
Automatically Generating Search Heuristics for Concolic Testing
Sooyoung Cha
Korea University

sooyoungcha@korea.ac.kr

Seongjoon Hong
Korea University

seongjoon@korea.ac.kr

Junhee Lee
Korea University

junhee_lee@korea.ac.kr

Hakjoo Oh∗
Korea University

hakjoo_oh@korea.ac.kr

ABSTRACT
We present a technique to automatically generate search heuristics
for concolic testing. A key challenge in concolic testing is how to
effectively explore the program’s execution paths to achieve high
code coverage in a limited time budget. Concolic testing employs a
search heuristic to address this challenge, which favors exploring
particular types of paths that are most likely to maximize the final
coverage. However, manually designing a good search heuristic
is nontrivial and typically ends up with suboptimal and unstable
outcomes. The goal of this paper is to overcome this shortcoming of
concolic testing by automatically generating search heuristics. We
define a class of search heuristics, namely a parameterized heuristic,
and present an algorithm that efficiently finds an optimal heuristic
for each subject program. Experimental results with open-source C
programs show that our technique successfully generates search
heuristics that significantly outperform existing manually-crafted
heuristics in terms of branch coverage and bug-finding.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

ACM Reference Format:
Sooyoung Cha, Seongjoon Hong, Junhee Lee, and Hakjoo Oh. 2018. Auto-
matically Generating Search Heuristics for Concolic Testing. In ICSE ’18:
ICSE ’18: 40th International Conference on Software Engineering , May 27-
June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3180155.3180166

1 INTRODUCTION
Concolic testing [15, 28] has emerged as an effective software-
testing method with diverse applications [1, 7, 21, 30, 33]. The idea
of concolic testing is to symbolically execute a program alongside
the concrete execution, where the main job of the symbolic execu-
tion is to collect path conditions. Initially, the program is executed
with a random input. After the program finishes, a branch of the
current path is selected and negated to find an input that drives
the next program execution to follow a previously unexplored path.
This way concolic testing systematically explores the execution
paths of the program, greatly improving random testing.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180166

A key component of concolic testing is the so-called search
heuristic. Because of the path-explosion problem, exploring all exe-
cution paths of a nontrivial program is simply impossible. Instead,
concolic testing relies on a search heuristic to maximize code cov-
erage in a limited time budget. A search heuristic has a criterion
and steers concolic testing by choosing the best branch to negate
according to the criterion. For example, the CFDS (Control-Flow
Directed Search) heuristic [3] picks the branch that is closest to the
uncovered regions of the program and the CGS (Context-Guided
Search) heuristic [29] selects a branch only if it is in a new context.
It is well-known that the effectiveness of concolic testing depends
heavily on the choice of the search heuristic [3, 21, 27, 29].

However, manually designing such a heuristic is challenging. It is
not only nontrivial but also likely to deliver sub-optimal and unsta-
ble results. As we demonstrate in this paper, no manually-designed
existing heuristics consistently achieve good code coverage in prac-
tice. For example, the CGS heuristic is arguably a state-of-the-art
and outperforms existing approaches for a number of programs [29].
However, we found that CGS is sometimes brittle and inferior even
to a random heuristic. Furthermore, existing search heuristics came
from a huge amount of engineering effort and domain expertise.
The difficulty of manually coming up with a good search heuristic
is a major remaining challenge in concolic testing.

To address this challenge, this paper presents a new approach
that automatically generates search heuristics for concolic testing.
To this end, we use two key ideas. First, we define a parameterized
search heuristic, which creates a large class of search heuristics.
The parameterized heuristic reduces the problem of designing a
good search heuristic into a problem of finding a good parameter
value. Second, we present a search algorithm specialized to concolic
testing. The search space that the parameterized heuristic poses is
intractably large. Our algorithm effectively guides the search by
iteratively refining the search space based on the feedback from
previous runs of concolic testing.

Experimental results show that automatically-generated heuris-
tics by our approach outperform existing manually-crafted heuris-
tics for a range of C programs. We have implemented our technique
in CREST [3] and evaluated it on 10 C programs (0.5–150KLoC).
For every benchmark program, our technique has successfully gen-
erated a search heuristic that achieves considerably higher branch
coverage than the existing state-of-the-art techniques. We also
demonstrate that the increased coverage by our technique leads to
more effective finding of real bugs.

This paper makes the following contributions:
• We present a new approach for automatically generating
search heuristics for concolic testing. Our work represents a
significant departure from prior work; while existing work
(e.g. [3, 21, 27, 29]) focuses on manually developing a particu-
lar search heuristic, our goal is to automate the very process
of generating such a heuristic.

https://doi.org/10.1145/3180155.3180166
https://doi.org/10.1145/3180155.3180166

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Sooyoung Cha, Seongjoon Hong, Junhee Lee, and Hakjoo Oh

• We present a parameterized search heuristic and an efficient
algorithm for finding good parameter values.
• We extensively evaluate our approach with C programs. We
make our tool, called ParaDySE, and data publicly available.1

2 PRELIMINARIES
In Section 2.1, we define a generic concolic testing algorithm. Sec-
tion 2.2 discusses existing search heuristics and their limitations.

2.1 Concolic Testing
Concolic testing is a hybrid software testing technique that com-
bines symbolic [24] and concrete executions to systematically ex-
plore the program’s execution paths.

Concolic testing begins with executing the subject program P
with an initial input v0. During the concrete execution, concolic
testing maintains a symbolic memory state S and a path condition
Φ. The symbolic memory is a mapping from program variables
to symbolic values. It is used to evaluate the symbolic values of
expressions. For instance, when S is [x 7→ α ,y 7→ β + 1] (variables
x and y are mapped to symbolic expressions α and β + 1 where α
and β are symbols), the statement z := x +y transfers the symbolic
memory into [x 7→ α ,y 7→ β + 1, z 7→ α + β + 1]. The path
condition represents the sequence of branches taken during the
current execution of the program. It is updated whenever an assume
statement assume(e) is encountered. For instance, when S = [x 7→
α] and e = x < 1, the path condition Φ gets updated by Φ∧ (α < 1).

Let Φ = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn be the path condition that results
from the initial execution. To obtain the next input value, concolic
testing chooses a branch condition ϕi and generates the new path
condition Φ′ as follows: Φ′ =

∧
j<i ϕ j ∧ ¬ϕi . That is, the new

condition Φ′ has the same prefix as Φ up to the i-th branch with
ϕi negated, so that input values that satisfy Φ′ drive the program
execution to follow the opposite branch of ϕi . Such concrete input
values can be obtained from an SMT solver. This process is repeated
until a fixed testing budget runs out.

