
Making Symbolic Execution Promising by Learning Aggressive
State-Pruning Strategy

Sooyoung Cha
Korea University
Republic of Korea

sooyoungcha@korea.ac.kr

Hakjoo Oh∗
Korea University
Republic of Korea

hakjoo_oh@korea.ac.kr

ABSTRACT

We present Homi, a new technique to enhance symbolic execution
by maintaining only a small number of promising states. In practice,
symbolic execution typically maintains as many states as possible
in a fear of losing important states. In this paper, however, we
show that only a tiny subset of the states plays a significant role
in increasing code coverage or reaching bug points. Based on this
observation,Homi aims tominimize the total number of states while
keeping promising states during symbolic execution. We identify
promising states by a learning algorithm that continuously updates
the probabilistic pruning strategy based on data accumulated during
the testing process. Experimental results show that Homi greatly
increases code coverage and the ability to find bugs of KLEE on
open-source C programs.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

Dynamic Symbolic Execution, Online Learning

ACM Reference Format:

Sooyoung Cha and Hakjoo Oh. 2020. Making Symbolic Execution Promising
by Learning Aggressive State-Pruning Strategy. In Proceedings of the 28th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’20), November 8–13, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3368089.3409755

1 INTRODUCTION

Symbolic execution [6, 7, 14, 23] is an effective software testing
method to increase code coverage and find subtle bugs. The key
idea of this method is to systematically explore program’s diverse
paths by substituting program inputs with symbolic ones to execute
the program symbolically. At a high-level, symbolic execution itera-
tively selects, executes, and forks a state while maintaining a set of

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409755

states during its testing process. In particular, it forks the state into
one or two separate states according to the feasibility of branch
conditions encountered during the symbolic execution. Thanks to
the systematic process, symbolic execution has been actively used
in a variety of applications: operation systems [17], smartphone
apps [1], neural networks [26], and smart contracts [20, 22].

However, performing symbolic execution on real-world pro-
grams inevitably faces the infamous state-explosion problem that
exponentially increases the number of states to be maintained, lead-
ing to significant increases of memory usage. Hence, in practice,
symbolic executor (e.g., KLEE [5]) takes as input thememory budget
to prevent unexpected memory usage, and maintains as many states
as possible within the memory budget to reduce the risk of losing
important states during testing. This reasonable behavior causes
the symbolic executor to suffer from two practical problems. First,
preserving as many states as possible increases the total number
of candidate states, which makes it difficult for symbolic executor
to decide proper states in a sense of increasing code coverage or
finding bugs. Second, since the accumulated states easily exceed
a given memory budget, numerous states are randomly pruned to
reduce the memory usage. As we demonstrate in Section 2, when
performing KLEE [5] with the default memory budget (2GB) on C
open-source programs, the number of states to maintain is tens of
thousands, and the number of blindly pruned states ranges from
tens of thousands to hundreds of thousands on average.

To resolve this state-explosion problem, we aim to minimize the
total number of states but to keep promising states during symbolic
execution. Of the preserved states, we observed that there exist a
very few promising states to effectively increase the code coverage
or to reach the bug points; thus, symbolic execution becomes more
effective and efficient if we only maintain those small number of
promising states in a sense of resolving the state-explosion problem.
To achieve our goal, the technical challenges we need to address are
(1) to estimate how promising each state is and (2) to determine how
many states we need to prune. Although diverse approaches exist
with the goal of reducing the search space of symbolic execution [2,
3, 15, 27, 30, 31], their goals are not to maintain a small number of
promising states; the existing approaches aim to identify and prune
only the redundant states that meet the predefined criteria from the
total ones. For instance, post-conditioned symbolic execution [30,
31] is to prune only the states having the same path suffixes as
previously explored states, and Jaffar et al. [15] discard program
paths guaranteed to be unreachable to bug points.

We present a new technique to adaptively maintain only a small
number of promising states during symbolic execution via on-
line learning. To achieve our goal, we introduce two key ideas:
a probabilistic pruning strategy and a learning algorithm. First, we

https://doi.org/10.1145/3368089.3409755
https://doi.org/10.1145/3368089.3409755
https://doi.org/10.1145/3368089.3409755

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Sooyoung Cha and Hakjoo Oh

define the probabilistic pruning strategy that contains both con-
tinuous and discrete probability distributions. We use the former
distribution to score how promising each state is, and the latter
one to decide how many states are pruned. That is, we reduce the
problem of solving the two technical challenges into the problem
of learning both probabilistic distributions. Second, we present a
learning algorithm that continuously updates the two probabilistic
distributions online based on data accumulated during symbolic
execution.

Experimental results show that symbolic execution with our
technique significantly improves branch coverage while maintain-
ing a relatively small number of states compared to the general
symbolic execution on open-source C programs. We implemented
our technique in a tool, Homi, on top of KLEE [5] and evaluated it
on 9 C programs (10-61KLoC). Symbolic execution with Homi suc-
ceeds in covering more branches and finding more real bugs than
conventional symbolic execution on 9 benchmarks. For instance,
our technique is able to generate the bug-triggering inputs that
cause abnormal termination and segmentation fault in grep-2.6
and combine-0.4.0, respectively, while conventional symbolic ex-
ecution failed to do so.

Contributions. Our contributions are as follows:
• We present a new technique to maintain only promising
states by continuously learning the probabilistic pruning
strategy online during symbolic execution.
• We demonstrate the effectiveness of Homi on 9 open-source
C programs by comparing symbolic execution with vs. with-
out Homi.
• We make our tool, Homi, and data publicly available.1

2 PRELIMINARIES

In this section, we describe a general algorithm and limitation of
symbolic execution, and explain our observation to present the goal
of this paper.

Symbolic Execution. The main idea of symbolic execution [5,
7, 8] is to systematically explore program’s diverse paths by re-
placing program inputs with symbolic ones to execute a program
symbolically. Algorithm 1 presents a generic algorithm for sym-
bolic execution, except for a few change, line 6, that stems from
our main approach. Generally, symbolic execution maintains a set
S of program states until the time budget expires, where a single
state consists of a tuple (instr, store,Φ). Each element of a tuple
respectively denotes the next instruction to be executed (instr), a
symbolic store (store) which maps the program variables into sym-
bolic values, and a path-condition (Φ) which is a conjunction of
branch conditions evaluated symbolically in the state. The symbolic
execution generates test-cases by iteratively selecting, executing
and updating the states in S during its testing process.

The Run procedure in Algorithm 1 takes a program P under test
and the time budget (N) as input, and returns a set T of test-cases
generated within the time budget. At line 2, the algorithm initializes
a set S as an initial state (instr0, store0, true), where instr0 is the
very first instruction executed in the program P , store0 is the initial

1Homi: https://github.com/kupl/HOMI_public

Algorithm 1 Symbolic Execution
Input: Program (P), time budget (N), and the probabilistic data (P).
Output: A set of test cases (T)
1: procedure Run(P , N , P)
2: S ← {(instr0, store0, true)} ▷ initial states
3: T ← ∅ ▷ initial test cases
4: repeat

