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Abstract

Type annotations improve Python code quality by enabling better
readability, static analysis, and developer productivity. However,
manually annotating existing code is labor-intensive and error-
prone. While recent learning-based models have advanced auto-
matic type inference, they struggle with rare or complex types that
are underrepresented in training data.

We present TypeCare, a model-agnostic post-processing tech-
nique that refines the outputs of existing type inference models
using code context, without requiring retraining or fine-tuning.
TypeCare combines two key components: (1) Re-Ranking, which
prioritizes semantically and syntactically relevant types, and (2)
Augmentation, which generates additional contextually plausible
candidates. Applied to three state-of-the-art type inferencemodels—
TypeT5, Tiger, and TypeGen—TypeCare consistently improves
top-1 accuracy, achieving up to 40.1% gains on complex types that
existing models often fail to predict correctly.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging.
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1 Introduction

Python is one of the most widely used programming languages
in the world, and its popularity is growing rapidly [6]. While its
dynamic typing system allows developers to write code quickly, it
often impedes maintenance, debugging, and analyzing codebases.
To alleviate these issues, the Python community has adopted grad-
ual typing [27] through type annotations, enabling developers to
progressively add type information to their codebases. The type
annotations unlock a variety of benefits, such as improved code
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1 class DocStore:

2 def read(self, doc_id):

3 if condition:

4 return doc_id

5 return -1

6
7 class Project:

8 def __init__(self):

9 self.doc = DocStore()

10
11 def get(self, project_id: <FILL_IN>):

12 doc = self.doc.read(project_id)

13 return doc + 1

Model Output

1. str ✗

2. int ✓

3. Union[int, str] ✗

Figure 1: An example where the goal is to predict the type of

project_id at line 11. The correct type is int, but Tiger [28]

predicts str as the top-1 candidate.

readability, better static analysis, and enhanced developer produc-
tivity. However, adding type annotations to existing codebases is
a time-consuming and error-prone task [19]. This challenge has
motivated a growing body of research aimed at automating the
type annotation process [4, 5, 20, 21, 28–30].

Existing Approaches. To automatically annotate types, prior re-
search has evolved along two main directions. Early works relied on
rule-based models that aimed to infer types by carefully designing
heuristic rules [7–9, 14, 15, 23]. However, these methods struggled
to achieve broad coverage due to the dynamic and diverse nature of
Python code. Recent research has shifted towards learning-based
models that leverage machine learning techniques to predict types
based on the context of the code [1, 11, 17, 20–22, 28, 30, 32].

Early works to learning-based type annotation focused on deep
similarity models calculating probabilities of types in a program
[1, 17, 20]. Recent works have further advanced this field by lever-
aging language models [21, 28, 30]. TypeT5 [30] enriches the model
input, i.e., code snippets used for type prediction, with caller-callee
relationships using sequence-to-sequence learning on top of a fine-
tuned CodeT5model. TypeGen [21] introduces a Chain-of-Thought
prompting technique that guides the LLM’s reasoning process for
type inference based on a type dependency graph. Tiger [28] inte-
grates a fine-tuned language model with a deep similarity model
to reason about types beyond the input context provided to the
model.

Limitation. Despite their advancements, these state-of-the-art
models share a common limitation: they struggle to make accurate
predictions for rare or unseen types that are underrepresented in
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Figure 2: The number of annotations for project_id in the

dataset used to train Tiger [28].

the training or fine-tuning data. While they excel at predicting sta-
tistically common types like int or str (with an average accuracy of
∼86%), their performance drops significantly for data-dependent pa-
rameterized types such as List[Dict[str, int]] (∼30%) or program-
specific user-defined types (∼54%). Furthermore, this difficulty ex-
tends even to simple types when they appear in statistically infre-
quent usage patterns from the training data.

The example in Figure 1 illustrates this problem. The correct type
for project_id at line 11 is int since it is passed to the DocStore.read
method at line 12, which returns an int value. However, Tiger [28],
a state-of-the-art model, incorrectly infers the type of project_id
at line 11 as str. To understand this failure, we examined how
project_id is annotated in the training dataset used for Tiger. As
shown in Figure 2, we found that project_id is annotated as str in
approximately 90% of the cases, suggesting that the model is biased
towards predicting str for this variable.

This Work. To address this limitation, we present TypeCare, a
new technique for improving the performance of type inference
models for Python. TypeCare is a model-agnostic, post-processing
method that refines the outputs of existing models using code con-
text information, without requiring any retraining or fine-tuning.
We propose two key components for refinement: (1) Re-Ranking,
which leverages semantic and syntactic information to prioritize
more plausible types, and (2) Augmentation, which generates
new candidate types that are likely to be correct based on code
context. First, TypeCare re-ranks the model output, i.e., a ranked
list of candidate types, by leveraging type validity and code usage
patterns observed across the project, promoting correct types to
the top. Second, to maximize the effectiveness of the re-ranking
step, TypeCare augments uncertain predictions with additional
contextually plausible type candidates.

We evaluated TypeCare by applying it to three state-of-the-art
type inference models: TypeT5 [30], Tiger [28], and TypeGen [21].
The results show that TypeCare consistently improves top-1 accu-
racy across all models and settings. In single-variable prediction
tasks, TypeCare increased the top-1 accuracy of TypeT5, Tiger, and
TypeGen from 71.4%, 67.8%, and 65.4% to 81.1%, 75.8%, and 73.6%,
respectively. The improvements were especially significant for com-
plex types, such as parameterized and user-defined types, where
TypeCare improved the baseline models by up to 40.1%. Moreover,
in the challenging task of function signature prediction, TypeCare
increased the top-1 accuracy of TypeT5 from 59.1% to 74.5%.

Contributions. In summary, our contributions are as follows:

1 class A:

2 text: Union[str, bytes]

3
4 def ident(self, i_value: str):

5 validate(i_value[1:])

6 msg = self.text + i_value

7
8 def data(self, d_value: bytes):

9 d = d_value.decode('utf-8')

10 return d

11
12 def scope(self, s_value: <FILL_IN>):

13 validate(s_value[1:])

14 msg = self.text + s_value

Model Output

1. s_value: bytes ✗

2. s_value: int ✗

3. s_value: str ✓

Figure 3: A simplified examplewhere the goal is to predict the

type of s_value at line 12. The correct type is str, but the recent

model, Tiger [28], predicts bytes as the top-1 candidate.

• We propose a novel refinement approach, TypeCare, that
enhances type prediction models by re-ranking and aug-
menting model outputs using code context information.
By requiring no model retraining, TypeCare offers a light-
weight and practical solution for improving Python type
inference models.
• We prove the effectiveness of our approach in real-world
settings. We show that TypeCare substantially improves top-
1 accuracy of existing models, with up to a 40.1% gain on
complex, parameterized and user-defined types.
We also demonstrate the robustness of our approach through
diverse evaluation settings and ablation studies.

2 Overview

In this section, we illustrate the high-level ideas of our approach
using examples.

