
Template-Guided Concolic Testing via Online Learning
Sooyoung Cha
Korea University
Republic of Korea

sooyoungcha@korea.ac.kr

Seonho Lee
Korea University
Republic of Korea

seonho_lee@korea.ac.kr

Hakjoo Oh∗
Korea University
Republic of Korea

hakjoo_oh@korea.ac.kr

ABSTRACT
We present template-guided concolic testing, a new technique for
effectively reducing the search space in concolic testing. Address-
ing the path-explosion problem has been a significant challenge
in concolic testing. Diverse search heuristics have been proposed
to mitigate this problem but using search heuristics alone is not
sufficient to substantially improve code coverage for real-world pro-
grams. The goal of this paper is to complement existing techniques
and achieve higher coverage by exploiting templates in concolic
testing. In our approach, a template is a partially symbolized input
vector whose job is to reduce the search space. However, choos-
ing a right set of templates is nontrivial and significantly affects
the final performance of our approach. We present an algorithm
that automatically learns useful templates online, based on data
collected from previous runs of concolic testing. The experimen-
tal results with open-source programs show that our technique
achieves greater branch coverage and finds bugs more effectively
than conventional concolic testing.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
Concolic Testing, Online Learning
ACM Reference Format:
Sooyoung Cha, Seonho Lee, and Hakjoo Oh. 2018. Template-Guided Con-
colic Testing via Online Learning. In Proceedings of the 2018 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE ’18), Sep-
tember 3–7, 2018, Montpellier, France. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3238147.3238227

1 INTRODUCTION
Concolic testing [11, 22] is a popular software testing method that
effectively and systematically achieves high code coverage and
finds bugs. The key idea of concolic testing is to simultaneously
execute a program concretely and symbolically, where new test
cases are systematically generated by symbolic execution enhanced
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238227

with concrete execution. Recently, concolic testing has been used
in diverse application domains such as operating systems [18],
firmware [8, 16, 31], and binary code [1, 25] among many others.

A major open challenge in concolic testing is how to effectively
explore the search space. As the number of execution paths in a
realistic program grows exponential, concolic testing must be able
to favor and explore the paths that are most likely to benefit the
final testing results. However, guiding concolic testing effectively
is nontrivial and many different approaches exist with the goal of
mitigating the path-explosion problem: e.g., path pruning [2, 3, 17,
28], search heuristics [4, 5, 19, 23, 29], and so on.

In this paper, we present template-guided concolic testing, a new
technique for adaptively reducing the search space of concolic test-
ing. The key idea is to guide concolic testing with templates, which
restrict the input space by selectively generating symbolic variables.
Unlike conventional concolic testing that tracks all input values
symbolically, our technique treats a set of selected input values
as symbolic and fixes unselected inputs with particular concrete
inputs, thereby reducing the original search space. A challenge,
however, is choosing input values to track symbolically and replac-
ing the remaining inputs with appropriate values. To address this
challenge, we develop an algorithm that performs concolic testing
while automatically generating, using, and refining templates. The
algorithm is based on two key ideas. First, by using the sequential
pattern mining [9], we generate the candidate templates from a set
of effective test-cases, where the test-cases contribute to improving
code coverage and are collected while conventional concolic test-
ing is performed. Second, we use an algorithm that learns effective
templates from the candidates during concolic testing. Our algo-
rithm iteratively ranks the candidates based on the effectiveness
of templates that were evaluated in the previous runs. Our tech-
nique is orthogonal to the existing techniques and can be fruitfully
combined with them, in particular with the state-of-the-art search
heuristics.

Experimental results show that our approach outperforms con-
ventional concolic testing in term of branch coverage and bug-
finding. We have implemented our approach in CREST [7] and
compared our technique with conventional concolic testing for
open-source C programs of medium size (up to 165K LOC). For all
benchmarks, our technique achieves significantly higher branch
coverage compared to conventional concolic testing. For example,
for vim-5.7, we have performed both techniques for 70 hours, where
our technique exclusively covered 883 branches that conventional
concolic testing failed to reach. Our technique also succeeded in
finding real bugs that can be triggered in the latest versions of three
open-source C programs: sed-4.4, grep-3.1 and gawk-4.21.

https://doi.org/10.1145/3238147.3238227
https://doi.org/10.1145/3238147.3238227

ASE ’18, September 3–7, 2018, Montpellier, France Sooyoung Cha, Seonho Lee, and Hakjoo Oh

This paper makes the following contributions:
• We present template-guided concolic testing, a new tech-
nique for reducing the input space by selectively generating
symbolic values without any prior domain knowledge.
• We present an online learning algorithm to select useful
templates from previous runs of concolic testing.
• We extensively compare our technique with conventional
concolic testing on open-source C programs. We make our
tool, called ConTest, and data publicly available.1

2 OVERVIEW
In this section, we illustrate our approach with an example.

2.1 Motivating Example
Fig. 1 shows a code snippet simplified from tree-1.6.0, where we
assume that the body of strncmp is not available. Function f takes as
input two arrays of characters, namely input1 and input2, where
the size of each array is 4. The program execution is determined
by the contents of these arrays. At line 5, Xflag is set to 1 if the
first two characters of input1 are ‘-’ and ‘X’. At line 9, duflag
is set to 1 if input2 contains the string "--du". Thus, the error
location (line 12) is reachable when the function is executed with
the following inputs:

input1: ‘–’ ‘X’ * * input2: ‘–’ ‘–’ ‘d’ ‘u’

where ∗ means an arbitrary character. The goal of concolic testing
is to generate such inputs that drive program execution to hit the
error location.

However, conventional concolic testing is unlikely to trigger
the error due to the huge search space. In order to reach the error
location, the program execution must hit lines 5 and 9. To do so,
concolic testing initially runs the program with random inputs
while simultaneously executing the program with the symbolic
inputs:

input1: α1 α2 α3 α4 input2: α5 α6 α7 α8

During the execution, constraints on the symbolic variables (α1,. . . ,α8)
are collected and used to generate the next input. For example, when
the initial execution follows the true branches of the conditional
statements at line 4 and the false branches of the statements at lines
7 and 11, the following constraints are collected:

α1 = ‘-’ ∧ α2 = ‘X’ ∧ α5 , ‘-’.

Negating, for example, the last conjunct will produce input that
makes the program execution to exercise the true branch of the
first conditional statement at line 7. Then, assuming that the new
input does not satisfy the second condition at line 7, the following
path condition will be newly generated:

α1 = ‘-’ ∧ α2 = ‘X’ ∧ α5 = ‘-’ ∧ α6 , ‘-’ (1)

Negating the last conjunct again, concolic testing succeeds to reach
the program location right before the conditional statement at line 8.
At this point, however, it still needs to explore a large search space to
generate inputs that satisfy the condition (!strncmp(...)), as the
body of strncmp is not available and therefore symbolic variables

1 Concolic Testing: https://github.com/kupl/ConTest

1 void f(char input1[4], char input2[4]){

2 int Xflag=0, duflag=0;

3

4 if (input1[0] == '-' && input1[1] == 'X')

5 Xflag = 1;

6

7 if (input2[0] == '-' && input2[1] == '-')

8 if (!strncmp("--du", input2, 4))

9 duflag = 1;

10

11 if (Xflag && duflag) {

12 /* Error */

13 }

14 }

Figure 1: Motivating example

α7 and α8 are unconstrained. Hence, the last two characters ’du’
must be generated by chance, where the probability is too low given
that there already exists multiple, more precisely 9, paths from the
entry of the program to line 8.

