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ABSTRACT

In this experience paper, we design, implement, and evaluate a new
static type-error detection tool for Python. To build a practical tool,
we first collected and analyzed 68 real-world type errors gathered
from 20 open-source projects. This empirical investigation revealed
four key static-analysis features that are crucial for the effective
detection of Python type errors in practice. Utilizing these insights,
we present a tool called Pyinder, which can successfully detect 34
out of the 68 bugs, compared to existing type analysis tools that
collectively detect only 16 bugs. We also discuss the remaining
34 bugs that Pyinder failed to detect, offering insights into future
directions for Python type analysis tools. Lastly, we show that
Pyinder can uncover previously unknown bugs in recent Python
projects.

ACM Reference Format:

Wonseok Oh and Hakjoo Oh. 2024. Towards Effective Static Type-Error De-
tection for Python. In 39th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’24), October 27-November 1, 2024, Sacramento, CA,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3691620.
3695545

1 INTRODUCTION

In recent years, Python has seen a notable surge in popularity.
According to IEEE Spectrum [52], Python secured the top rank-
ing as the most popular language in 2023. Moreover, Python has
consistently outpaced Java and C/C++ in popularity on GitHub
since 2019 [41]. The popularity of Python is primarily attributed
to its intrinsic flexibility as a dynamically typed language, which
reduces development time and facilitates the rapid prototyping of
software [20, 53].

However, the flexibility of dynamic languages such as Python
comes at a cost — susceptibility to runtime type errors. Type errors,
a class of runtime errors arising from the use of inappropriate value
types in operations (e.g., ‘1’+2), stand out as the most prevalent
runtime errors in Python, comprising over 30% of all built-in excep-
tions [42]. As a result, a recent survey [30] shows that static typing,
which detects type errors at compile time, is the most-wanted fea-
ture among Python developers.
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Existing Tools. Various static type analysis tools have been
developed for Python to address this challenge. The most popular
ones are Mypy [46], Pytype [17], Pyre [13], and Pyright [37]. Mypy
is a widely-used tool built within the Python community. Pyright,
Pyre, and Pytype are industrial tools developed by Microsoft, Meta,
and Google, respectively. These tools, when provided with a Python
program that may include type hints, identify and report type errors
by performing static type inference and checking.

However, the performance of these tools remains unsatisfac-
tory in practice. For instance, when we tested these tools on our
benchmark, which includes 68 developer-confirmed type errors
gathered from 20 open-source programs, Mypy, Pytype, Pyre, and
Pyright collectively detected only 16 out of the 68 bugs.

Our Contributions. In this paper, we aim to advance the state-
of-the-art in static type analysis tools for Python. To achieve this,
we empirically analyzed the 68 bugs to identify the necessary type
analysis features for their detection. We first found that type check-
ing with automated type inference is critical because real-world
Python programs often lack manual type hints [8]. Consequently,
we designed four type-inference features for static analysis to ef-
fectively detect real bugs: (1) type preservation when merging, (2)
cost-effective interprocedural analysis, (3) usage-based inference
of likely types, and (4) inference of intended member types.

Building on these insights, we developed a new type analysis
tool, called Pyinder. Evaluation on the 68 bugs demonstrates that
Pyinder can detect 34 bugs (113% increase over existing tools com-
bined). Additionally, when applied to 9 latest open-source Python
projects, Pyinder successfully found 19 previously-unknown bugs
while the existing tools collectively found 13. Finally, we analyze
the remaining 34 bugs Pyinder failed to detect from our benchmark,
illuminating the future directions toward more practical static type
analysis tools for Python.

In summary, this paper makes the following contributions:
• We present a dataset of 68 developer-confirmed Python type
errors and demonstrate that existing static analysis tools
have significant room for improvement.

• We introduce a new type analysis tool, Pyinder, which in-
corporates four key features identified through our manual
investigation of the benchmarks.

• We highlight future research directions for Python type anal-
ysis, identifying unresolved issues that need to be addressed
to enhance practical type error detection.

2 REAL-WORLD PYTHON TYPE ERRORS

In this paper, a “type error” denotes either a runtime TypeError
exception or a type mismatch between type annotations and actual
values at runtime. For example, consider the following code snippet:
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1 a = 1
2 b = '2'
3
4 # TypeError
5 a + b

(a) Internal exception

1 import numpy as np
2
3 v = [1, None]
4 # TypeError
5 w = np.sort(v)

(b) External exception

1 a = int_or_str()
2
3 if isinstance(a, int):
4 # TypeError
5 raise TypeError

(c) User-defined exception

Cython

1 def add(x, y): # TypeError
2 cdef int ret = x + y

Python

1 a.add('1', '2')

(d) Cython exception

Figure 1: Typical examples of runtime type errors in Python

1 def add(x: int, y: int):
2 return x + y # a TypeError exception
3 add('1', 2) # a type mismatch error

A type-error exception occurs at line 2 due to the invalid opera-
tion of adding a string and an integer. Moreover, the program also
contains a type mismatch error at line 3 because a string value is
passed to a function that expects an integer value according to its
type annotation. We refer to both cases as type errors, and most
static type analysis tools support detecting both of these errors.

To investigate real-world type errors in Python, we analyzed 145
runtime errors collected from the three benchmarks, TypeBugs [42],
BugsInPy [58], and ExcePy [62], which consist of actively devel-
oped open-source projects supporting Python 3.5 or above. We
found that those 145 type errors can be classified into four cate-
gories:

• Internal errors (61): Exceptions or mismatches whose error
locations are within the current Python project.

• External errors (33): Type errors whose error locations are
in external libraries.

• User-defined errors (35): Custom type errors explicitly raised
by developers (i.e., raise TypeError(...)).

• Cython errors (16): Type errors raised in the Cython lan-
guage that allows C extensions for Python.

Figure 1 illustrates typical examples of these errors.
Among them, our study focuses on the internal type errors and

some of the external errors. We focus on internal errors because
they are the most prevalent yet amenable to detection by static
analysis tools. External and Cython errors are beyond the scope
of static type analysis tools as they occur in library code or source
code written in a foreign language. For example, static analysis tools
cannot detect the type errors in Figure 1b and Figure 1d because the
source code of the numpy library is unavailable, and they cannot
analyze programs written in the Cython language. However, 7 out
of 33 external errors could be identified by leveraging the signature
information from the typeshed project [47]. Thus, we included those
seven errors in our benchmark. In addition, since user-defined type
errors are ignored by existing tools (e.g., Figure 1c), we also excluded
them from our study.

In summary, we gathered 68 real-world type errors in Python
from 20 open-source projects ranging from 3k to 417k lines.

3 OVERVIEW OF PYINDER

We analyzed the 68 bugs to identify static analysis features that
could effectively detect them. We describe these features, which
have been integrated into our tool Pyinder, along with examples.
We note that all type annotations in this section below are added
for explanation purposes. These annotations are not present in the

original code; instead, Pyinder automatically infers them from other
parts of the programs.

Type Analysis. Before introducing the features, we first describe
how type analysis is performed in Pyinder and existing tools. Type
analysis consists of two steps: type inference and type checking.
The goal of type inference is to determine the types of variables
at each point in the program, while type checking interprets the
program based on the inferred types to identify potential type
errors. For example, consider the following code snippet:

1 x, y = '1', any() # any() returns any type
2 x+1 # x: {str}
3 y+1 # y: {Any}

In the type inference phase, Pyinder infers the types of variables
x and y as the str and Any types, respectively, at line 1. Next, in
the type checking phase, Pyinder detects type errors based on the
inferred types. For instance, Pyinder discovers that the expression
x+1 at line 2 causes a type error. At line 3, however, Pyinder does not
report any issue because the inferred type (Any) is imprecise. This
design choice aims to avoid too many false alarms and focuses on
reporting type errors with sufficient evidence. It is worth noting that
all existing type analysis tools [13, 17, 37, 46] follow this practice.
Additionally, like existing tools, Pyinder performs type analysis on
each method entry rather than assuming a main method.

While the type checking phase is the same for all tools, as they
are based on the same Python type system, the design choices for
the type inference phase differ significantly between tools. There-
fore, in this paper, we focus on enhancing type inference for more
effective type error detection. Below, we introduce the key features
of Pyinder.

