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Abstract—We present DIVER, a novel technique for effectively
finding critical bugs in SMT solvers. Ensuring the correctness
of SMT solvers is becoming increasingly important as many
applications use solvers as a foundational basis. In response,
several approaches for testing SMT solvers, which are classified
into differential testing and oracle-guided approaches, have been
proposed until recently. However, they are still unsatisfactory in
that (1) differential testing approaches cannot validate unique yet
important features of solvers, and (2) oracle-guided approaches
cannot generate diverse tests due to their reliance on limited
mutation rules. DIVER aims to complement these shortcomings,
particularly focusing on finding bugs that are missed by existing
approaches. To this end, we present a new testing technique
that performs oracle-guided yet unrestricted random mutations.
We have used DIVER to validate the most recent versions of
three popular SMT solvers: CVC5, Z3 and dReal. In total,
DIVER found 25 new bugs, of which 21 are critical and directly
affect the reliability of the solvers. We also empirically prove
DIVER’s own strength by showing that existing tools are unlikely
to find the bugs discovered by DIVER.

Index Terms—software testing; fuzzing; SMT solver

I. INTRODUCTION

Ensuring the correctness of SMT solvers is of paramount
importance in software engineering. SMT solvers are the
cornerstone of many software-engineering applications, in-
cluding, among others, program verification [1]–[7], symbolic
execution [8]–[14], program repair [15]–[18], and program
synthesis [19]–[21]. In these applications, correctness is a cru-
cial success factor yet ultimately depends on the downstream
SMT solvers. However, state-of-the-art SMT solvers are large
and highly complex software systems; as a result, bugs are
not uncommon even in mature, widely-used solvers [22]–[28]
such as CVC5 [29] and Z3 [30], threatening the reliability and
robustness of a wide range of tools based on SMT solvers.

Goal and Scope. In this paper, we tackle the problem of
finding two important classes of bugs in SMT solvers: (1)
refutational soundness bugs and (2) invalid-model bugs. A
refutational soundness bug (called soundness bug in short here-
after) occurs when an SMT solver incorrectly returns unsat
instead of sat for a satisfiable formula. An invalid-model bug,
on the other hand, occurs when a solver correctly answers sat
for a satisfiable formula but produces an unsatisfying model
under which the formula evaluates to false.
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These bugs critically affect solver-aided tools’ reliability.
For example, soundness bugs in SMT solvers may invalidate
the results of program verifiers; when an SMT solver reports
that a satisfiable Verification Condition (VC) is unsatisfiable,
unsafe programs are erroneously proved to be safe, which can
lead to disasters in safety-critical domains. Also, invalid-model
bugs may hinder software testing techniques such as symbolic
execution and concolic testing, because test cases obtained
from invalid models would fail to explore intended program
paths or reproduce detected bugs.

Limitations of Existing Approaches. Recently, a number
of techniques have been proposed to test SMT solvers [22]–
[28], but they have drawbacks in detecting various soundness
and invalid-model bugs. The main challenge is the test oracle
problem [31]; the bugs can be identified only when the tested
formula is a priori known to be satisfiable. Yao et al. [22]
classified existing techniques into two categories based on how
they approach the oracle problem: (1) differential testing [26]–
[28] and (2) oracle-guided [22]–[25] approaches.

Techniques based on differential testing [26]–[28] address
the problem by using multiple solvers. They randomly gener-
ate syntactically valid formulas, and check whether all of the
solvers agree with the satisfiability results. The strength of this
approach is that it can test SMT solvers with diverse formulas
generated via unrestricted random mutations. However, its use
is fundamentally limited to testing features shared by multiple
solvers. In particular, it cannot be used to find bugs in solver-
specific yet important features.

On the other hand, oracle-guided techniques [22]–[25] find
the bugs by generating formulas that are satisfiable by con-
struction. To this end, they use a pre-defined set of mutation
strategies, e.g., satisfiability-preserving transformations [22],
[24]. The main strength of this approach is flexibility; it can
be used when multiple solvers are unavailable. The downside,
however, is that oracle-guided techniques are inherently lim-
ited to generating restricted forms of mutant formulas. They
cannot detect bugs that are triggered by formulas whose syntax
is outside the scope of the pre-defined mutation rules.

Our Approach. In this paper, we present DIVER, a novel
technique that complements the shortcomings of existing ap-
proaches. Like oracle-guided techniques, DIVER can find bugs
without relying on multiple solvers. DIVER, however, aims to
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Fig. 1: Overview of DIVER. Input: a pool of satisfiable seed formulas in the SMT-LIB format [32]. Output: a bug report with
bug-triggering mutant formulas for which an SMT solver under test produces unsat or invalid models.

do so without imposing pre-defined, syntactic restrictions on
mutant formulas.

Our basic idea to achieve this goal is simple and intuitive;
given a satisfiable seed formula F and its model M , we ran-
domly mutate F until we find a mutant F ′ that still evaluates
to true under M . Clearly, such a mutant F ′ is satisfiable (since
M is a model of F ′) and we can use this information as oracle
to validate bugs in SMT solvers. Note that, thanks to the use of
unrestricted mutations, our approach has the potential to find
bugs beyond the reach of existing oracle-guided techniques.
However, naively applying this approach poses a significant
performance challenge, since purely random mutations hardly
succeed to satisfy the original seed’s model.

Thus, DIVER accelerates the basic approach via weighted
sampling, so that “easy-to-mutate” sub-terms of a formula are
preferentially mutated. To this end, given a seed formula and
its model, we perform a pre-analysis which computes, for each
sub-term of the seed, the constraints that the mutated sub-
terms must meet in order for the resulting mutant formula
to be still satisfied by the given model. We then compute the
sampling weights of sub-terms by quantifying how constrained
the corresponding constraints are, where the intuition is that
mutating less constrained sub-terms has higher chances of
finding model-satisfying formulas.

Figure 1 depicts the workflow of DIVER based on these
ideas. It first performs the pre-analysis to generate the con-
straints of each sub-term of the seed formula. Next, DIVER re-
peats the following until a satisfiable mutant formula is found:
(1) it selects a sub-term to mutate via weighted sampling
based on the pre-analysis results, (2) generates diverse forms
of mutant formulas by randomly mutating the sub-term, (3)
and validates their satisfiability against the model of the seed
formula. Any satisfiable mutant found is used to test the SMT
solver. When it does not trigger a bug, we augment the seed
pool with the mutant and repeat the process described above.

Results. We demonstrate that DIVER is effective at revealing
bugs that are difficult to find with previous approaches. We
used DIVER to validate the most recent versions of CVC5 [29],
Z3 [30], and dReal [33], which are widely-used and state-of-
the-art SMT solvers. In particular, note that CVC and Z3 have
been extensively tested over the past few years using previous
approaches [22]–[27] and hundreds of bugs have already been
fixed in the versions we used. Nonetheless, in the three solvers,

DIVER discovered 25 new bugs, of which 21 are confirmed
by developers. Notably, 17 out of confirmed 21 bugs are
critical bugs (9 soundness bugs + 8 invalid-model bugs). We
double-checked that existing approaches are unlikely to find
those bugs by running five state-of-the-art tools: three oracle-
guided tools (Storm [23], AutoString [24], Fusion [25]) and
two differential testing tools (TypeFuzz [26], OpFuzz [27]).
Given the seed formulas that DIVER used to find new 25 bugs,
the five tools collectively detected 7 bugs only.

Contributions. Our contributions are as follows.
• We present a novel technique for testing SMT solvers,

which specifically aims to find bugs that existing tech-
niques are likely to miss. The main contribution is a new
oracle-guided technique that does not rely on pre-defined
mutation strategies.