5: SP ← PruneM(S , M, r) ▷ M is memory and r is ratio.
6: SP ← SP ∪ Prune(S , P, ηt) ▷ prune states
7: S ← S \ SP
8: for each (_, _, Φ) ∈ SP do ▷ generate test cases
9: T ← T ∪ {(Φ,Model(Φ))}
10: (instr, store, Φ) ← Select(S) ▷ choose a state
11: S ← S \ {(instr, store, Φ)}
12: (instr′, store′, Φ) ← Execute(instr, store, Φ)
13: if instr′ = (if (ϕ) then instr1 else instr2) then
14: if SAT(Φ ∧ ϕ) then S ← S ∪ {(instr1, store′, Φ ∧ ϕ)}
15: if SAT(Φ ∧ ¬ϕ) then S ← S ∪ {(instr2, store′, Φ ∧ ¬ϕ)}
16: else if instr′ = halt then
17: T ← T ∪ {(Φ,Model(Φ)} ▷ generate test cases
18: until budget N expires (or S = ∅)
19:
20: for each (_, _, Φ) ∈ S do ▷ generate test cases
21: T ← T ∪ {(Φ,Model(Φ))}
22: return T

mapping information, and Φ is set to true. For instance, suppose
that there exists a small program P under test as follows:

void main(int x, int y){

if(x>89) printf("good");

if(x==2 && y>25) assert("bad");}

With this program as an input, instr0 is set to the first instruction of
the program, if(x>89), store0 is [x 7→ α , y 7→ β], and Φ is true . At
line 3, the algorithm initializes a set T of test-cases to an empty set.
At line 5, the PruneM function decides a set of states to be pruned;
that is, it randomly selects a subset SP of S with the size of |S |∗r (e.g.,
r=0.1) when |S |, the size of S , exceeds the given memory capacity
M . Otherwise, it returns an empty set (i.e., SP = ∅). At line 7, the
algorithm updates the set S with the difference set between S and
SP. For every state in the pruning set SP, the algorithm generates
a test-case t which is a model of the path-condition Φ in the state
(instr, store,Φ) at line 8-9.

After the test-case generation, the Select function, namely a
search heuristic [9, 19, 24, 28], chooses a single state (instr, store,Φ)
from the set S based on its own selection criteria (line 10). With
the selected state, the Execute function executes the instruction
instr , and returns the updated state (instr ′, store′,Φ). At line 13,
if the instruction instr ′ is an if/else statement, Algorithm 1 first
checks the feasibility of the path-conditions corresponding to both
two branches. If the path-condition of the if statement, (Φ ∧ ϕ), is
satisfiable, the algorithm adds the new state (instr1, store′,Φ ∧ ϕ)
into the set S (line 14). Likewise, the algorithm adds the new state
into the set S if the path-condition of the else statement is satisfiable
(line 15). When both sides of the branch are feasible, the algorithm
forks the single state into two states, where this forking process
causes the state-explosion problem in symbolic execution. On the
other hand, if instr ′ is the halt statement, the algorithm generates

Making Symbolic Execution Promising by Learning Aggressive State-Pruning Strategy ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 1: The number of states and pruned states on C open-

source programs (time budget:5h, memory budget:2GB)

gawk grep vdir ginstall trueprint
#states (|S |) 37K 41K 43K 60K 49K
#pruned states 34K 112K 115K 587K 155K

a test-case t and adds a pair of path-condition and a test-case, (Φ,
t), to the set T of test-cases. For simplicity, we have omitted the
cases when instr ′ is the other instructions such as load, store, and
call instructions. Algorithm 1 repeats this process until the time
budget N expires or the set S becomes an empty set. When the
loop ends, at line 20-21, the algorithm generates test-cases using
the path-conditions of all remaining states in the set S , which have
not yet reached the halt statement. Lastly, the algorithm returns
the generated test-cases T as an output.

Limitation. The general symbolic execution attempts to main-
tain as many states as possible within the memory budget to reduce
the loss of critical states during testing. This behavior, however,
significantly degrades the performance of symbolic execution ap-
plied to real-world programs as the number of states in both S and
SP grows. The greater the number of states in the set S , the harder
it is for the Select function to choose meaningful states which are
likely to increase the code coverage or to reach the buggy locations.
Furthermore, the increases in the size of the set of pruned states, SP,
may lead to the loss of promising states as they are forcibly pruned
from the set S of candidate states.

Table 1 shows the average number of candidate states (S) and
pruned total states when performing KLEE [5], a popular symbolic
execution tool, on open-source C programs for 5 hours with the
default memory capacity, 2GB. Overall, the size of the candidate set
is tens of thousands, and the number of pruned states ranges from
tens of thousands to hundreds of thousands. For instance, when
performing KLEE on grep, the Select function should choose a state
from about 41,000 candidate states on average for each iteration at
line 4-18; the PruneM function blindly prunes about 112,000 states
due to exceeding the memory budget even though the promising
states may exist among the pruned ones.

Goal. The goal of this paper is to maintain only promising states
via aggressive state-pruning during symbolic execution. In our
work, we define the promising states as having the potential to ef-
fectively increase branch coverage when they are further explored,
and observe that there are a very few promising states among the
total candidate states. Hence, if we succeed in performing sym-
bolic execution while keeping them only, we are able to maximize
code coverage and to find many bugs. That is, the Prune function
in Algorithm 1 enables the symbolic execution to maintain the
minimized set S of candidate states while preserving the promis-
ing states, and prevents situations where the candidate states are
blindly pruned due to memory overrun. To achieve this goal, the
technical challenges we must address are as follows:

(1) How promising each state is?
(2) How many states do we need to prune?

In this paper, we address the challenges via the probabilistic pruning
strategy learned online during symbolic execution.

3 OUR TECHNIQUE

In this section, we describe our technique, Homi, in detail. Sec-
tion 3.1 defines the probabilistic pruning strategy (Prune) used
in Algorithm 1. Section 3.2 describes our symbolic execution al-
gorithm (Algorithm 2) with the online learning technique for the
probabilistic pruning strategy.

3.1 Probabilistic Pruning Strategy

The pruning function (Prune) in Algorithm 1 decides the set SP
of pruned states based on the probabilistic data P. This function
takes as input the set S of all states, the probabilistic data P, and the
time cycle ηt . For every ηt seconds, the pruning strategy selects the
set SP of “unpromising” states in two steps: sampling and pruning.
In the experiments, we set the hyper-parameter ηt to 30 seconds
based on our observation that the short pruning cycle (e.g., 30) is
generally more effective than the large one (e.g., 300) when testing
real-world benchmarks.

Sampling. The first step, sampling, is to obtain the two impor-
tant values from the probabilistic data P, where P consists of a
tuple (F , Pstgy , Pratio). F denotes a set of n features to represent
each state in the set S as an n-dimensional boolean vector. Pstgy
is the distribution of an n-dimensional vector θ to calculate how
promising each state is, and Pratio is the distribution of the ratio r
to decide the number of states to be pruned. For simplicity, we as-
sume that the parameter vector θ and ratio r are given by sampling
step from the learned distribution Pstgy and Pratio , respectively. We
explain how we obtain these two values in Section 3.2.3 and 3.2.4.

Pruning. The second step is to select the states to be pruned
by using the two sampled values, θ and r , and the set F of features
in P. We define the probabilistic pruning strategy as the following
Prune function:

Prune(S,P,ηt) =

argmin

SP⊆S∧|SP |= |S |∗r

∑
s∈SP

score(s, θ) if (F , ∅)

∅ otherwise

where the function returns an empty set when the set F is empty.
If not, the function scores each state in the set S , and returns the
set SP of the k states with the lowest scores in S (e.g., k = |S | ∗ r).

