
Learning a Strategy for Choosing Widening
Thresholds from a Large Codebase

Sooyoung Cha, Sehun Jeong, and Hakjoo Oh

Korea University

Abstract. In numerical static analysis, the technique of widening thresh-
olds is essential for improving the analysis precision, but blind uses of the
technique often significantly slow down the analysis. Ideally, an analysis
should apply the technique only when it benefits, by carefully choosing
thresholds that contribute to the final precision. However, finding the
proper widening thresholds is nontrivial and existing syntactic heuristics
often produce suboptimal results. In this paper, we present a method
that automatically learns a good strategy for choosing widening thresh-
olds from a given codebase. A notable feature of our method is that a
good strategy can be learned with analyzing each program in the code-
base only once, which allows to use a large codebase as training data.
We evaluated our technique with a static analyzer for full C and 100
open-source benchmarks. The experimental results show that the learned
widening strategy is highly cost-effective; it achieves 84% of the full preci-
sion while increasing the baseline analysis cost only by 1.4x. Our learning
algorithm is able to achieve this performance 26 times faster than the
previous Bayesian optimization approach.

1 Introduction

In static analysis for discovering numerical program properties, the technique
of widening with thresholds is essential for improving the analysis precision [1–
4, 6–9]. Without the technique, the analysis often fails to establish even simple
numerical invariants. For example, suppose we analyze the following code snippet
with the interval domain:

1 i = 0;

2 while (i != 4) {

3 i = i + 1;

4 assert(i <= 4);

5 }

Note that the interval analysis with the standard widening operator cannot prove
the safety of the assertion at line 4. The analysis concludes that the interval value
of i right after line 2 is [0,+∞] (hence [1,+∞] at line 4) because of the widening
operation applied at the entry of the loop. A simple way of improving the result
is to employ widening thresholds. For example, when an integer 4 is used as a

2 Sooyoung Cha, Sehun Jeong, and Hakjoo Oh

threshold, the widening operation at the loop entry produces the interval [0, 4],
instead of [0,+∞], for the value of i. The loop condition i 6= 4 narrows down
the value to [0, 3] and therefore we can prove that the assertion holds at line 4.

However, it is a challenge to choose the right set of thresholds that im-
proves the analysis precision with a small extra cost. Simple-minded methods
can hardly be cost-effective. For example, simply choosing all integer constants in
the program would not scale to large programs. Existing syntactic and semantics
heuristics for choosing thresholds (e.g. [3, 9, 8, 6]) are also not satisfactory. For
example, the syntactic heuristic used in [3], which is specially designed for the
flight control software, is not precision-effective in general [12]. A more sophis-
ticated, semantics-based heuristic sometimes incurs significant cost blow up [8].
No existing techniques are able to prescribe small yet effective set of thresholds
for arbitrary programs.

In this paper, we present a technique that automatically learns a good strat-
egy for choosing widening thresholds from a given codebase. The learned strategy
is then used for analyzing new, unseen programs. Our technique includes a pa-
rameterized strategy for choosing widening thresholds, which decides whether
to use each integer constant in the given program as a threshold or not. Fol-
lowing [13], the strategy is parameterized by a vector of real numbers and the
effectiveness of the strategy is completely determined by the choice of the pa-
rameter. Therefore, in our approach, learning a good strategy corresponds to
finding a good parameter from a given codebase.

A salient feature of our method is that a good strategy can be learned by
analyzing the codebase only once, which enables us to use a large codebase
as a training dataset. In [13], learning a strategy is formulated as a blackbox
optimization problem and the Bayesian optimization approach was proposed to
efficiently solve the optimization problem. However, we found that this approach
is still too costly when the codebase is large, mainly because it requires multiple
runs of the static analyzer over the entire codebase. Motivated by this limitation,
we designed a new learning algorithm that does not require running the analyzer
over the codebase multiple times. The key idea is to use an oracle that quantifies
the relative importance of each integer constant in the program with respect to
improving the analysis precision. With this oracle, we transform the blackbox
optimization problem to a whitebox one that is much easier to solve than the
original problem. We show that the oracle can be effectively obtained from a
single run of the static analyzer over the codebase.

The experimental results show that our learning algorithm produces a highly
cost-effective strategy and is fast enough to be used with a large codebase. We
implemented our approach in a static analyzer for real-world C programs and
used 100 open-source benchmarks for the evaluation. The learned widening strat-
egy achieves 84% of the full precision (i.e., the precision of the analysis using
all integer constants in the program as widening thresholds) while increasing
the cost of the baseline analysis without widening thresholds only by 1.4x. Our
learning algorithm is able to achieve this performance 26 times faster than the
existing Bayesian optimization approach.

Learning a Strategy for Choosing Widening Thresholds 3

Contributions This paper makes the following contributions.

– We present a learning-based method for selectively applying the technique
of widening thresholds. From a given codebase, our method automatically
learns a strategy for choosing widening thresholds.