3.1 Preserving Types when Merging

First of all, Pyinder merges types carefully. Specifically, it avoids
merging types into the Any type when types are combined at control
flow merge points, within collection types, and in dictionaries.

Control Flows Merge Points. Preserving type information at
control flowmerge points was important. Among the 68 type errors,
detecting 29 type errors required this feature. Consider the example:

Listing 1: Simplified from keras-39

1 def update(target: Any):
2 if target is None:
3 info = 'one'
4 if target < 0: ... # TypeError: None < int

A type error at line 4 occurs because the variable target can be
None when taking the true branch at line 2. Thus, we preserve the
None type of target at the merge point right before line 4 rather
than merging it with the Any type in the false branch, i.e., inferring
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the type of target as {Any,None} rather than {Any}. Merging None
(true-branch) and Any (false-branch) into {Any}would miss the type
error at line 4 because we do not report issues involving Any.

Collections. Distinguishing types in collection data types was
also important, which was required to detect 20 type errors in our
benchmark. Consider the example:

Listing 2: Simplified from salt-56381

1 ret = [1, '2']
2 msg = ret[0] + 'msg' # TypeError: int + str

A type error occurs at line 2 because a type of ret[0] is of the int
type. To detect the type error, we should infer that the element type
of ret can be int. Therefore, instead of merging the two differing
types, int and str, into Any, inferring the type of ret as List[Any],
we need to distinguish the two cases, inferring the type of ret as
List[{int, str}].

Dictionaries. Among collection types, special care was required
for dictionaries in order to accurately detect bugs. Consider the
example below:

1 x = {1: 1, '2': '2'} # dict[{int,str}, {int,str}]
2 # x[1] is inferred as {int,str}
3 x[1] + "1" # TypeError: int + str
4 x[1] + 1 # False Alarm: str + int

Inferring a type of x as dict[{int,str}→{int,str}] successfully
detects a type error at line 3. However, it also generates a false alarm
at line 4 because x[1] is inferred as {int,str} instead of {int}.
Thus, Pyinder abstracts dictionary types in a key-type sensitive
way, inferring the type of x as dict[int→ int, str→ str]. With
this refinement, the type of x[1] at line 4 is inferred as int because
the key type in this case is int, which removes the false alarm.
Without this feature, we found that 35% more (false) alarms were
generated to detect the same number of bugs.

3.2 Cost-Effective Interprocedural Analysis

Pyinder cost-effectively supports interprocedural analysis. In total,
37 type errors required tracking interprocedural value flows (pa-
rameter passing and return flows) to detect them. However, it is
well-known that interprocedural analysis is challenging as it blows
up the analysis cost. We investigated the benchmarks to identify
the right feature for Python type analysis.

ShallowCall Depths. We found that tracking shallow call depth,
especially up to 3, is sufficient to detect most of the type errors,
which reduced the cost of interprocedural analysis by 78% compared
to the conventional analysis supporting unbounded call depths.
In order to determine the most effective call depth, we analyzed
how many call depths are required to detect the type errors in our
benchmark. Figure 2 shows that 31 type errors can be found within
call depths of ≤3. In contrast, three type errors required call depths
beyond 3 but trying to detect them increased the analysis cost by
2.1 times.

Lightweight Type-based Context Sensitivity. We found that
context sensitivity is essential but a lightweight approach based
on types is sufficient. To detect the type errors in our benchmarks,
analyzing called methods separately for their call contexts was
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Figure 2: Call depth required to detect type errors.

important; otherwise, a context-insensitive analysis increased the
cost of analysis by 1.4 times. At the same time, because the goal
of static analysis is to analyze types of variables, using types as
call contexts (rather than using invocation sites or receiver objects
as contexts in conventional call-site-sensitive or object-sensitive
analyses) was sufficient to achieve the desired precision. Thus,
Pyinder applies a context-sensitive analysis that uses argument
types as contexts.

3.3 Usage-based Inference of Likely Types

Pyinder infers likely types of function parameters by observing
how they are used in the body. Consider the following example:

Listing 3: Simplified from pandas-24572

1 class Multi:
2 def format(self, adjoin=None) -> tuple: ...
3 def msg(self): -> list: ...
4
5 def write(columns): # columns: Multi, but not annotated
6 form = columns.format(adjoin=False)
7 list_obj = columns.msg() + [" End"]
8 return ["Start "] + form # TypeError: list + tuple

At line 5, a parameter columns is an instance of the Multi class, but
its type is not annotated and remains unknown in the program.
However, we can infer that its type is Multi by observing how it is
used at lines 6 and 7 because the two methods, format and msg, of
class Multi are invoked on the object that columns points to. With
this information, we can predict the type of form at line 6 as tuple
from the type annotation of format at line 2, which enables us to
detect a type error at line 8.

However, we found that this simple usage-based type inference
could be ineffective in practice as it often infers infeasible types.
To mitigate this issue, Pyinder selects the most likely type with the
highest score. In a nutshell, we assign higher scores when usage
patterns and signatures are similar. For example, assume that the
following Index class also exists in the previous example shown in
Listing 3.

1 class Index:
2 def format(self, **kwargs) -> list: ...
3 def msg(self) -> tuple: ...

Note that Index also supports methods format and msg, and there-
fore the type of columns in Listing 3 is inferred as {Multi,Index},
causing a false alarm at line 7 because the msg method of Index
returns a value of the tuple type. Thus, Pyinder considers Multi to
be the most likely type because, when calling the formatmethod at
line 6, adjoin is used as a keyword argument. Note that the format
method of Multi has this keyword argument according to its signa-
ture, whereas the format method of Index assumes a more general
parameter. Based on this, we conclude that the type of columns at
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line 6 is more likely Multi and only use that type (rather than using
multiple types {Multi,Index}) when performing type checking at
the subsequent lines of method write.

We observed that choosing the most likely type instead of using
all possible types via simple usage-based inference is 2.7 times more
efficient in terms of analysis time and produces 10% fewer alarms,
without affecting the type-error detection capability of Pyinder.

3.4 Inference of Intended Member Types

We also found that accurately inferring intended class member
types by considering feasible method call sequences in the class is
critical to detect bugs while avoiding false alarms.

To do so, Pyinder first considers all possible method call scenarios
to detect bugs. For example, consider the following class definition:

Listing 4: Simplified from core-29829

1 class InputText():
2 def __init__(self, low: Any): self.low = low
3 def set_low(self, low=None): self.low = low
4 def set_value(self, v: int):
5 if v < self.low: ... # TypeError: int < None

In this example, when the method set_value is called after set_low
(e.g., set_low()→ set_value(1)), a type of class member variable
self.low can be None, causing a type error at line 5. To detect such
errors, which accounted for 43% of the type errors in our benchmark,
Pyinder infers class member types by considering all the possible
scenarios of calling class methods and computing class invariants
in terms of member types (e.g., “The type of self.low can be None
in class InputText”).

However, we found that type checking based on the types derived
from these class invariants generates numerous false alarms because
of infeasible method call scenarios that developers do not intend.
To mitigate this issue, Pyinder filters out unintended types of class
members, reducing false alarms by 60% without compromising type
error detection. Consider the following example:

Listing 5: Simplified from pandas-38431

1 class Parser():
2 def __init__(self): self.n = None
3 def setup(self, n: list[str]): self.n = n
4
5 def return_data(self, flag, col):
6 if flag: return self.n[col] + "?" # False Alarm
7 else: return self.n[col] + "!" # False Alarm
8
9 def set_data(self, flag, col):
10 if flag: self.n[col] = "empty" # False Alarm
11 else: self.n[col] = "filled" # False Alarm
12
13 def get_parser():
14 parser = Parser()
15 parser.setup(["name"])
16 parser.return_data(True, "name")
17 parser.set_data(True, 0)

In class Parser, methods return_data and set_data methods are
intended to be used only after the setup method has been called,
as exemplified in the get_parser function at lines 13–17. With this
intended usage, no type errors occur in this example. However, infer-
ring member types by considering all possible scenarios causes false
type-error alarms at lines 6, 7, 10, and 11 because the type of self.n
is inferred as {None,list[str]}, where None comes from __init__
and list[str] from setup. Although these type errors are possi-
ble following call sequences such as __init__→ return_data or

set_data, these scenarios are considered infeasible by the developer.
Therefore, the developer does not consider the type errors at lines 6,
7, 10 and 11 to be real bugs. To avoid these alarms, we need to iden-
tify that scenarios such as __init__→ return_data or set_data
are not intended, while setup→ return_data or set_data are in-
tended by the developer in this class definition.