• We make DIVER, the implementation of our approach,
publicly available.

• We demonstrate the effectiveness of DIVER by finding 25
new bugs in the latest versions of three SMT solvers and
comparing with five state-of-the-art fuzzers [23]–[27].

II. OVERVIEW

In this section, we illustrate DIVER using examples.

A. Motivating Example

We motivate our approach by illustrating a bug that is found
by DIVER in a recent version1 of CVC5 [29] and confirmed
by the developers. The original and mutant formulas were
minimized using a delta debugger [34] so that they only
contain essential syntactic elements to trigger the bug.

Figure 2 shows a seed formula, written in the SMT-
LIB format [32] and simplified from the SMT-LIB bench-
marks [35]. The formula is expressed in QF_SLIA (the theory
of quantifier-free string and linear integer arithmetic). At line
9, command check-sat asks whether the formula, which is
the conjunction of the sub-formulas at lines 3–6, is satisfiable.
The formula is satisfiable as there exists a model [t 7→ “−0”]
that makes all sub-formulas at lines 3–6 evaluate to true (as
explained in the comments).

Given this satisfiable seed formula, DIVER found a critical
soundness bug in CVC5. DIVER generated the bug-triggering

1https://github.com/cvc5/cvc5/releases/tag/cvc5-1.0.0

https://github.com/cvc5/cvc5/releases/tag/cvc5-1.0.0


1 (set-logic QF_SLIA); satisfiable when t = "-0"
2 (declare-fun t () String)
3 (assert (str.prefixof "-" (str.substr t 0 1))) ; (str.substr t 0 1) = "-"
4 (assert (> (str.len (str.substr t 0 2)) 1)) ; (str.substr t 0 2) = "-0"

5 (-)(assert (not (= (- 1) (str.to_int (str.substr t 1 1))))) ; (str.substr t 1 1) = "0"

6 (-)(assert (>= (+ 0 2) (str.len t)))) ; (str.len t) = 2

7 (+)(assert (not (xor (str.< (str.update "-0" 0 t) "-0") false))) ; not (xor false false) = true

8 (+)(assert (str.suffixof (str.replace t "-0" "-") "-")) ; (str.replace t "-0" "-") = "-"
9 (check-sat)

Fig. 2: A simplified formula in the SMT-LIB format. DIVER detected a critical soundness bug in CVC5 by replacing the
original sub-formulas at lines 5–6 with the new sub-formulas at lines 7–8. The comments at lines 3–8 explain why each of
the sub-formula evaluates to true under the seed model [t 7→ “− 0”].

mutant formula by replacing the sub-formulas at lines 5–6 with
the sub-formulas at lines 7–8. The resulting mutant formula
(i.e., the conjunction of sub-formulas at lines 3, 4, 7, and 8)
still evaluates to true under the same model [t 7→ “ − 0”],
but CVC5 erroneously reported that it is unsatisfiable. Note
that the mutant generated by DIVER is substantially different
from the original. To trigger the bug, for example, DIVER in-
troduced new functions such as str.update (line 7) and
str.suffixof (line 8), which are absent in the original
seed formula.

Discovering such a bug-triggering mutant is beyond the
reach of existing testing techniques [22]–[28]. The oracle-
guided approaches [22]–[25] are ineffective in this case be-
cause it is virtually impossible to devise general mutation rules
that capture the seemingly unrelated changes from lines 5–
6 to lines 7–8. The differential testing approaches [26], [27]
are also not applicable since the newly introduced function
str.update at line 7 is supported only by CVC5. Therefore,
cross-checking using multiple solvers is not possible.

B. How DIVER Works
Suppose the formula φ is given as a satisfiable seed:

φ = ((0.0l3 ≤ yl4)l1 ∧ (xl5 = (2.0l7 + yl8)l6)l2)l0

where all sub-terms of φ are annotated with labels l0–l8.
Suppose also we are given a satisfying model M for φ:

M = [x 7→ 3.0, y 7→ 1.0]

which can be obtained by invoking an SMT solver on φ. The
goal of DIVER is to generate a mutant formula φ′ that is still
satisfiable but causes soundness or invalid-model bugs.

Basic Approach. Given the seed formula φ and the satisfy-
ing model M , DIVER basically repeats (1) selecting a sub-term
tl in φ, (2) randomly generating a syntactically valid sub-term
t′, and (3) validating the resulting mutant φ′ = φ[t′/tl] against
M . When φ′ is true under M , we invoke the SMT solver under
test on φ′ to see if φ′ causes a bug (i.e., the solver produces
unsat or an invalid model). For example, DIVER may select
the term yl4 and applies the following mutation at l4 of φ:

y → ((y − 1.0)/x)

which replaces the original term y at l4 by ((y−1.0)/x). The
resulting mutant formula φ′ is as follows:

φ′ = ((0.0l3 ≤ ((y − 1.0)/x)l4)l1∧(xl5 = (2.0l7+yl8)l6)l2)l0

Note that the mutant formula φ′ evaluates to true under the
model M . In this case, we run the SMT solver to see if it
returns unsat or an invalid model on φ′.

Acceleration via Weighted Sampling. The success of our
approach depends on how frequently we can generate mutant
formulas that are satisfied by the given model. The basic
approach falls short in this aspect as it merely relies on purely
random mutations.

DIVER addresses this issue by performing random mu-
tations with weighted sampling, where weights are sys-
tematically computed from the constraints generated by a
pre-analysis. The result of the pre-analysis is a set C of
satisfiability-preserving constraints, which are sufficient con-
ditions in order for mutants to be satisfied by the given model
M . For the example seed formula and model, DIVER generates
the following constraints:

C =


l0 7→ t̂rue, l1 7→ t̂rue,

l2 7→ t̂rue, l3 7→ [−∞, 1.0],
l4 7→ [0.0,+∞], l5 7→ [3.0, 3.0],
l6 7→ [3.0, 3.0], l7 7→ [2.0, 2.0],
l8 7→ [1.0, 1.0]


which maps each label li in φ to a constraint that can yield a
satisfiable mutant by mutating a sub-term at li. For example,
the constraint for l4, i.e., C(l4) = [0.0,+∞], indicates that we
can freely mutate the term y at l4 of φ as long as the resulting
mutant at l4 evaluates to a value within the range [0.0,+∞].

Next, DIVER computes the weight of a sub-term by quanti-
fying how weakly the term is constrained in C. For example,
we prefer the terms at l3 − l4 to the terms at l5 − l8, because
C(l3) and C(l4) are less constrained than C(l5) and C(l8),
and therefore mutating the terms at l3− l4 would give a higher
chance of producing satisfiable mutants. Concretely, according
to the probability estimation method in Section III-B, we select
the terms at l3 − l4 with the probability 0.2854 and the terms
at l5 − l8 with the probability 0.0003.