– We present a new, oracle-guided learning algorithm that is significantly faster
than the existing Bayesian optimization approach. Although we use this
algorithm for learning widening strategy, our learning algorithm is generally
applicable to adaptive static analyses in general provided a suitable oracle
is given for each analysis.

– We prove the effectiveness of our method in a realistic setting. Using a large
codebase of 100 open-source programs, we experimentally show that our
learning strategy is highly cost-effective, achieving the 84% of the full preci-
sion while increasing the cost by 1.4 times.

Outline We first present our learning algorithm in a general setting; Section 2
defines a class of adaptive static analyses and Section 3 explains our oracle-guided
learning algorithm. Next, in Section 4, we describe how to apply the general
approach to the problem of learning a widening strategy. Section 5 presents the
experimental results, Section 6 discusses related work, and Section 7 concludes.

2 Adaptive Static Analysis

We use the setting of adaptive static analysis in [13]. Let P ∈ P be a program to
analyze. Let JP be a set of indices that represent parts of P . Indices in JP are
used as “switches” that determine whether to apply high precision or not. For
example, in the partially flow-sensitive analysis in [13], JP is the set of program
variables and the analysis applies flow-sensitivity only to a selected subset of JP .
In this paper, JP denotes the set of constant integers in the program and our
aim is to choose a subset of JP that will be used as widening thresholds. Once
JP is chosen, the set AP of program abstractions is defined as a set of indices as
follows:

a ∈ AP = ℘(JP).

In the rest of the paper, we omit the subscript P from JP and AP when there
is no confusion.

The program is given together with a set of queries (i.e. assertions) and the
goal of the static analysis is to prove as many queries as possible. We suppose
that an adaptive static analysis is given with the following type:

F : P×A → N.

Given a program P and its abstraction a, the analysis F (P,a) analyzes the
program P by applying high precision (e.g. widening thresholds) only to the
program parts in the abstraction a. For example, F (P, ∅) and F (P, JP) repre-
sent the least and most precise analyses, respectively. The result from F (P,a)

4 Sooyoung Cha, Sehun Jeong, and Hakjoo Oh

indicates the number of queries in P proved by the analysis. We assume that the
abstraction correlates the precision and cost of the analysis. That is, if a′ is a
more refined abstraction than a (i.e. a ⊆ a′), then F (P,a′) proves more queries
than F (P,a) does but the former is more expensive to run than the letter. This
assumption usually holds in program analyses for C.

In this paper, we are interested in automatically finding an adaptation strat-
egy

S : P→ A

from a given codebase P = {P1, . . . , Pm}. Once the strategy is learned, it is used
for analyzing unseen program P as follows:

F (P,S(P)).

Our goal is to learn a cost-effective strategy S∗ such that F (P,S∗(P)) has pre-
cision comparable to that of the most precise analysis F (P, JP) while its cost
remains close to that of the least precise one F (P, ∅).

3 Learning an Adaptation Strategy from a Codebase

In this section, we explain our method for learning a strategy S : P → A from
a codebase P = {P1, . . . , Pm}. Our method follows the overall structure of the
learning approach in [13] but uses a new learning algorithm that is much more
efficient than the Bayesian optimization approach in [13].

In Section 3.1, we summarize the definition of the adaptation strategy in [13],
which is parameterized by a vector w of real numbers. In Section 3.2, the opti-
mization problem of learning is defined. Section 3.3 briefly presents the existing
Bayesian optimization method for solving the optimization problem and dis-
cusses its limitation in performance. Finally, Section 3.4 presents our learning
algorithm that avoids the problem of the existing approach.

3.1 Parameterized Adaptation Strategy

In [13], the adaptation strategy is parameterized and the result of the strategy
is limited to a particular set of abstractions. That is, the parameterized strategy
is defined with the following type:

Sw : P→ Ak

where Ak = {a ∈ A | |a| = k} is the set of abstractions of size k. The strat-
egy is parameterized by w ∈ Rn, a vector of real numbers. In this paper, we
assume that k is fixed, which is set to 30 in our experiments, and R denotes real
numbers between −1 and 1, i.e., R = [−1, 1]. The effectiveness of the strategy
is solely determined by the parameter w. With a good parameter w, the analy-
sis F (P,Sw(P)) has precision comparable to the most precise analysis F (P, JP)
while its cost is not far different from the least precise one F (P, ∅). Our goal is
to learn a good parameter w from a codebase P = {P1, P2, . . . , Pm}.

Learning a Strategy for Choosing Widening Thresholds 5

The parameterized adaptation strategy Sw is defined as follows. We assume
that a set of program features is given:

fP = {f1P , f2P , . . . , fnP }

where a feature fkP is a predicate over the switches JP :

fkP : JP → B.

In general, a feature is a function of type JP → R but we assume that the result
is binary for simplicity. Note that the number of features equals to the dimension
of w. With the features, a switch j is represented by a feature vector as follows:

fP (j) = 〈f1P (j), f2P (j), . . . , fnP (j)〉.