To estimate how promising a state is, we first transform each
state into a feature vector. Each feature denotes a boolean predicate
that checks whether the path-condition Φ of the state s contains
a specific branch condition ϕ. For instance, a feature describes
whether the path-condition Φ of the state s involves (α>10), the
branch condition. If true, the feature, feat(s), is 1; otherwise, it is 0.
Formally, the i-th feature is defined as:

feati (s) =
{

1 if (ϕi ∈ Φ) ∧ ((_, _,Φ) ∈ s)
0 otherwise

where it takes a single state s as input and returns 1 or 0. Using the
set F of n features in the given probabilistic data P, we can convert
a state into an n-dimensional boolean vector as follows:

feat(s) = ⟨feat1(s), feat2(s), . . . , featn(s)⟩.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Sooyoung Cha and Hakjoo Oh

Algorithm 2 Our Approach
Input: A program (P), time budget (N)
Output: The set of test-cases (T)
1: procedure Homi(P , N)
2: ⟨T , D⟩ ← ⟨∅, ∅⟩
3: initialize two sample spaces (Stime and Sratio)
4: N ′ ←sample from U(Stime)

5: P ← (∅, U([−1, 1]n), U(Sratio))

6: repeat

7: T ′ ← Run(P , N ′, P)
8: for each (Φ, t) ∈ T ′ do
9: D← D ∪ {(Φ, t, B)} ▷ B = Branches(t)
10: GoodD← Extract(D)
11: NewF ← FGenenator(GoodD)
12: Pstgy , Pratio, N ′ ← PGenerator(GoodD, NewF)
13: P ← (NewF , Pstgy , Pratio)

14: T ← T ∪ T ′

15: until budget N expires
16: return T

The features are automatically generated online by the data accu-
mulated during symbolic execution. We explain how these features
are obtained in Section 3.2.2.

After transforming each state in the set S into a feature vector,
we calculate the score of each state s using the inner product of the
feature vector feat(s) and the sampled n-dimensional vector θ as:

score(s, θ) = feat(s) · θ .

For example, when n is 3, θ and feat(s) can be ⟨0.4,−0.82,−0.3⟩
and ⟨1, 0, 0⟩, respectively, where the output of score(s, θ) is 0.4. The
feature vector, ⟨1, 0, 0⟩, denotes that the path-condition of the state s
only contains the branch condition corresponding to 1st feature.
In the vector θ , ⟨0.4,−0.82,−0.3⟩, the i-th value represents the
importance of the i-th feature.

Finally, the Prune function returns the set SP of the |S | ∗ r states
with the lowest scores in the set S as output, where the pruning
ratio r is obtained from the learned distribution Pratio . We remark
that the selection for the set SP can be done efficiently; after calcu-
lating the score of each state in the total set S , it ranks the states
according to their scores, and then picks the bottom-k states, where
k is |S | ∗ r .

Note that we reduce the problem of solving the two technical
problems discussed in Section 2 into the problem of learning prob-
abilistic distributions, Pstgy and Pratio .

3.2 Homi

The key point of our approach, Algorithm 2, is to continuously up-
date the features and the two probabilistic distributions, Pstgy and
Pratio , via online learning during symbolic execution. Except for
the probabilistic data (P), the input and output of our algorithm are
the same as the ones of Algorithm 1. Unlike the Algorithm 1 which
performs the Run procedure only once within the time budget N ,
our algorithm performs the Run procedure n times by dividing N
into n smaller budgets N ′. This is because our algorithm terminates
numerous states early through the probabilistic pruning strategy
in the Run procedure; thereby, our algorithm performs the Run
procedure multiple times with the updated data P to recover the

terminated promising states. Note that we can also perform Al-
gorithm 1 in the same way. However, without our state-pruning
strategy, we experimentally observed that it usually performs better
to run Algorithm 1 once for a long time period than to do multiple
times for a short time period (Section 4.4).

We explain the workflow of how Algorithm 2 works in detail. At
line 2, Algorithm 2 initializes the setT of test-cases and accumulated
data D to an empty set, respectively. At line 3, the algorithm initial-
izes two sample spaces, Stime and Sratio; the former Stime denotes
the sample space for the time budget N ′ to run the Run procedure
at line 7, and the latter, Sratio , represents the sample space for the
pruning ratio used in the probabilistic pruning strategy Prune.
Stime and Sratio are defined as:

Stime = [τmax, τitv], Sratio = [ηmax,ηitv]

where the two hyperparameters, τmax and τitv , are to define the
discrete space of τitv equal intervals with τmax as the maximum
time budget. Likewise, the discrete space Sratio is defined equally by
the two hyperparameters, ηmax and ηitv . For instance, if Stime and
Sratio are [600, 6] and [0.8, 4], their discrete spaces are as follows:

Stime = [100, 200, 300, 400, 500, 600], Sratio = [0.2, 0.4, 0.6, 0.8]

In the experiments, for the space Stime , we set τmax and τitv to 800
seconds and 4. We respectively set ηmax and ηitv to 0.6 and 3 for
the space Sratio; that is, our strategy prunes 20% or 40% or 60% of
total states for aggressive state-pruning.

At line 4, the algorithm samples the initial time budget N ′ from
the uniform distribution U(Stime). It initializes the probabilistic
data P consisting of a triplet (F , Pstgy , Pratio) at line 5; initially,
the set F of features is an empty set and each of two probabilistic
distributions, Pstgy and Pratio , is a uniform distribution. As the
set F in P is set to an empty set, the algorithm performs the Run
procedure without any state-pruning on the first iteration of the
loop at lines 6-15. Our algorithm repeats the following two main
processes until the time budget N expires: 1) performing symbolic
execution with the probabilistic pruning strategy based on the data
P (line 7) and 2) updating the data P (line 13). On the first iteration
of the loop, Homi performs the Run procedure (Algorithm 1) with
the time budget N ′ and initial probabilistic data P, and returns
the set T ′ of generated test-cases at line 7. After the algorithm
calculates the set B of branches covered by each test-case t in the
set T ′, we accumulate the tuple (Φ, t, B) in the set D (line 8-9).

3.2.1 Collecting Promising Data. At line 10, we run the Extract
function to extract the most “promising” but minimal set of data,
GoodD, from the set D of accumulated data. Conceptually, the set
GoodD is the smallest subset of D where the unions of B in GoodD
is the same with the set of branches covered by all the test-cases in
D. To formally define the set GoodD, we first calculate D∗ as:

D∗ = argmax
D′⊆D

|
⋃

(_,_,B)∈D′
B|.

where the notation ‘argmax’ returns the set D∗ of all arguments
that maximize the objective. The set D∗ is the set of all subsets of
D which collectively maximize the set of covered branches. Then,
the set GoodD is defined as:

GoodD = argmin
D′∈D∗

|D′ |

Making Symbolic Execution Promising by Learning Aggressive State-Pruning Strategy ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

where the notation ‘argmin’ returns one of the arguments that
minimize the objective. In practice, calculating the set GoodD cor-
responds to solving the set cover problem [16], the well-known
np-complete problem. In this paper, we obtain the minimal set
GoodD by applying the greedy algorithm which iteratively selects
the element having the largest number of uncovered branches at
each stage.

