
SymTuner: Maximizing the Power of Symbolic Execution by
Adaptively Tuning External Parameters

Sooyoung Cha
Sungkyunkwan University

Republic of Korea
sooyoung.cha@skku.edu

Myungho Lee
Korea University
Republic of Korea

myungho_lee@korea.ac.kr

Seokhyun Lee
Korea University
Republic of Korea

seokhyunlee@korea.ac.kr

Hakjoo Oh∗
Korea University
Republic of Korea

hakjoo_oh@korea.ac.kr

ABSTRACT

We present SymTuner, a novel technique to automatically tune
external parameters of symbolic execution. Practical symbolic ex-
ecution tools have important external parameters (e.g., symbolic
arguments, seed input) that critically affect their performance. Due
to the huge parameter space, however, manually customizing those
parameters is notoriously difficult even for experts. As a conse-
quence, symbolic execution tools have typically been used in a
suboptimal manner that, for example, simply relies on the default
parameter settings of the tools and loses the opportunity for bet-
ter performance. In this paper, we aim to change this situation by
automatically configuring symbolic execution parameters. With
SymTuner that takes parameter spaces to be tuned, symbolic ex-
ecutors are run without manual parameter configurations; instead,
appropriate parameter values are learned and adjusted during sym-
bolic execution. To achieve this, we present a learning algorithm
that observes the behavior of symbolic execution and accordingly
updates the sampling probability of each parameter space. We eval-
uated SymTuner with KLEE on 12 open-source C programs. The
results show that SymTuner increases branch coverage of KLEE by
56% on average and finds 8 more bugs than KLEE with its default
parameters over the latest releases of the programs.
ACM Reference Format:

Sooyoung Cha, Myungho Lee, Seokhyun Lee, and Hakjoo Oh. 2022. Sym-
Tuner: Maximizing the Power of Symbolic Execution by Adaptively Tuning
External Parameters. In 44th International Conference on Software Engineer-
ing (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3510003.3510185

1 INTRODUCTION

Decades of research have transformed symbolic execution into a
mainstream technique in software testing. The basic idea of sym-
bolic execution is to replace program inputs by symbolic variables
and explore the execution paths of a program symbolically. Since its
inception [7, 32, 41], symbolic execution has been an active research
area [5]. In particular, the last decade has seen remarkable advances,
significantly mitigating main challenges such as path explosion
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510185

$ klee --simplify-sym-indices --max-memory=1000 --optimize

--use-forked-solver --use-cex-cache --external-calls=all

--max-sym-array-size=4096 --max-instruction-time=30s

--max-time=60min --max-memory-inhibit=false

--max-static-fork-pct=1 --max-static-solve-pct=1

--max-static-cpfork-pct=1 --switch-type=internal

--search=random-path --search=nurs:covnew

--batch-instructions=10000 ./pgm.bc --sym-args 0 1 10

--sym-args 0 2 2 --sym-files 1 8 --sym-stdin 8 --sym-stdout ...

Figure 1: The parameter setting of KLEE used in [49]

and constraint solving [6, 14, 23, 34, 36, 38, 39, 45, 48, 52, 54, 66].
Equipped with these techniques, symbolic execution tools such as
KLEE [11] have become publicly available and widely used in both
academia and industry [12, 13].

Despite the progress, however, maximizing the performance of
modern symbolic execution tools is notoriously difficult in practice.
One main reason is that state-of-the-art symbolic executors have
a number of important external parameters that critically affect
their effectiveness. For example, Figure 1 shows a typical command
for running KLEE, which was tailored to GNU Coreutils by the
original authors of KLEE [11, 49]. These parameters, for example,
are to select which search strategy to use, to decide the symbolic
arguments, and to choose the memory budget. It is well-known that
these parameters have a huge impact on the runtime performance
of symbolic execution and therefore must be carefully tuned for
each target program [45, 60, 63].

Manually tuning such parameters is challenging even for experts.
Note that more than half of the parameters in Figure 1 are of non-
boolean types (e.g., string or integer), and their combination induces
an enormous search space. Consequently, KLEE has typically been
used without proper configuration of those parameters; existing
works either (1) simply rely on the parameter setting in Figure 1 [17,
18, 23, 50, 63] (even for programs beyond Coreutils) or (2) manually
tune specific parameters (e.g., symbolic arguments) atop the default
parameter values [37, 45, 52, 60, 66]. Recently, a few techniques [14,
16] have been proposed for tuning search heuristics automatically
but other critical parameters still need to be configured manually.

In this paper, we present SymTuner, a novel technique for auto-
matically tuning symbolic execution parameters. Initially, from the
users, SymTuner takes as input the sample spaces for the parame-
ters to be tuned. Then, with SymTuner, symbolic execution tools
such as KLEE can be run without manual parameter tuning; appro-
priate parameter values for the target program are automatically
adjusted by SymTuner during symbolic execution. To do so, along

https://doi.org/10.1145/3510003.3510185
https://doi.org/10.1145/3510003.3510185

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sooyoung Cha, Myungho Lee, Seokhyun Lee, and Hakjoo Oh

the symbolic execution process, SymTuner uses a custom learning
algorithm that repeatedly samples a set of parameter values from
the sample spaces, evaluates the performance of symbolic execution
with the sampled values, and refines the probability distributions
of the sample spaces based on the evaluation result.

Experimental results show that SymTuner remarkably enhances
symbolic execution in terms of both code coverage and bug-finding.
We applied SymTuner to KLEE [11], a representative symbolic ex-
ecution tool for C programs, and evaluated it on the latest versions
of 12 GNU open-source programs (ranging from 5K to 161K LoC).
KLEE with SymTuner covered 56% and 31% more branches on av-
erage than conventional KLEE with its default parameter values
and the parameter setting in Figure 1, respectively. Also, SymTuner
enabled KLEE to discover 11 different bugs that cause the latest
versions of the open-source programs to crash, far outweighing the
conventional KLEE that ended up finding three of them. Compared
to KLEE with a naive approach that randomly samples parameter
values, SymTuner succeeded in increasing the number of covered
branches and found bugs by 12% and 45%, respectively. We also
show that our approach is also applicable to CREST [21], a tool for
concolic testing [13, 25, 53], another major approach of symbolic
execution.