Type Prediction Problem. In this paper, we consider the cloze-
style type prediction problem for annotating Python function sig-
natures, a problem setting that has been widely adopted in recent
studies [4, 5, 28–30]. Listing 1 illustrates an example, where the
<FILL_IN> placeholders indicate the positions in the function signa-
ture to be predicted. Given such input, the goal of a type inference
model is to infer the appropriate types for x, y, and the return value.

Listing 1: An example of the type prediction problem

1 def add(x: <FILL_IN>, y: <FILL_IN>) -> <FILL_IN>:

2 return x + y

However, state-of-the-art type inference models [21, 28, 30] of-
ten fail to predict complex or project-specific types that occur in-
frequently in the training data. To overcome this limitation, we
introduce TypeCare, a post-processing technique that leverages
code context to refine model predictions. Our approach consists
of two main components: (1) Re-ranking the model’s outputs to
prioritize the correct type, and (2) Augmenting the model outputs
with additional, contextually plausible types.
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2.1 Code Context-based Re-Ranking

The goal of the re-ranking step is to improve the model outputs
by promoting the correct types based on the surrounding code
context. To this end, we propose a scoring method that combines
semantic signals derived from static type checkers and syntactic
signals obtained from code usage patterns.

2.1.1 Re-ranking with Type Validity. Re-ranking based on type va-
lidity can significantly enhance type prediction performance. When
type-checking the example in Figure 3, annotating the project_id

parameter with str triggers a type error alarm at line 13 because the
variable doc can be str type, while int does not raise any type error
alarm, which can be a signal that str is a more plausible type than
int. Prior approaches have also utilized type validity by filtering
out candidate types that trigger type errors [20, 22]. However, we
observed that this conventional filtering strategy can inadvertently
degrade the performance of type inference models.

For example, consider Figure 3, where the goal is to infer the
type of s_value at line 12, which should correctly be annotated as
str. Unfortunately, if we insert str into the placeholder <FILL_IN>
and perform static type analysis, a type error alarm is raised at
line 14 because self.text can be either str or bytes (line 2), and
concatenating a bytes object with a str object is invalid. Conse-
quently, according to the existing filtering strategy, the correct type
str would incorrectly be excluded from consideration.

Relatively Better Type Validity. This observation led us to
conclude that rather than simply checking whether a candidate
type raises an alarm, we should assess how favorable the type is
relative to other candidates. Consider the int type in Figure 3. If int
is inserted into the <FILL_IN> placeholder, an additional type error is
raised at line 13 as int is not subscriptable (s_value[1:]). In contrast,
inserting str does not raise this particular error. Thus, among the
model’s outputs, str is relatively better than int, allowing us to
re-rank str higher.

2.1.2 Re-ranking with Code Usage Pattern. However, we found
that type correctness alone is insufficient to effectively re-rank the
model outputs. For instance, when the bytes type is assigned to the
s_value parameter in Figure 3, it triggers the same type error as the
str type. As a result, the bytes type is not penalized relative to the
str type, even though only the latter is correct.

To address this limitation, we incorporate syntactic informa-
tion to further enhance the effectiveness of refinement. The key
insight is that variables with similar code usage patterns are more
likely to share the same type. Let us consider the ident method
at line 4 and the data method at line 8 in Figure 3. The parame-
ter i_value in ident is used in a manner similar to the parameter
i_value in ident (e.g., i_value[1:] and self.text + i_value). In
contrast, the parameter d_value in data exhibits a distinct usage
pattern (d_value.decode('utf-8')). Based on this observation, we
infer that the parameter s_value is more likely to have the same
type as i_value. Accordingly, we re-rank the str type as the top-1
candidate type for the s_value parameter.

Type Similarity Model. To this end, we propose a type sim-
ilarity model to estimate the likelihood that two variables have
the same type based on their code usage patterns. Specifically, the

1 def make_identifier(

2 session: <FILL_IN>,

3 name: <FILL_IN>

4 ):

5 with session.cursor() as c:

6 c.execute(...)

7
8 def fetch_identifier(

9 d_session: DatabaseSession

10 ):

11 with session.cursor() as c:

12 c.execute(...)

Model Output

1. session: Session ✗

name: str ✓

2. session: dict ✗

name: str ✓

3. session: list ✗

name: str ✓

Figure 4: An example where the goal is to predict the types

of session (line 2) and name (line 3). The correct types are

DatabaseSession and str, but the recent model, TypeT5 [30],

fails to predict the correct type for variable session.

model estimates how closely the target variable resembles other
variables in terms of syntactic features. For example, in Figure 3, we
compute the similarity scores for the pairs (s_value, i_value) and
(s_value, d_value). If the score for (s_value, i_value) is higher
than that for (s_value, d_value), we conclude that s_value is more
likely to have the same type as i_value. In this case, it suggests the
type of s_value is more likely to be str rather than bytes.

To achieve this, we train a model to predict a similarity score
that indicates the likelihood that two variables have the same type,
based on their code usage patterns. We categorize the syntactic
usage pattern into four representative types: (1) class similarity, (2)
function similarity, (3) variable similarity, and (4) usage similarity.
From these categories, we extract 24 features and use them to train
the scoring model (see Table 1 for the full list of features). Using
these syntactic features, the model correctly predicts that s_value
is more likely to have type str rather than bytes, as its AST-based
usage pattern is more similar to that of i_value than d_value.

2.2 Code Context-based Augmentation

In the previous section, we introduced a re-ranking approach to
score the relative quality of the model outputs based on code con-
text. This naturally raises the question: can the effectiveness of
re-ranking be further amplified by improving the quality of the
candidate types?

For instance, Figure 4 presents a case where the model should
predict the correct types of both session and name at lines 2 and 3,
which are DatabaseSession and str, respectively. While the model
(TypeT5) correctly infers the type of name, it fails to predict the cor-
rect type for session. This is largely due to DatabaseSession being
a user-defined, project-specific type, which poses a challenge for
the model to predict. However, if the candidate answers include the
correct pair (session: DatabaseSession, name: str), our re-ranking
algorithm can prioritize the correct type as the top-1 prediction.
Other candidates are penalized by the type validity check because
they do not support the cursor attribute accessed at line 5, whereas
the DatabaseSession type does not raise any alarms. This observa-
tion motivated us to explore how to augment the candidate set with
such likely types to further improve model performance.



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Wonseok Oh and Hakjoo Oh

Extract
Uncertain Parameter

Code Context-based
Augmentation

Generate 
Additional Answers

Type
Inference

Model

Input

1. x: str,    y: int
2. x: float, y: int
3. x: bool, y: int

x is
uncertain!

Type Validity

Type 
Similarity

Model

1. x: str,    y: int
2. x: float, y: int
3. x: bool, y: int
4. x: int,    y: int

1. x: str,    y: int
2. x: float, y: int
3. x: bool, y: int
4. x: int,    y: int

0.66
0.56
0.65
0.94

1. x: str,    y: int
2. x: float, y: int
3. x: bool, y: int
4. x: int,    y: int

Bad
Good
Bad
Good 1. x: int,    y: int

2. x: float, y: int
3. x: bool, y: int
4. x: str,    y: int 

Output
Re-

Ranking

Code Context-based
Re-Ranking

Target Function
add(x: <FILL_IN>, y: <FILL_IN>)

Program
Generate
x: int, y: int

Figure 5: The overall workflow of our approach.