3.2.2 Generating Features. At line 11, Homi generates n fea-
tures to transform each state into a feature vector in the probabilis-
tic pruning function, Prune. Intuitively, a feature is a core branch
condition that contributes to determining the value of a test case
that effectively increases branch coverage. To generate the features,
we use the core branch conditions in the path-condition Φ corre-
sponding to each promising test-case in the set GoodD. We define
a core branch condition ϕ as a condition that can be expressed in
the predefined language L as follows:

ϕ ::= cond | cond ∧ cond | cond ∨ cond
cond ::= lv = n
lv ::= α | α[i]

where the language is small yet sufficient to represent the minimum
branch conditions that are necessary to directly determine the value
of each test-case. An l-value (lv) denotes a symbolic value (α) or
the value of i-th index of an array α (α[i]). A condition (cond)
consists of a boolean condition to express that the l-value equals to
a constant value n. A core branch condition (ϕ) is a single cond or
a conjunction (disjunction) of cond. To generate a set of features
from the promising data GoodD, we first collect the set PC of all
path-conditions from GoodD as follows:

PC = {Φ | (Φ, _, _) ∈ GoodD}

Second, we collect the set NewF of new features by extracting core
branch conditions in the set PC as:

NewF = {ϕ ∈ L | ϕ ∈ Φ,Φ ∈ PC}

That is, we extract only the conditions that can be expressed in
the language L among the branch conditions of each Φ in the set
PC. For instance, suppose that the set PC contains two sets of path-
conditions as follows:

PC = {{(α == 3), (α > 1)}, {(α[2] , 3), (α[2] == 8)}}.

where the two branch conditions, (α == 3) and (α[2] == 8), in PC
can be expressed in the language L (e.g., lv = n) while the remaining
conditions, (α > 1) and (α[2] , 3), cannot be. Hence, we can define
the set NewF of features from PC as follows:

NewF = {(α == 3), (α[2] == 8)}

where the two features in the set NewF are the minimal conditions
to determine amodel of each path-condition; for instance, themodel
of the first path-condition, (α == 3) ∧ (α > 1), in PC is equals to
the one of the minimal condition (α == 3). In short, the set NewF
of generated features at line 11 represents the key evidences of the
minimal test-cases that contribute to maximizing branch coverage
until the current state.

3.2.3 LearningDistribution. At line 12, the function PGenerator
learns the probabilities of two values, n-dimensional weight vector
θ and the pruning ratio r , and returns a tuple (Pstgy , Pratio , N ′). The
first element Pstgy denotes the probability for the weight vector θ
that scores how promising each state is, and the second, Pratio , is
the probability for the pruning ratio r that determines the number
of states to be pruned. The time budget N ′ is the newly allocated
time budget for the Run procedure on the next iteration of the loop.

The probability Pstgy consists of n distributions as:

Pstgy = P1 × P2 × · · · × Pn.

where Pi denotes the probability of the weight value θ i correspond-
ing to the i-th feature in the set NewF . To define the i-th distribu-
tion Pi , we first collect the set of promising test-cases GoodT from
GoodD as follows:

GoodT = {t | (_, t, _) ∈ GoodD}.

Whenever each test-case t is generated during symbolic execution,
our algorithm additionally maintains a quadruple of information
used to generate each test-case t as follows:

t = (F, θ , r,N ′)

where F is the set of features, θ is the weight vector, r is the pruning
ratio, and N ′ is the time budget. Using this additional information,
we collect the set GoodF of the features which are used at least
once when generating the promising test-case in the set GoodT as
follows:

GoodF =
⋃

(F ,_,_,_)∈GoodT

F .

That is, the set GoodF contains the features that contribute to gen-
erating effective test-cases in terms of code coverage. Finally, we
can define the i-th distribution Pi as:

Pi =

{
N(µ(Wi),σ (Wi),−1, 1) if (ϕnew

i ∈ GoodF)
U([−1, 1]) otherwise (1)

where ϕnew
i denotes the i-th feature in the set NewF that has been

generated at line 11 in Algorithm 2.
If the i-th new feature (ϕnew

i) belongs to the set GoodF of promis-
ing features, we learn the probability Pi which is the truncated
normal distribution with median µ(Wi), standard deviation σ (Wi),
minimum value (-1), and maximum value (1). We define the set Wi
as:

Wi = {θ
k | (ϕnew

i = ϕk) ∧ ({ϕ1, · · · ,ϕn}, θ , _, _) ∈ GoodT }.

Intuitively, Wi denotes the set of weight values corresponding to
the i-th new feature ϕnew

i that has already been used for each test-
case in GoodT . Given the set W , the median µ(Wi) and standard
deviation σ (Wi) are calculated as:

µ(W) =
∑
w ∈W

w

|W |
, σ (W) =

√√√ ∑
w ∈W
(w − µ(W))2

|W |
.

On the other hand, if the i-th new feature (ϕnew
i) does not belong to

GoodF , we fix the probability Pi to a uniform distribution between
-1 and 1 since there is no accumulated data corresponding to the
i-th new feature for learning. In this way, we learn the probability
Pstgy that consists of the n distributions from P1 to Pn based on
the most promising data GoodD.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Sooyoung Cha and Hakjoo Oh

After the learning process of the probability Pstgy , we calculate
the probability Pratio of the given pruning ratio r ′ which is one of
the values in the predefined discrete space Sratio as follows:

Pratio(X = r ′) =
|{(_, _, r, _) ∈ GoodT | r ′ = r}|

|GoodT |
(2)

The intuition is that the more the pruning ratio r is used to generate
promising test-cases GoodT , the higher the probability of the ratio.

Lastly, we sample the new budget N ′ based on the following
probability Ptime :

Ptime(X = N ′) =
|{(_, _, _,N) ∈ GoodT | N ′ = N }|

|GoodT |
(3)

The intuition is the same as the probability Pratio above.

3.2.4 Sampling Values. We describe how to sample the weight
vector (θ) and ratio (r) from the two learned distributions, Pstgy
and Pratio , in the first ‘sampling’ step of the probabilistic pruning
strategy. First, we sample the weight vector θ by using one of the
three sampling methods: exploitation, reverse exploitation, and
exploration. The first two methods are to exploit the learned dis-
tribution Pstgy as it is or reversely. The last method is to explore
purely random weight vector.

Exploitation. We sample the new weight vector θ from the
learned distribution Pstgy itself as:

Sampleexploit(P1 × P2 × · · · × Pn) = ⟨θ
1, θ2, · · · , θn⟩

where the i-th weight value θ i is sampled from the i-th probability
Pi in (1). Our expectation is that the new weight vector θ statisti-
cally similar to the promising weight vectors in the set GoodD will
likely increase the code coverage on the next iteration of the loop.

Reverse Exploitation. We sample the new weight vector θr by
exploiting the learned distribution Pstgy reversely. We first generate
the set of 100 real-numbers, U , by sampling the uniform distribution
between -1 and 1 as:

U = {r1, r2, . . . , r100 | ri ∼ U(−1, 1)}.

The sampling method takes the probability Pstgy and the set U as
input and returns the new weight vector θr as:

Samplereverse(P1 × P2 × · · · × Pn,U) = ⟨θ1r , θ
2
r , · · · , θ

n
r ⟩

We assume that the i-th weight value θ i is sampled from the prob-
ability Pi defined in (1). Then the i-th reverse weight value θ ir is
calculated as follows:

θ ir = argmax
u ∈U

|u − θ i |

where the reverse value θ ir in U is the farthest one from the value
θ i sampled from the distribution Pi . Hence, θ ir represents the value
that is the most unlikely to be sampled in the learned distribution
Pstgy . We expect that this weight vector would lead the symbolic
execution to explore the branches uncovered in previous iterations.

Table 2: 9 benchmark programs

Programs LOC # of Branches

gawk-3.1.4 60,904 11,934
grep-2.6 56,931 7,021
combine-0.4.0 35,756 2,359
trueprint-5.4 12,229 2,518

ginstall (8.31) 22,290 3,652
ptx (8.31) 22,148 5,262
vdir (8.31) 19,378 3,830
pr (8.31) 12,156 1,991
dd (8.31) 10,531 1,547

Exploration. For the last method, we generate a weight vector
θ by sampling from the uniform distribution U([−1, 1]n), where
the i-th value θ i is a random real-number between -1 and 1. In the
experiments, to accumulate enough data D for learning the distribu-
tion Pstgy , Algorithm 2 repeats the loop, using only the exploration
methodm times (e.g.,m=10). After enough data is collected, we set
the same probabilities for the three sampling methods.