Algorithm 1 presents the concolic testing algorithm. The algo-
rithm takes a program P , an initial input vector v0, and a testing
budget N (i.e., the number of executions of the program). The algo-
rithm maintains the execution tree T of the program, which is the
list of previously explored path conditions. The execution tree T
and input vector v are initially empty and the initial input vector,
respectively (lines 1 and 2). At line 4, the program P is executed
with the input v , resulting in the current execution path Φm ex-
plored. The path condition is appended to T (line 5). In lines 6–8,
the algorithm chooses a branch to negate. The function Choose
first chooses a path condition Φ from T , then selects a branch, i.e.,
ϕi , from Φ. Once a branch ϕi is chosen, the algorithm generates
the new path condition Φ′ =

∧
j<i ϕ j ∧ ¬ϕi . If Φ′ is satisfiable,

the next input vector is computed (line 9), where SAT(Φ) returns
true iff Φ is satisfiable and model(Φ) finds an input vector v which
is a model of Φ, i.e., v |= Φ. Otherwise, if Φ′ is unsatisfiable, the
algorithm repeatedly tries to negate another branch until a satisfi-
able path condition is found. This procedure repeats for the given
budget N and the final number of covered branches |Branches(T) |
is returned.
1Parametric Dynamic Symbolic Execution: https://github.com/kupl/ParaDySE

Algorithm 1: Concolic Testing
Input : Program P , initial input vector v0, budget N
Output : The number of branches covered
1: T ← ⟨⟩
2: v ← v0
3: form = 1 to N do
4: Φm ← RunProgram(P ,v)
5: T ← T · Φm
6: repeat
7: (Φ,ϕi) ← Choose(T) (Φ = ϕ1 ∧ · · · ∧ ϕn)
8: until SAT(

∧
j<i ϕ j ∧ ¬ϕi)

9: v ← model(
∧
j<i ϕ j ∧ ¬ϕi)

10: end for
11: return |Branches(T) |

The performance of Algorithm 1 varies depending on the choice
of the function Choose, namely a search heuristic. Since the num-
ber of execution paths in a program is usually exponential in the
number of branches, exploring all possible execution paths is infea-
sible. To address this problem, concolic testing relies on the search
heuristic that steers concolic testing in a way to maximize code
coverage in a given limited time budget [6]. The goal of this paper is
to automatically generate an effective heuristic for a given program.

2.2 Existing Search Heuristics
Before presenting our technique, we describe two notable search
heuristics. These heuristics are known to perform comparatively
better than other heuristics [3, 29].

Control-Flow Directed Search (CFDS) [3]. CFDS is based on
the natural intuition that uncovered branches near the current
execution path would be easier to be exercised in the next execution.
This heuristic first picks the last path condition Φm , then selects a
branch whose opposite branch is the nearest from any of the unseen
branches. The distance between two branches is calculated by the
number of branches on the path from the source to the destination.
To calculate the distance, CFDS uses control flow graph of the
program, which is statically constructed before the testing.

Context-Guided Search (CGS) [29]. CGS basically performs
the breath-first search (BFS) on the execution tree, while reducing
the search space by excluding branches whose “contexts” are al-
ready explored. Given an execution path, the context of a branch
in the path is defined as a sequence of preceding branches. The
search gathers candidate branches at depth d from the execution
tree, picks a branch from the candidates, and the context of the
branch is calculated. If the context has been already considered,
CGS skips that branch and continues to pick the next one. Oth-
erwise, the branch is negated and the context is recorded. When
all the candidate branches at depth d are considered, the search
proceeds to the depth d + 1 of the execution tree and repeats the
process explained above.

Limitations. Existing search heuristics have a key limitation;
they rely on a fixed heuristic and fail to consistently perform well
on a wide range of target programs. Our experience with these

Automatically Generating Search Heuristics for Concolic Testing ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

heuristics is that they are unstable and their effectiveness signifi-
cantly varies depending on the target programs. For example, CGS
outperforms other existing heuristics for several benchmarks: e.g.,
expat-2.1.0 and grep-2.2 (Figure 1). However, we found that the
CGS heuristic is sometimes inferior even to the random heuristic
(e.g., tree-1.6.0). That is, the key feature, contexts, of CGS is not
appropriate for some programs.

Besides their sub-optimality, another key limitation of existing
approaches is that developing a good search heuristic requires a
huge amount of engineering effort and expertise. Given that the
effectiveness of concolic testing depends heavily on the search
heuristic, ordinary developers cannot fully benefit from concolic
testing. These observations motivated us to develop a technique
that automatically generates search heuristics.

3 OUR TECHNIQUE
In this section, we present our technique for automatically gen-
erating search heuristics for concolic testing. We define a family
of search heuristics, namely parameterized search heuristics (Sec-
tion 3.1), and present an algorithm to choose the best heuristic from
the family for a given subject program (Section 3.2).

3.1 Parameterized Search Heuristic
Let P ∈ Program be a subject program under test. Recall that a
search heuristic, the Choose function in Algorithm 1, is a function
from execution trees to pairs of a path condition and a branch:

Choose ∈ SearchHeuristic = ExecutionTree → PathCond × Branch

where ExecutionTree is the set of all execution trees of the program,
PathCond the set of all path conditions in the trees, Branch the set
of all branches in P .

We define a familyH ⊆ SearchHeuristic of search heuristics as a
parameterized heuristicChooseθ , where θ is the parameter which is
a k-dimensional vector of real numbers:H = {Chooseθ | θ ∈ Rk }.
Given an execution tree T = ⟨Φ1Φ2 · · ·Φm⟩, our parameterized
search heuristic is defined as follows:

Chooseθ (⟨Φ1 · · ·Φm⟩) = (Φm , argmax
ϕj ∈Φm

scoreθ (ϕ j))

Intuitively, the heuristic first chooses the last path condition Φm
from the execution tree T , then selects a branch ϕ j from Φm that
gets the highest score among all branches in that path. Except for
the CGS heuristic, all existing search heuristics choose a branch
from the last path condition. In this work, we follow this common
strategy but our method can be generalized to consider the entire
execution tree as well. We explain how we score each branch ϕ in
Φm with respect to a given parameter θ :

(1) We represent the branch by a feature vector. We designed 40
boolean features describing properties of branches in con-
colic testing. A feature πi is a boolean predicate on branches:
πi : Branch→ {0, 1}. For instance, one of the features checks
whether the branch is located in the main function or not.
Given a set of k features π = {π1, . . . ,πk }, where k is the
length of the parameter θ , a branch ϕ is represented by a
boolean vector as follows:

π (ϕ) = ⟨π1 (ϕ),π2 (ϕ), . . . ,πk (ϕ)⟩.

Table 1: Branch features for concolic testing. Features 1–12
are static, and Features 13–40 are dynamic.

