Learning to Boost Disjunctive Static Bug-Finders

Yoonseok Ko
Meta
ysko@meta.com

Abstract—We present a new learning-based approach for accel-
erating disjunctive static bug-finders. Industrial static bug-finders
usually perform disjunctive analysis, differentiating program
states along different execution paths of a program. Such path-
sensitivity is essential for reducing false positives but it also
increases analysis costs exponentially. Therefore, practical bug-
finders use a state-selection heuristic to keep track of a small
number of beneficial states only. However, designing a good
heuristic for real-world programs is challenging; as a result,
modern static bug-finders still suffer from low cost/bug-finding
efficiency. In this paper, we aim to address this problem by
learning effective state-selection heuristics from data. To this end,
we present a novel data-driven technique that efficiently collects
alarm-triggering traces, learns multiple candidate models, and
adaptively chooses the best model tailored for each target
program. We evaluate our approach with Infer and show that our
technique significantly improves Infer’s bug-finding efficiency for
a range of open-source C programs.

I. INTRODUCTION

Static bug-finders are increasingly used in industry [1], [2].
Infer [1], for example, is probably the most well-known bug-
finding static analyzer based on academic research [3], which
has been used at Meta to catch important issues such as
memory safety errors in C/C++ codebases [4] and data races
in Java programs [5]. Other large software companies such as
Apple [6], Google [2], [7], and Microsoft [8] are also actively
building static analysis tools in order to catch latent bugs early
in their software development process [7], [9].

Bug-finding static analyzers usually perform disjunctive
analysis [4], [6], [10]-[12]. A disjunctive static analyzer main-
tains a set of abstract states, each state representing an analysis
result along a different execution path of a program. This path-
sensitivity is an essential element of practical bug finding. It is
well-known that path-sensitivity is critical for reducing false
positives [13]-[16]. Also it is important for understanding
and debugging reported bugs; without path-sensitivity, it is
hardly possible to explain how bugs arise in terms of concrete
execution paths.

However, modern disjunctive analyzers still suffer from low
bug-finding efficiency. Since analyzing a non-trivial program
in a fully path-sensitive manner is infeasible, practical bug-
finders use various heuristics to balance the performance. A
well-known method is to limit the number of disjuncts to
be maintained (called “dropping disjuncts” in Incorrectness
Logic [17]), which prunes states so that the number of states
is always kept smaller than a given threshold. While such a
state-selection heuristic is critical for the analysis performance,
developing a good one still remains a challenge; as a result,

Hakjoo Oh
Korea University
hakjoo_oh@korea.ac.kr

even state-of-the-art static analyzers show unsatisfactory per-
formance. For example, Infer employs a heuristic that takes the
threshold value, denoted K, as an external parameter, allowing
to control the trade-off between analysis coverage and cost.
However, increasing K to detect more bugs quickly makes
the analysis prohibitively expensive (Table I). Therefore, Infer
is typically used with small K values in practice, significantly
compromising analysis coverage to maintain scalability.

This Work. In this paper, we aim to improve the bug-finding
efficiency of disjunctive static bug-finders, thereby allowing an
existing analyzer to detect more bugs with the same or even
smaller K values (hence within shorter analysis times).

We achieve this goal by learning a state-selection heuristic
from data. The basic approach consists of two steps. Given
a static analyzer and a set of training programs, we first
augment the analyzer to collect alarm-triggering traces and
learn a statistical model that predicts how likely states are
involved in those traces. Our state-selection heuristic then uses
the trained model to rank and select top-K states. However,
this basic method faces two technical challenges: (1) naively
using the augmented analysis is unlikely to collect diverse
alarm-triggering traces, and (2) even with sufficient data, it is
unlikely that “one-size-fits-all” models exist for a wide range
of real programs. We address these challenges by developing
an efficient trace-collection algorithm that learns to explore
likely alarm-triggering traces, and a dynamic model selection
technique that trains multiple models and adaptively chooses
the best one tailored for each target program via pre-analysis.

Experimental results show that our technique can substan-
tially improve the performance of industrial static analyzers.
We applied our approach to Infer, replacing its original state-
selection heuristic by ours learned from a dataset of 70 open-
source programs. We then compared the performance of our
data-driven Infer with the original Infer on 15 unseen programs
(57-701 KLoC). The original Infer produced 1,415 alarms in
5,444 seconds with the default configuration K = 20, and
1,637 alarms in 39,684 seconds with X = 60. Our data-driven
Infer, on the other hand, was able to report 1,668 alarms even
with K = 5 and took 875 seconds, accelerating the original
Infer with K = 20 and K = 60 by 6x and 45x, respectively.

Contributions. Our contributions are summarized as follows:

e« We present a new method for learning state-selection
heuristics for disjunctive static bug-finders. Key technical
contributions are efficient trace-collection and adaptive
model selection.

[Rexc [

[Gata o]

rec [of-{attrlist[y]

[next[epnil
data

nil

p [

(a) (b)

Fig. 1: Memory states after the call (a) sdp_seq_alloc and
(b) sdp_attr_replace. The dotted boxes denote newly
allocated memory blocks.

o We evaluate our approach with Infer, an industrial bug-
finding static analyzer deployed within Meta, and show
that its efficiency can be improved significantly.

« For open science, we make our source code publicly
available.

II. OVERVIEW
A. Motivating Example

Bug Detection Example. With our technique, Infer success-
fully detected a memory-leak bug from open-source project
bluez-5.55. The alarm report produced by Infer is given

below:

Memory dynamically allocated at line 2007 by call
to sdp_seqg_alloc (), is not freed after the last
access at line 2008, column 3.

The (simplified) code for lines 2007 and 2008 is as follows:

// line 2007
// line 2008

p = sdp_seq alloc(...);

sdp_attr_ replace(rec, .o P

where the pointer variable rec is an argument of the enclosing
function, and it refers to a memory block accessible from the
outside. The local variable p temporarily stores the result of
sdp_seq_alloc,is passed to sdp_attr_replace as an
argument, and is not used anymore after line 2008.

Executing the two lines above involves 14 different function
calls, but for the sake of brevity, let us consider the following
core executions related to the memory leak:

o When the function sdp_seq alloc is called, it allo-
cates a new memory block and returns the address of the
block. This address is then assigned to the local variable
p (Figure 1a).

e When the function sdp_attr_replace is called, it
allocates a new linked-list memory block. It then assigns
the address of the memory block pointed to by p to
the data field of the newly allocated linked-list block,
and inserts the block into the linked list designated by
rec—>attrlist (Figure 1b).

When sdp_attr_replace fails to allocate a memory
block, the program state remains as Figure 1a and hence results
in a memory leak. the local variable p is not used later and
its referenced memory block is not freed.

Difficulty of Finding the Bug. To detect this bug, Infer needs
to employ a carefully-tuned state-selection heuristic. Analyz-
ing the above two lines of code path-sensitively produces more
than two million distinct cases. The execution of the function
sdp_attr_replace involves 8 different function calls,

Training Stage alarm/non-alarm’.

Training data : triggering
H N 5 traces
: # Trace collection
: (Algorithm 3)
programs : </
Off-the-shelf learning algorithm
: (e-g. gradient boosting)
. : > II—[-——7———'— :
M candidates : & m :
ﬁ : Offline model selection I

Analysis Stage

Pre-analysis

: single best model
target program |-
: (online model selection) >

Fig. 2: Overview of our approach

each of which has multiple branches; analyzing a series of
function calls results in a combinatorial explosion of the num-
ber of possible execution cases, yielding more than 2,000 dis-
junctive summaries for the function sdp_attr_replace.
Similarly, the analysis produces more than 1,000 summaries
for the function sdp_seqg_alloc. Among those two million
(2,000 x 1,000) execution paths, only 7% of them are buggy
paths that produce a memory leak. Our data-driven Infer could
accurately prioritize these paths and succeeded to report the
bug while the original Infer failed to do so.