III. THE DIVER ALGORITHM

In this section, we describe our approach in detail.
Notations. A term in a formula φ denotes a sub-expression

of φ, such as a variable, a constant, and an application of a
function or a predicate. We assume each term in a formula is
associated with a unique label. For example, a formula φ =



Algorithm 1 DIVER Algorithm

Input: A set of seed formulas (Seed ), an SMT solver (S)
Output: Sets of formulas that trigger soundness bugs (Bs),

invalid-model bugs (Bi), and crash bugs (Bc)
1: (Bs, Bi, Bc)← (∅, ∅, ∅)
2: repeat
3: φ← randomly select a seed formula from Seed
4: Seed ← Seed \ {φ}
5: M ← ModelS(φ)
6: C ← PREANALYSIS(φ,M) ▷ § III-A
7: i← 0 ▷ i: # of satisfiable mutants so far
8: while i ≤ n do ▷ n: pre-set mutation bound
9: φ′ ← GENMUTANT(φ,M,C) ▷ § III-B

10: if φ′ ̸= ⊥ then
11: i← i+ 1
12: res ← CheckSATS(φ

′)
13: if res = UNSAT then
14: Bs ← Bs ∪ {φ′} ▷ soundness bug
15: else if res = SAT and
16: ModelS(φ

′) ̸|= φ′ then
17: Bi ← Bi ∪ {φ′} ▷ invalid-model bug
18: else if res = Crash then
19: Bc ← Bc ∪ {φ′} ▷ crash bug
20: else
21: Seed ← Seed ∪ {φ′}
22: until pre-determined time budget expires
23: return (Bs, Bi, Bc)

(al1 ≥ (bl3 +cl4)l2)l0 has terms {(al1 ≥ (bl3 +cl4)l2)l0 , (bl3 +
cl4)l2 , al1 , bl3 , cl4}. We write M(t) for the evaluation result of
term t under model M , which is inductively defined on the
structure of terms. For example, given a formula φ and its
satisfying model M = [a 7→ 2, b 7→ 1, c 7→ 1], M(b+ c) = 2.

Overall Algorithm. Algorithm 1 shows the overall workflow
of DIVER. The inputs of the algorithm are a set Seed of
satisfiable seed formulas in the SMT-LIB format [32] and an
SMT solver S to test. The outputs are three kinds of bug-
triggering formulas, which are mutants of Seed : Bs (soundness
bugs), Bi (invalid-model bugs), and Bc (crash bugs). Note
that, while our main focus is to find soundness and invalid-
model bugs, our approach can find crash bugs too as a
side effect. The outer fuzzing-loop (lines 2–22) consists of
the preparation step (lines 3–7) and the inner while-loop
(lines 8–21). The preparation step generates useful information
(explained shortly) to guide the while-loop. The while-loop
iteratively searches for satisfiable mutant formulas, which can
be used to automatically identify critical bugs in SMT solvers.

At line 1, we initialize Bs, Bi, and Bc with the empty
set, and enter the fuzzing-loop. We then randomly select a
seed formula φ from Seed (line 3) and remove it from Seed
(line 4). At line 5, we obtain a satisfying model M for φ
by invoking the SMT solver S. At line 6, we generate a
set C of satisfiability-preserving (SAT-preserving) constraints.
Specifically, C contains (mostly complete, see Section III-A)

semantic specifications that represent the space of possible
mutant formulas. At line 7, we initialize i, which stores the
number of satisfiable mutants generated so far, with 0.

Now we enter the while-loop (lines 8–21) that repeats until
n satisfiable mutant formulas are generated (we set n to 1, 000
in experiments). We first try to generate a satisfiable formula
φ′ (line 9) that is the mutant of the seed φ. If we fail to
produce φ′ (φ′ = ⊥), we move on to the next iteration. If
we succeed to find φ′ (φ′ ̸= ⊥, line 10), we increase i by
1 (line 11) and check the satisfiability result of φ′ with the
SMT solver S (line 12). If S incorrectly answers that φ′ is
unsatisfiable (line 13), we add φ′ to Bs (line 14 – we found a
soundness bug). If S correctly answers φ′ is satisfiable (line
15) but provides a buggy (unsatisfying) model (line 16), we
add φ′ to Bi (line 17 – we found an invalid-model bug). If a
crash occurs when invoking S on φ′ (line 18), we add φ′ to
Bc (line 19 – we found a crash bug). If φ′ does not trigger
any types of bugs (line 20), we add it to the seed pool (line
21); this way, we can generate another mutant formula that
has multiple mutant terms. The entire fuzzing-loop continues
until a pre-determined time limit is reached.

A. Generating Constraints via Pre-Analysis
We explain our pre-analysis for obtaining the set of SAT-

preserving constraints C, which are used to accelerate our
random mutation-based fuzzing procedure (Section III-B).
More specifically, by computing the range of possible values
that each mutant term can have, the pre-analysis aims to
identify easy-to-mutate terms for which random mutations
are likely to be successful (as the ranges are wider, random
mutations are more likely to succeed in producing satisfiable
mutants).

SAT-Preserving Constraint. We first describe the notion
of SAT-preserving constraints C. Suppose we have a seed
formula and its satisfying model M . The set C is a mapping
from labels to abstract values (V̂). An abstract value for each
label can be viewed as the range of possible values of a mutant
term to produce a formula satisfiable by M . We consider the
following three kinds of abstract values (V̂ = B̂ ∪ I ∪ Ŝ),
because, in this paper, we focus on testing formulas in the
theories of (non-)linear integer arithmetic, (non-)linear real
arithmetic, and string, and their combinations; we discuss the
generality of our approach in Section V.

• B̂ = {⊤B̂, t̂rue, f̂alse} denotes abstract boolean values
with a partial order b1 ⊑B̂ b2 ⇐⇒ (b1 = b2) ∨ (b2 =
⊤B̂). For example, for some label l, the constraint C(l) =
⊤B̂ means: if the value of a mutant term at l is either
true or false under M , a resultant mutant formula will be
satisfiable by M . Also, C(l) = t̂rue (resp., C(l) = f̂alse)
means: if the value of a mutant term at l is true (resp.,
false), a resulting formula must be true under M .

• I = {[l, u] | l, u ∈ Z ∪ R ∪ {−∞,+∞}, l ≤ u} denotes
interval values that abstract integers (Z) and real numbers
(R) with a partial order [a, b] ⊑I [c, d] ⇐⇒ (c =
−∞ ∧ d = +∞) ∨ (c ≤ a ∧ b ≤ d). An example is
in Section II-B.



• Ŝ denotes abstract string values (regular expressions) with
a partial order r1 ⊑Ŝ r2 ⇐⇒ r1 = {s} ∧ s ∈ r2 where
s is a string constant. For example, when Σ is a set of
unicode characters and Σ∗ is the Kleene closure of Σ,
C(l) = a · Σ∗ means: if a mutant term evaluates to a
string that begins with a under M , a resulting formula
must be satisfiable by M .

The Procedure PREANALYSIS. Alogrithm 2 shows the
workflow of PREANALYSIS (line 6 in Algorithm 1) that
aims to produce SAT-preserving constraints C. At line 1, we
initialize T with φ, where T is a workset for maintaining
terms that need to be explored for collecting C. At line 2, we
initialize C with [l0 7→ t̂rue] where l0 is the outermost label of
φ and t̂rue is an abstract boolean value for true; this constraint
means we enforce any mutant formula to be true under M .
We enter the loop (lines 3–8). We choose a labeled term tl

from T (line 4) and remove it from T (line 5). At line 6,
we invoke AM,C (explained shortly) to obtain SAT-preserving
constraints for sub-terms of tl and we add the result to C (⊔
denotes a standard map-join operator). At line 7, we produce
Sub(tl), a set of immediate sub-terms of tl, and add it to
T . For example, given a term tl1 = (al2 ≥ (bl4 + cl5)l3)l1 ,
Sub(tl1) = {al2, (bl4 + cl5)l3}. The algorithm repeats until T
becomes empty (line 8), i.e., until constraints for all terms of
φ are obtained.