Contributions.We summarize our contributions below:
• We present SymTuner, a new technique for automatically
tuning diverse parameters of symbolic execution. The key
technical contribution is the domain-specific learning algo-
rithm for symbolic execution, which observes the behavior
of symbolic execution with randomly sampled parameters
and gradually learns to sample effective parameter values.
• We conduct extensive evaluation of SymTuner on 12 GNU
open-source programs. We make our tool, SymTuner, open-
sourced and the benchmarks publicly available.1

2 PRELIMINARIES

2.1 Basic Symbolic Execution

Symbolic execution explores the execution paths of a program
by maintaining a set of program states, where a state is a triplet
(instr, store,Φ) of an instruction (instr) to be executed, a symbolic
memory store (store) mapping program variables to symbolic values,
and a path condition (Φ) that is a sequence of symbolic branches
representing the path exercised by the current state.

Algorithm 1 describes the overall algorithm. It takes as input a
program (pgm), a testing budget (budget), and a vector of parameter
values (V). For the moment, let us ignore the last input; the role of
the parameters (V) will be described in Section 2.2.

At line 2, the algorithm creates the set of initial states, i.e., a
singleton set of the initial state s0 = (instr0, store0, true), where
instr0 denotes the first instruction of the program and store0 is the
initial symbolic memory. The set 𝑇 of test cases is initially empty
(line 3). After initializing 𝑆 and 𝑇 , symbolic execution goes into the
loop at lines 4–15.

At line 5, symbolic execution selects a state s from 𝑆 to navi-
gate deeper into the program, and removes s from 𝑆 (line 6). At
line 7, the instruction in the current state (instr, store,Φ) is executed,
1SymTuner: https://github.com/skkusal/symtuner

Algorithm 1 Symbolic execution
Input: Program (pgm), budget (budget), and parameter values (V).
Output: A set of test cases (𝑇)
1: procedure SymExecutor(pgm, budget,V)
2: 𝑆 ← {s0 } ⊲ s0 = (instr0, store0, true)
3: 𝑇 ← ∅ ⊲ test cases
4: repeat

5: s← Choose(𝑆) ⊲ s = (instr, store,Φ)
6: 𝑆 ← 𝑆 \ {s}
7: s′ ← Execute(s) ⊲ s′ = (instr′, store′,Φ)
8: if instr′ is a branch whose condition is 𝜙 then

9: if SAT(Φ ∧ 𝜙) then ⊲ true branch is reachable
10: 𝑆 ← 𝑆 ∪ {(instr1, store′,Φ ∧ 𝜙) }
11: if SAT(Φ ∧ ¬𝜙) then ⊲ false branch is reachable
12: 𝑆 ← 𝑆 ∪ {(instr2, store′,Φ ∧ ¬𝜙) }
13: else if instr′ is a halt instruction then

14: 𝑇 ← 𝑇 ∪ {Model(Φ) } ⊲ generate a test case
15: until budget expires (or 𝑆 = ∅)
16: return𝑇

producing the next state (instr ′, store′,Φ). If instr ′ is a branch in-
struction whose condition is 𝜙 , the algorithm checks whether the
both sides of the branch are reachable from the current state. If the
true branch is reachable (i.e., SAT(Φ∧𝜙)), we add the updated state
(instr1, store′,Φ ∧ 𝜙) to 𝑆 (line 10), where instr1 denotes the first
instruction in the true branch. Similarly, we add the updated state
for the false branch to 𝑆 when the path condition, i.e., (Φ ∧ ¬𝜙),
is satisfiable (line 12). When instr ′ is a halt instruction (line 13), a
test case is generated from the model of the current path condition.
The SymExecutor procedure repeats the process described so far
until the given budget expires. Upon termination, the set 𝑇 of test
cases is returned.

2.2 Parameters of Symbolic Execution

Although the basic algorithm is simple, real-world symbolic execu-
tion tools involve various parameters that have a critical impact on
the performance of Algorithm 1. For example, symbolic executors
such as KLEE [11] take a parameter that determines which program
inputs to be replaced by symbolic variables (e.g., --sym-args in
Figure 1); in Algorithm 1, the initial symbolic memory (store0) is
defined by this parameter value. Another example is a parame-
ter that specifies the maximum memory capacity available (e.g.,
--max-memory in Figure 1), which is an important factor in practice
as state explosion frequently occurs when running symbolic execu-
tion on sizable programs. The Choose function itself at line 5 is also
a parameter, called search heuristic [14, 45, 54], and users of KLEE
can choose from 10 different options (e.g., --search=nurs:covnew
in Figure 1) and interleave them. The constraint solver used by
the SAT and Model functions in Algorithm 1 can be configured
as well; for example, users can decide which SMT solver to use
and fine-tune their behavior. Figure 1 shows that KLEE also pro-
vides various parameters, including max-instruction-time and
batching-instructions, which have a large space (e.g., integer).

Manually tuning those parameter values is so nontrivial that it
has been typical to use symbolic execution without proper configu-
ration [17, 18, 23, 45, 50, 52, 60, 63, 66]. The goal of this paper is to

 https://github.com/skkusal/symtuner

SymTuner: Maximizing the Power of Symbolic Execution by Adaptively Tuning External Parameters ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

4

Tuner Symbolic
Executor

parameter values

test-cases

parameter-spaces all test-cases

...

Evaluate Extract Update

SymTuner Symbolic
Executor

parameter values

test cases

parameter spaces all test cases

Evaluate Extract Update

Figure 2: Overview of symbolic execution with SymTuner

change this unfortunate practice by automating the task of tuning
parameters of symbolic execution.