From the benchmark study, we observed that many unintended
method-call scenarios share three characteristics: (1) the scenarios
do not explicitly appear in the given program, (2) following those
scenarios, (false) type-error alarms with the same cause are repeat-
edly raised in multiple locations, and (3) there exist other method-
call scenarios that can eliminate those type-error alarms. When a
scenario meets these conditions, Pyinder considers it to be unin-
tended and does not report alarms related to the scenario. For exam-
ple, Pyinder excludes the call sequence __init__→ return_data

or set_data from consideration because (1) the sequence is not
explicitly used by the developer in the program, (2) type errors are
repeatedly generated at lines 6, 7, 10, and 11 due to the sequence,
and (3) there exists an alternative call sequence, e.g., __init__→
setup→ return_data or set_data, that can eliminate those alarms.
Thus, we filter out the unintended type (None) of self.n when an-
alyzing methods return_data and set_data, removing type error
alarms at lines 6, 7, 10, and 11.

3.5 Novelty of Pyinder’s Features

Comparison with Existing Tools. Our four features described
so far are mostly novel compared to those implemented in existing
type analysis tools for Python [13, 17, 37, 46]. Existing tools only par-
tially support these features, as detailed in Table 1; in existing tools,
the features are enabled without addressing their negative impacts,
such as increased false alarms. Supporting a feature in Sections 3.1–
3.4 without consideration not only improves bug detection but also
negatively affects the analysis in terms of increased false positives
or analysis costs. The challenge is therefore how to support such
a feature cost-effectively in a way that minimizes these negative
side-effects. The main novelty of Pyinder is to provide practical
guidelines for designing type analysis tools for Python, aiming at
supporting those features while minimizing their side-effects.

Comparison with Existing Static Analyses. Our guidelines
for achieving cost-effective type analysis for Python are also novel
within the broader context of static analysis. Balancing soundness,
precision, and scalability is a central challenge in static analysis, and
numerous approaches have been proposed over the past decades. In
particular, our features align with approaches that selectively apply
expensive analysis techniques (e.g., context-sensitive interproce-
dural analysis) only when beneficial, while minimizing negative
impacts [24, 27, 28, 31, 34–36, 51, 54]. Developing such selective
static analysis inevitably requires language and problem-specific
features [24, 27, 34, 36], and our work can be seen as a proposal for
such features tailored specifically to Python type inference. Note
that existing works on selective static analysis have primarily tar-
geted other languages like C and Java, making their features not
applicable to Python. Furthermore, existing techniques for Python
type inference [5, 18, 21, 50] have focused on uniform approaches
rather than selective ones. In Section 6, we discuss existing tech-
niques in more detail.
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Table 1: Comparison with existing tools. P1 through P9 indicate detailed points of the features in Section 3.

Feature Detailed points for supporting the feature Mypy Pyre Pytype Pyright Pyinder

Section 3.1
P1 Preserving types at control flow merge points ✕ ✕ ✕ # #
P2 Preserving element types in collections ✕ ✕ # # #
P3 Considering dictionaries with a key-type-sensitive manner ✕ ✕ ✕ ✕ #

Section 3.2 P4 Shallow call depths (up to 3) ✕ ✕ ✕ ✕ #
P5 Lightweight type-based context sensitivity ✕ ✕ # ✕ #

Section 3.3 P6 Usage-based type inference ✕ ✕ ✕ ✕ #
P7 Selecting likely types among usage-based types ✕ ✕ ✕ ✕ #

Section 3.4 P8 Considering class invariants in terms of member types ✕ ✕ ✕ # #
P9 Filtering out unintended member types ✕ ✕ ✕ ✕ #

4 PYINDER IN DETAIL

In this section, we formally present Pyinder. The goal is to precisely
describe the features informally explained in Section 3.

Program. A program 𝑃 comprises a sequence of class declara-
tions 𝐶∗ ⊆ CDecl. A class declaration 𝐶 ∈ CDecl is a tuple (𝑐, 𝑀∗)
of class name 𝑐 ∈ ClsType and a list𝑀∗ of method declarations. A
method declaration𝑀 ∈ MDecl is a tuple (𝑚, 𝑝, 𝑆, ret) of a method
name𝑚 ∈ Mthd, a parameter 𝑝 ∈ Var , a body statement 𝑆 ∈ Stmt,
and a return variable ret ∈ Var . We write 𝑝𝑚 for the parameter 𝑝
of the method𝑚. For formalization, we consider the following sets
of statements and expressions:

𝑆 → 𝑆1; 𝑆2 | if 𝑏 𝑆1 𝑆2 | 𝑥 := 𝐸 | 𝑥 .𝑦 := 𝐸 | 𝑥 [𝑛] := 𝐸 | 𝑥{𝑦} := 𝐸

𝐸 → 𝑛 | 𝑠 | [] | {} | 𝑥 | 𝑥 .𝑦 | 𝑥 [𝑛] | 𝑥{𝑦} | 𝑥 .𝑚(𝑦) | 𝐸1 ⊕ 𝐸2 | 𝑐 ()
where 𝑛, 𝑠 , [], and {} are integer, string, list, and dictionary con-
stants, respectively. We write 𝑥 [𝑛] and 𝑥{𝑦} for item access of list
and dictionary, respectively, and 𝑐 () for an instantiation of class 𝑐 .
We assume that a boolean expression is simply either true or false
(because type analysis typically does not track conditional values
precisely). A variable can be either a local or self. We assume that
variables and method names are unique and type annotations are
not provided in the program.

Type Errors. For simplicity, we focus on type errors that occur
within class members. We define type errors as follows:

𝜖 ∈ TypeError = P(Cause) × Loc
𝑜 ∈ Cause = (ClsType × Var) × P(Type)

A type error 𝜖 is a pair of causes (𝑂 ∈ P(Cause)) and error location
(Loc), and a cause 𝑜 = ((𝑐, 𝑥),𝑇 ) means that the type error occurs
due to member variable 𝑥 ∈ 𝑉𝑎𝑟 of class 𝑐 ∈ ClsType and the
involved types are 𝑇 ∈ P(Type). Consider the example:

1 class A:
2 def f(self):
3 self.x, self.y = 1, 'two'
4 self.x + self.y # TypeError: int + str

An error at line 4 is represented by ({(A, x), {int}), ((A, y), {str})},
4) which means that the error occurs because variables x and y of
class A have types int and str, respectively.

Type Checking. We use a conventional type checking routine:

TypeCheck : Pgm × Summary → P(TypeError)

which takes a program and a type summary as input, and produces
as output a set of type errors. A type summary 𝛼 ∈ Summary :
Loc → P(State) is a map from program locations to states, and

denotes the result of static type inference. Given 𝑃 and 𝛼 , type
checking is done as follows:

TypeCheck(𝑃, 𝛼) =
⋃

𝑙 ∈lines (𝑃 )
Check(𝑙, 𝛼 (𝑙))

where lines(𝑃) denotes the set of all lines of the program 𝑃 and
Check(l, 𝛼 (l)) executes the instruction at line 𝑙 on the states in 𝛼 (l)
and collects potential type errors.

For Pyinder to be effective, the main challenge is how to effi-
ciently generate useful type summary 𝛼 . From now on, we explain
the type inference algorithm of Pyinder.