B. Overall Workflow of Our Approach

Figure 2 provides an overview of our approach, which
is divided into two main stages: the training stage and the
analysis stage. The training stage generates a collection of
models for state-selection heuristics. First, it collects alarm
and non-alarm triggering traces from programs in the training
set. For this step, we use an extended analysis producing
a set of traces instead of summaries. Then, an off-the-shelf
learning algorithm trains a collection of models that predict
the probability of a state contributing to an alarm from the
collected traces. Finally, we select M models that collectively
perform the best in the validation set. The analysis stage first
selects the best model for each target program from the M
models, where we use a lightweight pre-analysis with a limited
K, to identify the model that best fits the target program.
Then, we proceed with the main analysis using K., with
the selected model.

ITI. PRELIMINARIES

A. Disjunctive Bug-Finding Static Analysis

In this section, we describe a generic algorithm for dis-
junctive static bug-finders, which forms the core of industrial
static analyzers such as Infer [1]. We note that soundness
is not a primary concern of such an analyzer; instead, the
analysis is designed with a focus on scalability and precision.
For scalability, the analysis is designed to be summary-based
and works in a bottom-up fashion [1], [10]. For precision,
it is designed to be disjunctive, among others, separately
maintaining program states along different execution paths.

Algorithm 1 Bottom-up analysis algorithm

Require: P: program, H: state-selection heuristic
Ensure: A: alarms (a set of potential errors)
1: procedure Analyzer(P, 1)
2: Funcs < functions of P in reverse topological order

3: T < Af.D > initial function summaries
4: A+ 0 > initial alarms
5: for each f in Funcs do > do bottom-up analysis
6: (S, A) < analyze_function(f, T, HX)

7: T+ T[f— 5] > update summaries
8: A+~ AUA > accumulate alarms
9: return A

Overall algorithm. The bottom-up analysis first analyzes leaf
functions in the program and summarizes their behaviors.
Functions that call leaf functions are then analyzed, where
called functions are not re-analyzed but their summaries are in-
stantiated at call-sites context-sensitively. This way, functions
in the program are analyzed in the reverse topological order
of the call graph. For simplicity, we do not consider recursive
call cycles; in practice, recursion is ignored or summaries of
the functions involved in a recursive call cycle are computed
simultaneously via iterative fixpoint computation.

Algorithm 1 describes the bottom-up analysis algorithm. It
takes as input a program to analyze (we ignore the second
input, HX | for the moment) and as output it produces a set
of alarms, e.g., potential memory leak errors. Funcs at line 2
stores the list of functions sorted in the reverse topological
order of the call graph. At line 3, we initialize function
summaries; 7 is a map from functions to (initially empty)
summaries. A at line 4 denotes the set of alarms produced by
the analysis, which is initially set to (). At line 5, the analysis
considers each function f in Funcs. At line 6, function f is
analyzed in isolation using the current summaries 7, where
analyze_function(f, T, H*) is responsible for computing the
function summary (S) for f and alarms A obtained from
analyzing the body of f. At lines 7 and 8, summaries and
alarms are stored in 7 and A, respectively. Once all functions
in Funcs are analyzed, the algorithm returns the set A of
alarms accumulated so far.

Analysis of a function. Now we describe how a function is
analyzed, i.e., analyze_function. Suppose the body of function
f is given by a control-flow graph G = (N, <, exit), where
N is the set of nodes, (—) C N x N a set of edges, and
exit € N the (unique) exit node of the function. We assume
each node n is associated with a command, denoted cmd(n).
Commands include assignments, branches, and function calls:

ci=x := elassume(x = b) | fO) |...

where e denotes an expression and b is a boolean constant.
For simplicity, we only allow a boolean value in assume
statements and do not consider function arguments.

A program state s € S = PC xM is a pair of path condition
(PC) and memory state (M). A path condition 7 € PC' is

a conjunction of predicates, e.g., x = false Ay = true,
which keeps track of the branch conditions taken by the current
path being analyzed. A memory state m € M maps (abstract)
locations to (abstract) values, which we leave unspecified
as the definition of memory states varies depending on the
purpose of the analysis. For example, when the analysis aims
to detect memory leaks, it would keep information about
memory allocation and deallocation while discarding other
aspects (e.g., numerical values) of the program.

The goal of analyze_function is to compute a set S C S of
reachable program states at the exit node of f, one for each
different path in f, as well as alarms representing potential
errors that may occur in f. To compute reachable states (.5),
we analyze the function flow-sensitively. That is, we compute
a table X : N — p(S) from program points to sets of output
states, which is defined as a fixpoint, fixF, of the semantic
function F': (N — p(S)) = (N — 9(8)):

FX)ExmeN#H#() | [emdm)(s) @)

n’—n seX(n’)

where we assume HX is the identity function at the moment
(we explain HX shortly in Section III-B). To analyze a node
n € N, the analysis takes its predecessor n' and its output
state s, and uses the transfer function, denoted [cmd(n)], to
transform s into the output state of n. The transfer function
[emd(n)] : S — ©(S) is defined for each statement type.
The semantics of assignment is to make a side-effect in the
memory state:

[-

for which we assume the domain of memory states comes with
function assigny(x, e, m) € M that replaces the value of x in
m by the value of e. At assume statements, the path condition
7 is updated by conjoining 7 with the branch condition if the
assumption is satisfied:

D]((r,m)) E{(m A (x =

Function calls are analyzed using summaries:

[O((m,m)) =

{{m A 7', instantiateys(m, m’)) | (x',m’) € T(f)}.

e]({m,m)) = {(m, assignyy (z, e, m))}

b),m)}.

[assume (x =

We first look up the summary table, i.e., 7(f), to obtain the
output states of f. For each output state (7', m’}), we produce a
new state (m A7’ instantiatey(m, m’)) by merging path con-
ditions and instantiating the output memory m’ appropriately
for the current call context (m). For this, we assume function
instantiatey is given together with the domain of memory
state (M), so that we can design a range of bottom-up analyses
by varying the definitions of M, assigny;, and instantiatey;.
To generate alarms, static bug-finders use their own alarm-
producing criteria. In this paper, we assume the function
alarms of the following type is provided by the analyzer:

alarms : Cmd x S — p(A) ()

where A denotes the set of all alarms possibly generated from

the program. Function alarms takes a command and a program
state, and produces a set of alarms denoting errors that may
occur at the command. For example, when the analysis aims
to detect potential null dereferences, alarms produces alarms
when the command involves pointer dereference *p and p may
point to null according to the input state.
We now define the result of analyze_function(f, 7, H%) to
e (S, A), where S is the set of states reachable at the exit
of the function, S = (fiz F)(exit), and A is the set of alarms
generated from commands in f:

=y y U

neEN n’—n se(fizF)(n’)

alarms(cmd(n), s).

B. State-Selection Heuristic

The analysis described in Section III-A is not yet practical
because the number of summaries to maintain grows exponen-
tially with the number of branches in the program. A well-
known method to mitigate this issue is to use a state-selection
heuristic [17] that compromises the soundness of the analysis
in order to reduce costs. A state-selection heuristic, denoted
H X, is a function that takes a set of program states and returns
its subset of size K, where K is a pre-defined parameter:
HE : o(S) — p(S). For example, Infer uses K = 20 by
default, which means that Infer computes up to 20 program
states for each function.

Although the choice of state-selection heuristics critically
affects the analysis performance, building an effective heuristic
is nontrivial. As a result, even state-of-the-art static analyzers
often rely on simple heuristics. For example, Infer uses a
heuristic that selects top-K program states according to a
lexicographic ordering of conjunctions of the path conditions.
Depending on the syntactic structure of the program, it always
delays the computation of particular branches, and eventually,
program states essential for generating alarms are missed
unless K is large enough to cover all the summaries from the
remaining branches. Thus, Infer often fails to discover buggy
program paths when K is small.

V. OUR LEARNING APPROACH

In this section, we present our approach for learning state-
selection heuristics. In Section IV-A, we present a trace-
collection algorithm that is used to generate labeled training
data. In Section IV-B, we explain how to train models and
select the best one tailored for each program. Throughout this
section, we assume trammg and validation sets of programs
are glven denoted Py {P:,, P,,...} and Poia =

{Py,, Py,,---} respectlvely.