The strategy Sw works in two steps:

1. Compute the scores of switches. The score of switch j is computed by a
linear combination of its feature vector and the parameter w:

scorewP (j) = fP (j) ·w. (1)

The score of an abstraction a is defined by the sum of the scores of elements
in a:

scorewP (a) =
∑
j∈a

scorewP (j).

2. Select the top-k switches. Our strategy selects top-k switches with highest
scores:

Sw(P) = argmax
a∈Ak

P

scorewP (a).

3.2 The Optimization Problem

Learning a good parameter w from a codebase P = {P1, . . . , Pm} corresponds
to solving the following optimization problem:

Find w∗ ∈ Rn that maximizes obj (w∗) (2)

where the objective function is

obj (w) =
∑
Pi∈P

F (Pi,Sw(Pi)).

That is, we aim to find a parameter w∗ that maximizes the number of queries
in the codebase that are proved by the static analysis with Sw∗ . Note that it
is only possible to solve the optimization problem approximately because the
search space is very large. Furthermore, evaluating the objective function is
typically very expensive since it involves running the static analysis over the
entire codebase.

6 Sooyoung Cha, Sehun Jeong, and Hakjoo Oh

3.3 Existing Approach

In [13], a learning algorithm based on Bayesian optimization has been proposed.
To simply put, this algorithm performs a random sampling guided by a proba-
bilistic model:

1: repeat
2: sample w from Rn using probabilistic model M
3: s← obj (w)
4: update the model M with (w, s)
5: until timeout
6: return best w found so far

The algorithm uses a probabilistic model M that approximates the objective
function by a probabilistic distribution on function spaces (using the Gaussian
Process [14]). The purpose of the probabilistic model is to pick a next parameter
to evaluate that is predicted to work best according the approximation of the
objective function (line 2). Next, the algorithm evaluates the objective function
with the chosen parameter w (line 3). The model M gets updated with the
current parameter and its evaluation result (line 4). The algorithm repeats this
process until the cost budget is exhausted and returns the best parameter found
so far.

Although this algorithm is significantly more efficient than the random sam-
pling [13], it still requires a number of iterations of the loop to learn a good
parameter. According to our experience, the algorithm with Bayesian optimiza-
tion typically requires more than 100 iterations to find good parameters (Section
5). Note that even a single iteration of the loop can be very expensive in practice
because it involves running the static analyzer over the entire codebase. When
the codebase is massive and the static analyzer is costly, evaluating the objective
function multiple times is prohibitively expensive.

3.4 Our Oracle-Guided Approach

In this paper, we present a method for learning a good parameter without ana-
lyzing the codebase multiple times. By analyzing each program in the codebase
only once, our method is able to find a parameter that is as good as the param-
eter found by the Bayesian optimization method.

We achieve this by applying an oracle-guided approach to learning. Our
method assumes the presence of an oracle OP for each program P , which maps
program parts in JP to real numbers in R = [−1, 1]:

OP : JP → R.

For each j ∈ JP , the oracle returns a real number that quantifies the relative
contribution of j in achieving the precision of F (P, JP). That is, O(j1) < O(j2)
means that j2 contributes more than j1 to improving the precision during the
analysis of F (P, JP). We assume that the oracle is given together with the adap-
tive static analysis. In Section 4.3, we show that such an oracle easily results
from analyzing the program for interval analysis with widening thresholds.

Learning a Strategy for Choosing Widening Thresholds 7

In the presence of the oracle, we can establish an easy-to-solve optimization
problem which serves as a proxy of the original optimization problem in (2).
For simplicity, assume that the codebase consists of a single program: P = {P}.
Shortly, we extend the method to multiple training programs. Let O be the
oracle for program P . Then, the goal of our method is to learn w such that, for
every j ∈ JP , the scoring function in (1) instantiated with w produces a value
that is as close to O(j) as possible. We formalize this optimization problem as
follows:

Find w∗ that minimizes E(w∗)

where E(w) is defined to be the mean square error of w:

E(w) =
∑
j∈JP

(scorewP (j)−O(j))2

=
∑
j∈JP

(fP (j) ·w −O(j))2

=
∑
j∈JP

(

n∑
i=1

f iP (j)wi −O(j))2.

Note that the body of the objective function E(w) is a differentiable, closed-
form expression, so we can use the standard gradient decent algorithm to find a
minimum of E. The algorithm is simply stated as follows:

1: sample w from Rn

2: repeat
3: w = w − α · ∇E(w)
4: until convergence
5: return w

Starting from a random parameter w (line 1), the algorithm keeps going down
toward the minimum in the direction against the gradient ∇E(w). The single
step size is determined by the learning rate α. The gradient of E is defined as
follows:

∇E(w) =
(∂

∂w1
E(w),

∂

∂w2
E(w), · · · , ∂

∂wn
E(w)

)
where the partial derivatives are

∂

∂wk
E(w) = 2

∑
j∈JP

(

n∑
i=1

f iP (j)wi −O(j))fkP (j)

Because the optimization problem does not involve the static analyzer and code-
base, learning a parameter w is done quickly regardless of the cost of the analysis
and the size of the codebase, and in the next section, we show that a good-enough
oracle can be obtained by analyzing the codebase only once.