Our template-guided concolic testing aims to reduce the search
space effectively and automatically. During concolic testing, our
technique adaptively generates templates, which are used to restrict
the input space by selectively introducing symbolic variables. For
example, when it is applied to the program in Fig. 1, our technique
automatically produces the following template for restricting the
search space:

input1: ‘–’ ‘X’ ‘\0’ ‘\0’ input2: ‘–’ ‘–’ α7 α8

That is, all input values except for the last two are fixed by concrete
values, so that concolic testing no longer needlessly attempts to
explore execution paths that cannot reach line 8. In other words,
our technique is able to enforce the necessary condition to reach the
error location, enabling concolic testing to focus on generating the
inputs ‘d’ and ‘u’ for α7 and α8, respectively. With this template,
concolic testing is able to generate the error-triggering input more
effectively, up to 9 times faster than the conventional method for
the example program.

2.2 Template-Guided Concolic Testing with
Online Learning

Fig. 2 illustrates our technique for performing concolic testing while
automatically generating templates online. Our technique is able to
generate effective templates without any prior domain knowledge.
The algorithm repeats the following five procedures until a given
testing budget is exhausted.

2.2.1 Conventional Concolic Testing. We first perform conven-
tional concolic testing (without template) to generate a set of effec-
tive test cases. We say a test case is effective if it enables to exercise
previously uncovered branches during concolic testing. We run
concolic testing for a certain amount of time and collect effective

Template-Guided Concolic Testing via Online Learning ASE ’18, September 3–7, 2018, Montpellier, France

4. Templates
− X − − T1 :

− − s T2 :
Concolic Testing
without template

3. The top-K Patterns

Sequential
Pattern
Mining

1. Effective Test-Cases
− X * *
− 2 R L
2 X ? #

...
− Y − 5

− − P −
− − s y
− − c l

...
3 − s h

Pattern
Ranking

2. Candidate Patterns
 − X −

 − − s
 − X − −
 − − −

 P1 :

 P2 :
 P3 :
P4 :

 Pattern to
Template

 − X − −

 − − s
 − − −
 − X −

 Top 1 :

 Top 2 :
 Top 3 :
 Top 4 :

Concolic Testing
with template

Input2 :Input1 :

α1 α2 α3 α4 α5 α6 α7 α8

Input2 :Input1 :

− X α3 α4 − − α7 α8

pgm

Good P
 P3 : − X − −

Bad P
 P2 : − − s

5. Good and Bad Patterns

Figure 2: Overview of our technique

test cases. For example, when we run concolic testing on the exam-
ple program in Fig. 1 for few minutes, we could collect more than
40,000 effective test cases such as the following:

input1: ‘–’ ‘X’ ‘*’ ‘*’ input2: ‘–’ ‘–’ ’P’ ‘–’
input1: ‘–’ ‘2’ ‘R’ ‘L’ input2: ‘–’ ‘–’ ‘s’ ‘y’

2.2.2 Sequential Pattern Mining. Once a dataset of effective test
cases is collected, we try to capture common patterns in those
input vectors. Specifically, we aim to extract a partial sequence of
characters that frequently appear in the effective test cases. To do
so, we use a recent algorithm for sequential pattern mining [9],
which finds out the following four patterns from 40,000 test cases
collected during the previous phase:

P1 : -X-, P2 : --s, P3 : -X--, P4 : ---

For example, pattern P1 says that effective test cases are likely to
involve characters ‘-’, ‘X’, and ‘-’ in order.

2.2.3 Pattern Ranking. After generating the candidate patterns
via sequential pattern mining, we choose the top-k patterns that
are most likely to maximize unique branch coverage; the coverage
is calculated as the number of branches that conventional concolic
testing has not discovered. In our example, to quickly cover the
unique branch (e.g., the true branch at line 8 in Figure 1), pattern P3
in Figure 2 is required. However, pinpointing the effective pattern
among the candidates is nontrivial, as running the algorithm on
real-world programs usually discovers thousands of patterns. Even
worse, only a small fraction of the candidate patterns is effective for
increasing branch coverage. We address this challenge by ranking
candidate patterns based on the effectiveness of similar patterns that
were evaluated in the previous runs. We accumulate sets of good
and bad patterns during the algorithm and use them to estimate
the effectiveness of the newly generated patterns. For the example
program, we choose P3 and P2 when k = 2.

2.2.4 Pattern to Template. The next step is to transform patterns
to templates. Note that a pattern is simply an ordered sequence
of meaningful input values (e.g. characters); to be a template, we
need to decide the position of each value contained in a given
pattern. To do so, we first collect the test-cases containing the
pattern and then identify the positions where the template values
appear most frequently. For instance, suppose that the concrete
value ‘X’ appeared the most at the second index in the test-cases.
Then, we replace the symbolic value α2 at the second index in
input2 with the value ‘X’. By applying this rule to patterns P3

and P2, which were selected in the previous phase, we obtain the
following two templates:

input1: ‘–’ ‘X’ α3 α4 input2: ‘–’ ‘–’ α7 α8
input1: ‘–’ α2 α3 α4 input2: α5 ‘–’ ‘s’ α8

In the rest of this paper, we also represent a template by a set of
concrete values and their positions. For example, the first template
can be represented as follows:

{(0, “ − ”), (1, “X ”), (4, “ − ”), (5, “ − ”)}. (2)

2.2.5 Concolic Testing with Template. The final step is to run
concolic testing with the generated templates (T1 and T2). For ex-
ample, when using the templateT1, we only generate four symbolic
values (α3,α4,α7,α8) and replace the rest with concrete values in
the template T1. Note that the concrete values are not arbitrary but
are effectively guiding the concolic testing to reach the error loca-
tion (e.g., true branch at line 11 in Figure 1) by forcing the program
execution to follow the specific path, taking all true branches of
the conditional statements at lines 4 and 7.

After performing concolic testing with the templates for a cer-
tain amount of time, we evaluate the qualities of the generated
templates in terms of the number of unique branches. As a result,
we classify the corresponding patterns into good and bad patterns
in Figure 2, which will be used by the ranking algorithm in the
next iteration of the algorithm. As the entire procedure is going on,
our algorithm accumulates the evaluation data and therefore the
ranking algorithm is able to pick more effective patterns based on
the increased knowledge.

3 TEMPLATE-GUIDED CONCOLIC TESTING
Algorithm 1 presents our template-guided concolic testing. We first
describe conventional concolic testing and then explain how to
modify it to our algorithm.