Constraint Generation Rules. The function AM,C at line 6
in Algorithm 2, which extracts SAT-preserving constraints for
all immediate sub-terms of tl, is defined as follows:

AM,C(t
l) ={

BM,C(t
l) if logic(t) = Bool, IM,C(t

l) if logic(t) = Int,
RM,C(t

l) if logic(t) = Real, SM,C(t
l) if logic(t) = String.

BM,C , IM,C , RM,C , and SM,C are functions that return
abstract boolean, integer, real, and string values for sub-terms
of tl, respectively. Table I and II show a subset of the rules
for generating semantic constraints for each logic.

The basic principle in designing the rules is to compute
the complete range of possible values that a mutant term can
have, as long as allowed by (1) the model M , (2) the root SAT-
preserving constraint C(l0) = t̂rue (line 2 in Algorithm 2),
and (3) higher-level constraints generated so far. Here, trying
to compute the complete range is intended to identify “easy-to-
mutate” terms as accurately as possible. The relevant rules are
shown in Table I. For example, in the second rule for theory of
integers, if C(l3) = t̂rue , we produce the constraints so that
the value of a mutant term at l1 (resp., l2) is always greater
than or equal to (resp., less than) the value of its neighbor
term yl2 (resp., xl1 ) under M .

As special cases, when it is hard to compute complete
ranges, we simply produce constraints using the current val-
ues under M . The relevant rules are shown in Table II.
For example, in the rule for string logics, the most general
constraint for l1 is a regular expression X that satisfies
X ·M(b) = C(l3). Since finding such a regular expression
X that meets the condition can be challenging, we simply

Algorithm 2 The procedure PREANALYSIS

Input: A formula φ, a satisfying model M for φ
Output: A set of SAT-preserving constraints C

1: T ← {φ}
2: C ← [l0 7→ t̂rue] ▷ l0: the outermost label of φ
3: repeat
4: tl ← select a labeled term from T
5: T ← T \ {tl}
6: C ← C ⊔ AM,C(t

l)
7: T ← T ∪ Sub(tl)
8: until T = ∅
9: return C

produce the constraint M(a) for l1. Note that a mutant that
satisfies a constraint generated by this way still guarantees
to preserve the satisfiability by M , because any term in the
formula will have the same value under M .

Property of SAT-Preserving Constraints. Given a term tl,
let us write α(M(t)) ⊑ v̂ iff if the value of tl under M is
within the range specified by the abstract value v̂ ∈ V̂, where
α is the abstraction function that transforms concrete values
to abstract values:

α(M(t)) =


t̂rue if sort(t) = Bool and M(t) = true

f̂alse if sort(t) = Bool and M(t) = false
[n, n] if sort(t) = Int and M(t) = n
[n, n] if sort(t) = Real and M(t) = n
{s} if sort(t) = String and M(t) = s.

The following proposition states that the set of SAT-
preserving constraints C produced by Algorithm 2 soundly
captures (i.e., under-approximates) the space of SAT-
preserving mutant formulas; a mutant formula that meets C
must be satisfiable by the model M of a seed formula.

Proposition 1. Let φ be a seed formula satisfiable by a model
M and L be the set of all labels in φ. Let C be the set of
SAT-preserving constraints obtained by running Algorithm 2.
For any target term annotated with a label l ∈ L, if the value
of a mutant term q is within the range of C(l), the resulting
mutant formula should be satisfiable by the seed’s model M :

∀l ∈ L. α(M(q)) ⊑ C(l) =⇒ M |= φ[ql/pl].

The proposition is proved by structural induction on our
constraint generation rules. The converse, however, is not
always true as we have incomplete rules such as the ones
in Table II. Inspired by Proposition 1, we can systematically
enhance our random mutation procedure (Section III-B).

B. Generating Satisfiable Mutant Formulas

Now, we explain how to use the pre-analysis results to
effectively perform unrestricted random mutations. The pre-
analysis results are used to sample a sub-term to mutate.

The Procedure GENMUTANT. Algorithm 3 shows the
procedure GENMUTANT (line 9 in Algorithm 1) that generates
a satisfiable mutant formula φ′. At line 1, according to the



TABLE I: Basic rules (selected) for generating SAT-preserving constraints. These rules try to extract the most general condition
for each mutant term without violating existing SAT-preserving constraints. In the rule for string logics, Σ is a set of unicode
characters. X = {c | c ∈ Σ,M(y)[0] >s c} and Y = {c | c ∈ Σ, c >s M(y)[0]} are characters smaller and greater than
M(y)[0] in lexicographic ordering (>s), respectively.

Term Logic Input (Term) Output (Constraint)

[l1 7→ ⊤B̂, l2 7→ ⊤B̂] · · · if C(l3) = ⊤B̂, [l1 7→ t̂rue, l2 7→ t̂rue] · · · if C(l3) = t̂rue

Bool (BM,C ) (xl1 ∧ yl2 )l3
[l1 7→ ⊤B̂, l2 7→ f̂alse] · · · if C(l3) = f̂alse,M(x) = true,M(y) = false

[l1 7→ f̂alse, l2 7→ ⊤B̂] · · · if C(l3) = f̂alse,M(x) = false,M(y) = true

[l1 7→ ⊤B̂, l2 7→ ⊤B̂] · · · if C(l3) = f̂alse,M(x) = false,M(y) = false

(xl1 ≥ yl2 )l3

[l1 7→ [−∞,+∞], l2 7→ [−∞,+∞]] · · · if C(l3) = ⊤B̂
Int (IM,C ), [l1 7→ [M(y),+∞], l2 7→ [−∞,M(x)]] · · · if C(l3) = t̂rue

Real (RM,C ) [l1 7→ [−∞,M(y)− n], l2 7→ [M(x) + n,+∞]] · · · if C(l3) = f̂alse (n = 1 for Int, n = 10−6 for Real)

(xl1 + yl2 )l3 [l1 7→ C(l3)−̂[M(y),M(y)], l2 7→ C(l3)−̂[M(x),M(x)]] where [a, b]−̂[c, d] = [a− d, b− c]

String (SM,C ) (xl1 str. < yl2 )l3

[l1 7→ Σ∗, l2 7→ Σ∗] · · · if C(l3) = ⊤B̂

[l1 7→ X · Σ∗, l2 7→ Y · Σ∗] · · · if C(l3) = t̂rue

[l1 7→ Y · Σ∗, l2 7→ X · Σ∗] · · · if C(l3) = f̂alse

TABLE II: Constraint extraction rules (selected) for terms
whose complete ranges of possible values are hard to be
expressed or computed.

Term Logic Input (Term) Output (Constraint)

Int (IM,C ) (xl1 mod yl2 )l3
[l1 7→ [M(x),M(x)],

l2 7→ [M(y),M(y)]]

String (SM,C ) (xl1 ++ yl2 )l3 [l1 7→ M(x), l2 7→ M(y)]

probability distribution P (explained shortly), we select a
target term pl to mutate. We enter the loop that iteratively
generates satisfiable mutant formulas via randomized muta-
tions and validates the mutants (lines 2–7). At line 3, we
randomly generate a mutant term ql whose type equals to the
type of pl. Specifically, we iteratively and randomly choose
an operator (e.g., ∧, >, +), a variable, or a constant while
satisfying the well-typed property. We repeat this process until
a complete mutant term ql is generated or a pre-set iteration
bound (5 in the implementation) is reached; for the latter
case, we terminate by replacing unfilled operands with random
variables (from a seed formula φ) or random constants (from
φ or its satisfying model M ).