Type Augmentation for Uncertain Variables. Interestingly,
we found that the model tends to produce a more diverse set of
type candidates when it is uncertain about a variable’s type. For
instance, in Figure 4, themodel outputs three candidates for session:
Session, dict, and list. On the other hand, the model outputs
a single candidate for name: str. This suggests that the model is
confident in its prediction for name, but uncertain about the type of
session.

Based on this observation, we proposemeasuring the uncertainty
in the model’s predictions and introducing new type candidates
when the uncertainty is high. In Figure 4, the model exhibits high
uncertainty for session, as it outputs multiple candidates across all
predictions. In contrast, the uncertainty of name is low because the
model consistently predicts a single candidate.

To generate new type candidates for variables with high un-
certainty, we leverage code usage patterns. For instance, to iden-
tify candidate types for session, we search the codebase for other
variables and their associated types. In Figure 4, we identify the
parameter d_session at line 9, which is annotated with the type
DatabaseSession.We then compute a similarity score between session

and d_session using the trained model in Section 2.1.2. If the score
is sufficiently high, we treat the type of d_session as a candidate
type for session. This leads to the synthesis of a new candidate
(session: DatabaseSession, name: str), which is added to the can-
didate set. Finally, we apply our re-ranking procedure to evaluate
whether this augmented candidate should be prioritized. As a re-
sult, the new candidate (session: DatabaseSession, name: str) is
re-ranked as the top-1 prediction.

2.3 Overall Workflow

Figure 5 shows the overall workflow of our approach. The input
to TypeCare is a Python function signature containing <FILL_IN>

placeholders, along with candidate answers produced by a type
prediction model. The pipeline consists of the following steps: (1)
identify uncertain parameters and augment the candidate set with
additional answers (Section 2.2), (2) compute type validity and
syntactic similarity scores for all candidate answers (Section 2.1),
(3) re-rank the candidate answers based on these scores. Finally,
TypeCare returns the refined, re-ranked type predictions.

3 Algorithm

In this section, we describe the algorithm of TypeCare in detail.

Preliminaries. We denote types as 𝑡 ∈ Type and parameters as
𝑝 ∈ Var . Next, we represent a sequence of types as ®𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑛)
and a sequence of parameters as ®𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑛), where ®𝑡 (𝑛)
and ®𝑝 (𝑛) denote the 𝑛-th type and parameter in the sequence, re-
spectively. For simplicity, we assume that the parameter sequence
includes the return variable ret as the final element. For example,
given the function signature foo(x: int, y: str) -> float, we de-
fine ®𝑝 = (𝑥,𝑦, ret) and ®𝑡 = (int, str, float).

Problem Definition. We define a program 𝑃 ∈ Program as a
sequence of function declarations, denoted by 𝐹 . For simplicity, we
represent each function declaration as a tuple (𝑓 , ®𝑝), where 𝑓 is the
function name and ®𝑝 is the sequence of its parameters. We denote
by 𝑓 # the target function to be annotated, and by ®𝑝# its parameter
sequence. Given a target signature 𝜃 # = (𝑓 #, ®𝑝#) ∈ Signature, our
goal is to infer its type signature ®𝑡 ∈ Type∗, where ®𝑡 is a sequence
of types such that each ®𝑡 (𝑖) corresponds to the type of ®𝑝# (𝑖).

We denote a type inference model as a function

M : Program × AnnotMap × Signature × N→ ModelOutput

A type-annotation map, Γ ∈ AnnotMap = Func × Var → Type,
denotes the type annotations in program 𝑃 , where Γ(𝑓 , 𝑝) denotes
the annotated type of parameter 𝑝 in function 𝑓 . Given a program
𝑃 , an annotation map Γ, a target signature 𝜃 #, and an integer 𝑘 , the
modelM predicts 𝑘 candidate type signatures for 𝜃 #, that is,

M(𝑃, Γ, 𝜃 #, 𝑘) = Δ,

where Δ ∈ N→ Type∗ and Δ(𝑛) denotes the 𝑛-th candidate type
sequence.

Example 3.1. Let us consider the function that adds two numbers:

1 def add(x: <FILL_IN>, y: <FILL_IN>) -> <FILL_IN>:

2 return x + y

Our goal is to predict the type signature of the function add. The
target signature is defined as 𝜃 # = (𝑎𝑑𝑑, (𝑥,𝑦, ret)). Given the en-
closing program 𝑃 and annotation map Γ, the modelM(𝑃, Γ, 𝜃 #, 𝑘)
predicts 𝑘 candidate type signatures for 𝜃 #, denoted as Δ. As an
example, when 𝑘 = 5, the model output Δ is as follows:

Δ =


1 ↦→ [int, int, int]
2 ↦→ [float, int, float]
3 ↦→ [int, float, float]
4 ↦→ [float, float, float]
5 ↦→ [str, str, str ]


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Goal. Our goal is to refine the model outputs Δ =M(𝑃, Γ, 𝜃 #, 𝑘)
for target signature 𝜃 #, which we denote using function Refine:

Refine(𝑃, Γ,Δ, 𝜃 #)

where we set the hyperparameter 𝑘 to 10 in our experiments. The
refinement function Refine consists of two components: re-ranking
and augmentation:

Refine(𝑃, Γ,Δ, 𝜃 #) = ReRank(𝑃, Γ,Δ+, 𝜃 #)
where Δ+ = Augment (𝑃, Γ,Δ, 𝜃 #,𝑚)

Here, the hyperparameter 𝑚 specifies the number of additional
candidates to be augmented, and we set𝑚 = 3 in our experiments.
We describe the details of re-ranking (ReRank) and augmentation
(Augment) components in the following sections.

3.1 Re-Ranking

We re-rank the candidate types predicted by the type inference
model using a scoring function that considers type validity and
code usage patterns. We define the re-ranking function ReRank as
follows:

ReRank(𝑃, Γ,Δ, 𝜃 #) = Topk (Sort(𝑆))
where

𝑆 = {(Δ(𝑖), Score(𝑃, Γ, 𝜃 #,Δ(𝑖), 𝑖)) | 1 ≤ 𝑖 ≤ |Δ|}.