3 OUR APPROACH

Figure 2 illustrates how SymTuner and symbolic execution interact.
Initially, SymTuner takes k predefined parameter spaces as input,
where a parameter space prescribes possible values that the param-
eter can take on. At a high-level, SymTuner iteratively samples
k parameter values based on the learned probability distributions
of the parameter spaces, and runs symbolic execution with the
sampled parameter values. As output of symbolic execution, a set
of test cases is generated, which is in turn used for adjusting the
probability distributions of the sampling spaces. During the first
few times, SymTuner focuses on exploration by running symbolic
execution with various random parameter values. Once an adequate
number of test cases is collected, SymTuner starts to update the
sampling probabilities and exploit the learned knowledge.

SymTuner works in three phases: Evaluate, Extract, andUpdate.
The first step produces learning data by evaluating the quality of
the parameter values used for generating each test case in terms
of both code coverage and found bugs. The aim of the second step
(Extract) is to identify meaningful data from the total amount of
data generated by the first step. Using the extracted data, the last
step (Update) updates the probability of how SymTuner samples
from the 𝑘 parameter spaces. By repeating the above process which
interleaves SymTuner and symbolic executor, the sampling proba-
bilities are gradually updated. Upon termination (i.e., hitting a time
limit), the set of all test cases generated so far are returned.

3.1 Parameter Space

Basically, we define the sample space of each parameter to be dis-
crete rather than continuous to circumvent unnecessarily large
search space. For instance, suppose that we define the parameter
space for memory budget (MB) as all integers between 100 and 2000.
On the basis of a parameter value, e.g., 1000MB, in the space, the
adjacent values such as 999MB and 1001MB are unlikely to have a
significant impact on the performance of symbolic execution com-
pared to the farther values (e.g., 500MB, 2000MB); thus, our sample
space for each parameter is discrete to maintain only the values
which are likely to affect performance.

In our approach, we assume that 𝑘 predefined parameter spaces,
denoted S = S1 × S2 × · · · × S𝑘 , are given. Each space S𝑖 (1 ≤ 𝑖 ≤ 𝑘)
for the 𝑖-th parameter consists of two components:

S𝑖 = (SV 𝑖 , 𝜂
max

𝑖)

where SV 𝑖 = {sv1
𝑖
, sv2

𝑖
, · · · , sv𝑛

𝑖
} is the set of possible parameter

values for S𝑖 and 𝜂max

𝑖
denotes the maximum number of times to

sample from the set SV 𝑖 . For most parameter spaces, 𝜂max is 1 as
a parameter value is typically used only once during a single run
of symbolic execution (e.g., --max-memory in Figure 1). In general,
however, it can be bigger than 1. For example, the value of 𝜂max

for symbolic arguments can be any natural number as we can use
multiple symbolic arguments with different size in a single run
(e.g., --sym-args in Figure 1). For instance, the parameter space
for symbolic arguments can be given as follows:

Sargs = ({2, 4, 6, 8}, 3).
which means we can select up to three symbolic arguments, where
each argument has the length of one of the elements in {2, 4, 6, 8}.

3.1.1 Sample. To sample from each predefined space S𝑖 , let us
define and use the following Sample function:

Sample(S𝑖 ,Pc
𝑖 ,P𝑖) = PV 𝑖

The inputs are a parameter space S𝑖 and two probability functions,
P𝑖 and Pc

𝑖
. The former P𝑖 : SV 𝑖 → [0, 1] denotes the sampling

probability of each parameter value in SV 𝑖 and the latter Pc
𝑖

:
[1, 𝜂max

𝑖
] → [0, 1] represents the probability for the sampling times.

We denote the output of Sample by PV 𝑖 ∈ ℘(SV 𝑖), which is a set
of sampled parameter values. Here, we allow PV 𝑖 to be a multiset
that has duplicated elements and we abuse the notation ℘(SV 𝑖)
to denote the set of all sub-multisets of SV 𝑖 . To obtain PV 𝑖 from
the space S𝑖 , the Sample function first determines the number m
of sampling times based on the probability Pc

𝑖
. Then, we sample a

candidate value from SV 𝑖 for m times using the probability P𝑖 and
add the value to PV 𝑖 . For instance, when the Sample function takes
the parameter space Sargs shown above, the possible outcomes of
Sample, i.e., PV args , are as follows:

{{2}}, {{6}}, {{8, 6}}, {{4, 8}}, {{2, 4, 2}}, {{4, 4, 4}}, · · ·
where {{}} denotes a multiset that allows duplicated elements.

Since the two probabilities in the Sample function determine the
parameter values used when performing symbolic execution on the
target program, the most important question is how to learn these
probabilities, Pc

𝑖
and P𝑖 , for each parameter space S𝑖 (1 ≤ 𝑖 ≤ 𝑘) to

maximize the performance of symbolic execution. To resolve this,
SymTuner learns those probabilities based on the data accumulated
during symbolic execution.

3.2 Symbolic Execution with SymTuner

To learn parameter values, we perform symbolic execution multiple
times with diverse parameter values by dividing the total time
budget into smaller budgets. It enables SymTuner to interact with
symbolic executor multiple times during the given time budget,
and to gradually find more effective parameter values through the
multiple interactions. We describe how SymTuner interacts with
symbolic executor (Algorithm 2) in detail.