It is easy to extend the method to multiple programs. Let P = {P1, . . . , Pm}
be the codebase. We assume the presence of oracles OP1 , . . . ,OPm for each pro-
gram Pi ∈ P. We establish the error function EP over the entire codebase as

8 Sooyoung Cha, Sehun Jeong, and Hakjoo Oh

follows:

EP(w) =
∑
P∈P

∑
j∈JP

(

n∑
i=1

f iP (j)wi −OP (j))2

and now the gradient ∇EP(w) is defined with the partial derivatives:

∂

∂wk
EP(w) = 2

∑
P∈P

∑
j∈JP

(

n∑
i=1

f iP (j)wi −O(j))fkP (j).

Again, we use the gradient decent algorithm to find w that minimizes EP(w).

4 Learning a Strategy for Widening Thresholds

In this section, we explain how to employ the oracle-guided method to learn
a widening threshold strategy from a codebase. In Section 4.1, we define an
interval analysis that uses widening with thresholds. Section 4.2 and 4.3 present
the features and oracle that we used for the interval analysis, respectively.

4.1 Interval Analysis with Widening Thresholds

We assume that a program P ∈ P is represented by a control flow graph P =
(C, ↪→), where C is the set of nodes (i.e. program points) and (↪→) ⊆ C × C is
a binary relation denoting control-flows of the program; c′ → c means that c is
the program point next to c′.

The abstract domain of the analysis maps programs points to abstract states:

D = C→ S

where S is a map from program variables to the interval domain:

S = Var → I.

The abstract semantic function of the analysis is defined as follows:

F (X) = λc. fc(
⊔
c′→c

X(c′))

where we assume that transfer function fc : S→ S is defined for each command
c. The goal of the analysis is to compute an upper bound of the least fixed point
of F :

lfpF =
⊔
i≥0

F i(⊥) = F 0(⊥) t F 1(⊥) t F 2(⊥) t · · ·

This fixed point iteration may not terminate because the interval domain I is of
infinite height. Therefore, the analysis should use a widening operator for I. A
simple widening operator for the interval domain can be defined as follows: (For
simplicity, we omit the cases when intervals are bottom).

[l1, u1]O[l2, u2] = [(l2 < l1?−∞ : l1), (u1 < u2? +∞ : u1)] (3)

Learning a Strategy for Choosing Widening Thresholds 9

Note that this widening operator is very hasty and immediately replaces unstable
bounds by ∞.

The technique of widening with thresholds aims to improve the precision
by bounding the extrapolation by widening. Suppose we have a set T ⊆ Z of
thresholds. These thresholds are successively used as a candidate of a fixed point.
Formally, the widening operator OT with thresholds is defined as follows:

[l1, u1]OT [l2, u2] = [(l2 < l1?glb(T, l2) : l1), (u1 < u2?lub(T, u2) : u1)] (4)

where glb(T, i) and lub(T, i) are respectively the greatest lower bound and least
upper bound of i in thresholds T :

glb(T, i) = max{n ∈ T | n ≤ i}
lub(T, i) = min{n ∈ T | n ≥ i}

The widening operators for S and D are defined pointwise.
The precision improvement by widening with thresholds crucially depends

on the choice of the set T of thresholds, and our goal is to automatically learn a
good strategy for choosing T from a given codebase. In our implementation, the
set JP in Section 5.1 corresponds to the set of all integer constants in program
P , and the strategy Sw chooses top-k integers from P based on the parameter
w.

4.2 Features

To use the learning algorithm, we need to design a set of features for integer con-
stants in the program. We have designed 17 syntactic, semantic, and numerical
features (Table 1). A feature is a predicate over integers. For example, the first
feature in Table 1 indicates whether the number is used as the size of a statically
allocated array in the program.

The features have been designed with simplicity and generality in mind.
They do not depend on the interval analysis and therefore can be easily reused
for other types of numerical analyses. Features 1–12 describe simple syntactic
and semantic features for usages of integers in typical C programs. We used
a flow-insensitive pre-analysis to extract the semantic features (e.g. feature 7).
Features 13–17 describe numerical properties that are commonly found in C
programs. We were curious whether these common numerical properties have
impacts on the analysis precision when they are used for widening thresholds.
Once these features are manually designed, it is the learning algorithm’s job to
decide how much they are relevant in the given analysis task.

4.3 Oracle

To use our new learning algorithm, we need the oracle:

OP : ZP → R

10 Sooyoung Cha, Sehun Jeong, and Hakjoo Oh

Table 1. Features for integer constants in C programs. Each feature represents a
predicate over integers.