4.1 Basic Type Inference Algorithm

Pyinder uses the following abstract domain for static type inference:

𝑑 ∈ TypeTable = Mthd → State
𝑠 ∈ State = TypeEnv ×MemberEnv
Γ ∈ TypeEnv = Var → P(Type)
Σ ∈ MemberEnv = ClsType × Var → P(Type)
𝑡 ∈ Type = {int, str, Any} + Collection + ClsType
𝜅 ∈ List = Type∗

𝛾 ∈ Dict = Type → P(Type)
The goal of type inference is to compute a type table 𝑑 which maps
methods to states. A state 𝑠 consists of a type environment Γ and a
member environment Σ. A type environment Γ maps local variables
of methods to their types, and a member environment Σ stores the
types of class member variables. A type is Int, Str, Any, Collection, or
ClsType. As explained in Section 3.1, we distinguish collection types
with special care for dictionaries. That is, we distinguish types of
list elements without merging and abstract dictionary types in a
key-type-sensitive way. We denote the merge operator for the list
by ⊎ : List × List → List and write list : P(Type) → List for the
function that converts a set of types to a list.

Pyinder performs type inference by computing the least fixpoint

𝑑∗ = lim
𝑛→∞

𝐹𝑛 (𝑑init)

of a semantic function 𝐹 : TypeTable → TypeTable, where 𝑑init =
𝜆𝑚.(∅, ∅) denotes the initial type table that maps all methods to
the empty state. The semantic function 𝐹 defined below updates a
given type table 𝑑 by analyzing each method in the program 𝑃 :

𝐹 (𝑑) =
⊔

(𝑐,𝑀∗) ∈𝑃

⊔
(𝑚,𝑝,𝑆,_) ∈𝑀∗

[𝑚 ↦→ Ĵ𝑆K𝑘 (Γinit, Σinit)]

where the initial type and member environments for𝑚 are:

Γinit = [self ↦→ {𝑐}, 𝑝 ↦→ {Any}] Σinit =
⊔

(_,Σ) ∈range (𝑑)
Σ (1)
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That is, at the start of the analysis, we assume that the parameter of
𝑚 has type Any. For member environment, to consider all possible
method call scenarios in a class, we collect all member variable
types observed so far by merging member environments in the
current type table 𝑑 . We note that the initial type environment Γinit
is enhanced by the usage-based type inference in Section 4.2, and
the unintended types from the initial member environment Σinit
are filtered out by the technique in Section 4.3.

The semantic function Ĵ𝑆K𝑘 : State → State for statement 𝑆 is
defined as follows (𝑘 : call depth limit in Section 3.2, initially 3):�J𝑆1; 𝑆2K𝑘 (𝑠) = Ĵ𝑆2K𝑘 (Ĵ𝑆1K𝑘 (𝑠))�Jif 𝑏 𝑆1 𝑆2K𝑘 (𝑠) = Ĵ𝑆1K𝑘 (𝑠) ⊔ Ĵ𝑆2K𝑘 (𝑠)�J𝑥 := 𝐸K𝑘 ((Γ, Σ)) = Γ [𝑥 ↦→ 𝑇 ], Σ′�J𝑥 .𝑦 := 𝐸K𝑘 ((Γ, Σ)) = Γ, Σ′[∀𝑐 ∈ Γ(𝑥), (𝑐,𝑦) ↦→ 𝑇 ∪ Σ′((𝑐,𝑦))]�J𝑥{𝑦} := 𝐸K𝑘 ((Γ, Σ)) = Γ [𝑥 ↦→ {DSet(𝛾, Γ(𝑦),𝑇 ) | 𝛾 ∈ Γ(𝑥)}], Σ′�J𝑥 [𝑛] := 𝐸K𝑘 ((Γ, Σ)) = Γ [𝑥 ↦→ {LSet(𝜅,𝑇 ) | 𝜅 ∈ Γ(𝑥)}], Σ′

where type set 𝑇 and member environment Σ′ are the results of
typing rule Γ, Σ ⊢𝑘 𝐸 : 𝑇, Σ′ shown in Figure 3. Functions DSet and
LSet are defined to set a value for each collection type as follows:

DSet(𝛾,𝑇𝑦,𝑇 ) = 𝛾 [∀𝑡𝑦 ∈ 𝑇𝑦, 𝑡𝑦 ↦→ 𝑇 ] LSet(𝜅,𝑇 ) = 𝜅 ⊎ list (𝑇 )

Note that the join operator ⊔ used at the if statement merges states
by taking the union of the types observed in both branches to
preserve types without merging them into Any.

In the typing rules, function Call is responsible for performing
our interprocedural analysis explained in Section 3.2:

Call(Σ,𝑚,𝑇𝑦, 𝑘) =
{
Γ𝑚 (ret), Σ𝑚 if 𝑘 > 0
{Any}, Σ otherwise

(2)

where (Γ𝑚, Σ𝑚) = �Jbody(𝑚)K𝑘−1 (Γ [𝑝𝑚 ↦→ 𝑇𝑦], Σ). The parameter
𝑘 denotes the call depth limit; if 𝑘 ≤ 0, we stop analyzing the
method call. Furthermore, note that we perform type-based context
sensitivity by setting the parameter 𝑝𝑚 to the type 𝑇𝑦 given at the
call-site instead of assigning all observed types to the parameter
(context-insensitive analysis).

Summary Generation. Once a fixed point 𝑑∗ is computed,
we generate a summary 𝛼 through a procedure Gen : Pgm ×
TypeTable → Summary defined below:

Gen(𝑃,𝑑∗) = ⊔
(𝑐,𝑀∗) ∈𝑃

⊔
(𝑚,_,𝑆,_) ∈𝑀∗ 𝐺𝑘 (𝑆, (Γinit, Σ∗)) (3)

where Σ∗ is the member environment merged from the type table𝑑∗
(Σ∗ =

⊔
(_,Σ) ∈range (𝑑∗) Σ). Function 𝐺𝑘 : Stmt × State → Summary

records states for each line:

𝐺𝑘 (𝑆, 𝑠) =
𝐺𝑘 (𝑆1, 𝑠) ⊔𝐺𝑘 (𝑆2, Ĵ𝑆1K𝑘 (𝑠)) · · · 𝑆 = 𝑆1; 𝑆2
𝐺𝑘 (𝑆1, 𝑠) ⊔𝐺𝑘 (𝑆2, 𝑠) · · · 𝑆 = if 𝑏 𝑆1 𝑆2
[line(𝑆) ↦→ {𝑠}] ⊔𝐺𝑘−1 (body(𝑚), 𝑠 ′) · · · 𝑆 contains 𝑥 .𝑚(𝑦)
[line(𝑆) ↦→ {𝑠}] · · · otherwise

If the statement 𝑆 contains a method call 𝑥 .𝑚(𝑦), we generate a
summary for the method through 𝐺𝑘−1 (body(𝑚), 𝑠 ′) where 𝑠 ′ is a
state (Γ [𝑝𝑚 ↦→ 𝑇𝑦], Σ) given in Eq (2). We also set the initial 𝑘 as 3
for the summary generation.

The type inference procedure described so far includes the first
two features in Section 3: (1) type preservation when merging
and (2) cost-effective interprocedural analysis. From now on, we
formalize the remaining features.

4.2 Usage-based Likely Type Inference

We first define the usage-based type inference in Section 3.3. To
describe this algorithm, we extend the language for parameters and
arguments. At first, we assume that a method declaration and a
call expression can have multiple parameters and arguments. In
addition, a parameter can have a default value, which is called
a default parameter, i.e. def f(x=1), and an argument also has
two types: positional arguments 𝑥 .𝑚(𝑥) and keyword arguments
𝑥 .𝑚(𝑦 = 1). We assume that method names may not be unique in
this section.

Our goal is to update Γinit in Eq (1) for unannotated parameter
𝑝 through usage-based type inference that infers the most likely
type of a parameter as follows:

Γinit [𝑝 ↦→ {MostLikely(𝑝, 𝜙𝑢 , 𝜙𝑑 )}]

where 𝜙𝑢 is a map from a parameter to a set of associated members
of the parameter (𝑝.𝑦 or 𝑝.𝑚(𝑦)), and 𝜙𝑑 is a map from a class type
to a set of defined members in the class as follows:

𝜙𝑢 ∈ UsedAttrs = Var → P(Member)
𝜙𝑑 ∈ DefinedMem = ClsType → P(Member)
𝜇 ∈ Member = Var + (Mthd × P(𝑉𝑎𝑟 ) × P(𝑉𝑎𝑟 ))

where a member 𝜇 ∈ Member is either a field or a method as a tuple
of a method name, positional arguments, and keyword arguments
(or parameters without and with default values).