Algorithm 2 takes as input a program, a budget, and k predefined
parameter spaces. At lines 1, the algorithm first initializes each
of the following four components to an empty set or vector: the
vector V ∈ ℘(SV 1) × ℘(SV 2) × · · · × ℘(SV𝑘) of parameter values
(recall ℘(SV 𝑖) denotes the set of all sub-multisets of SV 𝑖), the set
D of learning data, the set 𝑇 of test cases, and the set TotalT of

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sooyoung Cha, Myungho Lee, Seokhyun Lee, and Hakjoo Oh

Algorithm 2 Symbolic execution with SymTuner
Input: Program (pgm), budget (budget), k parameter spaces (S).
Output: Test cases (TotalT)
1: ⟨V ,D,𝑇 , TotalT ⟩ ← ⟨⟨⟩, ∅, ∅, ∅⟩ ⊲ D is learning data
2: flag ← 0
3: budgets ← budget ∗ 𝜂ratio ⊲ 𝜂ratio = 0.5%
4: repeat
5: for 𝑖 = 1 to 𝜂step do ⊲ 𝜂step = 20
6: V ,D← SymTuner(𝑇, S,V ,D, flag)
7: 𝑇 ← SymExecutor(pgm, budgets,V)
8: TotalT ← TotalT ∪𝑇
9: flag ← 1
10: budgets ← budgets ∗ 2
11: until budget expires
12: return TotalT

accumulated test cases. Then, the flag value is also initially set to 0
(line 2); the value of 0 makes SymTuner focus only on exploration
by trying diverse parameter values in the k parameter spaces. At
the next line, the algorithm initializes the time budget budgets for
a single run of symbolic execution by multiplying the total testing
budget budget and the hyper-parameter 𝜂ratio. In the experiments,
we set the hyper-parameter 𝜂ratio to a small value such as 0.005.

At lines 5–10, symbolic executor and SymTuner iteratively inter-
act with each other by exchanging test cases and parameter values.
At line 6, SymTuner takes five input values—test cases (𝑇), param-
eter spaces (S), previously used parameter values (V), learning data
(D), and flag (flag) — and returns accumulated learning data with
newly sampled parameter values; at first, SymTuner generates the
parameter values by randomly sampling from the predefined spaces
S (line 6). Then, the SymExecutor is run with the program, the
current time budget, and the new parameter values. As output of
symbolic execution, a set 𝑇 of test cases is produced (line 7). At
line 8, we accumulate𝑇 in the set TotalT of total test cases. After the
first interaction between SymTuner and SymExecutor is repeated
𝜂step times (lines 5–8), the algorithm sets flag to 1, which indicates
that SymTuner is ready to perform online learning. In experiments,
we set 𝜂step = 20. At line 10, it doubles the size of the time budget
budgets as more learning data accumulation increases the confi-
dence in how to tune parameter values. The outer loop repeats until
the total time budget (budget) is exhausted. Upon termination, the
algorithm returns as the final output the accumulated test cases.

3.3 SymTuner

Algorithm 3 describes how SymTuner generates the set D of learn-
ing data from the set 𝑇 of test cases and how it updates the sam-
pling probabilities of the parameter spaces based on D. SymTuner
works in the three steps: Evaluate, Extract, andUpdate. After going
through these three steps, it returns as output the vector V ′ of new
parameter values and D.

3.3.1 Evaluate. The goal of the first step is to evaluate the quality
of the parameter vector V used for generating the test cases 𝑇 in
terms of code coverage and detected bugs. To this end, SymTuner
generates data d for each test case t ∈ 𝑇 (lines 3–4).

A single data d is represented by the quadruple (Br, Bu, t, V),
where Br and Bu are the sets of branches covered and bugs triggered

Algorithm 3 SymTuner
Input: Test cases (𝑇), spaces (S), values (V), data (D), flag (flag)
Output: New parameter values (V ′) and Data (D)
1: procedure SymTuner(𝑇, S,V ,D, flag)
2: /* Step 1: Evaluate the quality of test cases */
3: for each t ∈ 𝑇 do

4: D← D ∪ {𝑑 } ⊲ 𝑑 = Evaluate(t,V)
5:
6: /* Step 2: Extract effective parameter values from data D */
7: CoreV , TotalV ← Extract(D)
8:
9: /* Step 3: Update sampling probabilities */
10: policy ← sample from {Exploit, Explore} with prob=[𝛼 , 1-𝛼]
11: V ′ ← ⟨⟩
12: for 𝑖 = 1 to 𝑘 do ⊲ S = S1 × S2 × · · · × S𝑘
13: if (policy = Explore) or (flag = 0) then
14: (Pc

i , Pi) ← Explore(TotalV , Si)
15: else

16: (Pc
i , Pi) ← Exploit(CoreV , TotalV , Si)

17: PV 𝑖 ← Sample(Si, Pc
i , Pi)

18: V ′ ← V ′ · PV 𝑖 ⊲ Append PV 𝑖 at the end of V ′

19: return V ′,D

by the test case t, respectively. We identify a bug with an error
location, a pair of the function name and the line number (e.g.,
(foo,3)). To obtain the two sets, Br and Bu, the Evaluate function at
line 4 executes the program with each test case t and performs a
coverage analysis (e.g., using gcov). The Evaluate function takes as
input a single test case t and a vector V of used parameter values,
and returns data d as output. SymTuner collects all data in D.

3.3.2 Extract. After SymTuner obtains the set D of data, it moves
onto the next step, Extract, where it extracts as learning data two
sets, CoreV and TotalV , of parameter value vectors from CoreD
and D, respectively. Intuitively, the set CoreD includes only core
elements of D, which we define as the smallest subset of D that
covers all branches and all bugs in D. To construct CoreD, we first
compute the set D∗:

D∗ = argmax
D′⊆D

|
⋃

(Br,Bu,_,_) ∈D′
(Br ⊎ Bu) |.

where “argmax” denotes the set of all possible arguments which
maximize the given objective (e.g., the number of covered branches
and detected bugs) and ⊎ denotes the disjoint union. From the
set D∗, we define the set CoreD to be the smallest one in D∗, i.e.,
CoreD = argminD′∈D∗ |D′ | (here we assume “argmin” returns an
arbitrary single argument that minimizes the given objective). In
other words, CoreD represents the minimum subset of D that collec-
tively maximizes the number of covered branches and found bugs.
For instance, suppose that the data D has four elements:

D = {({b1, b2, b5}, ∅, _, _), ({b5}, {(foo, 3)}, _, _),
({b1, b2, b3, b4}, ∅, _, _), ({b2, b3, b4}, ∅, _, _)}

where each element in D consists of a quadruple of a set of covered
branches, a set of bugs, a test case, and a vector of parameter values.
From the set D, we can extract CoreD as:

CoreD = {({b5}, {(foo, 3)}, _, _), ({b1, b2, b3, b4}, ∅, _, _)}.