A. Trace Collection

To generate labeled training data, we use an augmented
static analyzer to gather alarm-triggering and non-alarm-
triggering traces from Pp.

Notation. Given the set S of program states, we write S* for
the set of all finite sequences (traces) of states. Let € be the
empty sequence. Given a finite sequence o € S* of states, we

Algorithm 2 Trace-augmented analysis algorithm

Require: P: program, ﬁK' trace-selection heuristic
Ensure: X,,,: alarm- trlggerm%(traces Yq: all analyzed traces
1: procedure Analyzer(P,H)
2: Funcs < functions of P in reverse topological order

3: T« A0 > initial function summaries
4 Saits Saim — 0,0 > initial traces
5: for each f in Funcs do > do bottom-up analysis
6: (¥1,32) + analyze_function(f, T, ﬂK)

7: T« TIf — Z4] > update summaries
8: Yau — Zar U X4 > update summary traces
9: Patm — Zamm U 2o > update alarm traces
10: return (X, Ya)

write o; for the ith state of o, o4 for the last state, and |o]
for the length of the sequence, i.e., 0; = s;, 04 = s,, and
|o| = n when o = s182 - - s, and |e| = 0. Given a sequence
o € S* and a state s € S, we write o - s for the sequence
obtained by appending s to o, i.e., 0 - 5§ = 152 -+ S, when
o = 8159+ S,. We also write o7 - o9 for the concatenation
of two sequences 01,09 € S*.

Given the set N of nodes, we write N* for the set of all

finite paths. We write 1-2----- x € N* to denote a path from
node 1, 2 to x where 1,2,--- ,x € N. Given a sequence of
states o € S*, we assume each state is associated with a node.
We write s!'s?---s* to denote the associated nodes, and the
path of the sequence is 1-2-- - - - x. We write path(o) to denote
the associated path of trace ¢. For two paths ¢1, 92 € N*, we
write ¢1-¢ for the concatenation of them. We write ¢<¢' to
denote ¢ is a non-strict prefix of ¢'.
Trace-augmented analysis. To collect traces, we augment the
static analysis in Algorithm 1 to deal with traces. The trace-
augmented analysis in Algorithm 2 computes a set of traces as
opposed to a set of states that the original analysis computes.
As input, the analysis takes a program to analyze and a trace-
selection heuristic, denoted H , which is a trace-lifted version
of the state-selection heuristic %

HS p(S*) = p(S).

As output, the trace-augmented analysis computes two sets
of traces, X, and X, where >, denotes the set of alarm-
triggering traces and Y,; denotes all analyzed traces. We say a
trace o is alarm-triggering if its last state o triggers an alarm
reporting, i.e., alarms(c, o4) # 0 for the command c. If all the
sub-traces of a trace o is not alarm-triggering, o is said to be
non-alarm-triggering, i.e., V1 < i < |o| : alarms(c,0;) = 0
where c is the command that computed o; as an output.

The analysis iterates over the functions in the reverse
topological order at lines 5-9. At line 6, each function f is
isolation using the current summaries (7)), where a summary
of a function is lifted to traces, i.e., 7 : Funcs — @(S*).
Analyzing a function produces as output »; and 5 where
331 denotes the trace-lifted summary for f (each last state of

Algorithm 3 Trace collection algorithm

Require: P: programs, K: the number of states to select
Ensure: X ,,,: alarm-triggering traces, X,,,: non-alarm-
triggering traces
1: procedure COLLECTTRACEs(ﬁ, K)
2 Satm, Lan < 0,0 > alarm-triggering and all traces
3 repeat
4 for all P € P do
5: Hop < GenExpHeuristic(Zgm, Zan, K)
6 (5! s Xy < Analyzer(P, ﬁfjp)
7 Yaim — Zam U Eﬁzlm
8 Yal & 2 U E;”
9: until budget expires
10: return (X, o)

which is a summary of f in Algorithm 1) and ¥, denotes the
traces triggering alarms during the analysis of f. At line 7, the
analysis updates the function summary traces. At lines 8-9, the
analysis respectively accumulates the alarm-triggering traces
and all traces. Once all functions are analyzed, the algorithm
returns the alarm-triggering (2,,) and the analyzed summary
(X4n) traces at line 10.

Function analyze_function, which corresponds to the lifted
version of analyze_function in Algorithm 1, computes trace
summaries for a function. Like the unaugmented version, it
performs a flow-sensitive analysis to compute a fixpoint of
a semantic function but the analysis results are traces, rather
than states. That is, it computes a table X : N — p(S*)
from nodes to a set of reachable traces, which is defined as a
fixpoint of the function F : (N — o(S*)) — (N — (S*)):

FX)ZxmeNH (|J U oolemdm)](o)

n’—<noeX(n’)

where (o) € S* X p(S) — p(S*) denotes the concatenation of
a trace and a set of states, i.e., 00S 2 {o-s | s € S}. The anal-
ysis accumulates traces by concatenating the given trace o and
the state obtained from the execution of command with the last
state o4. Then, we define the output of analyze_function(f,
T, ﬁK) to be (31,32) where 3 = (fixF)(exit) represents
all the reachable traces at the end of the function and X5 is
the set of traces triggering alarms inside the function:

¥, & U U {o € (fixF)(n') | alarms(cmd(n),04) # 0}.

neN n’—n

Naive trace-collection algorithm. A naive approach to collect
traces is to repeatedly apply the trace-augmented analysis with
a random trace-selection heuristic to the training programs

5 =K L .

Birgin- Let H,,,,4 be a random heuristic such that, given a set X
. K

of traces with |X| > K, H,,,,4(X) returns a randomly-sampled

subset ¥’ C ¥ of size K. Then, we can iteratively invoke
Analyzer with programs in P,;, and the random heuristic
—K

H.ona to accumulate the resulting traces, ., and X,y until
a given time budget expires:

repeat
for all P € f’,,.a,-,, do
<Ealma Eall> — Analyzer(P, Hﬁfmd)
accumulate >,;, and X,y
until budget expires
This simple approach, however, is inefficient. Collecting a
large number of alarm-triggering traces is a key to success in
our approach, but relying on the random selection is unlikely
to discover many different alarm-triggering cases.

Our algorithm. To improve the efficiency, our algorithm uses a
so-called exploratory trace-selection heuristic, denoted ﬂfip :
p(S*) = p(S*), to steer the search toward more profitable
traces that are likely to trigger alarms. During the course of
the algorithm, we continuously refine the heuristic based on
the trace data collected, which in turn accelerates the trace-
collection procedure and produces more data.

Algorithm 3 presents the workflow of our trace-collection
algorithm. It repeatedly collects traces at lines 4—8 by running
the trace-augmented analysis on the training programs until a
given time budget expires. In each iteration, the exploratory
heuristic ﬂexp is reconstructed at line 5 (GenExpHeuristic)
using the alarm-triggering traces X, and all collected traces
Y. The refined heuristic is then used by the analyzer
(Analyzer) to find alarm-triggering traces more effectively.
Below, we explain how we generate the heuristic ﬂff,,
Zalm and Eall- .

The exploratory trace-selection heuristic H,y, works in two
steps. That is, it is defined by the composition of two sub-
heuristics, namely repetition avoidance heuristic Havoia and
adaptive selection heuristic H,

from

adapt :

K

_ K _
Hexp(z) = (Hadapt ° HEVOid)(E)'

Given a set ¥ of traces, we first use H g to discard traces
in X that have already been considered in previous iterations.
Next, we use ﬂajzapt to rank and select the top-K traces that
are most likely to generate alarms.

Formally, the goal of the repetition avoidance heuristic
(Havoia) is to discard a trace o in ¥ if it is guaranteed that
the current trace o evolves to a complete trace o’ (denoted
o —4 ¢’) that is already included in X

ﬁi;ﬁd(E) L{oex |’ €S 040 =0 €Su}. 3)
For a given trace o € %, to decide whether to discard it or
not, note that we need to explore all the complete traces that
follow o, which is infeasible to compute efficiently.