3.1 Conventional Concolic Testing
Without line 6, Algorithm 1 becomes conventional concolic testing,
which takes a program P and returns covered branches as well as
the set of generated input vectors. At line 2, the sets of covered
branches B and generated input vectors V are initialized. At line
3, v denotes the initial concrete input vector, which is assumed to
be given for each program. At line 4, the algorithm initializes the
symbolic input vector: s = ⟨α1, . . . ,α |v |⟩, where each αi denotes a
fresh symbol representing the i-th input. At line 7, the program P
is “concolically” executed; P is executed with the concrete input v
while it is at the same time executed symbolically with s. Once the

ASE ’18, September 3–7, 2018, Montpellier, France Sooyoung Cha, Seonho Lee, and Hakjoo Oh

Algorithm 1 Template-Guided Concolic Testing
Input: Program P and template T
Output: Covered branches and generated input vectors
1: procedure ConcolicTesting(P, T)
2: B, V ← ∅, ∅
3: v← initial concrete input vector
4: s← initial symbolic input vector
5: form = 1 to N do
6: v, s← Instantiate(v, T), Instantiate(s, T)
7: Φ← ConcolicExecution(P, v, s)
8: B ← B ∪ Branches(Φ)
9: if effectiveinput(v) then
10: V ← V ∪ {v}
11: end if
12: repeat
13: ϕi ← Choose a branch from Φ = ϕ1 ∧ · · · ∧ ϕn
14: until SAT(

∧
j<i ϕj ∧ ¬ϕi)

15: v← model(
∧
j<i ϕj ∧ ¬ϕi)

16: end for
17: return (B, V)
18: end procedure

execution terminates, the ConcolicExecution function returns the
current path condition Φ, a constraint on the symbolic variables
α1, . . . ,α |v | . The path condition is a sequence of exercised branches
in the program and is used to generate the next (concrete) input
vector at lines 12–14. At line 13, a branch ϕi is chosen from Φ and
negated (line 14). If the chosen branch ϕi is not contradictable with
respect to the current path (SAT(

∧
j<i ϕ j ∧ ¬ϕi)), the next input

vector is obtained by solving the negated constraint (line 15). The
algorithm repeats the above procedure until the testing budget (N)
is exhausted. In experiments, we set N = 4000.

3.2 Concolic Testing with Template
Our algorithm differs from conventional concolic testing in that
some input values are fixed according to the given template. A
template T is a set of pairs of indices and values:

T = {(i0,v1), . . . , (im ,vm)}.

Intuitively, a pair (i,v) ∈ T indicates that the i-th input of v and
s is fixed by the concrete value v , so that concolic testing should
not symbolically track those inputs in T . We assume that for every
(i,v) ∈ T , i is unique and 0 ≤ i < |v|.

The template is instantiated at line 6. Before running the program,
both concrete and symbolic input vectors are modified, where the
Instantiate function replaces a given vector a according to the
template T as follows:

Instantiate(a,T) = ⟨v1, . . . ,v |a |⟩

where vi is the value v in the template if (i,v) ∈ T . Otherwise, if
(i,v) < T , vi is not changed, i.e., vi = ai . That is, given a vector
a and a template T , Instantiate(a,T) replaces the i-th element of
a by the value in T . As a result, concolic execution of P at line
7 generates constraints only for a subset of the original symbolic
variables (α1, . . . ,α |v |). We assume that the model function at line
15 produces arbitrary values for unconstrained symbols.

Our template-guided concolic testing poses a significant chal-
lenge. That is, the effectiveness of our approach depends on the

Algorithm 2 Template-Guided Concolic Testing with Online
Learning
Input: Program P
Output: The number of covered branches
1: /* Initialization */
2: ⟨B, TB, Good, Bad⟩ ← ⟨∅, ∅, ∅, ∅⟩
3: repeat
4: /* Step 1: Exploration with conventional concolic testing */
5: V ← ∅
6: for i = 1 to η1 do
7: (Bi , Vi) ← ConcolicTesting(P, ∅)
8: ⟨B, V ⟩ ← ⟨B ∪ Bi , V ∪Vi ⟩
9: end for
10:
11: /* Step 2: Mining patterns in collected input vectors */
12: Cand ← SequentialPatternMining(V)
13:
14: /* Step 3: Ranking patterns */
15: Ranked ← PatternRanking(Cand, Good, Bad)
16:
17: /* Step 4: Exploitation with templates */
18: while Ranked , ∅ do
19: p ← Pick the highest rank from Ranked
20: Ranked ← Ranked \{p }
21: T ← PatternToTemplate(p, V)
22: BT ← ∅
23: for i = 1 to η2 do
24: (Bi , Vi) ← ConcolicTesting(P, T)
25: BT ← BT ∪ Bi
26: end for
27: TB← TB ∪ BT
28:
29: /* Check whether pattern p is good or bad */
30: if |BT \ B | > η3 then
31: Good ← Good ∪ {p }
32: else if |BT \ B | ≤ 1 then
33: Bad ← Bad ∪ {p }
34: end if
35: end while
36: until timeout
37: return |B ∪ TB |

given template T . For example, when T = ∅, the algorithm be-
comes the ordinary concolic testing that tracks all input variables
symbolically, which often suffers from the path-explosion prob-
lem. On the other hand, when the template is too specific (e.g.
T = {(0,v0), (1,v1), . . . , (|v| − 1,vv−1)} in the extreme), the algo-
rithm becomes more like random testing and is likely to lose the
benefit of concolic testing. The main contribution of this paper is
the technique that interleaves conventional and template-guided
concolic testing in a way that automatically generates effective
templates and maximizes the final code coverage in the long run.

4 TEMPLATE-GUIDED CONCOLIC TESTING
WITH ONLINE LEARNING

In this section, we present our algorithm (Algorithm 2) for perform-
ing template-guided concolic testing while automatically generat-
ing effective templates online. Algorithm 2 consists of four main
stages: conventional concolic testing, sequential pattern mining,

Template-Guided Concolic Testing via Online Learning ASE ’18, September 3–7, 2018, Montpellier, France

ranking, and template-guided concolic testing. At line 2, the algo-
rithm begins with initializing data. The sets B and TB represent
branches covered by conventional concolic testing and template-
guided concolic testing, respectively. The sets Good and Bad denote
the effective and ineffective input patterns, respectively.

The algorithm has three hyperparameters (η1, η2, and η3). The
first parameter η1 is used at line 6 and determines the number
conventional concolic executions in the first phase. The second
parameter η2, which is used at line 23, denotes the number of
concolic executions with each template. The last parameter η3
represents the threshold value for the pattern p to be a good pattern
(i.e., included in the set Good). In experiments, we set η1 = 100,
η2 = 20, η3 = 20. In this work, we tuned these hyperparameters
manually by trial-and-error, and found that the performance of
Algorithm 2 depends on them substantially. An interesting future
direction would be finding optimal hyperparameters automatically
during the algorithm.

4.1 Exploration without Templates
The first phase of the algorithm (lines 5–9) is to run concolic testing
without template (i.e. T = ∅) to explore and collect diverse input
vectors that are effective in increasing branch coverage.