We collect 𝜙𝑢 and 𝜙𝑑 by syntactically analyzing how parameters
and class members are used in the program. In particular, 𝜙𝑢 is
constructed for each method for parameters, and we design 𝜙𝑑 so
that it includes class information in both the program and typeshed
[47], which is a repository of type hints for the Python standard
library. For example, in the case of Listing 3 in Section 3.3, 𝜙𝑢 and
𝜙𝑑 are defined as follows:

𝜙𝑢 = [columns ↦→ {(format, ∅, {adjoin}), (msg, ∅, ∅)}]
𝜙𝑑 = [Multi ↦→ {(format, ∅, {adjoin}), (msg, ∅, ∅)}]

where we omit the Index class.
The function MostLikely : Var × UsedAttrs × DefinedMem →

Type returns the most likely type 𝑡 of 𝑝 as follows:

MostLikely(𝑝, 𝜙𝑢 , 𝜙𝑑 ) = argmax
𝑐∈Pos(𝑝,𝜙𝑢 ,𝜙𝑑 )

Sim(𝜙𝑢 (𝑝), 𝜙𝑑 (𝑐))

where Pos is a function that returns all possible class types of a
parameter 𝑝 and Sim is a scoring function that returns the simi-
larity between the usage pattern and the class signature, which
is introduced in Section 3.3. The function Pos : Var × UsedAttrs ×
DefinedMem → P(Type) is defined as follows:

Pos(𝑝, 𝜙𝑢 , 𝜙𝑑 ) = {𝑐 | 𝜙𝑢 (𝑝) ⊑ 𝜙𝑑 (𝑐)}

where ⊑ is a relation that returns true if the class members 𝜙𝑑 (𝑐)
can support the usage pattern 𝜙𝑢 (𝑝). In other words, it checks
whether 𝜙𝑢 (𝑝) can use the members of 𝜙𝑑 (𝑐). Then, we select the
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Γ, Σ ⊢𝑘 𝑛 : {int}, Σ Γ, Σ ⊢𝑘 𝑠 : {str}, Σ Γ, Σ ⊢𝑘 𝑥 : Γ(𝑥), Σ Γ, Σ ⊢𝑘 𝑐 () : {𝑐}, Σ Γ, Σ ⊢𝑘 [] : ⟨⟩, Σ Γ, Σ ⊢𝑘 {} : [], Σ

Γ(𝑥) = 𝑇𝑥 𝑇 =
⋃

𝑐∈𝑇 Σ((𝑐,𝑦))
Γ, Σ ⊢𝑘 𝑥 .𝑦 : 𝑇, Σ

Γ(𝑥) = 𝑇𝑥 𝑇 ′ =
⋃

𝜅∈𝑇𝑥 Elem(𝜅)
Γ, Σ ⊢𝑘 𝑥 [𝑛] : 𝑇 ′, Σ

Γ(𝑥) = 𝑇𝑥 Γ(𝑦) = 𝑇𝑦

Γ, Σ ⊢𝑘 𝑥{𝑦} : ⋃𝛾 ∈𝑇𝑥
⋃

𝑡𝑦 ∈𝑇𝑦 𝛾 [𝑡𝑦], Σ

Γ, Σ ⊢𝑘 𝐸1 : 𝑇1, Σ1 Γ, Σ1 ⊢𝑘 𝐸2 : 𝑇2, Σ2
Γ, Σ ⊢𝑘 𝐸1 ⊕ 𝐸2 : op(𝑇1,𝑇2), Σ2

Γ(𝑥) = 𝑇𝑥 Γ(𝑦) = 𝑇𝑦
⊔

𝑐∈𝑇𝑥 Call(Σ,𝑚,𝑇𝑦, 𝑘) = 𝑇, Σ′

Γ, Σ ⊢𝑘 𝑥 .𝑚(𝑦) : 𝑇, Σ′ Exist(𝑐,𝑚)

Figure 3: Typing rule for expressions. The function op(𝑇1,𝑇2) computes the result type of operation between two types,

Exist(𝑐,𝑚) checks the existence of method𝑚 in the class 𝑐, and Elem(𝜅) returns the set of element types in the list 𝜅.

most likely class type by scoring the similarity. The scoring function
Sim is designed as follows:

Sim(𝜇𝑢 , 𝜇𝑑 ) =
∑︁

(𝑚,𝑝𝑢 ,𝑘𝑢 ) ∈𝜇𝑢
(𝑚,𝑝𝑑 ,𝑘𝑑 ) ∈𝜇𝑑

1
∥|𝑝𝑢 | − |𝑝𝑑 |∥ + 1

∗ |𝑘𝑢 ∩ 𝑘𝑑 | + 1
|𝑘𝑢 ∪ 𝑘𝑑 | + 1

where 𝑝𝑢 and 𝑘𝑢 are a set of positional and keyword arguments of
the usage pattern, and 𝑝𝑑 and 𝑘𝑑 are a set of parameters without
and with a default value of the class signature. The function Sim
returns a larger value when the number of parameters without a
default value and the number of positional arguments are similar
(∥|𝑝𝑢 |−|𝑝𝑑 |∥) and the number of common parameters with a default
value and keyword arguments is larger ( |𝑘𝑢∩𝑘𝑑 |+1|𝑘𝑢∪𝑘𝑑 |+1 ). In case of a tie,
MostLikely returns Any type.

4.3 Inference of Intended Member Types

Next, we define the procedure to infer the intended types of class
members (Section 3.4).

The goal is to obtain a refined member environment with the
intended types of class members for making a summary 𝛼∗ that re-
flects the intended types of class members and reporting type errors
𝜖∗ = TypeCheck(𝑃, 𝛼∗). As mentioned in Section 3.4, we identified
three steps for identifying unintended types. The first step is to
check explicit call flows exist. The second step is to cluster type
errors that share the same cause. Finally, we find methods that elim-
inate type errors in a cluster. Through these steps, we generate Δ
which satisfies the three conditions. Before introducing the process,
we assume that type errors 𝜖set = TypeCheck(𝑃,Gen(𝑃,𝑑∗)), a set
of type errors without filtering out unintended type candidates.

Step 1: Checking Explicit Call Flows. We make 𝜖impl ⊆ 𝜖set
that contains type errors that are not caused by explicit call flows:

𝜖impl = {(𝑂, l) ∈ 𝜖set | ∀o ∈ O.¬∃(m,ml) ∈ Flow.Cause(o,m)}
where𝑚𝑙 is a method that includes a line 𝑙 and Flow : P(Mthd ×
Mthd) is a set of all flow from𝑚1 to𝑚2 in the program. We assume
that the set of call flows is obtained from the type inference pro-
cess. The procedure Cause(((𝑐, 𝑥),𝑇 ),𝑚) checks where a method
𝑚 exists, which can make the member 𝑐.𝑥 to the types𝑇 as follows:

Cause(((𝑐, 𝑥),𝑇 ),𝑚) ⇐⇒ Σ𝑚𝑐.𝑥 ((𝑐, 𝑥)) ∩𝑇 ≠ ∅

where (_, Σ𝑚𝑐.𝑥 ) =
⊔

(Γ,_) ∈𝛼 (lsm)

�Jbody(𝑚)K(Γ, Σ∗ [(𝑐, 𝑥) ↦→ {Any}]) (4)

where 𝑙𝑠𝑚 is the start line of a method 𝑚. The Σ𝑚𝑐.𝑥 contains the
types of class member 𝑐.𝑥 after calling the method 𝑚. We make
Σ𝑚𝑐.𝑥 through re-inferring the method𝑚 for all possible contexts
Γ ∈ 𝛼 (lsm) with removing types of the class member (𝑐, 𝑥) from Σ∗.

In other words, if𝑚 is a method that changes the types of the class
member 𝑐.𝑥 , then Σ𝑚𝑐.𝑥 reflects the type change information of 𝑐.𝑥 .