Description
1 branch in the main function
2 true branch of a loop
3 false branch of a loop
4 nested branch
5 branch containing external function calls
6 branch containing integer expressions
7 branch containing constant strings
8 branch containing pointer expressions
9 branch containing local variables
10 branch inside a loop body
11 true branch of a case statement
12 false branch of a case statement
13 first 10% branches of a path
14 last 10% branches of a path
15 branch appearing most frequently in a path
16 branch appearing least frequently in a path
17 branch newly covered in the previous execution
18 branch located right after the just-negated branch
19 branch whose context (k = 1) is already visited
20 branch whose context (k = 2) is already visited
21 branch whose context (k = 3) is already visited
22 branch whose context (k = 4) is already visited
23 branch whose context (k = 5) is already visited
24 branch negated more than 10 times
25 branch negated more than 20 times
26 branch negated more than 30 times
27 branch near the just-negated branch
28 branch failed to be negated more than 10 times
29 the opposite branch failed to be negated more than 10 times
30 the opposite branch is uncovered (depth 0)
31 the opposite branch is uncovered (depth 1)
32 branch negated in the last 10 executions
33 branch negated in the last 20 executions
34 branch negated in the last 30 executions
35 branch in the function that has the largest number of uncov-

ered branches
36 the opposite branch belongs to unreached functions (top 10%

of the largest func.)
37 the opposite branch belongs to unreached functions (top 20%

of the largest func.)
38 the opposite branch belongs to unreached functions (top 30%

of the largest func.)
39 the opposite branch belongs to unreached functions (# of

branches > 10)
40 branch inside the most recently reached function

(2) Next we compute the score of the branch. In our method,
the dimension k of the parameter θ equals to the number
of branch features. We use the simple linear combination of
the feature vector and the parameter to calculate the branch:

scoreθ (ϕ) = π (ϕ) · θ .

(3) Finally, we choose the branch with the highest score. That is,
among the branches ϕ1, . . . ,ϕn in Φm , we choose the branch
ϕ j such that scoreθ (ϕ j) ≥ scoreθ (ϕk) for all k .

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Sooyoung Cha, Seongjoon Hong, Junhee Lee, and Hakjoo Oh

Branch Features. We have designed 40 features to describe
useful properties of branches in concolic testing. Table 1 shows the
features, which are classified into 12 static and 28 dynamic features.
A static feature describes a branch property that can be extracted
without executing the program. A dynamic feature requires to
execute the program and is extracted during concolic testing.

The static features 1-12 describe the syntactic properties of each
branch in the execution path, which can be generated by analyzing
the program text. For instance, feature 8 indicates whether the
branch has a pointer expression in its conditional expression. We
designed these features to see how much such simple features help
to improve branch coverage, as there is no existing heuristic that
extensively considers the syntactic properties of branches. At first
glance features 2 and 3 seem redundant, but not so. The true and
false branches of loops have different roles; by giving a high score
to a true branch we can explicitly steer concolic testing away from
the loop (i.e. negating the true branch) while giving a high score to
a false branch leads to getting into the loop.

On the other hands, we designed dynamic features (13-40) to
capture the dynamics of concolic testing. For instance, feature 24
checks whether the branch has been negated more than 10 times
during concolic testing. That is, during the execution of the program,
the boolean value of each dynamic feature for the same branch may
change while the static feature values of the branch do not.

We also incorporated the key insights of the existing search
heuristics into the features. For example, dynamic features 19-23
were designed based on the notion of contexts used in the CGS
heuristic [29] while features 30-31 are based on the idea of the CFDS
heuristic [3] that calculates the distance to uncovered branches.

3.2 Parameter Optimization Algorithm
Now we describe our algorithm for finding a good parameter value
of the parameterized search heuristic. We formally define the opti-
mization problem, and then present our algorithm.

OptimizationProblem. In our approach, finding a good search
heuristic corresponds to solving an optimization problem.Wemodel
the concolic testing procedure in Algorithm 1 by the function:

C : Program × SearchHeuristic → N

which takes a program and a search heuristic, and returns the num-
ber of covered branches. Given a program P and a search heuristic
Choose, C (P ,Choose) performs concolic testing (Algorithm 1) us-
ing the heuristic for a fixed number of executions (i.e. N). We
assume that the initial input (v0) and the number of executions (N)
are fixed for the program.

Given a program P to test, our goal is to find a parameter θ that
maximizes the performance of the concolic testing algorithm with
respect to P . Formally, our objective is to find θ∗ such that

θ∗ = argmax
θ ∈Rk

C (P ,Chooseθ). (1)

That is, we aim to find a parameter θ∗ that causes the concolic
testing algorithm C with the search heuristic Chooseθ to maximize
the number of covered branches in P .

Optimization Algorithm. We propose an algorithm that effi-
ciently solves the optimization problem in (1). A simplistic approach

to solve the problem would be random sampling, which randomly
samples parameter values and returns the best parameter found for
a given time budget. However, we found that this naive algorithm is
extremely inefficient and leads to a failure when it is used for find-
ing a good search heuristic of concolic testing (Section 4.3). This is
mainly because of two reasons. First, the search space is intractably
large and therefore blindly searching for good parameters without
any guidance is hopeless. Second, a single evaluation of a parameter
value is generally unreliable and does not represent the average
performance in concolic testing. This performance variation arises
from the inherent nondeterminism in concolic testing (e.g. branch
prediction failure) [15].

In response, we designed an optimization algorithm (Algorithm 2)
specialized to efficiently finding good parameter values of search
heuristics. The key idea behind this algorithm is to iteratively re-
fine the sample space based on the feedback from previous runs
of concolic testing. The main loop of the algorithm consists of the
three phases: Find, Check, and Refine. These three steps are repeated
until the average performance converges.

At line 2, the algorithm initializes the sample spaces. It maintains
k sample spaces, Ri (i ∈ [1,k]), where k is the dimension of the
parameters (i.e., the number of branch features in our parameterized
heuristic). In our algorithm, the i-th components of the parameters
are sampled from Ri , independently from other components. For
all i , Ri is initialized to the space [−1, 1].

In the first phase (Find), we randomly sample n parameter values:
θ1,θ2, . . . ,θn from the current sample space R1×R2×· · ·×Rk (line
7), and their performance numbers (i.e., the number of branches
covered) are evaluated (lines 9–11). In experiments, we setn to 1,000
(300 for vim). Among the 1,000 parameters, we choose the top K
parameters according to their branch coverage. In our experiments,
K is set to 10 because we observed that parameters with good
qualities are usually found in the top 10 parameters. This first step
of executing a program 1,000 times can be run in parallel.

In the next phase (Check), we choose the top 2 parameters that
show the best average performance. At lines 16–17, the K param-
eters chosen from the first phase are evaluated again to obtain
the average code coverage over 10 trials, where B∗i represents the
average performance of parameter θ ′i . At line 19, we choose two
parameters θt1 (top 1) and θt2 (top 2) with the best average perfor-
mance. This step (Check) is needed to rule out unreliable parameters.
Because of the nondeterminism of concolic testing, the quality of a
search heuristic must be evaluated over multiple executions.

In the third step (Refine), we refine the sample spaces R1, . . . ,Rk
based on θt1 and θt2 . Each Ri is refined based on the values of the
i-th components (θ it1 and θ

i
t2) of θt1 and θt2 . When both θ it1 and θ

i
t2

are positive, we modify Ri by [min(θ it1 ,θ
i
t2), 1]. When both θ it1 and

θ it2 are negative, Ri is refined by [−1,max(θ it1 ,θ
i
t2)]. Otherwise, Ri

remains the same. Then, our algorithm goes back to the first phase
(Find) and randomly samples n parameter values from the refined
space.