Description

1 used as the size of a static array
2 the size of a static array − 1
3 returned by a function (e.g. return 1)
4 three successive numbers appear in the program (e.g. n, n + 1, n + 2)
5 most frequently appeared numbers in the program (i.e. top 10%)
6 least frequently appeared numbers in the program (i.e. bottom 10%)
7 passed as the size arguments of memory copy functions (e.g. memcpy)
8 used as the size of the destination arrays in memory copy functions (e.g. memcpy)
9 the null position of a string buffer involved in some loop condition
10 the null position of a static array of primitive types (e.g., arrays of int and char)
11 the null position of a static array of structure fields
12 constants involved in conditional expressions (e.g. if (x == 1))
13 integers of the form 2n (e.g. 2, 4, 8, 16)
14 integers of the form 2n − 1 (e.g., 1, 3, 7, 15)
15 integers in the range 0 < n ≤ 50
16 integers in the range 50 < n ≤ 100
17 integers in the range n > 1000

where ZP is the set of integer constants that appear in the program P . That is,
OP maps integer constants in the program into their relative importance when
they are used for widening thresholds.

We use a simple heuristic to build the oracle. The idea is to analyze the code-
base with full precision and estimate the importance by measuring how many
times each integer constant contributes to stabilizing the fixed point compu-
tation. The term full precision means that the heuristic uses a thresholds set,
which includes constant integers of the program’s variables, the sizes of static
arrays, and the lengths of constant strings. Through relatively cheap analysis
(e.g., flow insensitive), we get an abstract memory state which holds the candi-
date thresholds information we mentioned above.

Let P be a program in the codebase. We analyze the program by using all
its integer constants as thresholds. During the fixed point computation of the
analysis, we observe each widening operation and maintain a map C : ZP → N
that counts the integer constants involved in a local fixed point. That is, C(n) is
initially 0 for all n, and whenever we perform the widening operation on intervals:

[l1, u1]O[l2, u2] = [l3, u3]

we check if the result reaches a local fixed point (i.e. [l3, u3] v [l1, u1]). If so, we
increase the counter values for l3 and u3: C(l3) := C(l3)+1 and C(u3) := C(u3)+1.
We keep updating the counter C until a global fixd point is reached. Finally, we
normalize the values in C to obtain the oracle OP . We repeat this process over
the entire codebase and generate a set of oracles.

Learning a Strategy for Choosing Widening Thresholds 11

5 Experiments

In this section, we evaluate our approach with an interval analyzer for C and
open-source benchmarks. We organized the experiments to answer the following
research questions:

1. Effectiveness: How much is the analyzer with the learned strategy better
than the baseline analyzers? (Section 5.2)

2. Comparison: How much is our learning algorithm better than the existing
Bayesian optimization approach? (Section 5.3)

3. Important Features: What are the most important features identified by
the learning algorithm? (Section 5.4)

5.1 Setting

We implemented our approach in Sparrow, a static buffer-overflow analyzer for
real-world C programs [18]. The analysis is based on the interval abstract do-
main and performs a flow-sensitive and selectively context-sensitive analysis [11].
Along the interval analysis, it also simultaneously performs a flow-sensitive
pointer analysis to handle indirect assignments and function pointers in C. The
analyzer takes as arguments a set of integers to use for widening thresholds.
Our technique automatically generates this input to the analyzer, by choosing a
subset of integer constants that appear in the program.

To evaluate our approach, we collected 100 open-source C programs from
GNU and Linux packages. The list of programs we used is available in Table 5.
We randomly divided the 100 benchmark programs into 70 training programs
and 30 testing programs. A strategy for choosing widening threshold is learned
from the 70 training programs, and tested on the remaining 30 programs. We
iterated this process for five times. Table 2 and 3 show the result of each trial.
In our approach, based on our observation that the number of effective widening
thresholds in each program is very small, we set k to 30, which means that
the strategy chooses the top 30 integer constants from the program to use for
widening thresholds.

In the experiments, we compared the performance of three analyzers.

– NoThld is the baseline Sparrow without widening thresholds. That is, it
performs the interval analysis with the basic widening operator in (3).

– FullThld is a variant of Sparrow that uses all the integer constants in
the program as widening thresholds. The thresholds set includes constant
integers in the program, the sizes of static arrays, and the lengths of constant
strings.

– Ours is our analyzer whose threshold strategy is learned from the codebase.
That is, the threshold argument of the analyzer is given by the strategy
learned from the 70 programs via our oracle-guided learning algorithm.

12 Sooyoung Cha, Sehun Jeong, and Hakjoo Oh

Table 2. Performance on the training programs.

Trial
Training

NoThld FullThld Ours
prove prove prove quality

1 13,297 14,806 14,518 80.9%
2 14,251 15,912 15,602 81.3%
3 14,509 16,285 15,988 83.2%
4 11,931 13,313 13,020 78.8%
5 14,568 16,292 15,948 80.0%

TOTAL 68,556 76,608 75,076 81.0%

Table 3. Performance on the testing programs.