At line 5, the setV of input vectors is initially empty. At lines 6–9,
ConcolicTesting (Algorithm 1) is run for η1 times. When concolic
testing finishes, the sets Bi andVi of covered branches and effective
input vectors, respectively, are returned. We say input vectors are
effective (i.e., effectiveinput at line 9 of Algorithm 1) if they satisfy
the following two conditions. First, the input vectors should be able
to increase branch coverage after the initial 10% of the budget N
for ConcolicTesting is exhausted. For example, when budget N is
4,000 program executions, we ignore inputs generated during the
first 400 executions. This is because branch coverage gets easily
increased in the early stage of concolic testing, no matter what
initial input vectors are used. Second, the input vectors should con-
tribute to discovering branches that are new compared to previous
program executions. Collecting effective inputs only is crucial be-
cause blindly collecting all inputs can cause serious performance
degradation in the next stage, sequential pattern mining.

4.2 Mining Patterns
The second step of the algorithm is to mine common patterns from
the collected set of effective input vectors (line 12). We observed
that each effective input vector is likely to have meaningful subse-
quences that ultimately contribute to improving branch coverage.
The goal of this stage is to quickly extract such subsequences that
are common to many of the collected inputs and use them as the
candidates to reduce the search space. Fortunately, for this pur-
pose, we can use off-the-shelf techniques called sequential pattern
mining in the data mining community, which can do the desired
task efficiently. Numerous pattern mining algorithms have been
proposed in the literature [9, 15, 27, 30]. We used a state-of-the-art
algorithm, CloFast [9], which avoids generating redundant patterns.
CloFast also outperforms the existing algorithms in terms of com-
putation time and memory consumption [9]. For example, when
CloFast takes 14,604 effective inputs collected from sed-1.17, it
generates 6,176 candidate patterns in five minutes. In Algorithm 2,

Algorithm 3 PatternRanking

Input: Candidate Patterns Cand, Good patterns Good, Bad patterns Bad
Output: Learned Patterns Ranked
1: procedure PatternRanking(Cand, Good, Bad)
2: /* Initialize */
3: Pattop, Patmid ← ⟨⟩, ⟨⟩

4: Ranked ← ∅
5: /* Step 1: Reflection */
6: while Cand , ∅ do
7: p ← pop(Cand)
8: Cand ← Cand \ {p }
9: if Match(p, Good) ∧ ¬Match(p, Bad) then
10: Pattop ← Pattop · p
11: else if ¬Match(p, Good) ∧ ¬Match(p, Bad) then
12: Patmid ← Patmid · p
13: end if
14: end while
15: Pattop ← Pattop · Patmid
16:
17: /* Step 2: Diversification */
18: while |Ranked | < k do
19: p ← pop(Pattop)
20: Pattop ← Pattop \ {p }
21: if Diverse(p, Ranked) then
22: Ranked ← Ranked ∪ {p }
23: end if
24: end while
25: return Ranked
26: end procedure

the algorithm is modeled by the SequentialPatternMining function,
which takes a set of input vectors and returns a set of common
patterns.

4.3 Ranking Patterns
The third step is to rank the candidate patterns according to their
(estimated) effectiveness (line 15). We designed a ranking function
(PatternRanking), which chooses the top-k patterns from the can-
didates generated by the pattern mining algorithm. In experiments,
we set k to 20. At line 15 in Algorithm 2, PatternRanking takes
three pattern sets: patterns to rank (Cand), good patterns (Good),
and bad patterns (Bad). Then, it returns the top-k patterns (Ranked)
that are most likely to cover new branches in the future.

The key ideas behind our ranking algorithm (Algorithm 3) is to
reflect the experience with the patterns evaluated in the previous
runs and try as many diverse patterns as possible. Hence, the main
loop of the algorithm consists of the two phases: Reflection and
Diversification. Initially, we rank the candidates Cand by sorting
them based on the frequency of each candidate calculated by the
sequential pattern mining algorithm in ascending order. The hy-
pothesis is that the patterns with high frequencies are unlikely to
discover new branches. At lines 3-4, Pattop and Patmid are initially
empty vectors, and Ranked is an empty set.

In the first stage (Reflection), we transform each pattern p in
Cand into n-grams and check whether any n-grams in the pattern
p are included in any patterns in good or bad pattern sets (line
9-13). To do so, we define a function ngram which takes a pattern
and returns a set of n-grams for the pattern, where the number n

ASE ’18, September 3–7, 2018, Montpellier, France Sooyoung Cha, Seonho Lee, and Hakjoo Oh

is half of the length p (n=
⌈
|p |/2

⌉
). For example, when the pattern

p is a string "s//b", ngram(p) returns the three 2-grams: "s/", "//",
"/b". Then we classify the patterns using predicateMatch defined
as follows:

Match(p, P) ⇐⇒ ∃д ∈ ngram(p). д ∈
⋃
p′∈P

ngram(p′)

Match takes a pattern (p) and a set of patterns (P), and returns true
iff any of the n-grams of p is included in the union of n-grams of the
patterns in P . We performMatch with both Good and Bad. When
Match(p,Good) and Match(p,Bad) are true and false, respectively,
the pattern p is included in Pattop, a class with high priority (line
10). Intuitively, the pattern p gets high priority if it does not have
any of the features having bad patterns Bad while the pattern p
contains at least one feature of good patterns. At line 11, when
the results ofMatch(p,Good) andMatch(p,Bad) are both false, the
pattern p is appended to Patmid, a class having middle priority (line
12). The patterns in the class Patmid do not include at least the
features of the bad patterns. Otherwise, the pattern p is removed
from the candidate group of top-k patterns.

In the second step (Diversification), we aim to diversify the pat-
terns by filtering out similar patterns in Pattop. To diversify the
patterns, we use the following function:

Diverse(p, P) ⇐⇒ ngram(p) ⊈
⋃
p′∈P

ngram(p′)

Diverse returns true iff ngram(p), a set of n-grams generated by the
pattern p, is not a subset of the union of all n-gram sets generated
by each pattern p′ in the given pattern set P . At line 19, we pop
a pattern p. Then, we add the pattern p into the set Ranked only
whenDiverse(p, Ranked) returns true (line 22). Intuitively, this step
makes each pattern in Ranked have at least one unique n-gram.

4.4 Exploitation with Templates
The last step of the algorithm is to exploit the patterns learned from
the previous phase. However, the patterns in Ranked cannot be used
immediately. Because a pattern is just a sequence of characters, we
need to determine the appropriate position of each character. To
transform a pattern into a template, the algorithm uses the function
PatternToTemplate, which takes a pattern and a set of input vectors,
and creates a template for the pattern. We generate the template
in two steps. First, we only collect the input vectors containing
the pattern among the input vectors V accumulated in step 1 of
Algorithm 2. Second, for each character in the pattern, we compute
the position where the character appears most frequently. The
resulting template is used to perform template-guided concolic
testing.