Here, Sort(𝑆) returns the sequence sorted by score in descending
order, and Top𝑘 selects the top-𝑘 candidates from that sequence.
The sorting function Sort is defined as:

Sort(𝑆) = [𝑥1, 𝑥2, . . . , 𝑥𝑛]
where 𝑆 = {(𝑥1, 𝑠1), . . . , (𝑥𝑛, 𝑠𝑛)} and 𝑠𝑖 ≥ 𝑠 𝑗 if 𝑖 < 𝑗

If the score 𝑠𝑖 is a tuple, elements are sorted in lexicographic order.
The function Score returns a tuple of scores for a candidate type

signature ®𝑡 , incorporating type validity, code usage patterns, and
the original model rank 𝑖:

Score(𝑃, Γ, 𝜃 #, ®𝑡, 𝑖) = (ScoreTyp(𝑃, Γ, 𝜃 #, ®𝑡), ScorePat (𝑃, Γ, 𝜃 #, ®𝑡), 𝑖)

where ScoreTyp estimates the relative quality of ®𝑡 using static type
analysis, while ScorePat measures the similarity of ®𝑡 to usage pat-
terns observed in the code.

3.1.1 Type Validity. We utilize static type analysis to assess the
validity of candidate types. As discussed in Section 2.1.1, instead of
simply filtering candidates based on whether they raise alarms, we
evaluate the relative quality of each type. To this end, we count the
number of new alarms introduced by each candidate type compared
to the original program.

We assume a static type checker Static : Program×AnnotMap→
Alarms that reports a set of type errors (alarms) for a given program
and its annotations. To measure the impact of a candidate type
sequence ®𝑡 for the target signature (𝑓 #, ®𝑝#), we compute the number
of new alarms introduced by updating the original annotations as
follows:

ScoreTyp(𝑃, Γ, (𝑓 #, ®𝑝#), ®𝑡) = |Static(𝑃, Γ′) \ Static(𝑃, Γ) |

where
Γ′ = Γ ⊕ {(𝑓 #, ®𝑝# (𝑖)) ↦→ ®𝑡 (𝑖) | 1 ≤ 𝑖 ≤ | ®𝑝# |}

and ⊕ denotes an update to the annotation map. In other words,
we construct Γ′ by assigning the candidate type ®𝑡 (𝑖) to the 𝑖-th
parameter in the target signature, and then apply static type analysis
to the updated annotation.

3.1.2 Code Usage Pattern. Our objective is to compute a score
that measures how well a candidate signature type ®𝑡 fits the target
signature 𝜃 #, based on code usage patterns in the program 𝑃 . To do
so, we evaluate the suitability of each type in ®𝑡 for its corresponding
parameter and sum these scores to produce the final score:

ScorePat (𝑃, Γ, (𝑓 #, ®𝑝#), ®𝑡) =
| ®𝑝# |∑︁
𝑖=1

SimScore(𝑃, Γ, 𝑓 #, ®𝑝# (𝑖), ®𝑡 (𝑖))

The function SimScore computes the likelihood that the parameter
®𝑝# (𝑖) has the type ®𝑡 (𝑖) by leveraging a type similarity model R :
(Func × Var) × (Func × Var) → R defined as follows:

SimScore(𝑃, Γ, 𝑓 #, 𝑝#, 𝑡) = max
(𝑓 ,𝑝 ) ∈Cand (𝑃,Γ,𝑓 #,𝑡 )

R(Φ)

where Φ = FeatureVec((𝑓 #, 𝑝#), (𝑓 , 𝑝))

We collect other parameters in the program 𝑃 that are annotated
with the same type 𝑡 , and return the maximum similarity score
among them. We select such parameters from the candidate set
Cand (𝑃, Γ, 𝑓 #, 𝑡), which contain all parameters in the program 𝑃

annotated with type 𝑡 as follows:

Cand (𝑃, Γ, 𝑓 #, 𝑡) = {(𝑓 , 𝑝) | (𝑓 , ®𝑝) ∈ 𝑃, 𝑝 ∈ ®𝑝, 𝑓 ≠ 𝑓 #, 𝑡 = Γ(𝑓 , 𝑝)}

In short, we compare the target parameter 𝑝# with other parameters
of the same type, take the maximum similarity score for each, and
use the sum of such maximum scores as the final score. In the
following, we explain the details of how the model R and feature
vector Φ are designed.

Features. The function FeatureVec : (Func × Var) × (Func ×
Var) → FeatureVector returns a feature vector Φ that captures
the syntactic similarity between two parameters. We designed 24
features that capture code usage patterns focused on simplicity and
generality. Table 1 lists the features used in our model. Rather than
describing each feature in detail, we highlight the most important
ones below.
• Name Similarity (#4-6, #9-11, #16-18): We compute the
name similarity using multiple string metrics: Levenshtein
and Jaro-Winkler distance [10, 13, 31]. We use the Leven-
shtein distance [13] to measure overall character-level sim-
ilarity, and the (Reversed) Jaro-Winkler [10, 31] similarity
to capture prefix or suffix-level similarity. These metrics are
complementary and together provide a robust measure of
name similarity.
• AST Similarity (#20-24): We define the usage context of a
parameter as the set of AST nodes in which the parameter is
used. We collect all expressions and statements that use the
given parameter and compute the similarity between their
usage contexts. Cosine similarity over the sets of AST nodes
is used as the primary metric. Additionally, we compute a
usage context ratio, which is the proportion of each parame-
ter’s usage context relative to the combined context of both
parameters.
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Table 1: Features for the type similarity model.

Kind # Description

File #1 If 𝑓1 and 𝑓2 are defined in the same file

Class

#2 If 𝑓1 is defined within a class
#3 If 𝑓2 is defined within a class
#4 Levenshtein distance of class names
#5 Jaro-Winkler distance of class names
#6 Reversed Jaro-Winkler distance of class names

Func

#7 If the name of 𝑓1 contains the name of 𝑓2
#8 If the name of 𝑓2 contains the name of 𝑓1
#9 Levenshtein distance of 𝑓1 and 𝑓2
#10 Jaro-Winkler distance of 𝑓1 and 𝑓2
#11 Reversed Jaro-Winkler distance of 𝑓1 and 𝑓2
#12 The similarity of decorators between 𝑓1 and 𝑓2
#13 The number of parameters in 𝑓1
#14 The number of parameters in 𝑓2
#15 If parameters of 𝑓1 and 𝑓2 are the same

Param

#16 Levenshtein distance of 𝑝1 and 𝑝2
#17 Jaro-Winkler distance of 𝑝1 and 𝑝2
#18 Reversed Jaro-Winkler distance of 𝑝1 and 𝑝2
#19 If one name is the plural form of the other
#20 The similarity between their usage contexts
#21 The number of usage contexts for 𝑝1
#22 The number of usage contexts for 𝑝2
#23 The usage context ratio of 𝑝1
#24 The usage context ratio of 𝑝2

We define the feature vector Φ as (𝜙1, 𝜙2, . . . , 𝜙24) where feature 𝜙𝑖
denotes the value of the 𝑖-th feature in Table 1.