Thus, we present an algorithm for approximately computing
the set in (3). The idea is to maintain covered pre-paths ® from
the all analyzed traces. A path of a trace, denoted path(o),
is a covered pre-path of ¥, if all its subsequent traces have
been explored exhaustively. That is, for a given trace ¢ such
that path(c) € ®, Vo' € S*: 0 =, 0/ = o’ € X, holds. We
can express the definition (3) with ® as follows:

Honia(S) £ {0 € X | path(o) &).

Now we explain how to compute covered pre-paths from
analyzed traces. For that, we need to know where we have yet
to explore. Suppose, for instance, that there are no unexplored
paths after a certain program node in the last analysis. It
indicates that all subsequent traces after the program node
have been exhaustively explored. In other words, a path from
the start node to the program node is a covered pre-path.

We use annotated analyzed traces to find covered pre-paths.
Let us mark a state with the underline, s, to indicate where the
analysis discarded a trace. The presence of this mark implies
that an unexplored trace exists at the node. For instance, during
the analysis, it discarded the trace s's>s* and selected the trace
s's?s* at node 4, and it did not discard any trace at node 5.
In this case, the annotated analysis result is {s's?s*s’}.

From an annotated analyzed trace, because there is no
unexplored path after the last annotated node, the path from
the start node to the last annotated node is a covered pre-path
and all subsequent paths are also covered pre-paths.

Example 1: Let ¥, = {s's’s*s’s's*} be the all traces
analyzed so far. The path 1-2-4-5-7 is a covered path because
the analysis did not discard a trace at node x. However, 1-2-4
is not a covered path because there exists an unexplored trace
at node 7 (as indicated by s7).

We use function cover : S* — p(N*) that takes an anno-
tated trace and computes covered pre-paths, and the function
satisfies the following property:

V¢ € N* : pathLast(o) < ¢ < path(c) = ¢ € cover(o).

where o is an annotated trace, and pathlLast : S* — N* takes
an annotated trace and produces a path from the start node to
the last annotated node. Finally, we compute the set of covered
paths @ from the annotated all analyzed traces X, as follows:

o= U cover(o)

oEXa

Because cover does not consider other annotated traces, it
computes a path that is not an actual covered path in terms of
the whole analyzed result, and resulting heuristic may discard
unexplored traces.

.. K

We extend the heuristic H,,, and the trace-augmented
analysis to create annotations on the all analyzed traces Y.
If the adaptive selection heuristic discards any trace during the

. .. K

analysis, the heuristic H,,, marks the last state of the result.
Note that the discarded traces by the repetition avoidance
heuristic are not counted. In Algorithm 3, at line 6, the analysis

produces the all analyzed traces X/, with annotations.

The adaptive selection heuristic H ,,,, is simpler to define.
Using the collected traces X, and ¥y, it learns a statistical
model that distinguishes between the alarm-triggering and
non-alarm triggering traces. The heuristic is trained every
iteration. The initial heuristic constructed with empty traces
is equivalent to the random heuristic. As more traces are
accumulated, however, the classifier is trained with more data
and selects traces that are more likely to be alarm-triggering.
Using the trained model, ﬁzam selects K likely alarm-

triggering traces. We reuse the classifier learning algorithm and
the trained classifier C' : S — [0, 1] in Section IV-B (explained
shortly). The difference is that, for this on-the-fly heuristic
construction, we use a specific hyper-parameter for the training
algorithm, and do use the constructed model without model
selection. The heuristic with a learned classifier C' is defined

as follows (when |X| > K; otherwise, Halfiap,(Z) =)

gcﬁaﬁt(z) g argmax Z C(O’.{)

T/CE [T =K

The adaptive heuristic is similar to the state-selection heuristic
HE, but it differs in that it computes ranking based on the last
state (04) of the given traces.

Combining the two heuristics, Hayoiq and ﬁprt, was essen-
tial for performance. For example, combining the repetition
avoidance heuristic with the random selection heuristic is not
effective because the random selection heuristic is inefficient
on its own. Using the adaptive selection heuristic alone is
definitely not good because the same traces are repeatedly
selected at each iteration.

B. Training and Using Models

Once the traces >, and X, are collected, we train statisti-
cal models that predict how likely a state belongs to an alarm-
triggering trace. This learning procedure produces M models
as output, where M is a user-provided parameter that controls
the cost and coverage of our approach. When analyzing a new
program, we choose the best model by running a pre-analysis
M times with each model.

Generating training data. We generate training data by first
computing non-alarm-triggering traces, denoted ,,,, from
Yaum and Xy, as follows:

Shon = {o € Xy |Vo1,00: 0 =01-092= 01 & Zaim}
and then abstracting ¥, and ¥,,,, into alarm-contributing and
non-alarm-contributing states, denoted S* and S—, respec-
tively. We say a state s is alarm-contributing if s appears in
some alarm-triggering trace. Similarly, we say s is non-alarm-
contributing if s does not appear in any alarm-triggering traces.
STt and S~ are defined as follows:

S+ = Oé(zalm), ST = a(znon) \a(zalm)

where « : S* — p(S) abstracts a trace into a set of states by
ignoring the linkage between states: a(X) = J,ex{oi | 1 <
i < |o|}. We then generate the labeled data D as follows:

D= {(I(s),1) | s € ST} U{(II(s),0) | s € 5 }.

Here, we assume a set of features II = {my,ma,...,m,} is
given, where a feature m; : S — B is a predicate on states.
The feature vector of state s is denoted by II(s) and defined by
II(s) = (m1(s),m2(s),...,mn(s)). At the end of this section,
we describe the state features used in our implementation.

Training models. Next, we train statistical models that dis-
tinguish between ST and S~. For this purpose, we use an

off-the-shelf classification algorithm. Let TrainClassifiery be
a black-box algorithm for learning probabilisitc classifiers
(e.g., gradient boosting). Classification algorithms typically
have hyper-parameters, denoted A, that are used to tune
their performance on specific datasets. For example, gradient
boosting classifiers include the maximum depth of a tree,
the maximum depth of leaf nodes in a tree, and so on, as
hyper-parameters. We assume a finite set A of hyper-parameter
configurations is fixed. Given a hyper-parameter setting A € A
and training data D, the classification algorithm produces a
probabilistic classifier C, i.e., C' = TrainClassifier) (D), where
the learned classifier C' : S — [0,1] is a function that takes
a state and computes as output the probability that the state
is alarm-contributing (we assume the classifier internally uses
the features II to transform a state into a feature vector). Let
C = {C1,Cs,...,C)5)} be the set of all classifiers learned
from D, one for each hyper-parameter A € A:

C = {TrainClassifiery(D) | A € A}.
Note that the behavior of the learned classifier varies depend-
ing on the hyper-parameter \.

Qﬁ?ine model selection. We choose)M candidate models from
C by evaluating their performance on the validation set P,;g.
Given M (< |A|), we select M classifiers

c* ={C1,C,...,Chy cC

that collectively achieve the best performance when we run
the analysis on the validation set P,y

c* = max |Analyzer(P, H5mm)|

cec’

argmax

ollatel | — —
C'CC s.t. |C'|=M PeB.

where K., denotes the number of states maintained during
the main analysis and the state-selection heuristic Hé(with a
learned classifier C' is defined as follows:

HK(S)—{S if 5] < K
c argmaxs/gs s.t. |8'|=K ZSES/ C(S) if |S| > K

As a special case, when M = 1, note that we choose the single
classifier that performs the best on the validation programs:

C* = argmax Z |Analyzer(P, H 5"
cel

PP

Example 2: Suppose ﬁval[d = {P, P, P;, Py} and C =
{C1,C4,C3}. Assume each (P;,C;) entry of the following
table (left) stores the number of alarms obtained by running
the analyzer on P; using Cj, i.e., \Analyzer(Pi,Hg””’”)

2 ‘ 051 ‘ 6;2 ‘ 033 combination ‘ max # of alarms
Pl O A Ch, Cy 24

P2 51 4|3 Cr, Cs 21

3 Csy, C 26

Py 4 8 5

When M = 2, we select Cy and C3 because this combination
maximizes the number of alarms (see the table on the right).