Finally, we sample the pruning ratio r based on the probability
in (2) when sampling the weight vector θ by exploitation or reverse
exploitation. Otherwise, when sampling the weight vector θ by
exploration, the pruning ratio is randomly sampled in the uniform
distributionU(Sratio). Likewise, we obtain the next testing budget
N ′ on the same basis as sampling the pruning ratio; that is, we
sample the budget from the uniform distributionU(Stime) for the
exploration case only. If not, we sample the one in (3).

As the loop at lines 6-15 in Algorithm 2 iterates, our technique,
Homi, is able to make smarter decisions on how to represent each
state (F), how promising each state is (Pstgy), and how many states
are pruned (Pratio).

4 EXPERIMENTS

In this section, we experimentally evaluate our approach, Homi, to
answer the following research questions:
• Effectiveness: How effectively does Homi improve branch
coverage? How many branches and bugs are reachable by
Homi only? (Section 4.2)
• The number of states: How many states does Homi main-
tain during testing compared to general symbolic execution?
(Section 4.3)
• Comparison with naive approach: How well does Homi
(Algorithm 2) perform compared to symbolic execution with
random state-pruning? (Section 4.4)

We implemented our approach in a tool, Homi, on top of KLEE [5],
a publicly available symbolic execution tool for testing C programs.
We conducted all experiments on a Linux machine equipped with
two Intel Xeon Processors E5-2630 and 192GB RAM, where it has a
total of 16 cores and 32 threads.

4.1 Settings

Benchmarks. We used 9 GNU open-source C programs for
evaluation. Table 2 shows the total number of lines and branches for
each benchmark, where the largest benchmark, gawk, has about 12K

Making Symbolic Execution Promising by Learning Aggressive State-Pruning Strategy ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

branches. The last five benchmarks in Table 2 are among the larger
programs in GNU Coreutils-8.31. To construct our benchmark suite,
we used two criteria: 1) the benchmarks have been widely used in
prior work on dynamic symbolic execution [4, 5, 9–11, 21, 24, 29],
and 2) they are relatively larger and more challenging than those
often used in existing work on KLEE.

Baselines. We compared our approach with the general sym-
bolic execution (Algorithm 1) without state-pruning but with 9
different search heuristics. Specifically, we used the following 9
search heuristics: CPICount (CallPath Instruction Count), CovNew,
MinDistance (Minimal Distance to Uncovered), InstrCount (In-
struction Count), QueryCost, RandomPath, Depth, RandomState,
and RoundRobin; the last heuristic is the default heuristic of KLEE
that uses CovNew and RandomPath in a round robin fashion. All
these heuristics are implemented in KLEE [5]. Note that we delib-
erately used 9 search heuristics instead of using only the default
heuristic. This is because, as demonstrated in Section 4.2, the perfor-
mance of the general symbolic execution varies greatly depending
on both the subject program and search heuristic.

We appliedHomi on top of the best search heuristic that achieves
the highest branch coverage for each program. For instance, we
applied Homi on top of theMinDistance heuristic for gawk while
applyingHomi on top of theCPICount heuristic for grep. Note that
Homi and search heuristics are orthogonal, and they are naturally
combined since Homi works regardless of search heuristics; in a
generic symbolic execution algorithm (Algorithm 1), Homi decides
which states to prune at line 6 while search heuristics determine
which states to explore further at line 10.

Other Settings. For all evaluations, we maintained the same
experimental environments: symbolic arguments, time budget, and
memory capacity. First, we used the symbolic arguments used in [5]
(e.g., "--sym-args 0 1 10 --sym-args 0 2 2 --sym-files 1 8 --sym-stdin
8 --sym-stdout"). Second, we used the same memory capacity, 2GB,
where it is the default setting of KLEE. Lastly, we allocated 5 hours
to both the baselines (Algorithm 1) and our technique (Algorithm 2)
for all benchmarks as time budget. We repeated all experiments
five times and reported the average results.

4.2 Effectiveness

We evaluate the effectiveness of our approach, Homi, from two
perspectives: branch coverage and bug-finding capability. In sum-
mary, Homi is able to significantly increase branch coverage and
exclusively find bug-triggering inputs, compared to the general
symbolic execution.

4.2.1 Branch Coverage. For each benchmark in Table 2, we re-
port the average number of total covered branches (Figure 1) and
exclusively covered branches (Table 3), by Homi and top-5 search
heuristics, respectively. As both the general symbolic execution
(Algorithm 1) and Homi (Algorithm 2) return as output the set
of test-cases, we plotted the number of branches covered by all
preceding test-cases to depict the coverage graph in Figure 1. In
particular, when the time budget (5h) expired, we re-executed the
binary of the program with each test-case in the set T sequentially,
where the ‘sequence’ denotes the time each test-case was created.

We calculated the cumulative number of covered branches corre-
sponding to the creation time of the test-case; we used gcov, one
of the most popular tools for measuring code coverage. As we men-
tioned in Section 3.2,Homi performs the general symbolic execution
without state-pruning on the first iteration of the loop. Hence, to
demonstrate the benefits of state-pruning only, we have plotted
the accumulated number of covered branches after the time for the
first iteration of Algorithm 2 elapsed. In our experiments, we first
perform the general symbolic execution for 800 seconds, record the
calculated number of covered branches on the graph, and then run
Algorithm 1 for the remaining time period (e.g., 5h - 800 seconds).
In other words, the graphs in the Figure 1 can clearly demonstrate
the comparison of the performance of symbolic execution with and
without state-pruning technique.

Figure 1 demonstrates the average number of branches covered
by the search heuristics over time in 9 benchmarks. We used a total
of 6 heuristics for each benchmark, consisting of the top five of the
nine original search heuristics and our technique applied to the best
one among the five. The experimental results show that the search
heuristic withHomi succeeds in achieving the highest branch cover-
age for all benchmarks. In particular, for the two largest programs,
gawk and grep, Homi notably increases the number of covered
branches compared to the best heuristic without it. For instance, in
gawk, the search heuristic withHomi,MinDistance+Homi, covered
about 2,884 branches whileMinDistance heuristic itself managed
to cover about 2,447 branches only. Likewise, in grep, when the
time budget (5h) expired, the best heuristic (CPICount) with and
without Homi covered about 2,851 and 2,505 branches, respectively.
Moreover, as shown in a benchmark trueprint, the rate for the
coverage increase over time of the heuristic equipped with Homi
was noticeably higher than the ones of other five search heuristics.
In the two benchmarks, combine and vdir, applying Homi to the
best heuristic has successfully covered about 100 more branches.

Figure 1 shows that in most programs, the number of branches
covered by each top-5 search heuristics rises sharply at the end of
the time budget; this interesting fact is observed because we have
reported the branch coverage covered over time. This phenomenon
occurs since the algorithm (Algorithm 1) generates the test-cases,
at lines 20-21, for each state that has not yet reached the halt state-
ment after the time budget expires, and the generated test-cases
contribute to increasing the total number of branch coverage a lot.
This implicitly shows that the general symbolic execution fails to
preferentially explore such promising states more.

Note that we applied Homi with the best search heuristic just
because it is more challenging to improve the performance of the
heuristic that has already achieved high code coverage. In fact,
Homi performs well regardless of the search heuristic. For instance,
applying Homi even with the 6th search heuristic (CPICount) on
gawk in Figure 1 can cover more branches than applying CPICount
withoutHomi;CPICount+Homi covered 2,356 branches on average
while CPICount covered 2,093 only.