Training the Model R with Selected Data. Given a training
program 𝑃𝑡 , we construct a dataset to train the model R. Each data
point is a tuple (Φ, 𝑙) where 𝑙 ∈ {0, 1} indicates whether the two
parameters represented by the feature vector Φ share the same type
in the training program:⋃
(𝑓1,𝑝1 ),(𝑓2,𝑝2 ) ∈Ω×Ω

{(Φ, Γ(𝑓1, 𝑝1) = Γ(𝑓2, 𝑝2)) | 𝑓1 ≠ 𝑓2,Const (Φ)}

where Φ is the feature vector FeatureVec((𝑓1, 𝑝1), (𝑓2, 𝑝2)) and Ω is
set of a function and its corresponding parameters {(𝑓 , 𝑝) | (𝑓 , ®𝑝) ∈
𝑃𝑡 , 𝑝 ∈ ®𝑝}. It is important to note that instead of using all data, we
apply a filtering condition Const (Φ) to improve training quality by
excluding noisy pairs in the training data. Without this filtering,
even unrelated parameters with the same type would be labeled
1, making it harder for the model to learn meaningful similarities.
Our key insight is to include only parameter pairs that are likely
to be semantically related, based on name or usage similarity. The
filtering condition Const (Φ) is defined as follows:

Const ((𝜙1, 𝜙2, . . . , 𝜙24)) = (𝜙16 > 𝛼 ∧ (𝜙17 > 𝛽 ∨ 𝜙18 > 𝛽)) ∨ 𝜙20 > 𝛾

which means that the data is selected if either of the following
conditions is satisfied: (1) their names are sufficiently similar, or (2)
their usage contexts are sufficiently similar. We set the thresholds
as 𝛼 = 0.9, 𝛽 = 0.9 and 𝛾 = 0.5 in our experiments.

Algorithm 1 MakeCands

Require: A program 𝑃 , an annotation map Γ, a model output Δ,
a target signature 𝜃 # = (𝑓 #, ®𝑝#), and the number of additional
augmented candidates𝑚.

Ensure: A sequence of augmented candidate types A
1: Λ← ParamTypes(Δ, 𝑓 #, ®𝑝#)
2: P← Uncertain(𝑃, Γ, 𝑓 #, ®𝑝#,Λ)
3: A← []
4: for 1 ≤ 𝑗 ≤𝑚 do

5: T𝑗 ← []
6: for 1 ≤ 𝑖 ≤ | ®𝑝# | do
7: if ®𝑝# (𝑖) ∈ P then

8: [𝑡1, 𝑡2, . . . , 𝑡𝑚] ← CandTypes(𝑃, Γ, 𝑓 #, ®𝑝# (𝑖))
9: T𝑗 ← T𝑗 ∥ 𝑡 𝑗
10: else

11: [𝑡1, 𝑡2, . . . , 𝑡𝑘 ] ← Δ(1)
12: T𝑗 ← T𝑗 ∥ 𝑡 𝑗
13: A← A ∥ T𝑗

3.2 Augmentation

To enhance the effectiveness of the re-ranking step, we augment
the model outputs with additional candidate types. We define the
function Augment (𝑃, Γ,Δ, 𝜃 #,𝑚), which adds𝑚 new additional can-
didates to the original model outputs Δ:

Augment (𝑃, Γ,Δ, 𝜃 #,𝑚) = Δ ⊕ {(|Δ| + 𝑗) ↦→ T𝑗 | 1 ≤ 𝑗 ≤𝑚}
where [T1,T2, . . . ,T𝑚] =MakeCands(𝑃, Γ,Δ, 𝜃 #,𝑚)

where MakeCands generates𝑚 additional candidates T𝑗 ∈ Type∗

(1 ≤ 𝑗 ≤ 𝑚) for the target signature 𝜃 #. These new candidates
are appended to the end of the original output list Δ. Algorithm 1
describes the complete procedure.

Uncertain Parameters. We generate additional candidates by
focusing on the parts of the signature where the model is uncertain.
Our goal is to identify uncertain parameters and augment them
with contextually plausible types.

As a first step, we construct Λ that associates each parameter
with a multiset of its predicted types across all candidates (line 1):

ParamTypes(Δ, 𝑓 #, ®𝑝#) = {®𝑝# (𝑖) ↦→ J®𝑡 (𝑖) | ®𝑡 ∈ ΔK | 1 ≤ 𝑖 ≤ | ®𝑝# |}

where J®𝑡 (𝑖) | ®𝑡 ∈ ΔK denotes the multiset of type predictions for the
𝑖-th parameter ®𝑝# (𝑖). Next, we identify the uncertain parameters
by computing the Shannon entropy [26] of the type multiset Λ[𝑝]
for each parameter 𝑝 ∈ ®𝑝# (line 2):

Uncertain(𝑃, Γ, 𝑓 #, ®𝑝#,Λ) = {𝑝 ∈ ®𝑝# | 𝐻n (TypeProb(Λ[𝑝])) > 𝜈}

where TypeProb(Λ[𝑝]) returns a probability distribution of types
for the given multiset Λ[𝑝] and 𝐻n computes the normalized Shan-
non entropy. The hyperparameter 𝜈 controls the threshold for de-
tecting uncertainty, and we set 𝜈 = 0.6 in our experiments.

Example 3.2. For instance, in Example 3.1, the type multiset for
the parameter 𝑥 is Λ[𝑥] = Jint, float, int, float, strK. The
corresponding type probability distribution is then computed as
TypeProb(Λ[𝑥]) = { 25 ,

2
5 ,

1
5 } for {int, float, str}.
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Algorithm 2 Final Algorithm
Require: A program 𝑃 , an annotation map Γ, a target signature

𝜃 #, a type inference modelM, and hyperparameters 𝑘 and𝑚.
Ensure: Re-ranked candidate types Δ∗

𝑘

1: Δ←M(𝑃, Γ, 𝜃 #, 𝑘)
2: Δ+ ← Augment (𝑃, Γ,Δ, 𝜃 #,𝑚) ⊲ Section 3.2
3: Δ++ ← ReRanking(𝑃, Γ,Δ+, 𝜃 #) ⊲ Section 3.1
4: return Δ++

We compute the normalized Shannon entropy of the type proba-
bility distribution 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞 |𝑄 | } as follows:

𝐻n (𝑄) = −
1

log2 ( |𝑄 |)

|𝑄 |∑︁
𝑖=1

𝑞𝑖 log2 (𝑞𝑖 )

In summary, we classify the parameters as uncertain if the nor-
malized Shannon entropy of the type probability distribution is
greater than a threshold 𝜈 .

Generating Additional Candidates. The next step is to gen-
erate𝑚 additional candidates, denoted as [T1,T2, . . . ,T𝑚], where
each T𝑗 ∈ Type∗ denotes an augmented signature type.