Online model selection via pre-analysis. Given M models

C* ={C},Ch,...,Ch,}, we analyze a new, unseen program
P by adaptively selecting the best model via pre-analysis. The
aim of the pre-analysis is to estimate the behavior of models
on P, and we simply do so by analyzing the program with
a small K. Let K,,, be a pre-defined value such that K, <
Kongin. Then, we estimate the best model for P, denoted C}
as follows:

C} = argmax |Analyzer(P, Hp'™)|.
ceC~

With C'f, the main analysis is run as Analyzer(P, ”ng)

In summary, the performance of our analysis equipped with
the learned heuristic is controlled by the three parameters:

1) K,uain: the number of states to be maintained during the
main analysis (higher is better but more expensive).

2) K,: the number of states to be maintained during the
pre-analysis (higher is better but more expensive).

3) M: the number of models to be considered in online
model selection (higher is better but more expensive).

State Features. Though our approach described so far is gener-
ally applicable to the class of static analyzers in Section III-A,
the set II of state features needs to be manually provided for
each analysis instance. However, we found that many useful
features may be already available in the implementation of
abstract states of bug-finders, so that we can reuse those
features without significant feature engineering effort.

For example, in our implementation for Infer, we defined II
to be the basic features of Infer’s abstract state (S), which are
easily obtained from the definition of S. The abstract state of
Infer consists of the five components:

S = Node x PC x Pre x Post x SkippedCalls

where Node denotes the current node (program point) in the
control-flow graph, PC' the path condition, Pre the inferred
pre-condition of the node, Post the post-condition of the node,
and SkippedCalls the set of function calls skipped so far. Both
Pre and Post consist of Heap, Stack, and Attrs. Heap de-
notes the abstract heap, which is a map from abstract addresses
to abstract values. Stack is the abstract stack, which is a map
from abstract stack addresses to abstract values. Attrs denotes
attributes of abstract addresses, which is a map from abstract
addresses to attributes. For example, an abstract address may
have attributes with AddressOfStackVariable, Allocated,
and/or, WrittenTo. AddressOfStackVariable indicates that
the abstract address designates the address of a stack variable.
Also, it annotates an abstract address with inferred conditions
such as MustBeValid. Allocated and WrittenTo respectively
indicate whether the address is allocated or not, and that a
value stored at the address is used to describe a buggy trace
since it was updated at a certain program point.

We basically translated such attributes into state features.
From Node, we used 49 features, which encode the instruc-
tion types and structural information (e.g., the number of
successors/predecessors) of nodes, all of which are provided
as predicates or functions in Infer. From PC, we used 2

features, the satisfiability and the size of the path condition.
From Pre/Post, we used 14 features denoting the numbers of
abstract locations belonging to each attribute (e.g., Allocated)
and 1 feature for stack size. From SkippedCalls, we used the
number of skipped calls as a feature.

V. EVALUATION

We have implemented our approach on top of Infer and
conducted experiments to answer the following questions:

¢ (RQ1) Effectiveness of our approach: How effective
is our learned state-selection heuristic? How significantly
does it improve the performance of original Infer?

o (RQ2) Efficiency of trace collection algorithm: How
efficiently does our trace collection algorithm produce
alarm-triggering traces compared to the naive approach?

e (RQ3) Sensitivity on data: How sensitive is our data-
driven approach to the amount of training data?

e (RQ4) Impact of learning: How significantly is the
learned heuristic better than the random heuristic?

¢ (RQ5) Comparison of alarms: How similar or different
are the alarms produced by original and data-driven Infer?

Setup. We used 85 open-source C programs collected from
GNU and GitHub. Among them, we used 15 largest programs
in Table I for evaluating the heuristic learned from the re-
maining 70 programs. The 70 programs were further randomly
classified into the training set]%min of 49 programs (70%) and
the validation set ﬁvalid of 21 programs (30%).

We implemented our approach on top of Infer.Pulse, an
interprocedural analyzer for detecting memory safety bugs
such as memory leak and null dereference. Infer.Pulse is being
actively developed at Meta and we used v.1.0.0, the latest
release at the time we started this project. When running
Infer, we used options —3 1 (i.e., no multi-threading) and
——pulse-only (i.e., disabling other checkers).

We ran the trace collection algorithm (Algorithm 3) on P,
with the default K value, i.e., K = 20. The time budget was
20 hours. To learn classifiers from the collected traces, we
used the gradient boosting algorithm available in the scikit-
learn library [18] and trained 18 classifiers, one for each
configuration in the following space A of hyper-parameters:

A={(l,e,d) |1 €{0.01,0.1,1.0},e € {100,200},d € {1,2,4}}

where [, e, and d denote the learning rate, the number of
estimators (boosting stages), and the maximum depth of es-
timators, respectively. Other hyper-parameters were set to the
default values provided by the library. We used the validation
set ﬁvalid to choose the best classifier (i.e., M = 1) and the
best three classifiers (i.e., M = 3).

All experiments were done on a virtual machine running
Ubuntu 18.04 with 4 CPUs and 32GB memory. The host
machine was iMac powered by 3.8 GHz 8-core Intel Core
i7 processor with 128GB memory.

A. Effectiveness of Our Approach

Performance of original Infer. Table I shows the performance
of original Infer with various K, values. The result shows

that increasing K, allows Infer to detect more alarms
(potential bugs) but doing so slows down the analysis signifi-
cantly. For example, with K., = 5, Infer took 659 seconds
to detect 1,160 alarms over the 15 programs. With K,,,,;, = 60,
Infer was able to detect 1,637 alarms (41.1% increase) but it
took 39,684 seconds (60x increase).

Performance of data-driven Infer. Table 11 shows the perfor-
mance of data-driven Infer with various M, K4, and K.,
values. With M = 1 (i.e., the single best model is used) and
K,pain = 5, the result shows that our data-driven Infer can
already compete with original Infer with K,,,;, = 60, detecting
1,668 potential bugs in 875 seconds; the numbers of alarms
are similar (1,637 vs. 1,668) but ours is 45x faster than the
original. By increasing K, to 20 while maintaining M = 1,
data-driven Infer can find out 2,293 alarms, 40% more than
original Infer with K., = 60, with much smaller analysis
time (7,208 seconds).

The result shows that we can accelerate the analysis by
using multiple models and pre-analysis. When we used three
models (M = 3) and pre-analysis with K, = 1, our data-
driven Infer with K., = 5 detected 2,329 alarms in 1,777
seconds, reducing the cost of the analysis with M = 1 and
Kpain = 20 by 4.1x. When K,,, = 1, pre-analysis took 870
seconds. Note that, when M = 3, pre-analysis is run three
times per program to select the best one out of three models.
(Over the 15 programs, running pre-analysis with K, = 1
only takes about 290 (870/3) seconds.)

The result also shows that we can use a more precise pre-
analysis to detect more alarms with reasonable cost increase.
When M = 3 and K,u4in = 5, data-driven Infer with K,,, = 3
reports 17.6% more alarms (2,329 — 2,740) than analysis with
K, = 1 while increasing the cost by 1.4x (1,777 — 2,443).
This is because pre-analysis with K, = 3 is able to more
precisely capture the behavior of the main analysis than pre-
analysis with K, = 1.

Comparison of cost/bug-finding efficiency. Figure 3 shows
that data-driven Infer remarkably improves the cost/bug-
finding efficiency of original Infer, where the x-axis denotes
the number of alarms detectable by each analysis and the
y-axis is the analysis time in seconds. To depict Figure 3,
for original Infer, we randomly selected 20 K,,; values
between 1 and 60, and measured the number of alarms and the
analysis time for each sampled K. For data-driven Infer,
we considered two cases separately: M = 1 and M = 3.
When M = 1, we plotted the performance of five analyses
with 1 < K4, < 5. When M = 3, we randomly sampled 15
analyses from 1 < K, < 3 and 3 < K45, < 20 such that
Kmain > Kpre~

B. Efficiency of Trace Collection Algorithm

Our trace collection algorithm in Section IV-A was by far
more effective than the naive algorithm based on random
sampling. Figure 4 compares the efficiency of the two algo-
rithms. With the budget of 20 hours, the random-sampling
approach discovered about 50,000 unique alarm-triggering

TABLE I: Performance of original Infer(Pulse). Analysis time in seconds. K,,;: the number of disjuncts to be maintained
during the main analysis.