SymTuner: Maximizing the Power of Symbolic Execution by Adaptively Tuning External Parameters ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

CalculatingCoreD corresponds to solving the set cover problem [40],
which is a well-known NP-complete problem. We compute CoreD
using a greedy algorithm that iteratively selects the element having
the largest number of uncovered branches and bugs at each stage.

From CoreD and D, we collect the learning data, CoreV and
TotalV . We first obtain the set CoreV of effective parameter val-
ues in CoreD as follows:

CoreV = {{V | (_, _, _,V) ∈ CoreD}}.

Note that we deliberately define the set CoreV as a multiset to
track the influential parameter values more effectively. For example,
suppose that CoreV is {{V1,V2,V1}}, where V1 is duplicated. Since
the existence of duplication implies that the duplicated value is
used more than once in the set CoreD, we can conclude that V1 is
the vector of more influential parameter values than V2 in terms of
performance. We also collect the set TotalV of all parameter values
used in the accumulated data D as:

TotalV = {V | (_, _, _,V) ∈ D}.

Note that the set TotalV is a standard set which does not allow
duplicated elements. The Extract function returns as output the
two sets CoreV and TotalV for the final step.

3.3.3 Update. The aim of last step is to update sampling prob-
abilities of parameter spaces based on the extracted data, CoreV
and TotalV , and to generate a new vector V ′ of parameter values
using the updated probabilities. More specifically, we update the
probability functions Pi and Pc

i by using the following two poli-
cies: Explore and Exploit. In general, the exploration policy, Explore,
gives more opportunities to parameter values which have been
used less frequently. On the other hand, the exploitation policy,
Exploit, increases the probabilities for parameter values with good
performance while taking into account the number of times the
values have been used. As balancing exploitation and exploration
is a well-known important problem, based on trial and error, we
set the sampling probability of Exploit and Explore to be 70% and
30%, respectively; that is, we set the hyper-parameter 𝛼 to 0.7 at
line 10 in Algorithm 3.

Exploration. When the selected policy is Explore or the value
of flag is 0 (line 13), SymTuner updates the probability for the 𝑖-th
parameter space Si by using the Explore function (line 14), and then
samples the 𝑖-th parameter value by using the Sample function
(line 17). The Explore function takes as input the set TotalV of
all parameter vectors used before and the 𝑖-th parameter space
Si = (SV 𝑖 , 𝜂

max

𝑖
), and returns as output the updated probability

functions.
To update the sampling probability, Explore(TotalV , (SV 𝑖 , 𝜂

max

𝑖
))

first scores each value v′ in SV 𝑖 as follows:

scorei (v′) =
1

|{𝑉 ∈ TotalV | v′ ∈ 𝑉 𝑖 }|
(1)

where 𝑉 𝑖 denotes the 𝑖-th element of vector 𝑉 . The denominator
is the number of times the value v′ is used as the 𝑖-th component
during the symbolic execution so far. When the value v′ is never
used (i.e., dominator=0), we give a highest possible score for v′. The
intuition is that we give higher scores to parameter vectors that
have been used less frequently, so that SymTuner explores unseen

parameter values. With scorei , we define the probability function
Pi : SV 𝑖 → [0, 1] as follows:

Pi (v′) =
scorei (v′)∑

sv∈SV 𝑖

scorei (sv)
(2)

The probability is the normalized score of v′ divided by the sum of
the scores of all parameter values in SV 𝑖 . Intuitively, if the number
of all distinct parameter values used is the same, the sampling
probability is evenly distributed; SymTuner samples the parameter
values at complete random in this case.

Likewise, to obtain the probability Pc
i of the number of sampling

in the 𝑖-th space Si = (SV 𝑖 , 𝜂
max

𝑖
), we calculate the score for each

number𝑚′ of sampling (1 ≤ 𝑚′ ≤ 𝜂max

𝑖
) using scorec

i defined as:

scorec
i (𝑚
′) = 1
|{𝑉 ∈ TotalV | 𝑚′ = |𝑉 𝑖 |}|

(3)

The denominator is the number of times the value𝑚′ equals to the
sample size (|𝑉𝑖 |). We compute Pc

i : [1, 𝜂max

𝑖
] → [0, 1] as follows:

Pc
i (𝑚

′) =
scorec

i (𝑚
′)∑

1≤𝑚≤𝜂max

𝑖

scorec
i (𝑚)

(4)

At lines 17–18, with the two updated probabilities Pi and Pc
i ,

the algorithm generates new 𝑖-th parameter value PV 𝑖 using the
Sample function, and then adds PV 𝑖 to the vector V ′.

Exploitation. Besides exploration, we employ an exploitation
policy (Exploit) to learn the sampling probabilities of each param-
eter space (lines 16). The policy uses the Exploit function which
increases the sampling probability of the values that have been
used more often as influential parameter values in CoreV .

Basically, the exploitation method computes the probability Pi
of each parameter space in the same way as the exploration method.
The scoring function, however, is different and defined as follows:

scorei (v′) =
|{𝑉 ∈ CoreV | v′ ∈ 𝑉 𝑖 }|
|{𝑉 ∈ TotalV | v′ ∈ 𝑉 𝑖 }|

Intuitively, the score for the value v′ indicates how often v′ is
used as influential parameter values in CoreV . More precisely, the
numerator represents the number of times the value is used in the
𝑖-th component in the set CoreV . Note that we divide this number
by the total number of times the value has been used, preferring
parameter values with higher “hit rates” instead of just preferring
parameters inCoreV simply because they have been tried frequently.
Similarly, we define the score function scorec

i for P
c
i as follows:

scorec
i (v
′) = |{𝑉 ∈ CoreV | v′ = |𝑉 𝑖 |}|
|{𝑉 ∈ TotalV | v′ = |𝑉 𝑖 |}|

After the score calculation, the Exploit policy updates the probabil-
ities Pi and Pc

i using the equations (2) and (4) at line 16. Then, it
generates new 𝑖-th parameter value based on the Sample function.