Finally, our algorithm terminates when the best average coverage
(B∗t1) obtained in the current iteration is less than the coverage (max)
from the previous iteration (lines 30–31). This way, we iteratively
refine each sample space Ri and guide the search to continuously
find and climb the hills toward top in the parameter space.

Automatically Generating Search Heuristics for Concolic Testing ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Algorithm 2: Our Parameter Optimization algorithm
Input : Program P
Output :Optimal parameter θ ∈ Rk for P
1: /* k : the dimension of θ */
2: initialize the sample spaces Ri = [−1, 1] for i ∈ [1, k]
3: ⟨max, converge⟩ ← ⟨0, false⟩
4: repeat
5: /* Step 1: Find */
6: /* sample n parameters: θ1, . . . , θn (e.g., n=1,000) */
7: {θi }ni=1 ← sample from R1 × R2 × · · · × Rk
8: /* evaluate the sampled parameters */
9: for i = 1 to n do
10: /* Bi : branch coverage achieved with θi */
11: Bi ← C (P, Chooseθi)
12: end for
13: pick top K parameters {θ ′i }

K
i=1 from {θi }

n
i=1 with highest Bi

14:
15: /* Step 2: Check */
16: for all K parameters θ ′i do
17: B∗i ←

1
10
∑10
j=1 C (P, Chooseθ ′i)

18: end for
19: pick top 2 parameters θt1, θt2 with highest B∗i
20:
21: /* Step 3: Refine */
22: for i = 1 to k do
23: if θ it1 > 0 and θ it2 > 0 then
24: Ri = [min(θ it1, θ

i
t2), 1]

25: else if θ it1 < 0 and θ it2 < 0 then
26: Ri = [-1, max(θ it1, θ

i
t2)]

27: end if
28: end for
29:
30: /* Check Convergence */
31: if B∗t1 < max then
32: converge← true
33: else
34: ⟨max, θmax ⟩ ← ⟨B∗t1, θt1 ⟩
35: end if
36: until converge
37: return θmax

4 EXPERIMENTS
In this section, we experimentally evaluate our approach that auto-
matically generates search heuristics of concolic testing. We imple-
mented our approach in a tool, ParaDySE, on top of CREST [9], a
concolic testing tool widely used for C programs [3, 12, 23, 29]. We
conducted experiments to answer the following research questions:
• Effectiveness of generatedheuristics: Does our approach
generate effective search heuristics? How do they perform
compared to the existing state-of-the-art heuristics?
• Time for obtaining the heuristics: How long does our
approach take to generate the search heuristics? Is our ap-
proach useful even considering the training effort?
• Efficacy of optimization algorithm: How does our opti-
mization algorithm perform compared to the naive algorithm
by random sampling?
• Important features: What are the important features to
generate effective search heuristics for concolic testing?

Table 2: 10 benchmark programs

Program # Total branches LOC Source

vim-5.7 35,464 165K [3]
gawk-3.0.3 8,038 30K ours
expat-2.1.0 8,500 49K [29]
grep-2.2 3,836 15K [3]
sed-1.17 2,656 9K [22]
tree-1.6.0 1,438 4K ours

cdaudio 358 3K [29]
floppy 268 2K [29]
kbfiltr 204 1K [29]
replace 196 0.5K [3]

Evaluation Setting. We have compared our approach with
five existing heuristics: CGS (Context-Guided Search) [29], CFDS
(Control-Flow Directed Search) [3], Random branch search [3], DFS
(Depth-First Search) [15], and Generational search [16]. We chose
these heuristics for comparison because they have been commonly
used in prior work [3, 10, 15, 16, 29]. In particular, CGS and CFDS are
arguably the state-of-the-art search heuristics that often perform
the best in practice [3, 29]. The implementation of CFDS, Random,
and DFS heuristics are available in CREST. The implementations of
CGS and Generational search came from the prior work [29].2

We used 10 open-source benchmark programs (Table 2).3 The
benchmarks are divided into the large and small programs. The
large benchmarks include vim, expat, grep, sed, gawk, and tree.
The first four are standard benchmark programs in concolic testing
for C, which have been used multiple times in prior work [2, 3, 5,
22, 29]. The last two programs (gawk and tree) were prepared by
ourselves, which are available with our tool. Our benchmark set
also includes 4 small ones: cdaudio, floppy, kbfiltr, and replace,
which were used in [3, 22, 29].

We conducted all experiments under the same evaluation setting;
the initial input (i.e. v0 in Algorithm 1) was fixed for each bench-
mark program and a single run of concolic testing used the same
testing budget (4000 executions, i.e., N = 4000 in Algorithm 1).
Note that the performance of concolic testing generally depends
on the initial input. We found that in our benchmark programs,
except for grep and expat, different choices of initial input did
not much affect the final performance, so we generated random
inputs for those programs. For grep and expat, the performance of
concolic testing varied significantly depending on the initial input.
For instance, with some initial inputs, CFDS and Random covered
150 less branches in grep than with other inputs. We avoided this
exceptional case when selecting the input for grep and expat. For
expat, we chose the same input used in prior work [29]. For grep,
we selected an input on which the random heuristic was effective.
The initial inputs we used are available with our tool.

The performance of each search heuristic was averaged over mul-
tiple trials. Even with the same initial input, the search heuristics
have coverage variations for several reasons: search initialization
in concolic testing [15], the randomness of search heuristics, and
so on. We repeated the experiments 100 times for all benchmarks
2We obtained the implementation from authors via personal communication.
3 Henceforth, the version numbers will be omitted when there is no confusion.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Sooyoung Cha, Seongjoon Hong, Junhee Lee, and Hakjoo Oh

Table 3: Average branch coverage on 4 small benchmarks

OURS CFDS CGS Random Gen DFS

cdaudio 250 250 250 242 250 236
floppy 205 205 205 170 205 168
replace 181 177 181 174 176 171
kbfiltr 149 149 149 149 149 134

Table 4: Effectiveness in terms ofmaximumbranch coverage

OURS CFDS CGS Random Gen DFS

vim 8,788 8,585 6,488 8,143 5,161 2,646
expat 1,422 1,060 1,337 965 1,348 1,027
gawk 2,684 2,532 2,449 2,035 2,443 1,025
grep 1,807 1,726 1,751 1,598 1,640 1,456
sed 830 780 781 690 698 568
tree 797 702 599 704 600 360

Table 5: Effectiveness in terms of finding bugs

OURS CFDS CGS Random Gen DFS

gawk-3.0.3 100/100 0/100 0/100 0/100 0/100 0/100
grep-2.2 47/100 0/100 5/100 0/100 0/100 0/100

except for vim for which we averaged over 50 trials as its execution
takes much longer time. The experiments were done on a linux
machine with two Intel Xeon Processor E5-2630 and 192GB RAM.