4.2.2 Exclusively Covered Branches. Table 3 shows the num-
ber of exclusively covered branches achieved by each technique.
In Table 3, the i-th best heuristic on each benchmark corresponds
to the one in Figure 1; for instance, the best (BestH) and second
best heuristic (2ndH) on combine are RandomPath and CPICount,

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Sooyoung Cha and Hakjoo Oh

0 2500 5000 7500 10000 12500 15000 17500

1200

1400

1600

1800

2000

2200

2400

2600

2800

#
of

C
ov

er
ed

B
ra

nc
he

s

gawk

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

200
MinDistance+Homi

MinDistance

QueryCost

InstrCount

CovNew

CPICount

0 2500 5000 7500 10000 12500 15000 17500

1800

2000

2200

2400

2600

2800

#
of

C
ov

er
ed

B
ra

nc
he

s

grep

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

200
CPICount+Homi

CPICount

QueryCost

CovNew

InstrCount

RandomState

0 2500 5000 7500 10000 12500 15000 17500

300

400

500

600

700

800

900

#
of

C
ov

er
ed

B
ra

nc
he

s

combine

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

100
RandomPath+Homi

RandomPath

CPICount

CovNew

QueryCost

RoundRobin

0 2500 5000 7500 10000 12500 15000 17500

700

800

900

1000

1100

1200

1300

1400

1500

1600

#
of

C
ov

er
ed

B
ra

nc
he

s

vdir

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

100
CovNew+Homi

CovNew

RoundRobin

QueryCost

MinDistance

RandomState

0 2500 5000 7500 10000 12500 15000 17500

1100

1200

1300

1400

1500

1600

1700

1800
#

of
C

ov
er

ed
B

ra
nc

he
s

ptx

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

200
CovNew+Homi

CovNew

CPICount

QueryCost

RandomState

RoundRobin

0 2500 5000 7500 10000 12500 15000 17500

400

500

600

700

800

900

#
of

C
ov

er
ed

B
ra

nc
he

s

trueprint

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

100
MinDistance+Homi

MinDistance

RandomPath

RoundRobin

QueryCost

CovNew

0 2500 5000 7500 10000 12500 15000 17500

600

700

800

900

1000

1100

1200

#
of

C
ov

er
ed

B
ra

nc
he

s

ginstall

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

100
CPICount+Homi

CPICount

RoundRobin

RandomPath

Depth

CovNew

0 2500 5000 7500 10000 12500 15000 17500

600

700

800

900

1000

1100

1200

#
of

C
ov

er
ed

B
ra

nc
he

s

pr

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

200
CovNew+Homi

CovNew

QueryCost

RoundRobin

RandomState

CPICount

0 2500 5000 7500 10000 12500 15000 17500

350

375

400

425

450

475

500

525

550

#
of

C
ov

er
ed

B
ra

nc
he

s

dd

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

100
CPICount+Homi

CPICount

RoundRobin

RandomPath

Depth

RandomState

Figure 1: The average branch coverage achieved by top-5 heuristics and Homi on 9 benchmarks

Table 3: The average number of branches exclusively cov-

ered by top-5 heuristics and Homi on 9 benchmarks

BestH+Homi BestH 2ndH 3rdH 4thH 5thH

gawk 139 10 26 37 42 26
grep 208 53 22 116 14 1
combine 62 0 15 15 1 6
vdir 118 44 19 14 1 2
ptx 39 4 35 2 0 4
trueprint 147 17 0 0 3 52
ginstall 16 3 1 6 0 0
pr 61 3 1 2 0 3
dd 23 17 2 0 0 0

Total 813 151 121 192 61 94

respectively. The number achieved by our technique (BestH+Homi)
denotes the number of branches that our technique covers but all
the remaining top-5 heuristics fail to cover. The results show that

our technique (BestH+Homi) is highly effective in increasing the
number of exclusively covered branches. In total, the best heuristic
with Homi was able to cover 813 branches while the best heuristic
without Homi covered only 151 branches; in summary, the former
exclusively covered 5.4 times more branches than the latter. For
instance, in the largest program gawk, Homi significantly enhanced
the performance of the best heuristic (MinDistance) by about 13.9
times. Likewise, our technique (CPICount+Homi) on grep exclu-
sively covered 208 branches, but the best heuristic alone managed
to exclusively cover 53 branches.

In addition, the number of exclusive branches covered by our
technique (BestH+Homi) is even greater than the sum of the num-
bers of branches exclusively covered by each of top-5 heuristics,
where the former is 813 and the latter is 619, i.e., 151+121+192+61+94.
The number of branches that one of the top-5 heuristics can cover
but our technique (BestH+Homi) fails is 816. In other words, the
branch coverage achieved by applying Homi to the best-heuristic
only for 5 hours is almost the same as the one achieved by applying

Making Symbolic Execution Promising by Learning Aggressive State-Pruning Strategy ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 4: Comparison of bug-finding ability of top-2 heuristics with vs. without Homi.

Benchmarks Crash-Types Bug-Triggering Inputs Error Locations BestH+Homi BestH 2ndH+Homi 2ndH

gawk-3.14 Abnormal-termination "--nostalgi" "-" ‘Line: 1044 in main.c’ ✔ ✔ ✔ ✔

Abnormal-termination "--compat" "-m" "r " ‘Line: 526 in /libc/stdlib/stdlib.c’ ✔ ✘ ✔ ✘

grep-2.6 Abnormal-termination "\n\w*\'*\n" "-" ‘Line: 1432 in /src/dfa.c’ ✘ ✘ ✔ ✘

combine-0.4.0 Segmentation fault "--field=, ," ‘Line: 385 in /src/field.c’ ✔ ✔ ✔ ✔

Segmentation fault "--fi=r.o1’" "-r" "" ‘Line: 633 in /src/df_options.c’ ✔ ✘ ✘ ✘

each of top-5 heuristics for 5 hours (25 hours in total). Despite the
obvious advantages ofHomi, it is still not optimal since it also failed
to cover 816 branches achieved by top-5 search heuristics. From
this observation, selective decision on applying Homi would be an
interesting future work.

4.2.3 Bug-Finding Capability. In Table 4, we compared the bug-
finding capability of two best heuristics both with and without
Homi, respectively, for the three largest benchmarks: gawk, grep,
and combine. In summary, Homi found a total of five reproducible
bugs on the three benchmarks. In particular, the three bugs were
only detectable by Homi while the general symbolic execution
failed to find these bugs.

Table 4 shows the benchmark, the crash-type, the bug-triggering
input generated by Homi, the error-location, and success or failure
of bug-finding for each technique in order. In particular, we marked
each technique as ‘success’ (✔) when the technique succeeded in
finding the bug at least once during five iterations of the time budget
(5h). On the contrary, when each technique totally failed to find the
bug during the time period (5h ∗ 5times), we marked it as ‘failure’
(✘). The results show that our technique was able to generate a total
of four distinct bug-triggering inputs in gawk and combine, but the
best heuristic without Homi only generated the two inputs. We
confirmed that the first bug-triggering input ("--nostalgi" "-") found
in gawk is reproducible in the latest version (gawk-5.0.1). One inter-
esting point is that the discovered bugs are different when applying
Homi to the best and the second best heuristics; the best heuristic
withHomi caused a crash, abnormal-termination, on combinewhile
the second best one caused a segmentation fault on grep. That is,
we expect that applying Homi to diverse (new) search heuristics
will allow more bug-detection.