At line 19 of Algorithm 2, we first pick a pattern p with the high-
est priority from the set Ranked. Then, we transform the pattern p
into the templateT by using PatternToTemplate (line 21). Using the
template, we perform ConcolicTesting(P ,T) for η2 times (lines 23-
26). As wementioned before, we set η2 = 20, because we experimen-
tally observed that a good template usually was able to cover new
branches within 20 trials. Whenever we runConcolicTesting(P ,T),
we accumulate the branches covered by each template T in the
set BT . At lines 30-34, we evaluate the quality of the template T
in terms of the number of uniquely covered branches, where the

Table 1: Benchmark programs

Program # Total branches LOC Input type Source

vim-5.7 35,464 165K unsigned char [4]
gawk-3.0.3 8,038 30K unsigned char [5]
grep-2.2 3,836 15K char [4]
sed-1.17 2,650 9K unsigned char [19]
tree-1.6.0 1,440 4K char [5]

Table 2: Branch coverages achieved by baseline concolic test-
ing on original and modified benchmarks

vim-5.7 grep-2.2 sed-1.17

Org Modify Org Modify Org Modify

CFDS [4] 11,984 12,900 1,833 1,996 908 1,347
CGS [23] 7,507 13,526 1,917 2,072 952 1,236
Random [4] 11,142 11,842 1,767 1,851 917 1,121
Gen [12] 6,197 12,174 1,845 1,884 847 1,326

number is counted as the size of the difference set between the BT
and B sets. When the number is greater than the threshold (η3),
we add the pattern p corresponding to the template T to the set
Good. When the number is less than or equal to one, we add the
pattern p to the set Bad. Note that to rank the candidate patterns in
the next iterations, we only use the patterns, which are definitely
determined to be good or bad. The algorithm repeats the procedure
until the time budget is exhausted. Then, it returns the total number
of covered branches |B ∪TB | (line 37).

As the outer loop of Algorithm 2 is repeated, we gradually ac-
cumulate the learned knowledge, namely Good and Bad sets; the
former represents the knowledge for effectively reducing the search
space while the latter must be avoided. By iteratively updating these
sets, our algorithm guides concolic testing towards maximizing
branch coverage.

5 EVALUATION
In this section, we experimentally evaluate our approach. We im-
plemented our approach in a tool, called ConTest, on the top of
CREST [7], a publicly available concolic testing tool for C programs.
We have conducted the experiments to address the following re-
search questions:
• Effectiveness of our approach: How well does our ap-
proach perform compared to conventional concolic testing?
• Efficacy of online learning: Is online learning crucial for
generating effective templates?
• Learned patterns: What lessons do the learned patterns
provide about search space reduction?

5.1 Settings
5.1.1 Benchmarks. We have used 5 open-source C programs in

Table 1: vim, gawk, grep, sed and tree. All benchmarks came from
the prior works on concolic testing [4, 5, 19] with slight modifica-
tions on the annotations for three benchmarks (vim, grep and sed).

Template-Guided Concolic Testing via Online Learning ASE ’18, September 3–7, 2018, Montpellier, France

During this work, we found that the performance of concolic test-
ing varies significantly depending on how benchmark programs
are annotated, and tried to annotate the programs in ways that
maximize the performance of the baseline concolic testing. For
example, since vim is a text editor program, it is natural to take
inputs of type ‘unsigned char’ (0–255). But the previous version
of vim was annotated with the CREST_unsigned_short function,
which needlessly generates inputs from the larger space (0–65,535).
We replaced it with CREST_unsigned_char. For sed and grep, we
also changed the annotations to make them more natural. For ex-
ample, the original annotations of sed forced concolic testing to
execute the program with the option ‘-f’ always turned on. We
fixed this issue by symbolizing the arguments of the main function.
The modified programs are available with our tool, ConTest.

Table 2 shows that the baseline concolic testing performs much
better on the modified programs. We compared the performance
of the conventional concolic testing on the original and modified
programs with various search heuristics. The table reports the num-
ber of branches covered over 100 runs of concolic testing, where a
single run consists of 4,000 program executions (i.e.,N = 4000 in Al-
gorithm 1). Overall, the performance of concolic testing is improved
significantly with the modifications. For example, concolic testing
with the CGS heuristic [23] for vim-5.7 covered 13,526 branches
on the modified benchmark while the same method managed to
cover 7,507 branches only on the original one. In summary, we
modified the benchmark programs to make the baseline concolic
testing much stronger.

We did not use the four small programs, which were used in [4, 5,
19, 23]: cdaudio, floppy, kbfiltr and replace. This is because the
conventional concolic testing already achieves high code coverage
on those programs, as the sizes of these benchmarks are very small
(e.g., replace is of 0.5KLoC).

5.1.2 SearchHeuristics. In evaluation, we considered four search
heuristics: CGS (Context-Guided Search) [23], CFDS (Control-Flow
Directed Search) [4], Random branch search [4] and Gen (Genera-
tional search) [12]. We chose them because our technique requires
search heuristics to be nondeterministic in order to generate di-
verse input patterns in the first step of Algorithm 2. We did not
use deterministic techniques such as DFS (Depth-First Search) [11]
and ParaDySE [5]. For each benchmark program, we applied our
technique on top of the search heuristic that performs best. For ex-
ample, we used CGS for vim and grep, and CFDS for the remaining
three programs.

5.1.3 Other Settings. We used the same evaluation settings for
both conventional and template-guided concolic testing. First, all
experiments were conducted on a machine with two Intel Xeon
Processors E5-2630 and 192GB RAM. Second, we performed con-
colic testing on all the benchmarks, using 10 cores in parallel. Third,
the initial input was fixed for each benchmark. For vim, the largest
benchmark, we allocated 70 hours for testing budget and 7 hours
for the four smaller programs. We set N = 4, 000 in Algorithm 1.

5.2 Effectiveness of Our Approach
We evaluated our technique and conventional concolic testing on 5
benchmarks in terms of branch coverage and bug detection.

0 7 1 4 2 1 2 8 3 5 4 2 4 9 5 6 6 3 7 0
0

1 2 5 0 0
1 3 0 0 0
1 3 5 0 0
1 4 0 0 0
1 4 5 0 0
1 5 0 0 0
1 5 5 0 0
1 6 0 0 0

 v i m - 5 . 7

Co
ve

red
 Br

an
ch

es

T i m e (h)

 T - C G S
 C F D S
 C G S
 G e n
 R a n d o m

Figure 3: Accumulated branch coverage achieved by conven-
tional concolic testing and our technique on vim-5.7

Table 3: The number of uniquely covered branches and trials

Template-Guided Approach Baseline

Unique Branch # Trials # Unique Branch # Trials

vim 833 2,054 281 2,496
grep 98 2,599 3 1,669
tree 80 2,536 2 3,713
sed 62 9,498 7 11,643
gawk 56 5,100 23 5,261

5.2.1 Branch Coverage. Figure 3 shows that our approach (T-
CGS) increases branch coverage significantly compared to conven-
tional concolic testing on vim-5.7. The CGS heuristic is a robust
baseline that covers 806 more branches compared to the Random
heuristic, the second best of conventional concolic testing. Nev-
ertheless, T-CGS (our template-guided concolic testing on top of
the CGS heuristic) covered 16,197 branches, covering 552 more
branches than CGS. More importantly, Table 3 shows that T-CGS
exclusively covered 833 branches that CGS fails to reach over 70
hours, using 10 cores in parallel. The results show that our tech-
nique enables concolic testing to achieve significant performance
gains in practice by effectively reducing the search space.