Trial
Testing

NoThld FullThld Ours
prove sec prove sec cost prove sec quality cost

1 5,083 222 5,785 1,789 8.0 x 5,637 361 78.9% 1.6 x
2 4,129 605 4,679 2,645 4.4 x 4,623 748 89.8% 1.2 x
3 3,871 397 4,306 1,068 2.7 x 4,237 543 84.1% 1.4 x
4 6,449 792 7,278 4,606 5.8 x 7,133 1228 82.5% 1.6 x
5 3,812 281 4,299 1,014 3.6 x 4,247 389 89.3% 1.4 x

TOTAL 23,344 2,297 26,347 11,122 4.8 x 25,877 3,269 84.3% 1.4 x

5.2 Effectiveness

Table 2 and 3 show the effectiveness of the learned strategy in the training and
testing phases, respectively. Table 2 shows the training performance with 70
programs. For the five trials, NoThld proved 68,556 buffer-overrun queries. On
the other hand, FullThld proved 76,608 queries. For the training programs,
our learning algorithm was able to find a strategy that can prove 81.0% of the
FullThld-only provable queries.

Table 3 shows the results on the 30 testing programs. In total, NoThld
proved the 23,344 queries, while FullThld proved 26,347 queries. Our analysis
with the learned strategy (Ours) proved 25,877 queries, achieving 84.3% of
the precision of FullThld. In doing so, Ours increases the analysis time of
NoThld only 1.4x, while FullThld increases the cost by 4.8x.

5.3 Comparison

We have implemented the previous learning algorithm based on Bayesian opti-
mization [13] and compared its performance with that of our learning algorithm.
Table 4 shows the results. For the five trials, our approach took on average 6,154
seconds to find a strategy of the average quality 81.0%. On the other hand, the

Learning a Strategy for Choosing Widening Thresholds 13

Table 4. Performance comparison with the Bayesian optimization approach. For
Bayesian optimization, we set the maximum number of iterations to 100.

Trial
Learning Cost

Ours Bayesian optimization
speedup

quality sec quality sec

1 80.9% 6,682 74.3% 185,825 27.8 x
2 81.3% 5,971 80.1% 155,438 26.0 x
3 83.2% 7,192 77.1% 170,311 23.7 x
4 78.8% 3,976 73.7% 113,738 28.6 x
5 80.0% 6,947 74.7% 185,375 26.7 x

TOTAL 81.0% 30,768 76.0% 810,687 26.3 x

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7

- 0 . 3

0 . 0

0 . 3

0 . 6

0 . 9

Fig. 1. Relative importance among features

Bayesian optimization approach was able to find a strategy that resulted 76.0%
quality on training sets after it exhausted its iteration budget, which took on
average 162,137 seconds. The results show that our learning algorithm is able to
find a better strategy 26 times faster than the existing algorithm.

The Bayesian optimization approach did not work well with a limited time
budget. When we allowed the Bayesian optimization approach to use the same
time budget as ours, the existing approach ended up with a strategy of the
average quality 57%. Note that our algorithm achieves the quality 81% in the
same amount of time.

5.4 Important Features

In our approach, the learned parameter w indicates the relative importance of the
features in Table 1. To identify the important features for widening thresholds,

14 Sooyoung Cha, Sehun Jeong, and Hakjoo Oh

we performed the training phase ten times and averaged the parameters obtained
from each run.

Figure 1 shows the relative feature importance identified by the learning al-
gorithm. During the ten trials, the feature 5 (most frequently appeared numbers
in the program) was always the highest ranked feature. Features 13 (numbers of
the form 2n) and 14 (numbers of the form 2n − 1) were also consistently listed
in the top 5.

These results were not expected from the beginning. At the initial stage of
this work, we manually identified important features for widening thresholds and
conjectured that the features 9, 10, and 11, which are related to null positions,
are the most important ones. Consider the following code:

char *text="abcd";

i=0;

while (text[i] != NULL) {

i++;

assert(i <= 4);

}

When we convert the loop condition into an equivalent one i 6= 4 and use the
null position 4 as a widening threshold, we can prove the safety of the assertion
with the interval domain. We observed the above code pattern multiple times in
the target programs being investigated and thought that using null position as
thresholds would be one of the most important. However, the learning algorithm
let us realize that unexpected features such as 5, 13, and 14 are the most im-
portant over the entire codebase, which is an insight hardly obtained manually
because it is infeasible for humans to investigate the large codebase.

6 Related Work

Widening with Thresholds The technique of widening with thresholds has been
widely used in numerical program analyses [7, 1–4, 9, 8, 6]. For example, its effec-
tiveness has been shown with polyhedra [6], octagons [1, 3, 4], and intervals [7].
However, existing techniques use a fixed strategy for choosing the threshold set.
For example, in [1, 3, 4, 7], all the integer constants that appear in conditional
statements are used for the candidate of thresholds. In [6], a simple pre-analysis
is used to infer a set of thresholds. The main limitation of these approaches is
that the strategies are fixed and overfitted to some particular class of programs.
For example, the syntactic and semantic heuristics were shown to be not always
cost-effective [6, 7]. On the other hand, the goal of this paper is not to fix a par-
ticular strategy beforehand but to automatically learn a strategy from a given
codebase, so that it can be adaptively used in practice.