4.3 The Number of Candidate States

For each benchmark in Table 2, we compare the number of states
that our technique and the general symbolic execution maintain
during the testing period. Figure 2 shows the average number of
states that can be selected by each technique for every second;
more precisely, the average number denotes the set size of states,
|S |, at line 10 in Algorithm 1. The results show that our technique
(BestH+Homi) maintains a relatively small number of states for
most of the time period on all benchmarks compared to the gen-
eral symbolic execution. When performing the general symbolic
execution without the state-pruning at first, which is the first it-
eration of the loop in Algorithm 2, our technique also faced the

state-explosion problem. After the first iteration, however, ours has
successfully maintained a small number of states. For instance, in
gawk, our technique (MinDistance+Homi) kept about 1,897 states
per second on average while theMinDistance heuristic maintained
about 37,315 states. In other words, our technique succeeded in
achieving the highest branch coverage in Figure 1 while maintain-
ing 19.7 times fewer states than the general symbolic execution.
In grep, CPICount+Homi and CPICount retained 2,030 and 41,210
states on average, respectively. In vdir, even after the first itera-
tion of the loop in Algorithm 2, our technique sometimes faced the
state-explosion problem. We confirmed that this problem occurs
because the number of states grows exponentially faster than the
number pruned by our state-pruning strategy.

For the general symbolic execution without our technique, we
observed that keeping the fewer number of states is not directly
related to improving the branch coverage. For instance, in ptx,
RoundRobin heuristic maintains about 4,660 states during the sym-
bolic execution, which is almost the same number of states main-
tained by our technique (CovNew+Homi). However, Figure 1 shows
that RoundRobin covered about 300 fewer branches on average
than CovNew of which the number of states is about 60,053 during
symbolic execution. In another benchmark, gawk, the numbers of
candidate states maintained by CPICount and MinDistance are al-
most the same, where the former is 36,299 and the latter is 37,315.
However, the difference in the number of covered branches by the
two techniques is approximately about 350 branches. That is, the
key answer for increasing code coverage is not to blindly main-
tain the number of states, but to smartly keep only the “promising”
states.

Although Homi successfully maintains such promising states on
our benchmark suite, wewere not able to provide high-level insights
into why those states are promising. In our approach, we determine
how promising a state is based on its corresponding feature vector
and weight vector. However, as our learning algorithm represents
each state as low-level features that check whether it contains core
branch conditions, it was difficult to decode the learning outcomes
and describe the intuition behind promising states.

4.4 Comparison with Naive Approaches

We evaluate the efficacy of Homi (Algorithm 2) by comparing it
with two naive methods. The first naive method is to replace the
probabilistic pruning strategy (Prune) in Algorithm 1 with the
random pruning strategy (RandomPrune), and then to perform

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Sooyoung Cha and Hakjoo Oh

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

10000

20000

30000

40000

50000

#
of

S
ta

te
s

gawk

MinDistance+Homi

MinDistance

QueryCost

InstrCount

CovNew

CPICount

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

20000

40000

60000

80000

#
of

S
ta

te
s

grep

CPICount+Homi

CPICount

QueryCost

CovNew

InstrCount

RandomState

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

500

1000

1500

2000

2500

3000

#
of

S
ta

te
s

combine

RandomPath+Homi

RandomPath

CPICount

CovNew

QueryCost

RoundRobin

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

10000

20000

30000

40000

50000

60000

#
of

S
ta

te
s

vdir

CovNew+Homi

CovNew

RoundRobin

QueryCost

MinDistance

RandomState

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

10000

20000

30000

40000

50000

60000

70000
#

of
S

ta
te

s

ptx

CovNew+Homi

CovNew

CPICount

QueryCost

RandomState

RoundRobin

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

10000

20000

30000

40000

50000

60000

#
of

S
ta

te
s

trueprint

MinDistance+Homi

MinDistance

RandomPath

RoundRobin

QueryCost

CovNew

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

20000

40000

60000

80000

100000

#
of

S
ta

te
s

ginstall

CPICount+Homi

CPICount

RoundRobin

RandomPath

Depth

CovNew

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

10000

20000

30000

40000

50000

60000

70000

#
of

S
ta

te
s

pr

CovNew+Homi

CovNew

QueryCost

RoundRobin

RandomState

CPICount

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

20000

40000

60000

80000

100000

#
of

S
ta

te
s

dd

CPICount+Homi

CPICount

RoundRobin

RandomPath

Depth

RandomState

Figure 2: The average number of states for each technique to select on 9 benchmarks

Algorithm 2 without online learning (line 10-13) as:

RandomPrune(S, r) = {s ∈ SP | SP ⊆ S ∧ |SP | = |S | ∗ r}

where r is sampled from the uniform distributionU(Sratio) defined
in Section 3.2. The second naive method is to perform the general
symbolic execution (Algorithm 1) multiple times by dividing the
total budget (5h) into smaller budgets N ′, where N ′ is sampled
fromU(Stime) defined in Section 3.2. In grep, we compared branch
coverage achieved by ours (CPICount+Homi), the best heuristic
(CPICount), the first naive approach (CPICount+RandomPrune),
and the second one (CPICount[Divide]), respectively.

Figure 3 shows that Homi (Algorithm 2) is essential to effec-
tively improve branch coverage. For example, ours covered at
least 300 more branches than the second best method (CPICount+
RandomPrune). The second and the third best methods (CPICount
+RandomPrune and CPICount) achieved nearly identical branch
coverage when time budget expired. For the general symbolic ex-
ecution (Algorithm 1) without state-pruning, it is much better to

0 2500 5000 7500 10000 12500 15000 17500

1800

2000

2200

2400

2600

2800

#
of

C
ov

er
ed

B
ra

nc
he

s

grep

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

200
CPICount+Homi

CPICount+RandomPrune

CPICount

CPICount[Divide]

Figure 3: Comparison with two naive approaches on grep

perform symbolic execution for a long time than to perform sym-
bolic execution several times with small budget; the former and the
latter was able to cover 2,505 and 2,406 branches, respectively.

Making Symbolic Execution Promising by Learning Aggressive State-Pruning Strategy ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

4.5 Threats to Validity

(1) We manually tuned the several hyper-parameters: ηt , ηmax , and
ηitv . To determine each value, we ran Homi with a few different
values (e.g., 30, 300) on three benchmarks, and chose an appropriate
one achieving the highest coverage during the experiments. Then,
we applied the same value for the remaining six benchmarks. How-
ever, the tuned values may not be suitable for larger open-source C
programs (e.g., LOC > 100K). (2) In evaluation, we used both the de-
fault SMT solver of KLEE (STP [13]) and the default memory budget
(2GB). However, the performance of Homi may vary for different
SMT solvers and memory budgets. (3) We used 9 C open-source
programs extensively used in previous works [4, 5, 9–11, 21, 24, 29].
But these may not be representative.

5 RELATEDWORK

In this section, we discuss existing works that are closely related to
our goal and approach, respectively. At a high level, our goal is to
prune the search space of symbolic execution [2, 3, 15, 27, 30, 31],
and our approach belongs to the techniques that combine symbolic
execution with machine learning [9–12, 18, 25].

Reducing Search Space of Symbolic Execution. Homi is dif-
ferent from and orthogonal to the existing techniques [2, 3, 15,
27, 30, 31]. These techniques aim to conservatively prune redun-
dant states based on some predefined criteria. On the other hand,
Homi aims to aggressively prune the states based on adaptive crite-
ria learned online during symbolic execution. The read-write set
(RWset) analysis [2] aims to prune program paths that will execute
the same basic blocks as previously explored paths. Likewise, the
goal of post-conditioned symbolic execution [30, 31] is to discard
the states having the same path suffixes as previously explored
states during testing. Jaffar et al. [15] aims to subsume the paths
guaranteed to be unreachable to the annotated assertions in the
program. Chopper [27] presents a novel technique to perform sym-
bolic execution while safely excluding the irrelevant functions in
the program which are not the targets of users to test. Note that our
tool, Homi, can further enhance symbolic execution by combining
these techniques that safely prune redundant paths.

