transaction sequences) for smart contracts.
QBE [24] uses reinforcement learning to effectively explore
test inputs (GUI actions) for Android GUI testing to detect
crashes. iPerfXRL [25] uses deep reinforcement learning to
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identify test inputs for revealing performance bottlenecks of
software systems. To our best knowledge, ARES is the first
approach to learn test inputs for write endurance testing.

VI. LIMITATION AND FUTURE WORK

Currently, our algorithm learns write patterns with single
storage; the learning is limited to the lifespan of the given
storage. Distributed learning [26] using multiple storages can
learn better write patterns. For example, we can apply master-
slave model [27] described in Figure 9 that uses four storages.
As it learns write patterns until the four storages retire, the
algorithm enumerates (e.g., three times) more write patterns
in the learning. Further, evaluating write patterns can be done
in parallel; the learning time will be similar.

VII. CONCLUSION

In this paper, we presented ARES for automatically gener-
ating worse-case write patterns for endurance test of flash-
based storage devices. Our approach uses abstract relative
write patterns for reducing the search space and exploit
their properties to produce concrete write patterns via genetic
algorithm. Experimental results confirm that the learned write
patterns show better performance than the existing state-of-
the art write patterns manually designed by test engineers in
Samsung Electronics.
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