Figure 4 shows that our approach also achieves higher branch
coverage than conventional concolic testing on the remaining 4
benchmarks. For example, ours (T-CGS) covered 2,252 branches
for grep, while CGS covered only 2,157 branches during the same
time period (7h). Our approach succeeded to cover the branches
that conventional testing fails to reach on all benchmarks. Table 3
reports the number of unique branches and trials. The former de-
notes the number of branches only covered by each approach. For
grep and tree, 98 and 80 branches were exclusively covered by
T-CGS and T-CFDS, respectively. The latter is the total number of
trials that each approach has performed concolic testing during
the same time budget for each benchmark; as we mentioned above,

ASE ’18, September 3–7, 2018, Montpellier, France Sooyoung Cha, Seonho Lee, and Hakjoo Oh

0 1 2 3 4 5 6 7
0

1 0 0
2 0 0

1 8 0 0

1 9 0 0

2 0 0 0

2 1 0 0

2 2 0 0

2 3 0 0

 g r e p - 2 . 2
Co

ve
red

 Br
an

ch
es

T i m e (h)

 T - C G S
 C F D S
 C G S
 G e n
 R a n d o m

0 1 2 3 4 5 6 7
0

1 0 0

6 0 0

7 0 0

8 0 0

9 0 0

t r e e - 1 . 6 . 0

Co
ve

red
 Br

an
ch

es

T i m e (h)

 T - C F D S
 C F D S
 C G S
 G e n
 R a n d o m

0 1 2 3 4 5 6 7
0

1 0 0
2 0 0

1 2 0 0

1 3 0 0

1 4 0 0

1 5 0 0

1 6 0 0

1 7 0 0

1 8 0 0

 s e d - 1 . 1 7

Co
ve

red
 Br

an
ch

es

T i m e (h)

 T - C F D S
 C F D S
 C G S
 G e n
 R a n d o m

0 1 2 3 4 5 6 7
0

1 0 0
2 0 0

2 8 0 0

2 9 0 0

3 0 0 0

3 1 0 0

3 2 0 0

3 3 0 0

3 4 0 0

 g a w k - 3 . 0 . 3

Co
ve

red
 Br

an
ch

es

T i m e (h)

 T - C F D S
 C F D S
 C G S
 G e n
 R a n d o m

Figure 4: Accumulated branch coverage achieved by conventional concolic testing and our technique on 4 benchmarks

a single trial consists of 4,000 program executions (N = 4, 000 in
Algorithm 1).

Because our approach involves additional runtime overhead (e.g.,
sequential pattern mining), it is natural for our approach to have
fewer runs of concolic testing than conventional approach within
the same time budget. Table 3 shows that the number of trials by
baseline is usually greater than the number of trials by our template-
guided concolic testing. For example, for vim, the largest program
in our benchmarks, the baseline (CGS) ran concolic testing 2,496
times for 70 hours, while our technique (T-CGS) performed it 2,054
times. One interesting point is that for grep, the number of trials
for our technique is greater than that for conventional concolic
testing. This is because the benefit of reducing the search space
(e.g., constraint solving time) in grep is greater than the overhead
(e.g., pattern mining time) caused by our approach.

5.2.2 Bug Finding. During experiments, we have found five
bugs in sed, grep, and gawk, which are exploitable even in the latest
versions of the programs. Table 4 shows the bug-triggering inputs
and phenomenons when the programs are executed with the inputs.

Table 4: Bugs in benchmarks

Phenomenons Bug-Triggering Inputs Version

sed Memory Exhaustion
'H
g
;D'

4.4(latest)

sed Infinite File Write
'H
w {-
x; D'

4.4(latest)

grep Segmentation Fault '\(\)\1\+**' 3.1(latest)

grep Non-Terminating '?(^(|^+*)*\+\{8957\}' 3.1(latest)

gawk Memory Exhaustion '$6672467e2=E7' 4.21(latest)

The two error-triggering inputs for sed could consume all of our
Linux machine’s memory and hard disk, respectively. The template
used for generating the former input is as follows: { (1, ‘\n’), (3,
‘\n’), (5, ‘D’), (6, ’\0’) }. The template guides concolic testing to find
the bug effectively by concretizing 4 of the 6 characters required to

Template-Guided Concolic Testing via Online Learning ASE ’18, September 3–7, 2018, Montpellier, France

Table 5: Top 5 good and bad patterns

tree-1.6.0 sed-1.17

good patterns bad patterns good patterns bad patterns

- g d \0 - g s \0 / \n \ \ \n \n \n [
1 d \0 1 d \0 ; / 1 n ; \ \ % % \n
- r \0 - u F . \0 ; \n $ \ \n ; n % %
- f i - f x / , } $ \ } ;
- f g - f N / \ [ˆ , %

cause the bug. In grep, the segmentation fault occurred when we
ran the program with the input we found: grep '\(\)\1\+**' file.

In particular, the input '$6672467e2=E7' found by our approach
in gawk causes a lot of memory to be consumed. One interesting
point is that the latest version of gawk has already performed the ex-
ception handling on such performance bugs. For example, when we
append a string '66' to the original input '6672467e2=E7', an error
handling message (“Cannot allocate memory”) is printed and the
program is terminated. However, the input we found corresponds
to the corner case of the error handling code, and it consumes more
than 100GB of memory on our Linux machine. While our technique
generated the five bug-triggering inputs in Table 4, conventional
concolic testing managed to generate the two inputs for sed only
within the same time budget.

5.3 Efficacy of Online Learning
We have compared the performance of our pattern ranking algo-
rithm (Algorithm 3) and a naive algorithm that randomly selects
patterns on sed-1.17. To do so, for the first 10 iterations of the
outer loop of Algorithm 2, we compared the qualities of the patterns
selected by the two algorithms, where the qualities are quantified by
the number of uniquely covered branches that the CFDS heuristic
(the baseline for sed) failed to reach.

Figure 5 shows that our algorithm outperforms the naive algo-
rithm in two aspects. First, our algorithm succeeds in selecting
33 effective patterns (represented by stars in the figure) while the
naive algorithm manages to pick 13 effective ones (represented by
circles) for the given budget. As online learning progresses, our
algorithm gradually increases the number of times that it picks up
effective patterns; during the last 3 iterations (8-10 iterations), our
algorithm successfully selected about 55% of the overall effective
patterns. Second, the average and maximum performance of the
patterns selected by our learning algorithm are higher than ones
achieved by the naive algorithm; the best pattern chosen by our
algorithm contributed to covering 104 unique branches. On the
other hand, the best one of the naive algorithm only managed to
cover 58 unique branches. The average performance of effective
patterns selected by ours and random selection algorithm is 54 and
47, respectively. As a result, when the total budget is exhausted, our
learning and naive approaches covered 1,707 and 1,644 branches,
respectively.

In summary, online learning is essential for solving the problem
of selecting good patterns. Blindly reducing the search space with-
out learning can be inferior even to conventional concolic testing.