4.1 Effectiveness of Generated Heuristics
For each benchmark program,we ran our algorithm (Algorithm 2) to
generate our search heuristic (ours), and compared its performance
with that of the existing heuristics. We evaluate the effectiveness
with two measures: branch coverage and capability to find bugs.

Branch Coverage. For branch coverage, we measured the av-
erage and maximum coverages. The average branch coverage is
obtained by averaging the results over the 100 trials (50 for vim).
The maximum coverage refers to the highest coverage achieved
during the 100 trials (50 for vim). The former indicates the average
performance while the latter the best performance achievable by
each heuristic.

Figure 1 compares the average branch coverage achieved by
different search heuristics on 6 large benchmarks. The results show
that the search heuristics generated by our approach (ours) achieve
the best coverage on all programs. In particular, ours significantly
increased the branch coverage on two largest benchmarks: vim
and gawk. For vim, ours covered 8,297 branches in 4,000 executions
while the CFDS heuristic, which took the second place for vim,
covered 7,990 branches. Note that CFDS is already highly tuned
and therefore outperforms the other heuristics for vim (for instance,
CGS covered 6,166 branches only). For gawk, ours covered 2,684
branches while the CGS heuristic, the second best one, managed
to cover 2,321 branches. For expat, sed, and tree, our approach
improved the existing heuristics considerably. For example, ours
covered 1,327 branches for expat, increasing the branch coverage

of CGS by 50. For grep, ours also performed the best followed by
CGS and CFDS. On small benchmarks, we obtained similar results;
ours (together with CGS) consistently achieved the highest average
coverage (Table 3). In the rest of the paper, we focus only on the 6
large benchmarks, where existing manually-crafted heuristics fail
to perform well.

On all benchmarks in Figure 1, OURS exclusively covered branches
that were not covered by other heuristics. For example, in vim, a
total of 504 branches were exclusively covered by our heuristic.
For other programs, the numbers are: expat(14), gawk(7), grep(23),
sed(21), tree(96).

These results are statistically significant: on all benchmark pro-
grams in Figure 1, the p value was less than 0.01 according to
Wilcoxon signed-rank test. In Figure 1, the standard deviations
for each heuristic are as follows: (1) OURS: vim(258), expat(42),
gawk(0), grep(51), sed(22), tree(7); (2) CFDS: vim(252), expat(44),
gawk(120), grep(33), sed(24), tree(13); (3) CGS: vim(200), expat(24),
gawk(57), grep(29), sed(27), tree(15). Other search heuristics also
have similar standard deviations.

In Figure 1, we compared the effectiveness of search heuristics
over iterations (# of executions)4, but our approach was also su-
perior to others over execution time. For example, given the same
time budget (1,000 sec), ours and Random (the second best) cov-
ered 8,947 and 8,272 branches, respectively, for vim (Figure 2). The
results were averaged over 50 trials.

Table 4 compares the heuristics in terms of the maximum branch
coverage on 6 large benchmarks. The results show that our ap-
proach in this case also achieves the best performance on all pro-
grams. For instance, in vim, we considerably increased the coverage
of CFDS, the second best strategy; ours covered 8,788 branches
while CFDS managed to cover 8,585. For expat, ours and CGS (the
second best) have covered 1,422 and 1,337 branches, respectively.

Note that there is no clear winner among the existing search
heuristics. Except for ours, CFDS took the first place for vim and sed
in terms of average branch coverage. For gawk, expat, and grep,
the CGS heuristic was the best. For tree, the Random heuristic
was better than CFDS and CGS. In terms of the maximum branch
coverage, CFDS was better than the others for vim and gawk while
CGSwas for grep and sed. The Generational and Randomheuristics
surpassed CFDS and CGS in expat and tree, respectively. On the
other hand, our approach is able to consistently produce the best
search heuristics in terms of both coverage metrics.

Bug Finding. We found that the increased branch coverage
by our approach leads to more effective finding of real bugs (not
seeded ones). Table 5 reports the number of trials that successfully
generate test-cases, which trigger the known performance bugs in
gawk and grep [13, 18]. During the 100 trials (where a single trial
consists of 4,000 executions), our heuristic always found the bug
in gawk while all the other heuristics completely failed to find it.
In grep, ours succeeded to find the bug 47 times out of 100 trials,
which is much better than CGS does (5 times). Other heuristics
were not able to trigger the bug at all.

4 Evaluating the performance of search heuristics over iterations is a common prac-
tice [3, 29], as the execution time of a program may vary considerably depending on
the input.

Automatically Generating Search Heuristics for Concolic Testing ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

0 500 1000 1500 2000 2500 3000 3500 4000
iterations

1000

2000

3000

4000

5000

6000

7000

8000

9000

br
an

ch
es

 c
ov

er
ed

vim-5.7

CFDS
CGS
DFS

Gen
OURS
Random

0 500 1000 1500 2000 2500 3000 3500 4000
iterations

500

1000

1500

2000

2500

3000

br
an

ch
es

 c
ov

er
ed

gawk-3.0.3

CFDS
CGS
DFS

Gen
OURS
Random

0 500 1000 1500 2000 2500 3000 3500 4000
iterations

600

700

800

900

1000

1100

1200

1300

1400

br
an

ch
es

 c
ov

er
ed

expat-2.1.0

CFDS
CGS
DFS

Gen
OURS
Random

0 500 1000 1500 2000 2500 3000 3500 4000
iterations

600

800

1000

1200

1400

1600

1800

br
an

ch
es

 c
ov

er
ed

grep-2.2

CFDS
CGS
DFS

Gen
OURS
Random

0 500 1000 1500 2000 2500 3000 3500 4000
iterations

0

100

200

300

400

500

600

700

800

br
an

ch
es

 c
ov

er
ed

sed-1.17

CFDS
CGS
DFS

Gen
OURS
Random

0 500 1000 1500 2000 2500 3000 3500 4000
iterations

0

100

200

300

400

500

600

700

800

br
an

ch
es

 c
ov

er
ed

tree-1.6.0

CFDS
CGS
DFS

Gen
OURS
Random

Figure 1: Average branch coverage achieved by each search heuristic on 6 large benchmarks

Our heuristics are good at finding bugs because they are much
better than other heuristics in exercising diverse program paths.
We observed that other heuristics such as CGS, CFDS, and Gen also
covered the branches where the bugs originate. However, the bugs
are caused only by some specific path conditions and the existing
heuristics could not generate inputs that satisfy the conditions.

We remark that we did not specially tune our approach towards
finding those bugs. In fact, we were not aware of the presence of
those bugs at the early stage of this work. The bugs in gawk and
grep [13, 18] cause performance problems; for example, grep-2.2

requires exponential time and memory on particular input strings
that involve back-references [18]. During concolic testing, we mon-
itored the program executions and restarted the testing procedure
when the subject program ran out of memory or time. Those bugs
were detected unexpectedly by a combination of this mechanism
and our search heuristic.