Step 2: Clustering Type Errors. Since the type error can have
multiple causes, we cluster type errors based on similar causes. We
define similar causes as those where the same member variables are
involved and share the same types as many as possible. To collect
type errors with similar causes, we use the DBSCAN algorithm [12].
Generated by DBSCAN, a cluster is considered a set of repeated type
errors that share causes. We denote a cluster as 𝜃 ∈ P(TypeError)
and the set of clusters as Θ = {𝜃1, · · · , 𝜃𝑛}, which is the result of
clustering type errors 𝜖impl.

To cluster type errors, we define a distance function as (1 −
ErrSim(𝜖1, 𝜖2)), and ErrSim is designed as follows:

ErrSim(𝜖1, 𝜖2) = |SimT(𝑂1,𝑂2) | ∗
|Mem(𝑂1) ∩Mem(𝑂2) |
|Mem(𝑂1) ∪Mem(𝑂2) |

where 𝜖1 = (𝑂1, _) and 𝜖2 = (𝑂2, _), which means that 𝑂1 and 𝑂2
are the set of causes in the type error 𝜖1 and 𝜖2. Functions SimT
and Mem are defined as follows:

SimT(𝑂1,𝑂2) =
⋃

( (𝑐,𝑥),𝑇1) ∈𝑂1

⋃
( (𝑐,𝑥),𝑇2) ∈𝑂2 𝑇1 ∩𝑇2

Mem(𝑂) = {(𝑐, 𝑥) | ((𝑐, 𝑥), _) ∈ 𝑂}

where SimT is higher when the common class members share the
same types, andMem is higher when the samemember variables are
involved. The hyperparameters of DBSCAN are set to a threshold
of 0.5 and a minimum number of samples of 4 based on observa-
tions from the ignore comments (#type: ignore) used for intended
member types to suppress alarms in the benchmark programs.

Step 3: Finding Methods that Eliminate Type Errors. Before
this step, we first collect class members involved in type errors in
a cluster 𝜃 such as 𝜎𝜃 =

⋃
𝜖∈𝜃

⋃
(𝑂,_) ∈𝜖 Mem(𝑂). Then, we collect

methods M𝜃
elim ⊆ Mthd that eliminate type errors in a cluster 𝜃

with 𝜎𝜃 as follows:

M𝜃
elim = {𝑚 ∈ Mthd | ∀(_, l) ∈ 𝜃,TestFlow(l, 𝜎𝜃 ,m,ml)}

where𝑚𝑙 is amethod that includes a line 𝑙 and TestFlow(𝑙, 𝜎𝜃 ,𝑚,𝑚𝑙 )
checks the call flow𝑚 →𝑚𝑙 can eliminate the type error at line 𝑙 .
The function TestFlow is defined as follows:

TestFlow(𝑙, 𝜎𝜃 ,𝑚,𝑚𝑙 )
⇐⇒ Check(l, FlowSummary(𝜎𝜃 ,m,ml)) = ∅

where FlowSummary(𝜎𝜃 ,𝑚,𝑚𝑙 ) is a summary for the method𝑚𝑙

assuming the method𝑚 is called before as follows:

FlowSummary(𝜎𝜃 ,𝑚,𝑚𝑙 ) =
⊔

(Γ,_) ∈𝛼 (lsm)
𝐺 (body(𝑚𝑙 ), (Γ, Σ𝑚𝜎𝜃 ))
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where Σ𝑚𝜎𝜃 contains types of changed class members (𝑐, 𝑥) ∈ 𝜎𝜃
after calling the method𝑚 as follows:

Σ𝑚𝜎𝜃 =

[
(𝑐, 𝑥) ↦→

{
Σ
′𝑚
𝜎𝜃

(𝑐, 𝑥) if Σ
′𝑚
𝜎𝜃

(𝑐, 𝑥) ≠ {Any}
Σ∗ (𝑐, 𝑥) otherwise

| (𝑐, 𝑥) ∈ 𝜎𝜃

]
where Σ

′𝑚
𝜎𝜃

(𝑐, 𝑥) is a result of re-running the type inference for the
method𝑚 with removing types of class members (𝑐, 𝑥) ∈ 𝜎𝜃 , which
is similar to Eq (4), as follows:

(_, Σ
′𝑚
𝜎𝜃
) =

⊔
(Γ,_) ∈𝛼 (lsm)

�Jbody(𝑚)K(Γ, Σ∗ [(𝑐, 𝑥) ↦→ {Any} | (𝑐, 𝑥) ∈ 𝜎𝜃 ])

In other words, Σ𝑚𝜎𝜃 considers only the members whose types have
changed in the method𝑚 while keeping the types of other members
as types in Σ∗.

In summary, given a cluster 𝜃 , the method𝑚 ∈ M𝜃
elim eliminates

type errors in the cluster 𝜃 , which means Σ𝑚𝜎𝜃 is a refined mem-
ber environment that removes unintended types of class members
(𝑐, 𝑥) ∈ 𝜎𝜃 .

Applying to Summary. Finally, we generate 𝛼∗ from the sum-
mary 𝛼 with the refined member environment for each cluster 𝜃 as
follows:

𝛼∗ =
⊔
𝜃 ∈Θ

⊔
𝑚err∈M𝜃

err

⊔
𝑚∈M𝜃

elim

𝛼 [l ↦→ 𝛼 ′(l) | l ∈ lines(merr)]

where 𝛼 ′ = FlowSummary(𝜎𝜃 ,𝑚,𝑚err)

where lines(𝑚) denote lines of a method 𝑚 and M𝜃
err is a set

of methods where type errors in a cluster 𝜃 occur, defined as
{𝑚𝑙 | ∀(_, 𝑙) ∈ 𝜃 }.

5 EVALUATION

In this section, we experimentally evaluate Pyinder to answer the
following research questions:

(1) Effectiveness: How effectively does Pyinder detect type
errors in our benchmarks?

(2) Ablation study: How does each feature of Pyinder con-
tribute to the final performance?

(3) Generality: Can Pyinder detect critical type errors in un-
seen, recently developed open-source Python projects?

We implemented Pyinder on top of Pyre [13] and compared its
performance with four existing tools, Mypy (v1.9.0) [46], Pytype
(v2024.04.11) [17], Pyre (v0.9.18) [13], and Pyright (v1.1.339) [37], on
Python 3.9.18. All experiments were conducted on a Linux machine
(Ubuntu 22.04) with an Intel Zeon CPU and 128GB memory.

5.1 Effectiveness and Ablation Study

Setting. We evaluated Pyinder and existing tools on the 68 type
errors from 20 open-source projects (from 4k to 417k lines). All tools
were evaluated on the same criteria for type errors as described in
Section 2. Since all tools, including Pyinder, produce warnings other
than type errors, we only counted type-error alarms within our
scope (Section 2). We did not set a time budget for the tools, except
for Pytype. While other tools finish within an average of about 10
minutes, Pytype took a significantly longer time. Therefore, we set
a time limit of 2 hours in the case of Pytype.
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Figure 4: Venn Diagram of the number of detected bugs by

each type analysis tool.

Table 2: Comparison with existing type analysis tools on the

# of alarms and analysis time (both per 1KLoC).

Mypy Pyre Pytype Pyright Pyinder
#alarms/KLoC 4.72 8.38 1.74 11.37 4.57
time(s)/KLoC 0.48 0.26 98.28 0.98 5.78

External libraries. When running a tool on a program, we
chose not to include the source code of external libraries that the
program relies on. This is because including external libraries in-
creased the program size significantly. On average, the programs in
our benchmarks used 26 external libraries, which led to an increase
in program size by more than 7.4 times. For example, when external
libraries were included, the size of program homeassistant in-
creased by 55 times. Thus, instead of including library source code,
we ran all tools with typeshed [47], which provides type hints for
the Python standard library as well as some third-party libraries.

Effectiveness of Pyinder. Figure 4 shows that Pyinder outper-
forms existing tools in detecting type errors. Pyinder uncovered 34
bugs, more than doubling the count collectively detected by Mypy,
Pyre, Pytype, and Pyright. Pyright identified 15 bugs, while Mypy
and Pyre detected 6 and 4 bugs, respectively. The set of bugs dis-
covered by Pyinder was a superset of those detectable by existing
tools while there was no clear overlap between the existing tools.