1 2 3 4 5 6 7 8 9 1 0
4 0

5 0

6 0

7 0

8 0

1 0 0

 s e d - 1 . 1 7 L e a r n i n g R a n d o m

Un
iqu

ely
 Co

ve
red

 Br
an

ch
es

I t e r a t i o n s

Figure 5: Comparison with online learning algorithm and
random algorithm

5.4 Learned Patterns
We discuss good and bad patterns chosen during online learning
in terms of increasing unique branch coverage. Table 5 shows the
top 5 good and bad patterns on tree-1.6.0 and sed-1.17. The
former represents the top 5 good patterns with the highest number
of unique branches that conventional concolic testing fails to reach
and the latter is 5 patterns that do not cover any of the unique
branches.

For tree-1.6.0, good and bad patterns are hardly distinguish-
able. Except for the third pattern, every row shows similar good and
bad patterns. In particular, the second patterns are exactly the same.
This explains why our ranking algorithm (Algorithm 3) should con-
servatively remove the unreliable patterns; recall that we remove
candidates if it contains both good and bad features. On the other
hands, for sed-1.17, good and bad patterns are quite distinctive.
However, it is still very difficult for humans to predict which set of
the two pattern sets can effectively reduce the search space. That
is, manually selecting a set of good patterns is highly tricky, which
is something that machines can do better than humans.

5.5 Threats to Validity
• Benchmarks: We used 5 benchmark programs which were
widely used from prior work on concolic testing [4, 5, 19].
However, the benchmarks, accepting strings as input, may
not be sufficient to evaluate the performance of our tech-
nique and conventional concolic testing in general.
• A budget for ConcolicTesting: We set N in Algorithm 1 to
4,000, the same value used in prior work [4, 5, 19]. However,
the performance of our technique and conventional concolic
testing may vary depending on the value.

6 RELATEDWORK
Among existing works on mitigating the path-explosion problem
in concolic testing [2, 4, 5, 10, 12, 13, 17, 23, 28, 29], we discuss two
main approaches that are closely related to our approach: search

ASE ’18, September 3–7, 2018, Montpellier, France Sooyoung Cha, Seonho Lee, and Hakjoo Oh

heuristics and search-space reduction. We also discuss recent works
that improve software testing with learning [5, 14, 20, 21, 24, 26].

Search Heuristics. Our technique is orthogonal to the existing
works for search heuristics [4, 5, 12, 23, 29]. To achieve the goal
of maximizing code coverage, search heuristics focus on selecting
one of the candidate branches in the path, whereas our technique
reduces the number of the candidates by using template. A heuristic
selects the branches that are most likely to maximize code coverage
according to its own criterion. For example, the CFDS heuristic [4]
selects a branch closest to any of uncovered branches nearby the
current execution path. The CGS heuristic [23] selects a branch by
performing the breath-first search on execution tree while exclud-
ing branches with the same “contexts” from the branch selection.
The context of each branch is calculated as a sequence of preced-
ing branches. The Generational heuristic [12] first selects all the
branches once in the current path, and measures the coverage gain
for each branch selection. Then, the heuristic selects the branch
with the highest gain as the next-generation branch. Our technique
can be used in combination with these search heuristics.

Search-Space Reduction. Our work can be seen as a new ap-
proach for reducing the search space [2, 3, 17, 28]. DASE (Document
Assisted Symbolic Execution) [28] is a technique that allows sym-
bolic execution to exercise core functionalities of the program by
extracting input constraints from program documents (e.g., manual
pages). Our technique is different from DASE as we do not require
any prior domain knowledge (i.e., documents). Jaffar et al. [17] aim
to prune the execution paths guaranteed to not trigger a bug by
using interpolation. Boonstoppel et al. [2] proposed the technique,
read-write set analysis, for pruning the number of execution paths
that produce the same effects. Bugrara et al. [3] introduced the tech-
nique to discard the paths that are similar to previously executed
paths. Our technique differs from these works in that we apply
online learning to adaptively reduce the search space of concolic
testing.

Learning-based Software Testing. At a high-level, our work
belongs to the techniques that combine software testing with ma-
chine learning [5, 6, 14, 20, 24, 26]. Learn&Fuzz [14] aims to generate
input grammars (e.g., PDF object) for fuzzing by using character-
level recurrent neural networks. Skyfire [26] aims to learn a prob-
abilistic context-sensitive grammar from the existing samples to
generate seed inputs for fuzzing. QBE [20] learns the kinds of GUI
actions to detect crashes or increase activity coverage in Android
GUI testing via Q-learning. RETECS [24] employs reinforcement
learning to automatically prioritize test cases that are likely to de-
tect bugs in Continuous Integration (CI). Lastly, ParaDySE [5] aims
to automatically learn search heuristics for concolic testing. In this
work, we use online learning to select good templates, effectively
reducing the search space of concolic testing.

7 CONCLUSION
Coping with the path-explostion problem continues to be the long-
standing challenge in concolic testing. In this paper, we presented
a new approach, which mitigates the path-explosion problem by re-
ducing the search space using templates. In our approach, concolic
testing uses a set of templates to exploit common input patterns

that improve coverage effectively, where the templates are automat-
ically generated through online learning algorithm based on the
feedback from past runs of concolic testing. Experimental results
demonstrate that our template-guided concolic testing with online
learning outperforms conventional concolic testing significantly in
both branch coverage and bug-finding.

ACKNOWLEDGMENTS
This work was supported by Samsung Research Funding & In-
cubation Center of Samsung Electronics under Project Number
SRFC-IT1701-09. This research was also supported by Basic Sci-
ence Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Science, ICT & Future
Planning (NRF-2016R1C1B2014062).

REFERENCES
[1] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. 2014.

Enhancing Symbolic Execution with Veritesting. In Proceedings of the 36th Inter-
national Conference on Software Engineering (ICSE 2014). ACM, New York, NY,
USA, 1083–1094. https://doi.org/10.1145/2568225.2568293

[2] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. 2008. RWset: Attacking
path explosion in constraint-based test generation. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
351–366.

[3] Suhabe Bugrara and Dawson Engler. 2013. Redundant State Detection for Dy-
namic Symbolic Execution. In Proceedings of the 2013 USENIX Conference on
Annual Technical Conference (USENIX ATC’13). USENIX Association, Berkeley,
CA, USA, 199–212. http://dl.acm.org/citation.cfm?id=2535461.2535486

[4] J. Burnim and K. Sen. 2008. Heuristics for Scalable Dynamic Test Generation. In
Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE ’08). IEEE Computer Society, Washington, DC, USA,
443–446. https://doi.org/10.1109/ASE.2008.69

[5] Sooyoung Cha, SeongjoonHong, Junhee Lee, and Hakjoo Oh. 2018. Automatically
Generating Search Heuristics for Concolic Testing. In Proceedings of the 40th
International Conference on Software Engineering.

[6] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI Testing of
Android Apps with Minimal Restart and Approximate Learning. In Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA ’13). ACM, New York, NY, USA,
623–640. https://doi.org/10.1145/2509136.2509552

[7] CREST. A concolic test generation tool for C. [n. d.]. https://github.com/jburnim/
crest.