At line 4, we check if a mutant formula is satisfiable by the
model M of the seed formula. If so, we randomly choose a
final mutant formula φ′ out of the two (line 5): the formula
where pl is replaced by ql (left side), or the formula obtained
by a procedure Complicate for adding more complexity (right
side, explained shortly). We return the chosen φ′ (line 6). If
we failed to find a mutant during a given time limit (15m
in the implementation) or the pre-determined number of loop
iterations (50 in the implementation), we return ⊥ (line 8).

Weighted Term Selection. The most important step in our
approach is selecting the target term at line 1 of Algorithm 3.
If the selected term pl has no chance of having a solution

Algorithm 3 The procedure GENMUTANT

Input: A formula φ, a satisfying model M for φ, a set of
SAT-preserving constraints C

Output: A mutant formula φ′ or ⊥
1: Pick a term pl in φ with a probability distribution P
2: repeat
3: Randomly generate ql such that sort(p) = sort(q)
4: if M(φ[ql/pl]) = true then
5: φ′ ← Rand(φ[ql/pl],Complicate(φ, pl, ql,M,C))
6: return φ′

7: until timeout or pre-set loop-bound exceeded
8: return ⊥

(i.e., satisfying the condition at line 4), all repeated random
mutations we try at line 3 are doomed to failure, incurring
significant overhead of the overall algorithm.

Our key idea to address this performance issue is to derive a
probability distribution P from the SAT-preserving constraints
C, and prioritize terms that are likely to have solutions (i.e.,
satisfying the condition at line 4 of Algorithm 3). The intuition
is simple and natural: as constraints in C are more relaxed
(more general), the associated sub-terms have larger solution
spaces and therefore random mutations are more likely to yield
satisfiable mutants. Note that we can design such a probability
distribution P , because C completely captures the range of
possible values in most cases (Table I) and soundly captures
them in the remaining cases (Table II, Proposition 1).

Based on this intuition, we compute the sampling probabil-
ity P (tl) for term tl as follows:

P (tl) =
score(tl)∑

t′l′∈Tφ
score(t′l′)

where Tφ denotes the set of all terms in the seed formula φ and



the function score quantifies how much terms are constrained:

score(tl) =

1.0 if C(l) = ⊤B̂
0.5 if C(l) = t̂rue ∨ C(l) = f̂alse
1.0 if C(l) = [−∞,−] ∨ C(l) = [−,+∞]
1.0 if C(l) = [a, b] ∧ a, b ∈ Z ∪ R ∧ b− a ≥ 1000
(b−a)+1

1000 if C(l) = [a, b] ∧ a, b ∈ Z ∪ R ∧ b− a < 1000

1.0 if C(l) ∈ Ŝ ∧ C(l) contains (−)∗
0.001 if C(l) ∈ Ŝ ∧ C(l) does not contain (−)∗

Basically, the scores reflect the degree of “weakness” of
the constraints (higher is less constrained). For each term,
we set the maximum and minimum scores to 1 and 0.001,
respectively. Given this, we set the score as 0.5 for the second
case to model the half possibility of the first case. In the
third and fourth cases, we assign the score 1.0; interval values
whose differences are larger than 1000 rarely appeared and
therefore we treat them as if they are effectively infinitely
large. In the fifth case, +1 in the numerator is intended to
avoid zero probability. In the sixth and the last cases, we assign
the maximum and the minimum scores, because we observed
mutating terms whose abstract values with (resp., without)
Kleene stars are likely (resp., unlikely) to yield satisfiable
mutants in practice.

Adding Complexity. To find bugs more effectively, at line
5 in Algorithm 3, we may complicate a final mutant via the
procedure Complicate. Specifically, Complicate tries to add
complexity by introducing fresh variables that are absent in
the seed formula φ. We design Complicate to work in three
steps (for brevity, we assume we introduce one fresh variable,
but the extension for multiple variables is straightforward).

• First, from a mutant term ql, we select a variable or a
constant annotated with a label k, denoted mk. mk will
be replaced by a fresh variable nk.

• Second, we obtain the SAT-preserving constraints C ′ =
PREANALYSIS(φ[ql/pl],M) in order to identify the con-
straint for the label k.

• Lastly, we produce a final mutant formula φ′ = ψ1 ∧ ψ2

where ψ1 = φ[ql[nk/mk]/pl] and ψ2 = convert(C ′(k)).
ψ1 means a formula where the target term is replaced by
the mutant term in which a variable mk is also replaced
by a fresh variable nk. ψ2 is the formula obtained by
converting the constraint C ′(k) into a corresponding first-
order logic formula. For example, if a fresh variable is nk

and C ′(k) = [2,+∞], ψ2 = convert(C ′(k)) = (nlb ≥
2lc)la where la, lb, and lc are unique labels.

Note that a final mutant φ′ produced by Complicate is still
satisfiable, because replacing a target term with a fresh variable
does not break the satisfiability and conjoining the sound
computation result (convert(C ′(k))) for the fresh variable also
does not.

IV. EXPERIMENTS

In this section, we evaluate DIVER to answer the following
three major research questions:

• Effectiveness of DIVER: How effective is DIVER at
finding critical bugs in state-of-the-art SMT solvers? How
impactful are the found bugs? (Section IV-A)

• Comparison with existing tools: How does DIVER com-
pare to state-of-the-art tools for testing SMT solvers?
Can DIVER complement the shortcomings of existing
oracle-guided techniques and differential testing-based
techniques? (Section IV-B)

• Utility of our techniques: What are the benefits of using
weighted sampling and Complicate in Section III-B?
Are they essential for enhancing DIVER’s practicality?
(Section IV-C)

Implementation. We implemented DIVER in about 5,000
lines of Python code. We made our own parser for processing
the SMT-LIB language [32] using the pyparsing library [36].
To generate constraints for functions in logics related to
integers and reals, we used pyinterval [37]. We also used
the re module [38] to generate constraints for string logics.
The current implementation of the procedure Complicate
replaces int and real-typed variables/constants (denoted mk

in Section III-B) only, but it can be extended to replace other
types (e.g., string) of variables/constants as well.

Hardware Setup. We performed experiments on four ma-
chines: two Linux machines equipped with AMD Ryzen
Threadripper 3970X with 64 cores and 64GB and 128GB
RAM, a Linux machine with Intel Xeon Processors E5-2630
with 32 cores and 192GB RAM, and a Linux machine with
Intel Xeon Silver 4214 CPU with 48 cores and 128GB RAM.

A. Effectiveness of DIVER

Target SMT Solvers. We evaluate the bug-finding capability
of DIVER by using it for testing the recent versions of the three
SMT solvers CVC5 [29], Z3 [30] and dReal [33], which have
been widely used both in academia and industry.

• For CVC5, we tested v.1.0.0 and v.1.0.1 (released on
April 2022 and July 2022, respectively), and night ver-
sions after v.1.0.0.

• For Z3, we tested v.4.8.14 – 4.11.0 (released on Decem-
ber 2021–August 2022) and night versions after v.4.8.14.

• For dReal, we tested v.4.21.06.2 (released on June 2021
– the latest version). To our knowledge, our work is the
first to automatically test dReal.

To validate the three solvers against generated mutant
formulas, we provide options necessary to obtain satisfying
models (lines 5 and 16 in Algorithm 1), which we consider as
configurations for testing their default modes: --check-sat
for CVC5 and model_validate=true for Z3. To test the
solvers more extensively, for each mutant formula, we tested
the solvers with default modes or by providing up to two addi-
tional options. For example, for CVC5, we provided one of the
options (e.g., --sygus-rr-synth-input) for supporting
SyGuS competitions [39] or the string-theory related options
(e.g., --no-strings-lazy-pp), because bugs related to
these options have been reported in the recent issue trackers.
We set the timeout for the solvers to 10 seconds.