Table 2 compares Pyinder and existing tools in terms of the num-
ber of alarms and analysis time on the 68 benchmarks (averaged
over 1K lines of code). The results clearly show the benefit of us-
ing Pyinder over the existing tools; Pyinder reports fewer alarms
than existing tools, and running Pyinder requires less time than
collectively running the existing tools.

Ablation study. To assess the contribution of each feature de-
scribed in Section 3, we created 9 variants of Pyinder as shown
in Table 3. For example, V1 denotes a variant that is identical to
Pyinder except that it merges types into Any at merge points.

Figure 5 shows the results of the ablation study. While V1 and V2
decreased the number of detected bugs by 26 and 9, respectively, V3
resulted in increased analysis time and the number of total alarms.
When we set the call depth limit to 6 (V4), the cost increased by
about 2.1 times, decreasing the number of detected bugs due to
timeout, while V5 increased the cost by 1.4 times. When using V6, 5
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Table 3: V1 throughV9 indicate the variants of Pyinderwhere

each corresponding detailed point introduced in Table 1 is

excluded from the analysis.

V1 Merging into Any at control flow merge points
V2 Merging into Any in collections
V3 Merging dictionaries in a key-type-insensitive manner
V4 Deep call depths (up to 6)
V5 Context-insensitive analysis
V6 No usage-based type inference
V7 Usage-based type inference without scoring
V8 Only considering member types in __init__ method
V9 No filtering out unintended types

Ours V1 V2 V3 V4 V5 V6 V7 V8 V9
Variants
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Figure 5: Ablation study results.

1 def to_unicode(
2 x: str | bytes
3 ): ...
4
5 def f(self, n, d=None):
6 x = self.r.h.get(n, d)
7
8 # x can be None type
9 return to_unicode(x)

(a) Example of a type mismatch

bug caused by a commit made

five years ago. The type mis-

match occurs at line 9 because

the variable x can be None type
(Simplified from scrapy-1).

1 @property
2 def secret(self) -> str
3 def decrypt(s, h):
4 # TypeError: str+bytes
5 d = s + h
6
7 def f(self):
8 h = ... # bytes
9 decrypt(self.secret, h)

(b) Example of incorrect type an-

notation introduced four years

ago. As a result of the incor-

rect type annotation, a type error

alarm occurs at line 6 (Simplified

from langchain-1).

Figure 6: The examples of bugs exclusively detected by Pyin-

der in recently updated projects.

type errors were missed while the analysis cost and the number of
alarms were similar to those of Pyinder. Interestingly, usage-based
type inference without scoring (V7) increased analysis time by at
least 2.5 times, missing type errors due to timeout. V8 represents
the strategy of Mypy and Pyre; not considering all possible call
scenarios in a class missed 14 type errors. V9 increased the number
of alarms by 2.5 times, which is the strategy of Pyright.

5.2 Generality

To check if Pyinder can detect unseen bugs as well, we ran Pyinder
on the 9 latest open-source Python projects in Table 4 that were
not included in our benchmark in Section 2.

Table 4: Detected bugs in recent open-source Python projects.

Status indicates whether the bug has been confirmed or not.

(# : Confirmed/Fixed, × : Won’t Fix, △ : Duplicated, - : No

response.)

Bug Status Mypy Pyre Pyright Pyinder
core-1 - ✗ ✗ ✓ ✓
kivy-1 - ✓ ✓ ✓ ✓
kivy-2 # ✓ ✗ ✓ ✓
kivy-3 - ✓ ✓ ✓ ✓
kivy-4 × ✓ ✓ ✓ ✓
kivy-5 - ✗ ✗ ✓ ✓
langchain-1 # ✗ ✗ ✗ ✓
luigi-1 △ ✗ ✗ ✗ ✓
luigi-2 - ✓ ✓ ✓ ✓
pwntools-1 # ✓ ✓ ✓ ✓
pwntools-2 # ✗ ✗ ✗ ✓
pwntools-3 # ✗ ✓ ✓ ✓
pwntools-4 # ✗ ✓ ✓ ✓
telegram∗-1 # ✗ ✗ ✗ ✓
scipy-1 # ✓ ✓ ✓ ✓
scipy-2 # ✓ ✓ ✓ ✓
scipy-3 △ ✓ ✓ ✓ ✓
scrapy-1 # ✗ ✗ ✗ ✓
tqdm-1 - ✗ ✗ ✗ ✓
*python-telegram-bot

In total, Pyinder successfully found 19 previously-unknown type
errors with five times fewer alarms compared to Pyright. For the
bugs found, we manually generated test cases based on the alarms
and reported them to the developers. The developers confirmed
10 bugs and fixed them. In the case of kivy-4, developers decided
not to fix the bug because this bug occurred due to a third-party
library.

Surprisingly, Pyinder reported type errors that had persisted for
four and five years, which were not detected by any existing tools.
Figure 6 shows two bugs exclusively found by Pyinder. In the case
of Figure 6a, it is a type mismatch bug caused by a commit made five
years ago. Pyinder could infer the type of the variable x as None and
detect the type mismatch at line 9. Figure 6b displays an example of
an incorrect type annotation. This annotation was added four years
ago to introduce Mypy into the project, but incorrectly written type
annotation has persisted until recently. Pyinder could detect the
type error at line 5, which was missed by other tools.

5.3 Limitations and Future Directions

Our evaluation also identified limitations of Pyinder in terms of
false negatives and positives. The results show that Pyinder could
significantly benefit by employing advanced static analysis such as
relational analysis to detect more bugs and reduce false alarms.

False Negatives. Pyinder missed 34 out of the 68 bugs. Among
them, Pyinder failed to detect 29 bugs due to unknown external
libraries and inputs. Figure 7 illustrates representative cases. Both
cases raise type errors in the user code, but the type errors are
caused by the external libraries (Figure 7a) or inputs (Figure 7b). To
find these errors, we require to know the return types of external
functions or more information about external inputs, e.g., configu-
ration files or inputs of unseen type in source codes. The remaining
5 type errors require more advanced type inference algorithms than
Pyinder. Figure 8 illustrates representative cases. Figure 8a presents



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wonseok Oh and Hakjoo Oh

1 import ext
2 # ext is an external lib
3 # ext.f returns a string
4 x = e.f()
5 x+1 # TypeError: str+int

(a) Example that requires the

return type of external func-

tion ext.f().

1 # conf.json : {'a': 1}
2 f = open("conf.json")
3 conf_dict = json.loads(f)
4 # TypeError: dict + list
5 conf_dict + [1]

(b) Example that requires the

content of the external input

conf.json.

Figure 7: Examples of false negatives due to unknown exter-

nal libraries and inputs.

1 def f(x=1, y=1):
2 pass
3
4 a = {'c': 1, 'd': 2}
5
6 # TypeError
7 f(**a) # f(c=1, d=1)

(a) Example that requires the

value of dictionary unpacking

for a method call.

1 def f(x: int, y):
2 # y: Optional[int]
3 if x > 0:
4 if y is None:
5 y = 0
6 # TypeError
7 return x+y

(b) Example that requires non-

trivial type inference for a vari-

able y.

Figure 8: Examples of false negatives required advanced type

inference.

1 class Symbol:
2 def __radd__(
3 self, x
4 ): return x+1
5 # False Alarm
6 # int.__add__(1, Symbol)
7 1+Symbol()

(a) False alarm at line 7 due

to the limitation of modeling

magic methods.

1 def f(x, y):
2 # False Alarm
3 if x > 0: y+1
4 # False Alarm
5 else: y+'1'
6 f(1, 1)
7 f(-1, '1')

(b) False alarm at lines 3 and

5 due to the limitation of type

analysis.

Figure 9: False positive examples

a bug example that requires a value analysis. It is necessary to
unpack the dictionary a and infer the exact value of keys in the dic-
tionary to detect the type error at line 6. Figure 8b displays another
example, where a type error occurs at line 7 because the type of
variable y can be None. However, it is difficult to infer the type of
y as the None type because a typical flow analysis cannot preserve
the information at line 4. The type of y can be inferred as None in
the true branch at line 4, but due to line 5, the type of y is updated
to int type. Thus, by the end of the branch, the type of y is inferred
as Any (false-branch) or int (true-branch), which does not include
None. As future work, we plan to enhance Pyinder to preserve the
type information at line 4 using, for example, a backward analysis.