Kmain =5 Kmain =10 Kmain =20 Kmain =40 Kmain =60

Program | KLOC - - - - : -
alarms | time | alarms time | alarms time | alarms time | alarms time
gawk 57 68 9 67 22 67 67 68 294 69 497
redis 74 4 25 4 73 4 196 2 585 2 1,042
nasm 103 55 13 76 16 80 27 99 49 93 86
sqlite 117 2 42 2 232 2 835 2 3,178 8 3,237
gnucobol 123 10 28 10 68 11 201 12 666 11 1,717
gnuastro 151 47 48 51 56 52 78 63 201 66 320
DyLP 157 11 25 17 56 18 158 21 567 19 1,018
httpd 207 373 64 435 167 473 554 466 2,091 506 5,190
git 238 5 42 4 97 6 278 5 1,116 5 2,047
freeipmi 318 10 36 12 77 13 197 16 674 16 1,178
vim 342 1 67 1 187 1 926 1 3,725 1 7,448
bluez 366 59 24 98 55 113 164 130 508 158 880
cpython 367 10 97 10 207 12 645 12 2,595 12 5,200
openssl 414 412 99 422 238 425 841 468 3,767 492 7,314
gettext 701 93 39 96 92 138 277 161 1,408 179 2,510
TOTAL 3,735 1,160 659 1,305 | 1,642 1,415 | 5,444 1,526 | 21,425 1,637 | 39,684

TABLE II: Performance of data-driven Infer(Pulse). M: the number of learned models (from which the best one is used for
each program). K,,: the number of disjuncts to be maintained during the main analysis. K,.: the number of disjuncts to be
maintained during the pre-analysis. Total: total analysis time including pre- and main-analyse. Pre: pre-analysis time.

_ M =3
M=1 Kpre =1 Kpre =3
PrOgram Kmain =5 Kmuin =20 Kmuin =5 Kmain =5 Kmain =10
alarms | time | alarms time | alarms LD alarms time alarms time
. ! Total | Pre Total Pre Total Pre
gawk 76 24 82 205 75 33 15 75 47 30 78 70 29
redis 4 33 4 347 4 64 31 5 82 53 5 136 59
nasm 46 19 72 73 64 53 37 65 60 43 90 73 47
sqlite 8 66 8 649 8 98 42 8 156 99 8 256 92
gnucobol 10 27 12 400 10 73 33 10 108 72 10 182 78
gnuastro 54 52 68 182 54 200 | 137 64 225 159 71 281 166
DyLP 21 35 22 245 21 68 32 17 98 65 20 144 66
httpd 286 107 397 | 1,234 609 167 65 609 262 159 617 419 176
git 5 62 6 568 69 102 44 69 160 102 61 255 103
freeipmi 11 32 16 276 32 83 36 32 104 59 201 191 66
vim 167 101 398 | 1,005 167 166 67 525 232 151 535 403 162
bluez 139 40 167 243 77 73 39 113 94 63 148 148 69
cpython 16 131 17 853 15 259 | 142 15 336 228 17 498 254
openssl 669 80 842 495 968 198 74 968 296 170 757 439 177
gettext 156 67 182 431 156 141 75 165 184 123 186 268 132
TOTAL 1,668 875 2,293 | 7,208 2,329 | 1,777 | 870 2,740 | 2,443 | 1,576 2,804 | 3,764 | 1,674
40000 — |@Original Infer
35000 | |eData-Driven Infer
S 30000
i'% 25000 ®
g 20000
= 15000
10000 °
5000 | .
0 —00— o e \ \ T T T T T T T T

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200
number of alarms

Fig. 3: Comparison of the cost/bug-finding efficiency between original and data-driven Infer.

)

£ 150000 | —e— Random
2 125000 ||~ Ours
g

88100000 -

=]

§ 75000

S 50000 |

o

B 25000 |

E

E 0

T T T T T
0 15000 30000 45000 60000 75000
time (sec)

Fig. 4: Efficiency comparison between random and our trace-
collection algorithms. The y-axis shows the number of unique
alarm-triggering traces discovered by two algorithms.

traces. By contrast, our algorithm increased the number by
3x, discovering about 150,000 alarm-triggering traces.

C. Sensitivity on the Amount of Data

The effectiveness of our approach steadily increased as the
underlying classifiers are trained with more data. Figure 5
compares the performance of data-driven Infer (with K, =
20, K, = 3, and M = 3) when the classifiers are trained
with different amounts of data (i.e., alarm-triggering and non-
alarm-triggering traces). Our data-driven Infer reported 2,740
alarms when using 100% of the data collected over 20 hours.
When the classifiers are trained on 50% of the data (sampled at
random), over 10 trials, the number of alarms decreased to an
average of 2,579 with a standard deviation of 130. Using 10%
of the data, the average number was 2,398 and the standard
deviation was 170.

D. Impact of Learning

Learning was essential for achieving the performance of
data-driven Infer; simply using random state-selection heuris-
tic without learning never achieved the performance. Figure 6
shows the performance of random Infer whose state-selection
heuristic chooses K, states at random (we set K., = 5).
Over 40 trials, random Infer produced 1068 alarms on average
with a standard deviation of 208. The performance of original
Infer was slightly better than random Infer (reporting 1,160
alarms). By contrast, our data-driven Infer was always better
than random Infer. For example, when M = 1, ours reported
1,668 alarms, far outperforming random Infer.

E. Comparison of Reported Alarms

In principle, using our approach does not affect the false
positive rate because original and data-driven analyses use the
same abstract semantics (i.e, [cmd(n)]) and alarm-reporting
criterion (i.e., alarms in (2)). However, the two analyses may
produce different sets of alarms because they use different
strategies (i.e., state-selection heuristics).

[T
g 100% | 2,740 -
= |
on
2 50% 1 2,579 -
g | =
< Data-driven
£ 10% | 2,398 EOriginal
[! ! T
1,500 2,000 2,500 3,000 3,500
alarms

Fig. 5: Data-driven Infer sensitivity on data. Compared to the
original Infer with K,,;, = 20.

3,000 + alarms Random Infer

Original Infer

______________________ Ours (M =1)
2,500 + - == Ours (M =3,K,, = 1)
———————— = = =0urs (M =3, Ky, =3)

2,000

1,500 - A """"""""""""""""""""""
1,000 | \/v VVM \/J W \/ \
trlals

5 10 15 20 25 30 35 40

Fig. 6: Comparison with Random Infer (Infer with random
state-selection heuristic). K., = 5 for all analyses.

Table III compares the alarm sets produced by original and
data-driven Infer. We ran original Infer with K,,,;, = 60 and
data-driven Infer with M = 3, K4, = 10, and K, = 3
to collect as many alarms as possible from both analyzers,
and only compared memory-leak alarms since other types of
alarms were not sufficiently reported. The result shows that
67% (1,024/1,525) of original Infer’s alarms were reported
by data-driven Infer as well. At the expense of missing 33%

TABLE III: Inclusion relationship between memory-leak
alarms of original Infer (A) and data-driven Infer (B).

Programs | |A] Bl | |[AnB| | |[A\B| | |B\ 4]
gawk 69 78 66 3 12
redis 0 0 0 0 0
nasm 93 90 57 36 33
sqlite 2 2 2 0 0
gnucobol 11 10 10 1 0
gnuastro 41 49 33 8 16
DyLP 9 12 8 1 4
httpd 502 614 342 160 272
git 4 6 2 2 4
freeipmi 15 200 13 2 187
vim 0 534 0 0 534
bluez 115 111 73 42 38
cpython 3 5 3 0 2
openssl 487 753 329 158 424
gettext 174 181 86 88 95
TOTAL 1525 | 2645 1024 501 1621

572
573

118
119

(501/1,525) of original alarms, data-driven Infer discovered
additional 1,621 alarms.