TABLE III: Statistics on bugs found by DIVER.

Status Z3 CVC5 dReal Total

Reported 12 15 2 29
Duplicate 4 0 0 4
New 8 15 2 25
-Confirmed 4 15 2 21
-Fixed 0 14 0 14
-Won’t Fix 0 0 0 0

(a) Status of the found bugs. Duplicate: # of bugs that were
confirmed as duplicated ones by developers. New: # of bugs after
excluding duplicated bugs from Reported. Confirmed: # of bugs

that were confirmed to be real by developers out of New. Fixed: #
of bugs fixed by developers out of New. Won’t Fix: # of bugs that

developers won’t fix.

Bug Type Z3 CVC5 dReal Total

Soundness 6 4 2 12
Invalid-Model 2 7 0 9

Crash 0 4 0 4

(b) Statistics on types of 25 new bugs.

Bug Type Unique Issues DIVER DIVER
Unique Issues

Soundness 7 4 57.1%
Invalid-Model 18 7 38.9%

Total 25 11 44.0%

(c) Statistics of bugs for CVC5 v.1.0.0 and v.1.0.1 (released on
April and July 2022).

Seed Formulas. As a pool of satisfiable seed formulas, we
used satisfiable formulas from the benchmarks provided by
the SMT-LIB initiative.2 During the test period that ranges
from 4 to 5 months for each tool, we validated the solvers
against more than 9,000 seed formulas in total. We used
the non-incremental benchmarks that contain quantifier-free
formulas over logics for integers, reals, and strings, and their
combinations (the full list is in Section V). To improve the
testing efficiency, we excluded benchmarks if: (1) the size of
a seed formula is too large (> 200KB), or (2) an SMT solver
fails to check the satisfiability of a seed formula within 15
seconds. Before providing seed formulas as inputs to DIVER,
to ease the implementation in the constraint generation step
(Section III-A), we desugared let-binding and invocations
of defined functions, in a way that preserves the original
semantics of a seed formula. For example, given a seed
formula that contains a term let x = f(a) in p(x, y), our
algorithm works on the preprocessed seed formula where the
term is transformed into p(f(a), y).

Bug-Reporting Method. When bugs are found by DIVER,
in order to meaningfully help developers as much as possible,

2https://smtlib.cs.uiowa.edu/benchmarks.shtml

we did our best to report bugs after deduplicating the found
bugs (e.g., deduplicating syntactically different bug-triggering
formulas that result in the same error messages). For example,
even though DIVER generated 223 bug-triggering formulas
during 2 weeks, we reported only 4 bugs after deduplication.

Bug-Finding Results. Table III provides various statistics
on the bugs found by DIVER. As shown in Table III(a), we
reported 29 bugs to the developers of SMT solvers, of which
25 are new bugs after excluding 4 bugs confirmed to be
duplicated by the developers. Out of 25 new bugs, 21 were
confirmed to be real and unique by the developers. Out of 25
new bugs, 8 bugs were detected with default modes, 16 bugs
with one option, and 1 bug with two options, respectively.

Table III(b) shows the distribution of types of the 25 new
bugs in Table III(a). The majority of bugs found by DIVER are
critical ones; 84.0% (2125 ) are either soundness bugs or invalid-
model bugs.

Notably, as shown in Table III(c), out of the bugs reported
for the very recent versions (v.1.0.0 and v.1.0.1) of CVC5,
DIVER found almost half them (44.0%). Specifically, 7 repu-
tational soundness bugs and 18 invalid-model bugs have been
reported (and fixed) for these versions, of which 4 soundness
bugs (57.1%) and 7 invalid-model bugs (38.9%) were found
by DIVER.

In summary, DIVER demonstrated its usefulness by finding
critical bugs in the three popular SMT solvers. In particular,
considering that CVC5 has been extensively tested in prior
works [22]–[28], [40] and therefore detecting bugs in CVC5 is
becoming increasingly difficult, our result shows that DIVER is
effective at finding bugs potentially missed by existing testing
techniques.

Positive Responses from Developers. We found that the
bugs found by DIVER were highly useful for enhancing the
robustness of the SMT solvers. For example, after fixing the 14
bugs found by DIVER (Table III(a)), all bug-triggering mutant
formulas that were reported together have been added to the
regression test suites of the CVC5 developers.

Moreover, from the CVC5 developer’s comments, we ob-
served that DIVER revealed a fundamental issue and a hard-
to-detect error: “This lemma is unsound, since it assumes the
length of a skolem, which can be introduced for other reasons.
In other words, the original form of the lemma is not valid.”,3

and “This PR fixes a subtle corner case in the generalization
within the coverings solver.”.4 In particular, regarding the first
comment, it is interesting that DIVER was able to detect the
impactful bug, which was not just an implementation error (it
is a logic error) and had lurked in CVC for the past two years.

B. Comparison with Existing Tools

To see whether DIVER indeed complements the major
drawbacks of existing approaches [22]–[28], we conducted a
comparative experiment. Specifically, we would like to check

3https://github.com/cvc5/cvc5/pull/9014
4https://github.com/cvc5/cvc5/pull/8662

https://smtlib.cs.uiowa.edu/benchmarks.shtml
https://github.com/cvc5/cvc5/pull/9014
https://github.com/cvc5/cvc5/pull/8662


TABLE IV: Comparison with existing tools. Bug Type: types of bugs found by DIVER. Solver: the latest versions of SMT
solvers in which bugs found by DIVER are reproduced. Theory: background theory for each benchmark formula. Confirmed:
whether developers confirmed a bug or not (■: confirmed, □: not confirmed yet). Specific: whether generating mutants with
new solver-specific functions is necessary or not for bug-detection (■: necessary – when solver-specific functions are excluded
from the search space, DIVER failed to find a bug even in separate runs (5 hours for each trial × 30 trials), □: unnecessary
– DIVER found a bug without solver-specific functions). ✓: a tool found a bug at least once during 30 repetitions. ✗: a tool
failed to find a bug during 30 repetitions. N/A: a tool does not support the theory of a benchmark formula.

Bug Type no Solver Theory Confirmed Specific
Oracle-Guided Tools Differential Testing-based Tools

Storm [23] AutoString [24] Fusion [25] TypeFuzz [26] OpFuzz [27]