To construct each T𝑗 , we iterate over the target parameters ®𝑝#
(line 6) and check whether each parameter is uncertain (line 7).
For uncertain parameters, we collect new candidate types for the
parameter as follows (line 8):

CandTypes(𝑃, Γ, 𝑓 #, 𝑝#𝑖 ) =
Sort({(Γ(𝑓 , 𝑝),R(Φ)) | (𝑓 , ®𝑝) ∈ 𝑃, 𝑝 ∈ ®𝑝, 𝑓 ≠ 𝑓 #,R(Φ) > 𝜇})

where Φ is the feature vector FeatureVec((𝑓 #, 𝑝#𝑖 ), (𝑓 , 𝑝)) and 𝜇 is a
hyperparameter that controls the threshold of the similarity score.
We set 𝜇 = 0.65 in our experiments. We collect the types of other
parameters in the program 𝑃 whose similarity score with param-
eter 𝑝#𝑖 is greater than the threshold 𝜇. In other words, we gather
the types of other parameters that are syntactically similar to the
uncertain parameter 𝑝#𝑖 . After sorting them by the score, we append
the 𝑗-th type from CandTypes(𝑃, Γ, (𝑓 #, 𝑝#𝑖 )) to the 𝑗-th candidate
T𝑗 (line 9). Otherwise, we instead use the candidate type from the
model output Δ (line 11).

Finally, we append each augmented candidate T𝑗 to the sequence
A (line 13). As a result, we obtain the augmented candidate list
A = [T1,T2, . . . ,T𝑚].

3.3 Final Algorithm

We summarize the overall algorithm in Algorithm 2. First, we obtain
the candidate types for the target signature 𝜃 # by using the type
inference modelM (line 1). Next, we augment the candidate types
by adding 𝑚 additional candidates using the function Augment
(line 2). Finally, we re-rank the candidate types using the function
ReRanking (line 3).

3.4 Implementation

In this section, we describe the implementation aspects of the algo-
rithm. We implemented TypeCare in about 2,900 lines of Python
code (v3.10.15). We set the existing type inference models to pro-
duce the top-10 candidate types (𝑘 = 10) for each target signature.

Table 2: Statistics of the test datasets used in our evaluation.

Problem refers to the number of type inference problem and

Annotation refers to the number of type annotations in the

dataset.

Dataset

Problem Annotation

Param Ret Total Param Ret
BetterTypes4Py 9081 6143 15224 49.1% 55.8%
ManyTypes4Py 1847 840 2687 12.2% 15.5%

3.4.1 Type Validity. To extract static type analysis alarms, we use
Pyright [15], a type checker developed by Microsoft. Although
Pyright is generally fast, running it across all candidate types in-
curred non-negligible overhead. Tomitigate this, we parallelized the
alarm extraction process using Python’s multiprocessing module.

3.4.2 Type Similarity Model. We built two similarity models: one
for the function parameters and another for the return value. The
parameter similarity model uses all features described in Table 1. In
contrast, the return value similarity model excludes feature #16-#19
and computes feature #20-#24 based on return statements.

To measure usage context similarity (Feature #20 in Table 1), we
extract the parent AST node of each parameter usage and compute
the cosine similarity between these nodes. We used the astmodule
in Python to process the syntax tree.

Using these features, we trained the similarity model through a
random forest regression [2]. The model is trained on the training
data used in the previous work [21, 28, 30].

3.4.3 Augmentation. When generating additional candidates using
CandTypes (line 8 in Algorithm 1), the number of available candi-
date types may be less than 𝑚 in some cases. In such cases, we
utilized the top-1 prediction returned by CandTypes.

4 Evaluation

In this section, we experimentally evaluate TypeCare to answer the
following research questions:
• Effectiveness of TypeCare: How effective is our technique
in improving the accuracy of state-of-the-art type inference
models?
• Robustness of TypeCare: How robustly does our tech-
nique perform across various type inference tasks?
• Importance of Components: How do the re-ranking and
augmentation components individually contribute to the
overall effectiveness of our technique?

4.1 Setup

In this section, we describe the setup of our evaluation. All exper-
iments were conducted on a Linux machine (Ubuntu 24.04) with
the Intel Xeon Silver 4214 processor and 128GB memory.

Baselines and Datasets. We selected three state-of-the-art type
inference models as baselines: TypeT5 [30], Tiger [28], and Type-
Gen [21]. These models have proven effectiveness by outperform-
ing prior approaches [21, 28, 30]. Although we initially considered
DLInfer [32], we excluded it from our evaluation due to its limited
scalability, which restricted its applicability to small datasets [28].
We utilized the artifacts provided by the authors of each model.
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Table 3: Single-variable type inference accuracy of the baseline models and our approach on the BetterTypes4Py and Many-

Types4Py datasets. CodeT5𝐵 and CodeT5𝑀 are the baseline models used in prior works.

Dataset Model

Exact Match Base Match

Top 1 (%) Top 3 (%) Top 5 (%) Top 1 (%) Top 3 (%) Top 5 (%)
Better
Types
4Py

CodeT5𝐵 65.5% 70.4% 72.5% 73.7% 77.8% 79.4%
TypeT5 71.4% 77.2% 78.9% 78.1% 83.7% 85.4%

+TypeCare (+13.6%) 81.1% (+7.4%) 82.9% (+5.8%) 83.5% (+9.2%) 85.3% (+4.3%) 87.3% (+3.0%) 88.0%

Many
Types
4Py

CodeT5𝑀 62.9% 71.7% 73.8% 72.0% 79.6% 81.1%
Tiger 67.8% 78.0% 80.2% 75.8% 85.5% 88.0%

+TypeCare (+11.8%) 75.8% (+4.4%) 81.4% (+4.5%) 83.8% (+6.5%) 80.7% (+2.3%) 87.5% (+2.7%) 90.4%
- - - - - - -

TypeGen 65.4% 73.4% 75.0% 71.6% 79.9% 81.6%
+TypeCare (+12.5%) 73.6% (+7.6%) 79.0% (+6.8%) 80.1% (+9.9%) 78.7% (+5.4%) 84.2% (+4.9%) 85.6%

We conducted evaluation on two datasets: ManyTypes4Py [16]
and BetterTypes4Py [30]. The ManyTypes4Py dataset was designed
for single-type inference tasks, where the goal is to predict the type
of a single placeholder (i.e., a parameter or return value), whereas
the BetterTypes4Py dataset targets full function signature inference
and includes 7,293 type inference problems. We used only problems
related to function signatures from these datasets.

In line with the original setup of each baseline, we evaluated
Tiger and TypeGen on the ManyTypes4Py dataset and TypeT5
on the BetterTypes4Py dataset. This ensures a fair and consistent
comparison with prior work, as each model was assessed using the
benchmark it was originally trained and evaluated on. Also, we
followed the original data splitting strategies used by each model
[21, 28, 30]. Table 2 summarizes the statistics of the test sets.

Model Settings. We obtained the top-10 candidates from each
model and applied our technique to refine the candidates. However,
the three baseline models differ slightly in their input and output
formats. Thus, we adapted the problem setting of each model to
ensure a fair comparison.

• TypeT5 performs full function signature prediction. Accord-
ingly, we inserted <FILL_IN> placeholders into function signa-
tures, collected the top-10 predictions for function signatures,
and applied our technique to re-rank the predictions.
• Tiger predicts the type of a single variable (i.e., a parameter
or return value) at a time. For each variable, we collected
the top-10 predictions and evaluated the performance of our
technique on the top-10 predictions.
• TypeGen also predicts the type of a single variable at a
time. However, since TypeGen is based on ChatGPT, it
adopts a frequency-based evaluation strategy by sampling
50 responses in parallel and choosing themost frequent types.
We followed this setup by extracting the top-10 predictions
from the 50 sampled responses, and applied our technique
accordingly.