The alarms, B \ A, exclusively found by data-driven Infer
were not peculiar ones; they have chances of being found by
original Infer with larger K,,,;, values. For example, consider

the memory-leak alarm produced by original Infer on httpd:
proxy/mod_proxy_fcgi.c:573: Memory Leak
memory allocated at line 572 by apr_brigade_create(),
is not freed after the last access at line 573.

where lines 572 and 573 are as follows:

error:

ib
ob

apr_brigade_create (r->pool, c->bucket_alloc);
apr_brigade_create (r—>pool, c->bucket_alloc);

and compare it with the following alarm found exclusively by
data-driven Infer in a distant location of the same program:
filters/mod_ratelimit.c:119: Memory Leak
memory allocated at line 118 by apr_brigade_create ()
is not freed after the last access at line 119.

where lines 118 and 119 are as follows:

error:

c—>tmpbb = apr_ brigade_create (f->r->pool, ba);
c—>holdingbb = apr_brigade_create (f->r->pool, ba);

Note that the root causes of the two alarms are the same, i.e.,
use of the user-defined allocator apr_brigade_create;
the alarms are either true or false at the same time. Original
Infer failed to report the latter simply because it could not
analyze the corresponding program location.

VI. RELATED WORK

Data-Driven Static Analysis. Developing effective heuristics
for static analysis has been an active research area and various
approaches have been proposed to balance competing factors
such as precision, scalability, and soundness [19]-[40].

In particular, our work belongs to recent techniques called
data-driven static analysis [32]-[40]. Because developing anal-
ysis heuristics manually for real-world programs is challeng-
ing, these data-driven approaches aim to generate analysis
heuristics automatically from a corpus of programs using
machine learning techniques. For example, Oh et al. [32] pro-
posed a technique that uses Bayesian optimization to learn
analysis heuristics for interval analysis, where the goal of
the heuristics is to select subsets of program variables and
procedures to apply flow-sensitivity and context-sensitivity,
respectively. Heo et al. [41] developed a supervised learn-
ing algorithm to infer how to cluster program variables in
relational analysis using the Octagon abstract domain. Singh
et al. [38] used reinforcement learning to train a policy
for choosing best abstract transformers in numerical analysis
based on the Polyhedra domain. He et al. [36] presented
an approach based on graph neural networks to selectively
maintain constraints and remove redundant ones during nu-
merical analysis. Heo et al. [35] used learning to control the
soundness of analysis, where the learnt heuristic determines
how differently to unroll loops.

Our work is different from the prior work on data-driven
static analysis as follows. First, we tackle a new problem,
i.e., learning a state-selection heuristic for industrial static
analyzers; to our knowledge, no existing techniques have

been developed for state-selection heuristics or industry-scale
static bug-finders such as Infer [1]. Second, we present a
new white-box learning algorithm specially designed for state-
selection heuristics, which uses information about internal
analysis states to reduce the learning cost. In contrast, most
existing data-driven approaches are based on blackbox learn-
ing algorithms that only use the input and output behavior of
static analysis as training data. The major shortcoming of such
an algorithm is that learning is very expensive and therefore
large programs cannot be used as training data. For example,
Jeon et al. [34] used four small programs as training data due
to the learning cost. Some techniques are based on white-box
learning algorithms [33], [35] but they are not applicable to
our problem. For example, the algorithm by Cha et al. [33]
assumes an oracle whose construction requires to analyze
codebases with full precision, which is obviously infeasible
for path-sensitive analyses.

Scaling Disjunctive Analysis. Scaling disjunctive or path-
sensitive analysis has been an important topic in static analy-
sis [1], [10], [11], [16], [29], [30]. In particular, it is one of
the major challenges to be overcome in modern static bug-
finders used in industry [1], as industrial codebases are large
and subject to frequent change. Our major difference from the
prior work on this topic is that we address the problem using
a data-driven approach while techniques used in prior work
have been designed manually.

VII. CONCLUSION

Scaling disjunctive static bug-finders is one of the most
important challenges in industrial settings. We demonstrated
that using a data-driven technique to learn a state-selection
heuristic can significantly improve the performance of a real-
world static bug-finder. For a range of programs, our technique
enabled Infer, a bug-finding static analyzer deployed within
Meta, to effectively find alarms that are out of the reach of
original Infer with a hand-crafted state-selection heursitic. To
this end, we presented a learning framework that is generally
applicable to disjunctive, bottom-up static analyzers.

DATA AVAILABILITY

The link below provides our source code that we used in
our experiments.
https://github.com/facebookresearch/data_driven_infer

ACKNOWLEDGMENT

H. Oh was supported by Samsung Research Funding &
Incubation Center of Samsung Electronics under Project Num-
ber SRFC-IT1701-51, Institute of Information & communica-
tions Technology Planning & Evaluation (IITP) grant funded
by the Korea government(MSIT) (No.2020-0-01337,(SW
STAR LAB) Research on Highly-Practical Automated Soft-
ware Repair), the ICT Creative Consilience program(IITP-
2023-2020-0-01819), and the National Research Founda-
tion of Korea(NRF) grant funded by the Korea govern-
ment(MSIT)(No. 2021R1A5A1021944).

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

REFERENCES

D. Distefano, M. Féhndrich, F. Logozzo, and P. W. O’Hearn, “Scaling
static analyses at facebook,” Commun. ACM, vol. 62, no. 8, p. 62-70,
Jul. 2019. [Online]. Available: https://doi.org/10.1145/3338112

C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan,
“Lessons from building static analysis tools at google,” Commun.
ACM, vol. 61, no. 4, p. 58-66, Mar. 2018. [Online]. Available:
https://doi.org/10.1145/3188720

C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang, “Compositional
shape analysis by means of bi-abduction,” J. ACM, vol. 58, no. 6, dec
2011. [Online]. Available: https://doi.org/10.1145/2049697.2049700

Q. L. Le, A. Raad, J. Villard, J. Berdine, D. Dreyer, and P. W. O’Hearn,
“Finding real bugs in big programs with incorrectness logic,” Proc. ACM
Program. Lang., no. OOPSLA, 2022.

S. Blackshear, N. Gorogiannis, P. W. O’Hearn, and I. Sergey,
“Racerd: Compositional static race detection,” Proc. ACM Program.
Lang., vol. 2, no. OOPSLA, oct 2018. [Online]. Available: https:
//doi.org/10.1145/3276514

V. Bridgers, “Using the clang static analyzer to find bugs,” 2020,
presentation at 2020 LLVM Developers’ Meeting.

C. Sadowski, J. Van Gogh, C. Jaspan, E. Soderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 1,
2015, pp. 598-608.

M. Christakis and C. Bird, “What developers want and need
from program analysis: An empirical study,” in Proceedings of the
31st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 332-343. [Online]. Available:
https://doi.org/10.1145/2970276.2970347

H. Esfahani, J. Fietz, Q. Ke, A. Kolomiets, E. Lan, E. Mavrinac,
W. Schulte, N. Sanches, and S. Kandula, “Cloudbuild: Microsoft’s
distributed and caching build service,” in Proceedings of the 38th
International Conference on Software Engineering Companion, ser.
ICSE ’16. New York, NY, USA: Association for Computing
Machinery, 2016, p. 11-20. [Online]. Available: https://doi.org/10.1145/
2889160.2889222

G. Fan, R. Wu, Q. Shi, X. Xiao, J. Zhou, and C. Zhang, “Smoke:
Scalable path-sensitive memory leak detection for millions of lines of
code,” in Proceedings of the 41st International Conference on Software
Engineering, ser. ICSE ’19. 1EEE Press, 2019, p. 72-82. [Online].
Available: https://doi.org/10.1109/ICSE.2019.00025

Y. Xie, A. Chou, and D. Engler, “Archer: Using symbolic, path-sensitive
analysis to detect memory access errors,” in Proceedings of the 9th
European Software Engineering Conference Held Jointly with 11th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. ESEC/FSE-11. New York, NY, USA: Association
for Computing Machinery, 2003, p. 327-336. [Online]. Available:
https://doi.org/10.1145/940071.940115

Y. Kim, “Using svace static analysis tool in samsung environments,”
http://0x1.tv/Using_Svace_static_analysis_tool_in_Samsung_
environments_(Youil_Kim,_ISPRASOPEN-2019), 2019, presentation
at ISPRASOPEN-2019.