Soundness

1 CVC5 (v.1.0.1) QF SLIA ■ ■ ✗ ✗ ✗ ✗ ✗

Bug

2 CVC5 (v.1.0.1) QF S ■ □ ✗ ✗ ✗ ✗ ✗

3 CVC5 (v.1.0.0) QF SLIA ■ ■ ✗ ✗ ✗ ✗ ✗

4 CVC5 (v.1.0.0) QF NRA ■ □ ✗ N/A ✗ ✗ ✗

5 Z3 (v.4.11.0) QF SLIA ■ □ ✗ ✗ ✗ ✗ ✗

6 Z3 (v.4.11.0) QF SLIA ■ □ ✗ ✗ ✗ ✗ ✗

7 Z3 (v.4.11.0) QF SLIA ■ □ ✗ ✗ ✗ ✗ ✗

8 Z3 (v.4.11.0) QF NRA □ □ ✗ N/A ✗ ✗ ✗

9 Z3 (v.4.11.0) QF NRA □ □ ✗ N/A ✗ ✗ ✗

10 Z3 (v.4.11.0) QF NRA □ □ ✗ N/A ✗ ✗ ✗

11 dReal (v.4.21.06.2) QF NRA ■ ■ ✗ N/A ✗ ✗ ✗

12 dReal (v.4.21.06.2) QF NRA ■ ■ ✗ N/A ✗ ✗ ✗

Invalid-model

13 CVC5 (commit 8311316) QF SLIA ■ □ ✗ ✗ ✗ ✓ ✗

Bug

14 CVC5 (v.1.0.1) QF SLIA ■ □ ✓ ✗ ✓ ✗ ✗

15 CVC5 (v.1.0.0) QF SLIA ■ □ ✗ ✗ ✗ ✗ ✗

16 CVC5 (v.1.0.0) QF SLIA ■ ■ ✗ ✗ ✗ ✗ ✗

17 CVC5 (commit bf53190) QF SLIA ■ □ ✗ ✗ ✓ ✗ ✗

18 CVC5 (commit 0bf059f) QF SLIA ■ □ ✗ ✗ ✗ ✓ ✓

19 CVC5 (v.1.0.0) QF LIA ■ ■ ✗ N/A ✗ ✗ ✗

20 Z3 (v.4.11.0) QF S ■ □ ✗ ✗ ✗ ✓ ✗

21 Z3 (v.4.11.0) QF NIA □ □ ✗ N/A ✗ ✓ ✗

Crash Bug

22 CVC5 (v.1.0.1) QF LIA ■ □ ✗ N/A ✗ ✗ ✗

23 CVC5 (v.1.0.1) QF SLIA ■ □ ✓ ✗ ✓ ✗ ✗

24 CVC5 (v.1.0.1) QF S ■ ■ ✗ ✗ ✗ ✗ ✗

25 CVC5 (commit 0bf059f) QF SLIA ■ □ ✗ ✗ ✗ ✗ ✗

Total ■:21 ■:7 ✓: 2 ✓: 0 ✓: 3 ✓: 4 ✓: 1
□:4 □:18 ✗: 23 ✗: 16 ✗: 22 ✗: 21 ✗: 24

whether the 25 new bugs found by DIVER (Table III(a)) can
also be detected by existing tools or not.

Before conducting the experiment, we confidently expected
that existing oracle-guided tools, which rely on pre-defined
transformation rules, would mostly fail to detect the bugs
found by DIVER, because mutated parts in all the bug-
triggering formulas generated by DIVER are seemingly sub-
stantially different from the original parts in the seed for-
mulas. Moreover, we expected all existing tools would fail
to find at least 7 bugs, as DIVER could detect them only
by generating mutant formulas that newly contain solver-
specific functions (marked with ■ in the column Specific of
Table IV); differential testing approaches cannot output such
mutants as cross-checking is not possible in these cases, and
relevant pre-defined mutation rules are highly unlikely to exist
in existing oracle-guided tools. We hoped to confirm our
plausible conjectures through a real experiment.

Setup. To answer the above research question, we selected
the five tools as comparison targets: three oracle-guided tools
(Storm [23], AutoString [24], Fusion [25]), and two differ-
ential testing-based tools (TypeFuzz [26], OpFuzz [27]). Out
of the 7 tools whose main focus is to detect soundness and
invalid-model bugs [22]–[28], we could not compare with

Sparrow [22] as its implementation is not publicly available,
and we did not consider FuzzSMT [28] as it is a generation-
based fuzzing tool that does not require seed formulas (i.e.,
not a mutation-based tool like DIVER) and therefore a direct
comparison is non-trivial.

For the experiment, we used the latest versions (as of
August 2022) of the 5 tools [23]–[27] from their public GitHub
repositories. When running the 5 tools, we provided the latest
versions of SMT solvers in which each of the bugs found by
DIVER is still reproduced; when invoking SMT solvers on
mutant formulas generated by the tools, we supplied the same
options where DIVER was able to find the bugs to the solvers.
To run Fusion [25] that takes two satisfiable seed formulas
as inputs, we simply provided the same seed formulas for
each benchmark test. When running the two differential testing
tools (TypeFuzz [26], OpFuzz [27]), as comparison solvers for
cross-checking results, we used Z3 (v.4.11.0) to test CVC5,
and used CVC5 (v.1.0.1) to test Z3 and dReal.

For each seed formula, we ran each tool for 1 hour and re-
peated the experiments 30 times (using 30 parallel executions),
considering their internal randomness. The experiments in this
section were conducted on a machine equipped with an AMD
Ryzen Threadripper 3970X with 64 cores and 128GB RAM.



Results. Table IV shows the experimental results for the
5 compared tools. The column Solver shows the names and
the versions of the SMT solvers, in which the 25 new bugs
are found by DIVER. For each tool, which we classified into
the oracle-guided tools and differential testing-based tools,
✓ indicates that a tool generated a bug-triggering mutant
formula at least once during 30 trials, whereas ✗ means a
tool failed to find a bug during 30 trials. In cases where a tool
cannot be executed for a seed formula due to unsupported
theories, we marked “N/A”.

The results prove that, as expected, DIVER can success-
fully complement the limitations of existing techniques. In
summary, 72% ( 1825 ) of the bugs could not be found by the
5 existing tools. Specifically, the three oracle-guided tools
(Storm [23], AutoString [24], Fusion [25]) and the two dif-
ferential testing-based tools (TypeFuzz [26], OpFuzz [27])
collectively detected 3 and 4 bugs respectively. We note
that, while TypeFuzz reported potential bugs for #11 and
#12 in Table IV, we manually checked that they are false
positives (hence marked with ✗) raised due to the reliance
on cross-checking between solvers; although different results
were obtained by each solver, they were all correct behaviors
intended by each solver.

We also inspected why TypeFuzz and OpFuzz failed on the
14 and 17 seed formulas, respectively, for which triggering
bugs is theoretically possible by the tools that use unrestricted
random mutations and differential testing (marked with □ in
the column Specific of Table IV). Based on their papers [26],
[27], we conjecture that they failed because their mutation
strategies are rather restricted in practice. For example, Op-
Fuzz only attempts to mutate function operators [27].

Robustness of DIVER. Note that DIVER is based on random
mutation-based fuzzing. Thus, to evaluate the robustness of
DIVER under the randomness, we ran DIVER on 25 seed
formulas again. The results show that the randomness does not
significantly harm the usefulness of DIVER in practice; during
the 30 trials, DIVER was still able to find 22 bugs. DIVER still
demonstrated its unique strength over the existing tools. From
the results, we learned that the unique ability of DIVER, which
is able to generate mutant formulas that are satisfiable by
construction and substantially different from seed formulas,
is crucial for revealing tricky bugs in modern SMT solvers
that are likely to be missed by existing testing techniques.

Finding Bugs Detected by Existing Work. We also investi-
gated whether DIVER is able to find bugs that can be detected
by existing techniques. We tried hard to obtain specific seed
formulas that existing tools had used to find bugs, but we could
collect only two seed formulas from the public repository5 of
Storm [23]. Specifically, out of the 20 benchmark seeds from
the repository, we were able to use two (bug10 and bug17
in the repository), excluding 18 benchmarks that are currently
beyond the scope of DIVER (e.g., unsupported logics).

Given the two seeds used by Storm to find two bugs in
the previous versions of SMT solvers, DIVER successfully

5https://github.com/Practical-Formal-Methods/storm/tree/master/storm/fse repl
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Fig. 3: Bug-finding results of DIVER and its variants.

detected both of the bugs in those solvers.