Through the three steps, Evaluate, Extract, and Update, Algo-
rithm 3 accumulates the set D of learning data, and returns it as
output. By repeating Algorithm 3, the set D is continuously updated,
and SymTuner gradually makes a smart decision on how to sample
𝑘 parameter values from 𝑘 predefined parameter spaces towards
maximizing the performance of symbolic execution.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sooyoung Cha, Myungho Lee, Seokhyun Lee, and Hakjoo Oh

4 EXPERIMENTS

In this section, we experimentally evaluate the effectiveness of our
approach. Research questions are as follows:

(1) Coverage: How effectively does SymTuner enhance sym-
bolic execution in terms of branch coverage?

(2) Bug-finding: Does the interaction between SymTuner and
symbolic executor enhance the bug-finding ability?

(3) Impact of parameters and the spaces:What is the most
influential parameter? How does the performance of our
approach change depending on different parameter spaces?

(4) Generality: Is SymTuner applicable to concolic testing, an-
other approach to dynamic symbolic execution?

We used KLEE [11]2 as a base symbolic executor to interact with
SymTuner because KLEE is one of the most popular and actively
maintained symbolic execution tools available today. All experi-
ments were conducted on a machine with two Intel Xeon Gold
6230R and 256GB RAM.

4.1 Experimental Settings

4.1.1 Predefined Parameter Spaces. SymTuner takes as input
predefined parameter spaces (S). In our experiments, we aimed to
tune all, more precisely 20, parameters in Figure 1, where their
types consist of 7 integer, 3 double, 4 string, and 6 boolean types. In
particular, for the first 14 parameters which are not boolean types,
we defined their spaces as:

Ssearch = ({s1, s2, · · · , s10}, 1),
Sargs = ({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 5),
Sfiles = Sstdin = ({4, 8, 12, 16, 20}, 1),
Smem = ({500, 1000, 1500, 2000, 2500}, 1),
Sbatch = ({6000, 8000, 10000, 12000, 14000}, 1),
Sinstr_time = ({10, 20, 30, 40, 50}, 1),
Sarray_size = ({3000, 3500, 4000, 4500, 5000}, 1),
Sfork = Scpfork = Ssolve = ({0.25, 0.5, 1, 2, 4}, 1),
Sswitch = ({“𝑠𝑖𝑚𝑝𝑙𝑒”, “𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙”}, 1), Sseed = ({}, 1),
Sexternal = ({“𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒”, “𝑎𝑙𝑙”}, 1),

The rationale behind the spaces is twofold. First, for each parameter,
we simply chose 5–10 values around the value used in Figure 1.
Second, we tried to subsume the settings used in prior work [11,
45, 63, 66]. In the first space (Ssearch), 𝑠1, . . . , 𝑠10 denote the ten
search strategies implemented in KLEE. Note that we also tuned
the seed input parameter (‘--seed-file’) not involved in Figure 1 as
its impact on the performance of symbolic execution is well-known
in the literature [14, 19, 37, 54]. Despite its importance, however, it
is not appropriate to predefine the seed sample space (e.g., Sseed)
because the corpus of seed inputs highly depends on the program
under test, which requires additional manual efforts for the end-
users to use SymTuner. Thus, we did not predefine Sseed , but let
it be dynamically determined during symbolic execution. More
precisely, on every iteration of the loop at lines 5–8 in Algorithm 2,
SymTuner calculates top-20 test cases in terms of covered branches
and detected bugs, and updates Sseed with them. That is, unlike other
predefined spaces, the candidate values in Sseed may change as the
learning progresses.

2We used KLEE-2.0 released in March 2019.

Table 1: 12 benchmark programs

Programs LOC # of Branches Programs LOC # of Branches

xorriso-1.5.2 161K 49,162 enscript-1.6.6 49K 3,796
gcal-4.1 89K 15,799 combine-0.4.0 32K 2,357
grep-3.4 82K 8,225 trueprint-5.4 12K 2,518
gawk-5.1.0 77K 10,720 diff (diffutils-3.7) 9K 7,612
sed-4.8 66K 6,798 du (coreutils-8.32) 8K 6,653
nano-4.9 54K 10,436 ls (coreutils-8.32) 5K 3,776

In total, the product of the 20 parameter spaces (S) induces 1016
different parameter settings.

4.1.2 Baselines. We compared our approach (Klee+SymTuner)
with three baselines: Klee

default
, Klee

hand
, and Klee+RandTuner.

The first baseline, Klee
default

, uses the default parameter values pro-
vided by KLEEwithout anymodification. The second one, Klee

hand
,

uses the hand-tuned parameter setting in Figure 1. More precisely,
its configuration is the same as the parameter values provided in the
KLEE documentation [49], which has been a conventional choice
in prior work [17, 18, 23, 50, 63]. The last one, Klee+RandTuner,
is a baseline that randomly samples parameter values from our
parameter spaces defined in Section 4.1.1; we simply substituted
RandTuner for SymTuner on line 6 in Algorithm 2.

For a fair comparison of Klee
default

and Klee
hand

, we ran each
baseline in two different modes, respectively, and then reported
the best results. The only difference between the two modes is in
how the given time budget is used. The first method is to perform
symbolic execution (Algorithm 1) only once for the total budget
(e.g., 10h) while the other is to run Algorithm 1 multiple times by
dividing the total budget into smaller budgets. More precisely, the
second method is to run Algorithm 2 without the parameter-tuning
process.

4.1.3 Benchmarks and Time Budgets. We used 12 GNU open-
source C programs in Table 1. Our benchmark suite includes the
largest programs used in prior works [14, 16, 17, 47, 54]. For exam-
ple, the last three programs in Table 1 are the largest (or second
largest) ones in GNU coreutils-8.32 and diffutils-3.7. For each bench-
mark program, we collected the most recent releases (as of March
2020). For all experiments, we set the time budget to 10 hours for
each benchmark program. We repeated each experiment 4 times,
and reported average results.