4.2 Time for Obtaining the Heuristics
Table 6 reports the running time of our algorithm to generate the
search heuristics evaluated in Section 4.1. To obtain our heuristics,

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Sooyoung Cha, Seongjoon Hong, Junhee Lee, and Hakjoo Oh

0 200 400 600 800 1000
time(s)

1000

2000

3000

4000

5000

6000

7000

8000

9000

br
an

ch
es

 c
ov

er
ed

vim-5.7

CFDS
CGS
DFS

Gen
OURS
Random

Figure 2: Average branch coverage over execution time

Table 6: Time for generating the heuristics

Benchmarks # Sample # Iteration Total times

vim-5.7 300 5 24h 17min
expat-2.1.0 1,000 6 10h 25min
gawk-3.0.3 1,000 4 6h 28min
grep-2.2 1,000 5 5h 26min
sed-1.17 1,000 4 8h 55min
tree-1.6.0 1,000 4 3h 17min

Table 7: Effectiveness in the training phase

OURS CFDS CGS Random Gen DFS
vim 14,003 13,706 7,934 13,835 7,290 2,646
expat 2,455 2,339 2,157 1,325 2,116 2,036
gawk 3,473 3,382 3,261 3,367 3,302 1,905
grep 2,167 2,024 2,016 2,066 1,965 1,478
sed 1,019 1,041 1,042 1,007 979 937
tree 808 800 737 796 730 665

we ran the optimization algorithm (Algorithm 2) in parallel using
20 cores. Specifically, in the first phase (‘Find’) of the algorithm,
we sampled 1,000 parameters, where each core is responsible for
evaluating 50 parameters. For vim, we set the sample size to 300 as
executing vim is expensive. The results show that our algorithm
converges within 4–6 iterations of the outer loop of Algorithm 2,
taking 3–24 hours depending on the size of the subject program.

Our approach requires training effort but it is rewarding because
1) our approach enables effective concolic testing even in the train-
ing phase; and 2) the learned heuristic can be reused multiple times
as the subject program evolves.

Effectiveness in the training phase. Note that running Al-
gorithm 2 is essentially running concolic testing on the subject
program. We compared the number of branches covered during
this training phase with the branches covered by other search
heuristics given the same time budget reported in Table 6. Table 7
compares the results: except for sed, running Algorithm 2 achieves
greater branch coverage than others. To obtain the results for other

heuristics, we ran concolic testing (with N = 4, 000) repeatedly
using the same number of cores and amount of time. For instance,
in 24 hours, Algorithm 2 covered 14,003 branches of vim while
concolic testing with the CFDS and CGS heuristics covered 13,706
and 7,934 branches, respectively.

Reusability over program evolution. More interestingly, the
learned heuristic can be reused over multiple subsequent program
variations. To validate this hypothesis, we trained a search heuristic
on gawk-3.0.3 and applied the learned heuristic to the subsequent
versions until gawk-3.1.0. We also trained a heuristic on sed-1.17
and applied it to later versions. Figure 4 shows that the learned
heuristics manage to achieve the highest branch coverage over
the evolution of the programs. For example, ours covered at least
90 more branches than the second best heuristic (CFDS) in all
variations between gawk-3.0.3 and gawk-3.1.0. The effectiveness
lasted for at least 4 years for gawk and 1 year for sed.

4.3 Efficacy of Optimization Algorithm
We compared the performance of our optimization algorithm (Algo-
rithm 2) with a naive approach based on random sampling. Because
both approaches involve randomness, we statistically compare the
qualities of parameters found by our algorithm and the random
sampling method.

Figure 4 shows the distributions of final coverages achieved by
those two algorithms on grep-2.2 and sed-1.17. In the exper-
iments, our algorithm required a total of 1,100 trials of concolic
testing to complete a single refinement task: 100 trials for the Check
phase to select top 2 parameters and the rest for the Find phase
to evaluate the parameters generated from the refined space. We
compared the distributions throughout each iteration (I1, I2, ..., IN)
where 1,100 trials were given as budget for finding parameters.
The first refinement task of our algorithm begins with the initial
samples in the first iteration I1, which are prepared by random
sampling method.

The result shows that our algorithm is much superior to random
sampling method: the median of the samples increases while the
variance decreases, as the refinement task in our algorithm goes
on. The median value (the band inside a box) of the samples found
by our algorithm increases as the refinement task continues, while
random sampling has no noticeable changes. The increase ofmedian
indicates that the probability to find a good parameter grows as
the tasks repeat. In addition, the variance (the height of the box, in
simple) in our algorithm decreases gradually, which implies that
the mix of Check and Refine tasks was effective.

We remark that use of our optimization algorithm was critical;
the heuristics generated by random sampling failed to surpass the
existing heuristics. For instance, for grep, our algorithm (Algo-
rithm 2) succeeded in generating a heuristic which covered 1,701
branches on average. However, the best one by random sampling
covered 1,600 branches only, lagging behind CGS (the second best)
by 83 branches.

4.4 Important Features
Winning Features. We discuss the relative importance of fea-

tures by analyzing the learned parameters θ for each benchmark
program. Intuitively, when the i-th component θ i has a negative

Automatically Generating Search Heuristics for Concolic Testing ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

3.0.3
(1997.05)

3.0.4
(1999.06)

3.0.5
(2000.06)

3.0.6
(2000.08)

3.1.0
(2001.06)

version

1000

1500

2000

2500
av

er
ag

e
co

ve
ra

ge

gawk

OURS
CGS
CFDS

Random
DFS
Gen

1.17
(1993.05)

1.18
(1993.06)

2.05
(1994.05)

version

500

600

700

800

900

1000

av
er

ag
e

co
ve

ra
ge

sed

OURS
CGS
CFDS

Random
DFS
Gen

Figure 3: Average coverage of each search heuristic on multiple subsequent program variants

I1 I2 I3 I4 I5
iterations

800

1000

1200

1400

1600

1800

co
ve

ra
ge

s

grep-2.2
Random Sampling
OURS

I1 I2 I3 I4
iterations

100

200

300

400

500

600

700

800

co
ve

ra
ge

s

sed-1.17
Random Sampling
OURS

Figure 4: Comparison between our algorithm and random sampling method

Table 8: Top 10 positive features

Rank Benchmarks

vim gawk expat grep sed tree

1 # 15 # 10(⋆) # 27 # 14 # 13(+) # 36
2 # 18 # 13(+) # 30(+) # 40 # 2 # 15
3 # 35(⋆) # 12 # 23 # 24 # 29 # 5
4 # 40 # 38(⋆) # 31(+) # 1 # 3 # 25(⋆)
5 # 31(+) # 14 # 4 # 30(+) # 8 # 40
6 # 7 # 9 # 9 # 38(⋆) # 30(+) # 9
7 # 13(+) # 35(⋆) # 8 # 32 # 35(⋆) # 13(+)
8 # 3 # 31(+) # 15 # 17 # 6 # 39
9 # 12 # 4 # 25(⋆) # 31(+) # 21 # 30(+)
10 # 10(⋆) # 33 # 7 # 29 # 16 # 22

number in θ , it indicates that the branch having i-th component
should not be selected to be negated. Thus, both strong negative
and positive features are equally important for our approach to
improve the branch coverage. Table 8 and Table 9 show the top 10
positive and negative features for each benchmark, respectively.