Accuracy Metrics. Following the evaluation setup of TypeT5
[30], we applied type normalization to both the predicted types and
the ground truth types since Python allows semantically equivalent
types to be expressed in different syntactic forms (e.g., Optional[int]

vs Union[int, None]), and then assessed type correctness. In partic-
ular, since Tiger and TypeGen originally used different evaluation
criteria, we re-evaluated them using the same criteria in this paper.

4.2 Results

4.2.1 Effectiveness of TypeCare.

Setup. We applied our technique on top of the three baseline
models In addition, to highlight the effectiveness of our technique,
we also evaluated the baseline models used in TypeT5 and Tiger,
namely CodeT5𝐵 and CodeT5𝑀 , respectively. CodeT5𝐵 is CodeT5
fine-tuned on the BetterTypes4Py dataset, while CodeT5𝑀 is fine-
tuned on the ManyTypes4Py dataset. For CodeT5𝑀 , we used the
checkpoint provided by the authors [28]. As a corresponding arti-
fact for CodeT5𝐵 was unavailable, we replicated it by fine-tuning
CodeT5 using the same setup and training set [30]. In contrast, a
baseline model for TypeGen was excluded from our evaluation due
to the difficulty of reproducing its baseline.

We evaluated the performance on two inference scenarios: (1) in-
ferring a type for a single placeholder, and (2) inferring a type for a
full function signature. For single placeholder inference (<FILL_IN>),
a prediction was considered correct if the type of the placeholder
matched the ground truth type. Conversely, for function signature
inference, a prediction was considered correct only if the entire
function signature matched the ground truth. The function signa-
ture inference was conducted only for TypeT5 because it is the only
model that supports this setting.

We used the term Exact Match to refer to the case where the
predicted type exactly matches the ground truth type, and Base

Match to refer to the case where the predicted type is a base type
of the ground truth type. For example, if the ground truth type is
list[int] and the predicted type is list, it is counted as a base
match, but not an exact match.

Single Variable Results. Table 3 presents the single placeholder
inference results of existing models and our technique. We observed
that our technique consistently improves the type inference accu-
racy of all existing models. For the exact match, our technique
further increased the top-1 accuracy of TypeT5 and Tiger by 13.6%
and 11.8%, respectively. Notably, this improvement is more than
double the gain achieved by existing techniques. Our technique also
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Table 4: Function-signature type inference accuracy of

TypeT5 and TypeCare on the BetterTypes4Py dataset.

Model

Exact Match Base Match

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5
TypeT5 59.1% 66.7% 68.7% 67.4% 74.8% 76.6%

+TypeCare 74.5% 77.0% 77.5% 77.2% 80.0% 81.0%
Improve +26.1% +15.4% +12.8% +14.5% +7.0% +5.7%

Table 5: Type inference accuracy of all baseline models and

TypeCare on parameter and return types.

Model

Parameter Return

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5
TypeT5 67.5% 74.3% 76.5% 77.1% 81.4% 82.5%

+TypeCare 79.6% 81.4% 82.1% 83.2% 85.1% 85.6%
Improve +17.9% +9.6% +7.3% +7.9% +4.5% +3.8%

Tiger 68.5% 80.0% 82.7% 66.2% 73.5% 74.6%
+TypeCare 78.9% 84.2% 87.0% 68.8% 74.9% 76.5%
Improve +15.2% +5.3% +5.2% +3.9% +1.9% +2.5%

TypeGen 67.8% 75.6% 77.1% 60.1% 68.6% 70.5%
+TypeCare 77.2% 82.5% 83.6% 65.6% 71.1% 72.0%
Improve +13.9% +9.1% +8.4% +9.2% +3.6% +2.1%

improved the top-1 accuracy of TypeGen by 12.5% over TypeGen.
In terms of base match, our technique led to substantial improve-
ments for all models, boosting their top-1 accuracy by 9.2%, 6.5%,
and 9.9% for TypeT5, Tiger, and TypeGen, respectively. Since our
approach also improved the top-3 and top-5 accuracy of all models,
it proved to be beneficial for enhancing the overall performance.

Function Signature Results. Table 4 indicates the function
signature type inference accuracy of TypeT5 and our technique.
Both exact match and base match metrics showed performance
improvements, with top-1 accuracy increasing by 26.1% and 14.5%
for exact match and base match, respectively. Notably, our model’s
top-1 accuracy exceeded its top-5 accuracy of TypeT5, highlighting
its strong performance on the function signature type inference.

4.2.2 Robustness of TypeCare.

Setup. We evaluated the robustness of our technique on the
following aspects: (1) Parameter and Return: performance on
parameter types and return types evaluated separately; (2) Type
Categories: performance across three type categories: elementary
types (e.g., int, str, bool), parameterized types (e.g., list[int],
dict[str, int]), and user-defined types (e.g., MyClass). Since type
categories were provided only in the ManyTypes4Py dataset, we
conducted comparisons with Tiger and TypeGen models only. In
this evaluation, we used exact match as the evaluation metric.

Performance by Parameter and Return. Table 5 shows the
type inference accuracy on parameter and return types. In particular,
the top-1 accuracy for parameter types improved by an average
of 15.7% across all models. For return types, our technique also
improved the top-1 accuracy by an average of 7.0% across all models.
This indicates that our technique is effective in enhancing type
inference performance for both parameter and return types.

Performance by Type Category. Table 6 presents the type infer-
ence accuracy across different type categories. Except for the top-3
and top-5 accuracy of Tiger in Element category, our method con-
sistently improved type inference accuracy across all categories and
models. Notably, the Parameterized and User-defined categories
showed the most significant improvements, with top-1 accuracy
increasing by 23.3% and 40.1% for Tiger, and 24.2% and 27.7% for
TypeGen, respectively. This indicates that our technique is particu-
larly effective in enhancing the performance of type inference for
more complex types, such as parameterized and user-defined types,
which are often more challenging to predict accurately.

4.2.3 Importance of Components. We conducted an ablation study
to evaluate the importance of the two major components of our
technique: re-ranking and augmentation. We sequentially applied
the two components to the existing models and evaluated the cumu-
lative performance on a single variable type inference task. Table 7
shows the results of the ablation study. The re-ranking compo-
nent primarily boosted top-1 accuracy, while the augmentation
component improved uniform gains across top-1, top-3 and top-5
accuracy. This suggests that two components are complementary
in enhancing the type inference performance of existing models.