Combining Symbolic Execution with Learning. Our work
aligns with this line of research that employs machine learning to
boost symbolic execution [9–12, 18, 25]. ParadySE [9] presents a
new approach to automatically generate search heuristics of sym-
bolic execution via offline learning. Chameleon [11] is a novel
symbolic execution that adaptively switches search heuristics for
better performance via online learning. MLB [18] uses machine
learning to effectively handle the complex path-conditions that
involve external function calls or floating point arithmetic in sym-
bolic execution. LEO [12] is a machine-learning based approach to
boost symbolic execution by transforming the program under test
into an easy-to-analyze program while preserving its semantics.
ConTest [10] aims to learn useful templates that reduce the input
space of the program under test by selectively generating symbolic
variables during testing. On the other hand, we use a learning al-
gorithm to aggressively prune unpromising states online during
symbolic execution.

6 CONCLUSION

We present a new approach, Homi with the goal of maintaining
promising states only via aggressive state-pruning. The key idea
is to continuously learn the probabilistic pruning strategy based
on the cumulative data during the testing period. Experimental
results on 9 open-source C projects show that symbolic execution
with Homi is able to notably increase branch coverage and find real
bugs while keeping a relatively small set of states. We believe that
minimizing candidate states in symbolic execution will emerge as
a new solution against the state-explosion problem.

ACKNOWLEDGMENTS

This work was supported by Samsung Research Funding & Incuba-
tion Center of Samsung Electronics under Project Number SRFC-
IT1701-51. This work was partly supported by Institute of Informa-
tion & communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No.2020-0-01337,
(SW STAR LAB) Research on Highly-Practical Automated Software
Repair) and Next-Generation Information Computing Development
Program through the National Research Foundation of Korea(NRF)
funded by the Ministry of Science, ICT (2017M3C4A7068175).

REFERENCES

[1] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Auto-
mated Concolic Testing of Smartphone Apps. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering (FSE
’12). 1–11.

[2] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. 2008. RWset: Attacking
path explosion in constraint-based test generation. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’08).
351–366.

[3] Suhabe Bugrara and Dawson Engler. 2013. Redundant State Detection for Dy-
namic Symbolic Execution. In Proceedings of the 2013 USENIX Conference on
Annual Technical Conference (USENIX ATC’13). 199–212.

[4] Jacob Burnim and Koushik Sen. 2008. Heuristics for Scalable Dynamic Test Gen-
eration. In Proceedings of 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE ’08). 443–446.

[5] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI ’08). 209–224.

[6] Cristian Cadar and Dawson Engler. 2005. Execution Generated Test Cases:
How to Make Systems Code Crash Itself. In Proceedings of the 12th International
Conference on Model Checking Software (SPIN’05). 2–23.

[7] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. 2008. EXE: Automatically Generating Inputs of Death. ACM Trans. Inf.
Syst. Secur. 12, 2 (2008), 10:1–10:38.

[8] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Commun. ACM 56, 2 (2013), 82–90.

[9] Sooyoung Cha, SeongjoonHong, Junhee Lee, and Hakjoo Oh. 2018. Automatically
Generating Search Heuristics for Concolic Testing. In Proceedings of the 40th
International Conference on Software Engineering (ICSE ’18). 1244–1254.

[10] Sooyoung Cha, Seonho Lee, and Hakjoo Oh. 2018. Template-guided Concolic
Testing via Online Learning. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE ’18). 408–418.

[11] Sooyoung Cha and Hakjoo Oh. 2019. Concolic Testing with Adaptively Changing
Search Heuristics. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’19). 235–245.

[12] Junjie Chen, Wenxiang Hu, Lingming Zhang, Dan Hao, Sarfraz Khurshid, and Lu
Zhang. 2018. Learning to accelerate symbolic execution via code transformation.
In 32nd European Conference on Object-Oriented Programming (ECOOP ’18).

[13] Vijay Ganesh and David L. Dill. 2007. A Decision Procedure for Bit-Vectors and
Arrays. In Proceedings of the 19th International Conference on Computer Aided
Verification (CAV’07). 519–531.

[14] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05). 213–223.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Sooyoung Cha and Hakjoo Oh

[15] Joxan Jaffar, Vijayaraghavan Murali, and Jorge A. Navas. 2013. Boosting Concolic
Testing via Interpolation. In Proceedings of the 9th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE ’13). 48–58.

[16] Richard M Karp. 1972. Reducibility among combinatorial problems. In Complexity
of computer computations. 85–103.

[17] Su Yong Kim, Sangho Lee, Insu Yun, Wen Xu, Byoungyoung Lee, Youngtae Yun,
and Taesoo Kim. 2017. CAB-Fuzz: Practical Concolic Testing Techniques for
COTS Operating Systems. In 2017 USENIX Annual Technical Conference (USENIX
ATC ’17). 689–701.

[18] Xin Li, Yongjuan Liang, Hong Qian, Yi-Qi Hu, Lei Bu, Yang Yu, Xin Chen, and
Xuandong Li. 2016. Symbolic Execution of Complex Program Driven by Ma-
chine Learning Based Constraint Solving. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE ’16). 554–559.

[19] You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. 2013. Steering Symbolic
Execution to Less Traveled Paths. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages, and
Applications (OOPSLA ’13). 19–32.

[20] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). 254–269.

[21] Sergey Mechtaev, Alberto Griggio, Alessandro Cimatti, and Abhik Roychoud-
hury. 2018. Symbolic Execution with Existential Second-Order Constraints. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
’18). 389–399.

[22] Ivica Nikoliundefined, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas
Hobor. 2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. In
Proceedings of the 34th Annual Computer Security Applications Conference (ACSAC
’18). 653–663.

[23] Koushik Sen, DarkoMarinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing
Engine for C. In Proceedings of the 10th European Software Engineering Conference

Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE ’05). 263–272.

[24] Hyunmin Seo and Sunghun Kim. 2014. How We Get There: A Context-guided
Search Strategy in Concolic Testing. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE ’14). 413–
424.

[25] Shiqi Shen, Shweta Shinde, Soundarya Ramesh, Abhik Roychoudhury, and Pra-
teek Saxena. 2019. Neuro-Symbolic Execution: Augmenting Symbolic Execution
with Neural Constraints.. In Proceedings of the Symposium on Network and Dis-
tributed System Security (NDSS ’19).

[26] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska,
and Daniel Kroening. 2018. Concolic Testing for Deep Neural Networks. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE ’18). 109–119.

[27] David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian Cadar. 2018.
Chopped Symbolic Execution. In Proceedings of the 40th International Conference
on Software Engineering (ICSE ’18). 350–360.

[28] Xinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, and Yun Lin.
2018. Towards Optimal Concolic Testing. In Proceedings of the 40th International
Conference on Software Engineering (ICSE ’18). 291–302.

[29] E. Wong, L. Zhang, S. Wang, T. Liu, and L. Tan. 2015. DASE: Document-
Assisted Symbolic Execution for Improving Automated Software Testing. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE
’15). 620–631.

[30] Qiuping Yi, Zijiang Yang, Shengjian Guo, Chao Wang, Jian Liu, and Chen Zhao.
2015. Postconditioned Symbolic Execution. In 2015 IEEE 8th International Confer-
ence on Software Testing, Verification and Validation (ICST ’15). 1–10.

[31] Qiuping Yi, Zijiang Yang, Shengjian Guo, Chao Wang, Jian Liu, and Chen Zhao.
2018. Eliminating Path Redundancy via Postconditioned Symbolic Execution.
IEEE Transactions on Software Engineering (2018), 25–43.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Our Technique
	3.1 Probabilistic Pruning Strategy
	3.2 Homi

	4 Experiments
	4.1 Settings
	4.2 Effectiveness
	4.3 The Number of Candidate States
	4.4 Comparison with Naive Approaches
	4.5 Threats to Validity

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