Table 9: Top 10 negative features

Rank Benchmarks

vim gawk expat grep sed tree

1 # 17 # 26(-) # 39 # 20 # 11(-) # 10(⋆)
2 # 11(-) # 8 # 35(⋆) # 39 # 32 # 35(⋆)
3 # 34 # 16 # 33 # 22(-) # 19 # 6
4 # 33 # 29 # 37 # 25(⋆) # 40 # 24
5 # 22(-) # 3 # 38(⋆) # 26(-) # 38(⋆) # 7
6 # 21 # 6 # 2 # 19 # 18 # 12
7 # 26(-) # 22(-) # 24 # 27 # 5 # 23
8 # 25(⋆) # 11(-) # 22(-) # 21 # 20 # 2
9 # 37 # 19 # 10(⋆) # 33 # 34 # 27
10 # 20 # 28 # 32 # 37 # 26(-) # 11(-)

The results show that there is no winning feature which always
belongs to the top 10 positive or negative features. Nevertheless,
the features 13 (front parts of a path) and 30-31 (distances of un-
covered branches) are comparatively consistent positive ones. For
4 benchmarks, the feature 11 (case statement), 22 (context) and 26
(frequently negated branch) are included in the top 10 negative

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Sooyoung Cha, Seongjoon Hong, Junhee Lee, and Hakjoo Oh

features. For designing effective search heuristics, the key ideas
of CFDS heuristic (#30-31) and CGS (#19-20, #22) heuristics are
generally used as good positive and negative features, respectively.

Note that the features 10, 25, 35 and 38 appear in both Table 8
and Table 9. That is, depending on the program under test, the role
of each feature changes from positive to negative (or vice versa).
For instance, the feature 10 is used as the most positive feature
in gawk while it is the most negative one for tree. This finding
supports our claim that no single search heuristic can perform well
for all benchmarks, and therefore it should be adaptively tuned for
each target program.

Impact of Combining Static and Dynamic Features. The
combined use of static and dynamic features was important. We
assessed the performance of our approach with different feature
sets in two ways: 1) with static features only; and 2) with dynamic
features only. Without dynamic features, generating good heuristic
was feasible only for grep. Without static features, our approach
succeeded in generating good heuristics for grep and tree but
failed to do so for the remaining programs.

4.5 Threats to Validity
(1) We collected eight benchmarks from prior work [2, 3, 5, 22,
29] and created two new benchmarks (gawk and tree). However,
these 10 benchmarks may not be representative and not enough
to evaluate the performance of the search heuristics in general. (2)
We chose 4,000 executions as the testing budget because it is the
same criterion that was used for evaluating the existing heuristics
(CGS, CFDS) in prior work [3, 29]. However, this might not be a
best setting in practice. (3) The performance of search heuristics
may vary when using different SMT solvers. We used Yices, the
default SMT solver in CREST.

5 RELATEDWORK
We discuss existing works on improving the performance of con-
colic testing. We classify existing techniques into the four classes:
(1) improving search heuristics; (2) hybrid approaches; (3) reducing
search space; and (4) solving complex path conditions.

Search Heuristics. All existing works on improving search
heuristics focus on manually-designing a new strategy [3, 4, 21,
27, 29, 32]. In Section 2.2, we already discussed the CFDS [3] and
CGS [29] heuristics. Another successful heuristic is generational
search [16], which drives concolic testing towards the highest in-
cremental coverage gain to maximize code coverage. For each ex-
ecution path, all branches are negated and executed. Then, next
generation branch is selected according to the coverage gain of each
single execution. Xie et al. [32] designed a heuristic that guides
the search based on the fitness values that measure the distance of
branches in the execution path to the target branch. The CarFast
heuristic [27] guides concolic testing based on the number of un-
covered statements. In [4], several concolic search heuristics are
used in a round robin fashion. Our work is different from these
works as we automate the heuristic-designing process itself.

Hybrid Approaches. Our approach is orthogonal to the exist-
ing techniques that combine concolic testing with other testing
techniques. In [12, 26], techniques such as random testing are first

used and they switch to concolic testing when the performance
gains saturate. In [19], concolic testing is combined with evolution-
ary testing to be effective for object-oriented programs.

Reducing Search Space. Our work is also orthogonal to tech-
niques that reduce the search space of concolic testing [2, 10, 14, 17,
20]. The read-write set analysis [2] identifies and prunes program
paths that have the same side effects. Jaffar et al. [20] introduced an
interpolation method that subsumes paths guaranteed not to hit a
bug. Goderfroid et al. [14, 17] proposed to use function summarizes
to identify equivalence classes of function inputs. It ensures that
the concrete executions in the same class have the same side effect.
Abstraction-driven concolic testing [10] also reduces search space
for concolic testing by using feedback from a model checker. Our
work can be combined with these techniques to boost concolic
testing further.

Solving Complex Path Conditions. Our technique can also
be improved by incorporating existing techniques for solving com-
plex path conditions. Conventional SMT solvers are not effective in
handling constraints that involve non-linear arithmetic or external
function calls, which often causes concolic testing to have poor
coverage. In [11], an algorithm was introduced that can solve hard
arithmetic constraints in path conditions. The idea is to generate
geometric structures that help solve non-linear constraints with ex-
isting heuristics [8]. In [31], a technique to solve string constraints
was proposed based on ant colony optimization. There are attempts
to solve this problem by machine learning [25]. It encodes not only
the simple linear path conditions, but also complex path conditions
(e.g., function calls of library methods) into the symbolic path con-
ditions. The objective function is defined by dissatisfaction degree.
By iteratively generating sample solutions and getting feedback
from the objective function, it learns how to generate solution for
complex path condition containing even black-box function which
cannot be solved by current solver.

6 CONCLUSION
The difficulty of manually crafting good search heuristics has been a
major open challenge in concolic testing. In this paper, we addressed
this problem with a novel approach for automatically generating
search heuristics. Given a program under test, our technique gen-
erates an optimal search heuristic for the subject program. Such a
“machine-tuned” heuristic has been shown to outperform existing
hand-tuned heuristics. To achieve this, we developed a parame-
terized search heuristic for concolic testing with an optimization
algorithm to efficiently search for good parameter values. We hope
that our technique can supplant the laborious and less rewarding
task of manually tuning search heuristics of concolic testing.

ACKNOWLEDGMENTS
This work was supported by Institute for Information & commu-
nications Technology Promotion(IITP) grant funded by the Korea
government(MSIT) (No.2015-0-00565, Development of Vulnerabil-
ity Discovery Technologies for IoT Software Security). This work
was supported by Samsung Research Funding & Incubation Center
of Samsung Electronics under Project Number SRFC-IT1701-09.

Automatically Generating Search Heuristics for Concolic Testing ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. 2014.

Enhancing Symbolic Execution with Veritesting. In Proceedings of the 36th Inter-
national Conference on Software Engineering (ICSE ’14). 1083–1094.