False Positives. We now discuss the remaining alarms gener-
ated by Pyinder in Section 5.1. Over the 68 benchmarks, Pyinder
produced a total of 37285 alarms, and we sampled 269 alarms for
investigation (with a confidence interval of 90% and an error level
of 5%). Among them, we could identify 6 true alarms and 106 false
alarms. The remaining 157 alarms could not be definitively classi-
fied into true or false without the developer’s confirmation because
they need a deeper understanding of the programs. We found that
the 106 false alarms are caused by the limitation of Pyinder’s static
analysis. Figure 9 displays two false alarm cases.

One interesting finding is that while 69% ( 73106 ) of false alarms
were raised due to inadequate modeling, more than half, 37 out

of 73, were caused by the limitations of modeling magic methods.
Figure 9a presents an example of a false alarm by modeling opera-
tors as magic methods. In this example, a type error does not occur
at line 7 because the Symbol class has the magic method __radd__,
which is called when the left operand does not support the corre-
sponding operation __add__. Unfortunately, the analyzer changes
1+Symbol() to int.__add__(1, Symbol()), which leads to the false
alarm at line 8.

Like existing tools, Pyinder supports modeling common magic
methods, e.g., __add__ for the + operator. However, Pyinder cur-
rently does not support more complex and tricky cases, such as
the __radd__ method for the + operator. Method __radd__ is in-
voked under tricky and complex conditions: when __add__ raises a
NotImplemented exception while the left and right operands are of
different types, or when the right operand is a subclass of the left
operand but has a different implementation of the magic method.
We found that manually handling all such behaviors is extremely
burdensome; as another example, even a simple expression a.x
can invoke at least six different magic methods depending on the
context, which requires understanding over 700 words of Python
documentation. In addition, we sometimes noticed that the doc-
umentation is incorrect or unclear, and therefore understanding
the behavior of magic methods requires to consult the CPython
implementation. For these reasons, existing tools including Pyinder
have only implemented the most common cases of magic meth-
ods, leaving room for improvement in the magic method modeling.
To address this difficulty, as future work we plan to develop an
intermediate representation of Python that does not have implicit
behaviors and re-implement Pyinder on it.

In other cases, 31% ( 33106 ) of false alarms were raised due to spuri-
ous relations as seen in Figure 9b. In this case, a relational analysis
is required to keep track of the relationship between integer values
(first parameter) and types (second parameter), such as "if the first
parameter is greater than 0, then the second parameter is an integer
type.", in order to avoid false alarms at lines 3 and 5.

5.4 Lessons Learned

We summarize the lessons learned from the evaluation results.

Lesson 1: Current type analysis tools have limitations in
detecting real-world type errors. Current type analysis tools for
Python, such as Mypy, Pyre, Pytype, and Pyright, have limitations
in their ability to fully support the features required to detect real-
world type errors. This shortcoming resulted in a low bug detection
rate of less than 25%. Furthermore, the inability to fully leverage
these crucial features leads to an increase in false alarms or higher
costs. This result indicates the need for more advanced approaches
to detect type errors more effectively.

Lesson 2: Novel features of Pyinder. Pyinder introduces novel
techniques that collect types selectively based on empirical obser-
vation, thereby enhancing practicality without sacrificing detection
rate. Without this design, the analysis could lead to a cost increase
of more than 2.5 times or generate a significant number of false
alarms. To address this issue, we proposed a novel design for each
feature, such as handling specific merge points or collection types
and selectively inferring the types of class members. As a result,
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Pyinder achieved a reasonable analysis time and the lowest num-
ber of alarms among existing tools, while maintaining a high bug
detection rate.

Lesson 3: The necessity of handling tricky magic method
modeling. We observed that 69% of false alarms were caused by the
limitations in handling tricky cases of magic methods even though
Pyinder supports the most common cases of magic methods. For
example, __radd__ method for the + operator has tricky conditions
and even a simple expression a.x can invoke at least six different
magic methods depending on the context. In other words, due to
the complex implicit behaviors of magic methods in expressions, it
is challenging to model all expressions accurately as magic methods.
Thus, we plan to develop an intermediate representation of Python
without implicit behaviors to address this issue.

Lesson 4: There is room for further advancement in detecting
type errors. We discovered that more advanced techniques are
required in terms of both false negatives and positives. To reduce
false negatives, we need to infer the exact value of variables or use
backward analysis to more accurately infer the type of variables.
To reduce false positives, keeping track of the relationship between
variables is required to avoid spurious alarms. This result indicates
that it is necessary to design more sophisticated type inference
techniques to detect type errors more effectively.

6 RELATEDWORK

Empirical Studies on Python Type Analysis Tools. Empiri-
cal studies have been conducted on industrial static type analysis
tools for Python such as Pyre [13], Pyright [37], Mypy [46], and
Pytype [17]. Khan et al. [32] investigated type-related defects, and
concluded that about 15% of bugs can be prevented by simply using
a type checker such as Mypy. Xu et al. [59] demonstrated that com-
bining static type checking tools with dynamic instrumentation
can improve the performance. Rak-amnouykit et al. [48] compared
similarities and differences between Mypy and Pytype. Our work
differs from these prior works in that we aim to improve existing
tools (vs. [32]), do not rely on dynamic analysis (vs. [59]), and focus
on type error detection (vs. [48]).

Static and Dynamic Type Inference. Static analysis has been
extensively used to infer types of Python programs [5, 9, 18, 21, 33,
49, 50] based on, for example, constraint-based type inference [21]
or abstract interpretation [18, 49]. While these works have focused
on designing type inference approaches to broadly support Python
features, our work focuses on how to selectively collect types in a
more detailed manner to enhance effectiveness. In other dynamic
languages, there is also a large amount of work on type inference,
e.g., [2, 4, 6, 14, 15, 19, 19, 22, 26, 38, 45]. However, these works have
proposed type inference techniques to support their languages such
as Ruby [2, 14, 15] or JavaScript [4, 6, 19, 19, 22, 26, 45], which are
not suitable for Python programs.

A number of techniques have been proposed to infer types for
Python programs dynamically [3, 10, 11, 25, 40, 45, 55, 60]. They
have concentrated on dynamic observations to infer types correctly
[3, 45]. In contrast, we suggest static features to improve type error
detection in Python.

Selective Static Analysis. Our four features in Section 3 can
be understood as practical guidelines for selectively applying ex-
pensive type analysis techniques. Previous techniques for selective
static analysis have been primarily developed for other languages,
such as C and Java [24, 27, 28, 31, 34–36, 51, 54], and they have
focused on preserving the precision while reducing the cost [54]
or vice versa [36]. In designing a selective analysis, designing a
right set of features is a key [24, 27, 34, 36], but none of the existing
works proposed such features for Python type analysis.

Learning-Based Type Inference. Recently, there have been
many works on type inference using machine learning techniques
[1, 7, 23, 29, 39, 43, 44, 56, 57, 61]. They have proposed a probabilis-
tic type inference technique from variable names [61], or various
models for type inference, such as graph [1], sequence [23, 44], and
hierarchical models [39]. Peng et al. [43] and Wei et al. [56] com-
bine static analysis and learning-based type inference. Our work is
largely orthogonal to this line of work, and can be combined with
them.

7 CONCLUSION

Detecting type errors early is pivotal for enhancing the reliability of
Python programs. However, statically detecting type errors poses
a challenge with current type analysis tools because manual type
annotations are uncommon in real-world Python code. This paper
presents empirical observations revealing four key features for
practical static type error detection in Python. Experimental results
using 68 bugs demonstrate that our approach can detect 34 (50%)
bugs, more than double the number detectable by existing tools
with fewer alarms. Finally, we reported 19 bugs in the latest real-
world programs and analyzed the remaining weaknesses of Pyinder.
We hope that our efforts in this work pave the way for improving
the practicality of static type analysis tools for Python.
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