4.2 Branch Coverage

Our approach significantly outperformed the three baselines on
all benchmarks in terms of branch coverage. On average over
all benchmark programs, Klee+SymTuner achieved 31% and 56%
higher branch coverage than Klee

hand
and Klee

default
, respectively.

SymTuner also succeeded in covering 12% more branches than
RandTuner, showing the true benefit of online learning algorithm.

As the final outputs of our approach (Algorithm 2) and three
baselines are the test cases generated during symbolic execution,
we depicted the coverage graph over time in Figure 3 by accumulat-
ing the number of branches covered by the test case generated at
each time step. To do so, we used gcov, a tool for measuring code
coverage.

SymTuner: Maximizing the Power of Symbolic Execution by Adaptively Tuning External Parameters ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

0 5000 10000 15000 20000 25000 30000 35000

time(s)

0

500

1000

1500

2000

2500

3000

#
of

C
ov

er
ed

B
ra

nc
he

s

xorriso-1.5.2 (161K)

KLEE+SymTuner

KLEEhand

KLEE+RandTuner

KLEEdefault

0 5000 10000 15000 20000 25000 30000 35000

time(s)

0

500

1000

1500

2000

2500

3000

3500

#
of

C
ov

er
ed

B
ra

nc
he

s

gcal-4.1 (89K)

KLEE+SymTuner

KLEE+RandTuner

KLEEhand

KLEEdefault

0 5000 10000 15000 20000 25000 30000 35000

time(s)

0

500

1000

1500

2000

2500

3000

#
of

C
ov

er
ed

B
ra

nc
he

s

grep-3.4 (82K)

KLEE+SymTuner

KLEE+RandTuner

KLEEhand

KLEEdefault

0 5000 10000 15000 20000 25000 30000 35000

time(s)

0

500

1000

1500

2000

2500

3000

3500

#
of

C
ov

er
ed

B
ra

nc
he

s

gawk-5.1.0 (77K)

KLEE+SymTuner

KLEE+RandTuner

KLEEdefault

KLEEhand

0 5000 10000 15000 20000 25000 30000 35000

time(s)

0

500

1000

1500

2000

#
of

C
ov

er
ed

B
ra

nc
he

s

sed-4.8 (66K)

KLEE+SymTuner

KLEEdefault

KLEEhand

KLEE+RandTuner

0 5000 10000 15000 20000 25000 30000 35000

time(s)

0

250

500

750

1000

1250

1500

1750
#

of
C

ov
er

ed
B

ra
nc

he
s

nano-4.9 (54K)

KLEE+SymTuner

KLEE+RandTuner

KLEEhand

KLEEdefault

0 5000 10000 15000 20000 25000 30000 35000

time(s)

0

200

400

600

800

1000

1200

1400

#
of

C
ov

er
ed

B
ra

nc
he

s

enscript-1.6.6 (49K)

KLEE+SymTuner

KLEE+RandTuner

KLEEhand

KLEEdefault

0 5000 10000 15000 20000 25000 30000 35000

time(s)

0

200

400

600

800

#
of

C
ov

er
ed

B
ra

nc
he

s

combine-0.4.0 (32K)

KLEE+SymTuner

KLEE+RandTuner

KLEEhand

KLEEdefault

0 5000 10000 15000 20000 25000 30000 35000

time(s)

0

200

400

600

800

1000

#
of

C
ov

er
ed

B
ra

nc
he

s

trueprint-5.4 (12K)

KLEE+SymTuner

KLEE+RandTuner

KLEEhand

KLEEdefault

0 5000 10000 15000 20000 25000 30000 35000

time(s)

0

250

500

750

1000

1250

1500

1750

#
of

C
ov

er
ed

B
ra

nc
he

s

diff (9K)

KLEE+SymTuner

KLEE+RandTuner

KLEEdefault

KLEEhand

0 5000 10000 15000 20000 25000 30000 35000

time(s)

0

200

400

600

800

1000

1200

#
of

C
ov

er
ed

B
ra

nc
he

s

du (8K)

KLEE+SymTuner

KLEE+RandTuner

KLEEhand

KLEEdefault

0 5000 10000 15000 20000 25000 30000 35000

time(s)

0

250

500

750

1000

1250

1500

1750

#
of

C
ov

er
ed

B
ra

nc
he

s

ls (5K)

KLEE+SymTuner

KLEE+RandTuner

KLEEhand

KLEEdefault

Figure 3: The average number of covered branches achieved by our approach and three baselines on 12 benchmarks

The results in Figure 3 show that Klee+SymTuner consistently
achieves the highest branch coverage on all benchmarks. In partic-
ular, the results for the two largest benchmarks, xorriso and gcal,
are noteworthy; Klee+SymTuner was able to cover 3,093 branches
on average for xorriso while Klee

hand
and Klee+RandTuner

covered 2,509 and 2,415 branches, respectively. For gcal, the av-
erage number of branches covered by Klee+SymTuner was 3,539,
which is 353 and 1,062 more than Klee+RandTuner and Klee

hand
,

respectively.
Excluding our approach, Klee+RandTuner was generally bet-

ter than the other two baselines, where this result implies that
performing symbolic execution with various parameter values is
usually more effective than running it with the fixed values. Among
Klee

hand
and Klee

default
, the former achieved 19% higher branch

coverage than the latter on all benchmarks. That is, using hand-
tuned parameter values was better than blindly using the default
values provided in KLEE.

One interesting point is that Klee+RandTuner is sometimes
even inferior to the two baselines, Klee

hand
and Klee

default
, which

do not change the parameter values at all during symbolic execu-
tion. On xorriso and sed, Klee+RandTuner managed to cover
about 100 and 150 branches less than Klee

hand
and Klee

default
,

respectively; Klee+RandTuner achieved the lowest coverage on
sed. The instability of RandTuner supports that our approach
(Algorithm 2) is essential to consistently achieve higher coverage.