[2] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. 2008. RWset: Attacking
path explosion in constraint-based test generation. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’08).
351–366.

[3] Jacob Burnim and Koushik Sen. 2008. Heuristics for Scalable Dynamic Test Gen-
eration. In Proceedings of 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE ’08). 443–446.

[4] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI ’08). 209–224.

[5] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. 2008. EXE: Automatically Generating Inputs of Death. ACM Trans. Inf.
Syst. Secur. 12, 2 (2008), 10:1–10:38.

[6] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Commun. ACM 56, 2 (2013), 82–90.

[7] Maria Christakis, Peter Müller, and Valentin Wüstholz. 2016. Guiding Dynamic
Symbolic Execution Toward Unverified Program Executions. In Proceedings of
the 38th International Conference on Software Engineering (ICSE ’16). 144–155.

[8] Philippe Codognet and Daniel Diaz. 2001. Yet another local search method for
constraint solving. In International Symposium on Stochastic Algorithms. 73–90.

[9] CREST. A concolic test generation tool for C. 2008. https://github.com/jburnim/
crest. (2008).

[10] Przemysław Daca, Ashutosh Gupta, and Thomas A. Henzinger. 2016. Abstraction-
driven Concolic Testing. In Proceedings of the 17th International Conference on
Verification, Model Checking, and Abstract Interpretation - Volume 9583 (VMCAI
’16). 328–347.

[11] Peter Dinges and Gul Agha. 2014. Solving Complex Path Conditions Through
Heuristic Search on Induced Polytopes. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE ’14). 425–
436.

[12] Pranav Garg, Franjo Ivancic, Gogul Balakrishnan, Naoto Maeda, and Aarti Gupta.
2013. Feedback-directed Unit Test Generation for C/C++ Using Concolic Execu-
tion. In Proceedings of the 2013 International Conference on Software Engineering
(ICSE ’13). 132–141.

[13] Gnu Bug Report (gawk). 2005. http://gnu.utils.bug.narkive.com/Udtl5IZR/
gawk-bug. (2005).

[14] Patrice Godefroid. 2007. Compositional Dynamic Test Generation. In Proceedings
of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL ’07). 47–54.

[15] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05). 213–223.

[16] Patrice Godefroid, Michael Y Levin, and David AMolnar. 2008. AutomatedWhite-
box Fuzz Testing.. In Proceedings of the Symposium on Network and Distributed
System Security (NDSS ’08). 151–166.

[17] Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep Tetali.
2010. Compositional May-must Program Analysis: Unleashing the Power of
Alternation. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’10). 43–56.

[18] GNU Bug Report (grep). 2014. https://www.gnu.org/software/grep/manual/html_
node/Reporting-Bugs.html. (2014).

[19] Kobi Inkumsah and Tao Xie. 2008. Improving Structural Testing of Object-
Oriented Programs via Integrating Evolutionary Testing and Symbolic Execution.
In Proceedings of the 23rd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE ’08). 297–306.

[20] Joxan Jaffar, Vijayaraghavan Murali, and Jorge A. Navas. 2013. Boosting Concolic
Testing via Interpolation. In Proceedings of the 9th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE ’13). 48–58.

[21] Su Yong Kim, Sangho Lee, Insu Yun, Wen Xu, Byoungyoung Lee, Youngtae Yun,
and Taesoo Kim. 2017. CAB-Fuzz: Practical Concolic Testing Techniques for
COTS Operating Systems. In 2017 USENIX Annual Technical Conference (USENIX
ATC ’17). 689–701.

[22] Yunho Kim and Moonzoo Kim. 2011. SCORE: A Scalable Concolic Testing Tool
for Reliable Embedded Software. In Proceedings of the 19th ACM SIGSOFT Sympo-
sium and the 13th European Conference on Foundations of Software Engineering
(ESEC/FSE ’11). 420–423.

[23] Yunho Kim, Moonzoo Kim, YoungJoo Kim, and Yoonkyu Jang. 2012. Industrial
Application of Concolic Testing Approach: A Case Study on Libexif by Using
CREST-BV and KLEE. In Proceedings of the 34th International Conference on
Software Engineering (ICSE ’12). 1143–1152.

[24] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (1976), 385–394.

[25] Xin Li, Yongjuan Liang, Hong Qian, Yi-Qi Hu, Lei Bu, Yang Yu, Xin Chen, and
Xuandong Li. 2016. Symbolic Execution of Complex Program Driven by Ma-
chine Learning Based Constraint Solving. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE ’16). 554–559.

[26] Rupak Majumdar and Koushik Sen. 2007. Hybrid Concolic Testing. In Proceedings
of the 29th International Conference on Software Engineering (ICSE ’07). 416–426.

[27] Sangmin Park, B. M. Mainul Hossain, Ishtiaque Hussain, Christoph Csallner,
Mark Grechanik, Kunal Taneja, Chen Fu, and Qing Xie. 2012. CarFast: Achieving
Higher Statement Coverage Faster. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering (FSE ’12).
35:1–35:11.

[28] Koushik Sen, DarkoMarinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing
Engine for C. In Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE ’05). 263–272.

[29] Hyunmin Seo and Sunghun Kim. 2014. How We Get There: A Context-guided
Search Strategy in Concolic Testing. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE ’14). 413–
424.

[30] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
Proceedings of the Symposium on Network and Distributed System Security (NDSS
’16). 1–16.

[31] Julian Thomé, Lwin Khin Shar, Domenico Bianculli, and Lionel Briand. 2017.
Search-driven String Constraint Solving for Vulnerability Detection. In Pro-
ceedings of the 39th International Conference on Software Engineering (ICSE ’17).
198–208.

[32] Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. 2009.
Fitness-guided path exploration in dynamic symbolic execution. In 2009 IEEE/IFIP
International Conference on Dependable Systems Networks. 359–368.

[33] Yufeng Zhang, Zhenbang Clien, Ji Wang, Wei Dong, and Zhiming Liu. 2015.
Regular Property Guided Dynamic Symbolic Execution. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1 (ICSE ’15). 643–653.

https://github.com/jburnim/crest
https://github.com/jburnim/crest
http://gnu.utils.bug.narkive.com/Udtl5IZR/gawk-bug
http://gnu.utils.bug.narkive.com/Udtl5IZR/gawk-bug
https://www.gnu.org/software/grep/manual/html_node/Reporting-Bugs.html
https://www.gnu.org/software/grep/manual/html_node/Reporting-Bugs.html

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Concolic Testing
	2.2 Existing Search Heuristics

	3 Our Technique
	3.1 Parameterized Search Heuristic
	3.2 Parameter Optimization Algorithm

	4 Experiments
	4.1 Effectiveness of Generated Heuristics
	4.2 Time for Obtaining the Heuristics
	4.3 Efficacy of Optimization Algorithm
	4.4 Important Features
	4.5 Threats to Validity

	5 Related work
	6 Conclusion
	Acknowledgments
	References