4.3 Discussion

Type Validity. Whereas prior works employed a type validity
to filter out invalid types, our approach assessed the relative quality
of each type. To substantiate this, we simulated the traditional
method by discarding any type that triggered an alarm instead of
assessing its relative quality in TypeCare. Table 8 shows the results
of this experiment. TypeT5 showed a decrease in accuracy across all
metrics, with an 12.0% drop in top-5 accuracy. Even though Tiger
and TypeGen increased their top-1 accuracy, the gain was less than
that of TypeCare. Furthermore, they suffered a decline in top-3 and
top-5 accuracy. This indicates that the relative quality assessment
approach is more effective than the type validity filtering approach
in improving type inference accuracy.

Type SimilarityModel. Wementioned that the model should be
trained on selected data to ensure the effectiveness of the type sim-
ilarity model. When the model was trained without data filtering,
it exhibited poor performance on predicting label 1. For parameter
types, precision and recall were only 0.65 and 0.23, respectively;
for return types, precision and recall were 0.67 and 0.65, respec-
tively. In contrast, training on the filtered data yielded significant
improvements. Precision and recall for parameter types surged to
0.87 and 0.94, while for return types, they reached 0.65 and 0.82.

Furthermore, we investigated which feature of the type simi-
larity model was most influential in making its predictions. For
parameter inference, the Reversed Jaro-Winkler distance was the
most influential feature, suggesting a strong tendency for similarly
named parameters to share a common type. For the return type,
the number of usage contexts emerged as a significant feature, in-
dicating that it primarily captures the critical distinction between
functions with no return and those with at least one.

Time Overhead. We measured the time overhead introduced by
our technique to assess its practical applicability. Figure 6 shows the
time overhead of our technique when applied to the baseline models.
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Table 6: Type inference accuracy of the baseline models (Tiger and TypeGen) and TypeCare across different type categories on

the ManyTypes4Py dataset. Element: elementary types (e.g., int, str, bool), Parameterized: parameterized types (e.g., list[int],

dict[str, int]), User-defined: user-defined types (e.g., MyClass). # indicates the number of problems in each category.

Model

Element (#: 1405) Parameterized (#: 483) User-defined (#: 799)
Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Tiger 88.2% 94.2% 94.5% 29.2% 41.0% 41.8% 55.3% 71.8% 78.1%
+TypeCare 88.6% 91.5% 94.0% 36.0% 45.5% 48.2% 77.5% 85.2% 87.4%
Improve +0.5% -2.9% -0.5% +23.3% +11.0% +15.3% +40.1% +18.7% +11.9%

TypeGen 84.3% 90.0% 90.7% 30.2% 42.9% 45.8% 53.4% 62.8% 65.2%
+TypeCare 89.0% 92.4% 93.0% 37.5% 50.9% 54.0% 68.2% 72.3% 73.2%
Improve +5.6% +2.7% +2.5% +24.2% +18.6% +17.9% +27.7% +15.1% +12.3%

Table 7: Ablation study on a single variable inference task.

Model Top-1 Diff Top-3 Diff Top-5 Diff

TypeT5 71.4% - 77.2% - 78.9% -
+ReRank 77.8% +6.4 79.6% +2.4 80.1% +1.2

+Augment 81.1% +3.3 82.9% +3.3 83.5% +3.4
Tiger 67.8% - 78.0% - 80.2% -

+ReRank 74.0% +6.2 79.1% +1.1 81.0% +0.8
+Augment 75.8% +1.8 81.4% +2.3 83.8% +2.8
TypeGen 65.4% - 73.4% - 75.0% -
+ReRank 70.8% +5.4 75.3% +1.9 76.1% +1.1

+Augment 73.6% +2.8 79.0% +3.7 80.1% +4.0

Table 8: The effect of type validity filtering on a single vari-

able inference task.

Metric TypeT5 w/ filter TIGER w/ fiter TypeGen w/ filter
Top-1 71.4% 68.2% 67.8% 71.7% 65.4% 66.0%
Top-3 77.2% 69.3% 78.0% 75.0% 73.4% 68.0%
Top-5 78.9% 69.5% 80.2% 75.3% 75.0% 68.1%

1 2 3 4 5 6 7
Time (seconds)

M
od

el

TypeT5
TIGER
TypeGen

Figure 6: Time overhead

The overhead corresponds to the time taken to apply our technique
to the top-10 predictions for a single placeholder <FILL_IN>. The
median time for Tiger and TypeT5 is around 3.5 seconds, while
TypeGen takes around 2.3 seconds. Considering existing models
require as little as 1 second and up to 11.7 seconds per prediction
[28], we conclude that the overhead introduced by our method is
practically acceptable.

5 Related Works

Rule-based Type Inference. Rule-based type inference tech-
niques infer types using predefined rules derived from the structure
and semantics of the code [3, 8, 9, 12, 18, 24, 25]. In practice, rule-
based techniques have been widely adopted in industry, particularly
in static analysis tools for Python [7, 14, 15, 23]. While these tech-
niques offer high precision and domain-specific effectiveness due
to their carefully engineered rules, they often face challenges in

handling the dynamic and diverse nature of Python code, resulting
in limited coverage and scalability issues.

Learning-based Type Inference. Learning-based type inference
techniques have emerged as a promising approach to address the
limitations of rule-based methods. Early approaches centered on
supervised learning utilizing type embedding or deep similarity
model. [1, 11, 17, 20, 22, 32]. Recent works [21, 28, 30] have further
advanced this field by leveraging pre-trained language models for
code, such as CodeT5 [28, 30] and GPT [21]. These approaches fine-
tune or re-train existing language models to predict types based
on code context. TypeT5 [30] adapts a pre-trained T5 model using
a sequence-to-sequence learning to capture caller-callee relation-
ships, while TypeGen [21] investigates effective prompt designs
to harness the capabilities of large language models for type infer-
ence. Tiger [28] proposes a specialized architecture that combines
a generation model and deep similarity learning. However, these
learning-based methods face challenges in inferring complex or
rare patterns that are underrepresented in the training data. To ad-
dress this limitation, we present a new post-processing technique
that refines model outputs by leveraging code context.

Several works combined models with static analysis to achieve
better type inference [20, 22, 32]. Both TypeWriter [22] and Hi-
Typer [20] utilized type checking to select only types that do not
violate the type constraints of the code. DLInfer [32] collected
code slices through static analysis, but it was conducted on a small
dataset due to scalability issues [28]. In contrast, we investigated
a more effective use of static analysis and demonstrated that our
approach can be applied to large-scale datasets.

6 Conclusion

We presented TypeCare, a model-agnostic refinement technique
that enhances the performance of Python type inference models via
context-aware re-ranking and augmentation. TypeCare leverages
both semantic signals (via static type analysis) and syntactic signals
(via code usage similarity) to prioritize and supplement type predic-
tions produced by existing models. Our experiments demonstrate
that TypeCare consistently improves top-1 accuracy across multi-
ple state-of-the-art models, especially for complex types such as
parameterized and user-defined types. Ablation studies further con-
firm that re-ranking and augmentation are complementary, jointly
contributing to the robustness and effectiveness of our approach.
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Data Availability

For open science, we havemade our code and data publicly available
via GitHub repository1.
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