Y. Xie and A. Aiken, “Context- and path-sensitive memory leak
detection,” in Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. ESEC/FSE-13.
New York, NY, USA: Association for Computing Machinery, 2005, p.
115-125. [Online]. Available: https://doi.org/10.1145/1081706.1081728
Y. Zheng and X. Zhang, “Path sensitive static analysis of web applica-
tions for remote code execution vulnerability detection,” in 2013 35th
International Conference on Software Engineering (ICSE), 2013, pp.
652-661.

I. Dillig, T. Dillig, and A. Aiken, “Sound, complete and scalable
path-sensitive analysis,” in Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’08. New York, NY, USA: Association for Computing
Machinery, 2008, p. 270-280. [Online]. Available: https://doi.org/10.
1145/1375581.1375615

Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang, “Pinpoint: Fast
and precise sparse value flow analysis for million lines of code,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2018. New York,

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

NY, USA: Association for Computing Machinery, 2018, p. 693-706.
[Online]. Available: https://doi.org/10.1145/3192366.3192418

P. W. O’Hearn, “Incorrectness logic,” Proc. ACM Program. Lang., no.
POPL, pp. 10:1-10:32, 2020.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

J. Park, H. Lee, and S. Ryu, “A survey of parametric static analysis,”
ACM Comput. Surv., vol. 54, no. 7, Jul. 2021. [Online]. Available:
https://doi.org/10.1145/3464457

Y. Smaragdakis, G. Kastrinis, and G. Balatsouras, “Introspective
analysis: Context-sensitivity, across the board,” in Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI "14. New York, NY, USA: ACM, 2014,
pp. 485-495. [Online]. Available: http://doi.acm.org/10.1145/2594291.
2594320

G. Kastrinis and Y. Smaragdakis, “Hybrid context-sensitivity for points-
to analysis,” in Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI *13.
New York, NY, USA: ACM, 2013, pp. 423-434. [Online]. Available:
http://doi.acm.org/10.1145/2491956.2462191

G. Xu and A. Rountev, “Merging equivalent contexts for scalable
heap-cloning-based context-sensitive points-to analysis,” in Proceedings
of the 2008 International Symposium on Software Testing and Analysis,
ser. ISSTA "08. New York, NY, USA: ACM, 2008, pp. 225-236.
[Online]. Available: http://doi.acm.org/10.1145/1390630.1390658

T. Tan, Y. Li, and J. Xue, “Making k-object-sensitive pointer analysis
more precise with still k-limiting,” in Static Analysis, X. Rival, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 489-510.
——, “Efficient and precise points-to analysis: Modeling the heap
by merging equivalent automata,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2017. New York, NY, USA: ACM, 2017,
pp. 278-291. [Online]. Available: http://doi.acm.org/10.1145/3062341.
3062360

Y. Li, T. Tan, A. Mgller, and Y. Smaragdakis, ‘“Precision-guided
context sensitivity for pointer analysis,” Proc. ACM Program. Lang.,
vol. 2, no. OOPSLA, pp. 141:1-141:29, Oct. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3276511

“Scalability-first pointer analysis with self-tuning context-
sensitivity,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: ACM, 2018, pp. 129-140. [Online]. Available:
http://doi.acm.org/10.1145/3236024.323604 1

J. Lu and J. Xue, “Precision-preserving yet fast object-sensitive
pointer analysis with partial context sensitivity,” Proc. ACM Program.
Lang., vol. 3, no. OOPSLA, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3360574

H. Oh, W. Lee, K. Heo, H. Yang, and K. Yi, “Selective context-
sensitivity guided by impact pre-analysis,” in Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI "14. New York, NY, USA: ACM, 2014,
pp. 475-484. [Online]. Available: http://doi.acm.org/10.1145/2594291.
2594318

H. Li, F. Berenger, B. E. Chang, and X. Rival, “Semantic-directed
clumping of disjunctive abstract states,” in Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, G. Castagna and
A. D. Gordon, Eds. ACM, 2017, pp. 32-45. [Online]. Available:
https://doi.org/10.1145/3009837.3009881

B. Chimdyalwar and S. Kumar, “Selective path-sensitive interval
analysis (wip paper),” in Proceedings of the 22nd ACM
SIGPLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems, ser. LCTES 2021. New York,
NY, USA: Association for Computing Machinery, 2021, p. 146-150.
[Online]. Available: https://doi.org/10.1145/3461648.3463855

T. Tan, Y. Li, X. Ma, C. Xu, and Y. Smaragdakis, “Making pointer
analysis more precise by unleashing the power of selective context
sensitivity,” Proc. ACM Program. Lang., vol. 5, no. OOPSLA, oct
2021. [Online]. Available: https://doi.org/10.1145/3485524

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

H. Oh, H. Yang, and K. Yi, “Learning a strategy for adapting a
program analysis via bayesian optimisation,” in Proceedings of the
2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ser. OOPSLA
2015. New York, NY, USA: ACM, 2015, pp. 572-588. [Online].
Available: http://doi.acm.org/10.1145/2814270.2814309

S. Cha, S. Jeong, and H. Oh, Learning a Strategy for Choosing
Widening Thresholds from a Large Codebase. Cham: Springer
International Publishing, 2016, pp. 25-41. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-47958-3_2

S. Jeong, M. Jeon, S. Cha, and H. Oh, “Data-driven context-
sensitivity for points-to analysis,” Proc. ACM Program. Lang., vol. 1,
no. OOPSLA, pp. 100:1-100:28, Oct. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3133924

K. Heo, H. Oh, and K. Yi, “Machine-learning-guided selectively
unsound static analysis,” in Proceedings of the 39th International
Conference on Software Engineering, ser. ICSE °17. 1EEE Press, 2017,
pp. 519-529. [Online]. Available: https://doi.org/10.1109/ICSE.2017.54
J. He, G. Singh, M. Piischel, and M. Vechev, “Learning fast and
precise numerical analysis,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI 2020. New York, NY, USA: Association for Computing
Machinery, 2020, pp. 1112-1127. [Online]. Available: https://doi.org/
10.1145/3385412.3386016

K. Chae, H. Oh, K. Heo, and H. Yang, “Automatically generating
features for learning program analysis heuristics for c-like languages,”
Proc. ACM Program. Lang., vol. 1, no. OOPSLA, Oct. 2017. [Online].
Available: https://doi.org/10.1145/3133925

G. Singh, M. Piischel, and M. Vechev, “Fast numerical program
analysis with reinforcement learning,” in Computer Aided Verification,
H. Chockler and G. Weissenbacher, Eds. Cham: Springer International
Publishing, 2018, pp. 211-229.

M. Jeon, M. Lee, and H. Oh, “Learning graph-based heuristics for
pointer analysis without handcrafting application-specific features,”
Proc. ACM Program. Lang., vol. 4, no. OOPSLA, Nov. 2020. [Online].
Available: https://doi.org/10.1145/3428247

K. Heo, H. Oh, and H. Yang, “Resource-aware program analysis via
online abstraction coarsening,” in Proceedings of the 41st International
Conference on Software Engineering, ser. ICSE ’19. IEEE Press,
2019, p. 94-104. [Online]. Available: https://doi.org/10.1109/ICSE.
2019.00027

——, Learning a Variable-Clustering Strategy for Octagon from
Labeled Data Generated by a Static Analysis. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 237-256. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-53413-7_12