[8] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh Jha. 2013.
FIE on Firmware: Finding Vulnerabilities in Embedded Systems Using Symbolic
Execution.. In USENIX Security Symposium. 463–478.

[9] Fabio Fumarola, Pasqua Fabiana Lanotte, Michelangelo Ceci, and Donato Malerba.
2016. CloFAST: closed sequential pattern mining using sparse and vertical id-lists.
Knowledge and Information Systems 48, 2 (2016), 429–463.

[10] Patrice Godefroid. 2007. Compositional Dynamic Test Generation. In Proceed-
ings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’07). ACM, New York, NY, USA, 47–54. https:
//doi.org/10.1145/1190216.1190226

[11] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05). ACM, New York,
NY, USA, 213–223. https://doi.org/10.1145/1065010.1065036

[12] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. 2008. Automated
Whitebox Fuzz Testing.. In Proceedings of the Symposium on Network and Dis-
tributed System Security (NDSS), Vol. 8. 151–166.

[13] Patrice Godefroid, Aditya V Nori, Sriram K Rajamani, and Sai Deep Tetali. 2010.
Compositional may-must program analysis: unleashing the power of alternation.
In ACM Sigplan Notices, Vol. 45. ACM, 43–56.

[14] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&fuzz: Machine
learning for input fuzzing. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering. IEEE Press, 50–59.

[15] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umesh-
war Dayal, and Meichun Hsu. 2001. Prefixspan: Mining sequential patterns
efficiently by prefix-projected pattern growth. In proceedings of the 17th interna-
tional conference on data engineering. 215–224.

[16] Grant Hernandez, Farhaan Fowze, Dave (Jing) Tian, Tuba Yavuz, and Kevin R.B.
Butler. 2017. FirmUSB: Vetting USB Device Firmware Using Domain Informed

https://doi.org/10.1145/2568225.2568293
http://dl.acm.org/citation.cfm?id=2535461.2535486
https://doi.org/10.1109/ASE.2008.69
https://doi.org/10.1145/2509136.2509552
https://github.com/jburnim/crest
https://github.com/jburnim/crest
https://doi.org/10.1145/1190216.1190226
https://doi.org/10.1145/1190216.1190226
https://doi.org/10.1145/1065010.1065036

Template-Guided Concolic Testing via Online Learning ASE ’18, September 3–7, 2018, Montpellier, France

Symbolic Execution. In Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’17). ACM, New York, NY, USA, 2245–
2262. https://doi.org/10.1145/3133956.3134050

[17] Joxan Jaffar, Vijayaraghavan Murali, and Jorge A. Navas. 2013. Boosting Con-
colic Testing via Interpolation. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2013). ACM, New York, NY, USA,
48–58. https://doi.org/10.1145/2491411.2491425

[18] Su Yong Kim, Sangho Lee, Insu Yun, Wen Xu, Byoungyoung Lee, Youngtae Yun,
and Taesoo Kim. 2017. CAB-Fuzz: Practical Concolic Testing Techniques for
COTS Operating Systems. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17). USENIX Association, Santa Clara, CA, 689–701. https://www.usenix.
org/conference/atc17/technical-sessions/presentation/kim

[19] Yunho Kim and Moonzoo Kim. 2011. SCORE: a scalable concolic testing tool for
reliable embedded software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. ACM,
420–423.

[20] Yavuz Koroglu, Alper Sen, Ozlem Muslu, Yunus Mete, Ceyda Ulker, Tolga Tan-
riverdi, and Yunus Donmez. 2018. QBE: QLearning-based exploration of android
applications. In Software Testing, Verification and Validation (ICST), 2018 IEEE 11th
International Conference on. IEEE, 105–115.

[21] Xin Li, Yongjuan Liang, Hong Qian, Yi-Qi Hu, Lei Bu, Yang Yu, Xin Chen, and
Xuandong Li. 2016. Symbolic Execution of Complex Program Driven by Machine
Learning Based Constraint Solving. In Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE 2016). ACM, New
York, NY, USA, 554–559. https://doi.org/10.1145/2970276.2970364

[22] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit
Testing Engine for C. In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE-13). ACM, New York, NY, USA,
263–272. https://doi.org/10.1145/1081706.1081750

[23] Hyunmin Seo and Sunghun Kim. 2014. How We Get There: A Context-guided
Search Strategy in Concolic Testing. In Proceedings of the 22Nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE 2014). ACM,
New York, NY, USA, 413–424. https://doi.org/10.1145/2635868.2635872

[24] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Rein-
forcement learning for automatic test case prioritization and selection in continu-
ous integration. In Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis. ACM, 12–22.

[25] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
Proceedings of the Symposium on Network and Distributed System Security (NDSS).
1–16.

[26] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-driven
seed generation for fuzzing. In Security and Privacy (SP), 2017 IEEE Symposium
on. IEEE, 579–594.

[27] Jianyong Wang, Jiawei Han, and Chun Li. 2007. Frequent closed sequence
mining without candidate maintenance. IEEE Transactions on Knowledge and
Data Engineering 19, 8 (2007), 1042–1056.

[28] E. Wong, L. Zhang, S. Wang, T. Liu, and L. Tan. 2015. DASE: Document-
Assisted Symbolic Execution for Improving Automated Software Testing. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
620–631. https://doi.org/10.1109/ICSE.2015.78

[29] Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. 2009.
Fitness-guided path exploration in dynamic symbolic execution. In Dependable
Systems & Networks, 2009. DSN’09. IEEE/IFIP International Conference on. IEEE,
359–368.

[30] Xifeng Yan, Jiawei Han, and Ramin Afshar. 2003. CloSpan: Mining: Closed
sequential patterns in large datasets. In Proceedings of the 2003 SIAM international
conference on data mining. SIAM, 166–177.

[31] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and Davide Balzarotti. 2014.
AVATAR: A Framework to Support Dynamic Security Analysis of Embedded
Systems’ Firmwares.. In NDSS.

https://doi.org/10.1145/3133956.3134050
https://doi.org/10.1145/2491411.2491425
https://www.usenix.org/conference/atc17/technical-sessions/presentation/kim
https://www.usenix.org/conference/atc17/technical-sessions/presentation/kim
https://doi.org/10.1145/2970276.2970364
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/2635868.2635872
https://doi.org/10.1109/ICSE.2015.78

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivating Example
	2.2 Template-Guided Concolic Testing with Online Learning

	3 Template-Guided Concolic Testing
	3.1 Conventional Concolic Testing
	3.2 Concolic Testing with Template

	4 Template-Guided Concolic Testing with Online Learning
	4.1 Exploration without Templates
	4.2 Mining Patterns
	4.3 Ranking Patterns
	4.4 Exploitation with Templates

	5 evaluation
	5.1 Settings
	5.2 Effectiveness of Our Approach
	5.3 Efficacy of Online Learning
	5.4 Learned Patterns
	5.5 Threats to Validity

	6 related work
	7 Conclusion
	Acknowledgments
	References