C. Utility of Our Techniques

To inspect the impacts of weighted sampling and the
procedure Complicate in Section III-B, we implemented two
variants of DIVER: No-Weighted and No-Complicate. No-
Weighted is a variant with Complicate and uniform sampling
(rather than weighted sampling), where the probability distri-
bution P at line 1 in Algorithm 3 is the uniform distribution.
No-Complicate is a variant with weighted sampling and with-
out Complicate, where line 5 in Algorithm 3 is replaced by
φ′ ← φ[ql/pl]. We ran No-Weighted and No-Complicate on
each of the 25 benchmarks in Table IV, under the same
setting used to rerun DIVER (with weighted sampling and
Complicate) in Section IV-B.

In summary, the results show that both weighted sampling
and Complicate are essential for greatly improving the prac-
ticality of DIVER.

Impact of Weighted Sampling. We found that weighted
sampling is critical for boosting the performance of DIVER in
terms of generating satisfiable mutant formulas; for the 25
seed formulas, DIVER generated 1.6 times more satisfi-
able mutants than No-Weighted: No-Weighted (3,679,241) vs.
DIVER (5,856,673).

We also found that weighted sampling allowed to find more
bugs (Figure 3). While DIVER found 22 bugs during re-
executions (Section IV-B), No-Weighted detected 18 bugs, the
subset of 22 bugs. Moreover, weighted sampling helped to
reproduce bugs more stably by 1.5 times; for the 18 bugs
detected by both No-Weighted and DIVER, the total numbers
of bug-triggering mutant formulas generated by each mode
are: No-Weighted (41,734) vs. DIVER (63,559).

Impact of Complicate. Figure 3 also shows that Complicate
can enhance the bug-finding ability of DIVER by adding
complexity to mutant formulas. DIVER detected 22 bugs, but
No-Complicate detected 17 bugs only, the subset of 22 bugs.

V. LIMITATIONS AND FUTURE WORK

We discuss the limitations of DIVER and potential exten-
sions. First, DIVER currently does not support some logics
that are supported by existing tools, e.g., bit-vectors and
arrays. In this paper, we only focused on testing quantifier-
free formulas over the theories of (non-)linear arithmetic for
integers and real numbers, strings, and their combined theories,

https://github.com/Practical-Formal-Methods/storm/tree/master/storm/fse_repl


which are the fundamental logics for reasoning on programs:
QF IDL, QF LIA, QF NIA, QF RDL, QF LRA, QF NRA,
QF LIRA, QF NIRA, QF S, and QF SLIA. Note that, how-
ever, the underlying principle (i.e., abstraction-based constraint
generation rules) of our approach can be generally applicable
to other theories. For example, given a term (xl1 bvuge yl2)l3

in the theory of fixed-sized bit-vectors whose size is n, if
C(l3) = t̂rue , we can design a rule that generates the
constraint [l1 7→ [M(y), 2n − 1], l2 7→ [0,M(x)]], where
bvuge is the greater-than-or-equal-to operator for unsigned
numbers.

Second, DIVER cannot be used to find solution soundness
bugs (reporting sat instead of unsat). In this paper, we
focused on finding refutational soundness bugs (reporting
unsat instead of sat) because they are arguably more
critical than solution soundness bugs [23], [41]. It would be
interesting to extend our work to support solution soundness
bugs as well.

VI. RELATED WORK

Testing SMT Solvers. Compared to existing tech-
niques [22]–[28] for testing SMT solvers, DIVER is the first
oracle-guided technique that does not resort to pre-defined
transformation rules.

One dominant approach for testing SMT solvers is dif-
ferential testing [26]–[28], which mitigates the test oracle
problem [31] by comparing results from multiple solvers. Un-
like DIVER, they cannot support cases where cross-checking
between solvers is not possible, e.g., testing solver-specific
features or all compared solvers produce incorrect results [25].
Falcon [42] can be viewed as a variant of differential testing;
given an SMT solver, it detects soundness and invalid-model
bugs by treating the solver with different options as different
solvers. Falcon inherits limitations of existing differential
testing techniques (e.g., when results obtained with different
options are all incorrect).

The other approach is the oracle-guided technique [22]–
[25], which complements the shortcoming of differential
testing-based techniques by leveraging pre-defined mutation
rules to generate satisfiable mutants by construction. Their
major drawback is the inability to generate diverse forms of
mutants, due to the reliance on restricted syntactic mutation
rules. DIVER supplements this shortcoming with a new oracle-
guided technique that performs unrestricted random mutations.

Other than the above approaches whose main focus is on
finding correctness bugs (soundness and invalid-model bugs)
in SMT solvers, there are techniques that mainly target perfor-
mance issues [40], [43], [44]. Unlike ours, these approaches
are based on differential testing.

Fuzz Testing in Other Domains. Existing fuzzing tech-
niques can be classified into two groups, depending on how
they generate test cases [45]: generation-based fuzzing that
synthesizes inputs according to a model (e.g., grammar) with-
out seed inputs, and mutation-based fuzzing that generates
mutants by changing some parts of seed inputs. Most of the

testing tools [22]–[28] for SMT solvers, including DIVER, are
based on mutation-based fuzzing. Although existing mutation-
based approaches have shown to be effective by finding
numerous bugs in other types of programs such as Linux
utilities (e.g., [46]–[49]), they are not directly applicable to
our purpose. In particular, for example, existing techniques
in other domains do not provide means for resolving the test
oracle problem [31] in the context of testing SMT solvers.

Several mutation-based fuzzers proposed methods for care-
fully selecting mutation locations of a given seed input like
ours, but they have different goals. For example, FAIR-
FUZZ [49] and VUzzer [50] are designed to achieve high
code coverage, and TaintScope [51] is designed to improve
security vulnerability-finding ability. By contrast, our weighted
term selection technique (Section III-B) aims to effectively
find soundness and invalid-model bugs in SMT solvers.

VII. CONCLUSION

As SMT solvers are the keystone of many useful software-
engineering applications, rigorously validating the correctness
of SMT solvers is critically important. In this paper, we
presented DIVER, a new oracle-guided technique that ad-
dresses the major shortcoming of the existing approaches. We
demonstrated its effectiveness by showing that DIVER found
25 new bugs, which are hardly detected by existing testing
techniques, in three popular SMT solvers.
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critical bugs in smt solvers using blackbox mutational fuzzing,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 701–712. [Online]. Available:
https://doi.org/10.1145/3368089.3409763

[24] A. Bugariu and P. Müller, “Automatically testing string solvers,”
in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1459–1470. [Online].
Available: https://doi.org/10.1145/3377811.3380398

[25] D. Winterer, C. Zhang, and Z. Su, “Validating smt solvers via semantic
fusion,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI 2020.
New York, NY, USA: Association for Computing Machinery, 2020, pp.
718–730. [Online]. Available: https://doi.org/10.1145/3385412.3385985

[26] J. Park, D. Winterer, C. Zhang, and Z. Su, “Generative type-
aware mutation for testing smt solvers,” Proc. ACM Program.
Lang., vol. 5, no. OOPSLA, oct 2021. [Online]. Available: https:
//doi.org/10.1145/3485529

[27] D. Winterer, C. Zhang, and Z. Su, “On the unusual effectiveness of
type-aware operator mutations for testing smt solvers,” Proc. ACM
Program. Lang., vol. 4, no. OOPSLA, nov 2020. [Online]. Available:
https://doi.org/10.1145/3428261

[28] R. Brummayer and A. Biere, “Fuzzing and delta-debugging smt
solvers,” in Proceedings of the 7th International Workshop on
Satisfiability Modulo Theories, ser. SMT ’09. New York, NY,
USA: Association for Computing Machinery, 2009, p. 1–5. [Online].
Available: https://doi.org/10.1145/1670412.1670413

[29] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt,
M. Mann, A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli,
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