Learning-based Program Analysis Recently, machine learning techniques are in-
creasingly used in the field of program analysis [15–17, 13, 5, 10]. Among them,

Learning a Strategy for Choosing Widening Thresholds 15

our work lies in the direction of designing an adaptive static analysis via learn-
ing [13, 5]. In particular, our work is motivated by [13]’s result, which used
Bayesian optimization to guide the learning process to more promising direc-
tions. We followed the general idea of the previous work, but we proposed a
more efficient learning algorithm than the Bayesian optimization method. Be-
cause Oh et al.’s work uses the number of proven queries to measure quality of
the learned strategy, the learning algorithm has to perform full-scale analysis on
all training programs repeatedly until the learnt strategy meets a target quality.
As we mentioned in Sec. 5.3, its takes too much time to get an acceptably good
strategy over the large codebase. By contrast, our method reduces the learning
cost by exploiting of the existence of the oracle for a given training program.
Since the process of obtaining the oracle requires performing single full-scale
analysis per training program, our learning algorithm radically reduced time
cost than the existing method.

7 Conclusion

In this paper, we proposed a method that automatically learns a good strategy
for choosing widening thresholds from a large codebase. We showed that the
learned strategy is highly cost-effective; we can achieve 84% of the full precision
with the 1.4x increase in analysis time.

The success of the method is largely attributed to our new learning algorithm
that is significantly faster than the previous Bayesian optimization algorithm.
In the presence of a large codebase, the Bayesian optimization approach failed
to learn a good strategy in a reasonable amount of time. By contrast, our new
learning algorithm is at least 26 times faster and is able to find a better parameter
than the previous method.

Our approach is general enough to be used for other types of adaptive static
analyses. As future work, we plan to apply our technique to other instances such
as selective flow-sensitivity and context-sensitivity.

Acknowledgement. This work was supported by the Institute for Informa-
tion & communications Technology Promotion(IITP) grant funded by the Ko-
rea government(MSIP) (No.R0190-15-2011, Development of Vulnerability Dis-
covery Technologies for IoT Software Security); the Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF) funded by
the Ministry of Science, ICT & Future Planning (NRF-2016R1C1B2014062);
and the MSIP(Ministry of Science, ICT and Future Planning), Korea, under
the ITRC(Information Technology Research Center) support program (IITP-
2016-H85011610120001002) supervised by the IITP(Institute for Information &
communications Technology Promotion).

References

1. Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. Design and imple-

16 Sooyoung Cha, Sehun Jeong, and Hakjoo Oh

mentation of a special-purpose static program analyzer for safety-critical real-time
embedded software. In The Essence of Computation, pages 85–108. Springer, 2002.

2. Olivier Bouissou, Yassamine Seladji, and Alexandre Chapoutot. Acceleration of
the abstract fixpoint computation in numerical program analysis. Journal of Sym-
bolic Computation, 47(12):1479 – 1511, 2012. International Workshop on Invariant
Generation.

3. Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Miné Antoine,
and Xavier Rival. Why does astrée scale up? Formal Methods in System Design,
35(3):229–264, 2009.

4. Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. Combination of abstractions in the astrée
static analyzer. In Advances in Computer Science-ASIAN 2006. Secure Software
and Related Issues, pages 272–300. Springer, 2006.

5. Radu Grigore and Hongseok Yang. Abstraction refinement guided by a learnt
probabilistic model. In POPL, 2016.

6. Nicolas Halbwachs, Yann-Erick Proy, and Patrick Roumanoff. Verification of real-
time systems using linear relation analysis. In FORMAL METHODS IN SYSTEM
DESIGN, pages 157–185, 1997.

7. Sol Kim, Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. Widening with thresholds
via binary search. Software: Practice and Experience, 2015.

8. Lies Lakhdar-Chaouch, Bertrand Jeannet, and Alain Girault. Widening with
thresholds for programs with complex control graphs. In Proceedings of the 9th
International Conference on Automated Technology for Verification and Analysis,
ATVA’11, pages 492–502, Berlin, Heidelberg, 2011. Springer-Verlag.

9. Bogdan Mihaila, Alexander Sepp, and Axel Simon. Widening as abstract do-
main. In NASA Formal Methods, 5th International Symposium, NFM 2013, Mof-
fett Field, CA, USA, May 14-16, 2013. Proceedings, pages 170–184, 2013.

10. Mayur Naik, Hongseok Yang, Ghila Castelnuovo, and Mooly Sagiv. Abstractions
from tests. In POPL, 2012.

11. Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. Se-
lective context-sensitivity guided by impact pre-analysis. In PLDI, 2014.

12. Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. Se-
lective X-sensitive analysis guided by impact pre-analysis. ACM Trans. Program.
Lang. Syst., 38(2):6:1–6:45, December 2015.

13. Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. Learning a strategy for adapting
a program analysis via Bayesian optimisation. In OOPSLA, 2015.

14. Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning (Adaptive Computation and Machine Learning). The MIT Press,
2005.

15. Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and
Aditya V. Nori. A data driven approach for algebraic loop invariants. In ESOP,
2013.

16. Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and Aditya V.
Nori. Verification as learning geometric concepts. In SAS, 2013.

17. Rahul Sharma, Aditya V. Nori, and Alex Aiken. Interpolants as classifiers. In
CAV, 2012.

18. Sparrow. http://ropas.snu.ac.kr/sparrow.

Learning a Strategy for Choosing Widening Thresholds 17

Table 5. Benchmark programs

Programs LOC Programs LOC

wwl-1.3+db.c 474 e2ps-4.34.c 6,222
gosmore-0.0.0.20100711.c 497 apng2gif-1.5.c 6,522
ircmarkers-0.14.c 619 isdnutils-3.25+dfsg1.c 6,609
rovclock-0.6e.c 1,177 bwm-ng-0.6.c 6,833
xcircuit-3.7.55.dfsg.c 1,222 diffstat-1.58.c 7,077
iputils-20121221.c 1,311 lgrind-3.67.c 7,363
confget-1.02.c 1,393 lacheck-1.26.c 7,385
codegroup-19981025.c 1,518 lakai-0.1.c 7,487
time-1.7.c 1,759 libdebug-0.4.4.c 7,645
rexima-1.4.c 1,843 cmigemo-1.2+gh0.20140306.c 7,729
xinit-1.3.2.c 1,893 barcode-0.96.c 7,901
nlkain-1.3.c 1,927 apngopt-1.2.c 8,315
xchain-1.0.1.c 1,955 makedepf90-2.8.8.c 8,415
display-dhammapada-1.0.c 2,007 mpage-2.5.6.c 8,538
authbind-2.1.1.c 2,041 stripcc-0.2.0.c 8,914
unhtml-2.3.9.c 2,057 photopc-3.05.c 9,266
elfrc-0.7.c 2,142 psmisc-22.20.c 9,624
jbofihe-0.38.c 2,182 ircd-ircu-2.10.12.10.dfsg1.c 10,206
delta-2006.08.03.c 2,273 auto-apt-0.3.23ubuntu0.14.04.1.c 11,110
petris-1.0.1.c 2,411 glhack-1.2.c 11,237
libixp-0.6 20121202+hg148.c 2,428 sac-1.9b5.c 11,999
whichman-2.4.c 2,493 dict-gcide-0.48.1.c 12,318
acpi-1.7.c 2,597 gzip-spec2000.c 12,980
zmakebas-1.2.c 2,606 cutils-1.6.c 14,122
forkstat-0.01.04.c 2,710 mtr-0.85.c 14,127
setbfree-0.7.5.c 2,929 rhash-1.3.1.c 14,352
haskell98-tutorial-200006-2.c 3,161 gnuspool-1.7ubuntu1.c 16,665
kcc-2.3.c 3,429 smp-utils-0.97.c 17,520
ipip-1.1.9.c 3,605 ccache-3.1.9.c 17,536
gif2apng-1.7.c 3,816 gzip-1.2.4a.c 18,364
desproxy-0.1.0 pre3.c 3,841 netkit-ftp-0.17.c 19,254
magicfilter-1.2.c 3,856 libchewing-0.3.5.c 19,262
pgpgpg-0.13.c 3,908 archimedes.c 19,559
rsrce-0.2.2.c 3,956 tcs-1.c 19,967
rinetd-0.62.c 4,123 gnuplot-4.6.4.c 20,306
unsort-1.1.2.c 4,290 phalanx-22+d051004.c 24,099
hexdiff-0.0.53.c 4,334 gnuchess-5.05.c 28,853
acorn-fdisk-3.0.6.c 4,450 combine-0.3.3.c 29,508
pmccabe-2.6.c 4,920 rtai-3.9.1.c 30,739
dvbtune-0.5.ds.c 5,068 gnushogi-1.4.1.c 31,796
bmf-0.9.4.c 5,451 tmndec-3.2.0.c 31,890
libbind-6.0.c 5,497 fondu-0.0.20060102.c 32,298
mixal-1.08.c 5,570 libart-lgpl-2.3.21.c 38,815
cmdpack-1.03.c 5,575 flex-2.5.39.c 39,977
picocom-1.7.c 5,613 fwlogwatch-1.2.c 46,601
xdms-1.3.2.c 5,614 chrony-1.29.c 49,119
cifs-utils-6.0.c 5,815 uudeview-0.5.20.c 54,853
dtaus-0.9.c 6,018 sn-0.3.8.c 56,227
device-tree-compiler-1.4.0+dfsg.c 6,033 shadow-4.1.5.1.c 85,201
buildtorrent-0.8.c 6,170 skyeye-1.2.5.c 85,905