The standard deviations of branch coverage averaged over all
benchmarks and trials are as: SymTuner(122), RandTuner(99),

Table 2: The branch coverage achieved by running SymTuner

and RandTuner with multiple cores in parallel

of Cores 2 4 6 8 10

xorriso-1.5.4 SymTuner 3,260 3,385 3,604 4,083 5,202

RandTuner 2,726 3,225 3,440 3,441 3,631

gcal-4.1 SymTuner 4,243 4,397 4,538 4,561 4,757

RandTuner 3,825 4,131 4,221 4,256 4,315

Klee
default

(102), and Klee
hand

(60); these differences are insignifi-
cant considering the coverage gap between ours and the baselines.

Additionally, we investigated whether SymTuner still outper-
forms RandTuner even when running them in parallel. We won-
dered if running KLEE with more diverse parameters simply by
using many cores in parallel would diminish the advantage of
SymTuner compared to RandTuner. So, we compared SymTuner
and RandTuner by accumulating the results of running them (e.g.,
Algorithm 2) with different number of cores in parallel, respectively.
Table 2 reports the number of covered branches achieved by each
technique according to the number of cores used in parallel on the
two largest benchmarks: xorriso and gcal. The results show that
the difference in branch coverage between the two techniques be-
comes larger when more cores are used. For instance, on xorriso,
running SymTuner with 10 cores in parallel succeeded in cover-
ing about 1,500 more branches than running RandTuner with the
same settings. That is, even in parallel settings, smartly tuning

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sooyoung Cha, Myungho Lee, Seokhyun Lee, and Hakjoo Oh

Table 3: Comparison of bug-finding ability of the three baselines and SymTuner. (SymTuner = Klee+SymTuner)

Benchmarks Error-Types Error Locations Bug-Triggering Test Cases SymTuner RandTuner Klee
hand

Klee
default

gcal-4.1

Segmentation fault ‘Line: 740 in /src/file-io.c’ "@/⊙" (⊙ denotes an ASCII character of 1.) ✔ ✔ ✔ ✔

Segmentation fault ‘Line: 3956 in /src/gcal.c’ "@/" "--at=5" ✔ ✘ ✘ ✘

Segmentation fault ‘Line: 72 in /libc/string/strncasecmp.c’ "@...//" "@.." "@../" "--u=Z=" ✔ ✘ ✘ ✘

Abnormal termination ‘Line: 27 in /libc/string/strcpy.c’ "/#" "⊙" A (A denotes a symbolic file.) ✔ ✘ ✔ ✘

Abnormal termination ‘Line: 29 in /libc/string/memcpy.c’ "@/" "-#__⊙" A ✔ ✔ ✘ ✔

enscript-1.6.6 Segmentation fault ‘Line: 1880 in /libc/stdio/_vfprintf.c’ "--to" "" "" "" "" ✔ ✔ ✘ ✘

gawk-5.1.0 Abnormal termination ‘Line: 1337 in main.c’ "-W" "nost" ✔ ✔ ✘ ✘

combine-0.4.0

Segmentation fault ‘Line: 385 in /src/field.c’ "-f" "--field=," ✔ ✔ ✔ ✔

Segmentation fault ‘Line: 458 in /src/field.c’ "--re" "" "--fi" "d.e0-2," ✔ ✘ ✘ ✘

Segmentation fault ‘Line: 633 in /src/df_options.c’ "-Pp" "--no-ch" "--fi" "r.o1" "--r=" ✔ ✔ ✘ ✘

Memory-exhaustion ‘Line: 48 in /libc/string/memmove.c’ "-ecut" "--fiel" "8,--1" ✔ ✘ ✘ ✘

S y
m T

u n
e r

s y m
- a r

g
s e

a r c
h

s e
e d

- f i l
e

s w
i t c h

- t y
p e

m a
x - m

e m
o r y

m a
x - s

y m
- a r

r a y
- s i

z e
m a

x - s
t a t

i c -
f o r

k - p
c t

m a
x - s

t a t
i c -

s o
l v e

- p c
t

m a
x - s

t a t
i c -

c p
f o r

k - p
c t

m a
x - i

n s
t r u

c t i o
n - t

i m
e

b a
t c h

- i n
s t r

u c
t i o

n s
s i m

p l i f
y - s

y m
- i n

d i c
e s

e x
t e r

n a
l - c

a l l s
s y m

- f i l
e s

s y m
- s t

d i n
u s

e - c
e x

- c a
c h

e
m a

x - m
e m

o r y
- i n

h i b
i t

u s
e - f

o r k
e d

- s o
l v e

r
o p

t i m
i z e

s y m
- s t

d o
u t

2 0 0 0

2 4 0 0

2 8 0 0

3 2 0 0 x o r r i s o - 1 . 5 . 2

o
f C

ov
ere

d B
ran

ch
es

S y
m T

u n
e r

s y m
- a r

g
s e

a r c
h

s e
e d

- f i l
e

s w
i t c h

- t y
p e

m a
x - m

e m
o r y

m a
x - s

y m
- a r

r a y
- s i

z e
m a

x - s
t a t

i c -
f o r

k - p
c t

m a
x - s

t a t
i c -

s o
l v e

- p c
t

m a
x - s

t a t
i c -

c p
f o r

k - p
c t

m a
x - i

n s
t r u

c t i o
n - t

i m
e

b a
t c h

- i n
s t r

u c
t i o

n s
s i m

p l i f
y - s

y m
- i n

d i c
e s

e x
t e r

n a
l - c

a l l s
s y m

- f i l
e s

s y m
- s t

d i n
u s

e - c
e x

- c a
c h

e
m a

x - m
e m

o r y
- i n

h i b
i t

u s
e - f

o r k
e d

- s o
l v e

r
o p

t i m
i z e

s y m
- s t

d o
u t

2 0 0 0

2 4 0 0

2 8 0 0

3 2 0 0

3 6 0 0 g c a l - 4 . 1

o
f C

ov
ere

d B
ran

ch
es

S y
m T

u n
e r

s y m
- a r

g
s e

a r c
h

s e
e d

- f i l
e

s w
i t c h

- t y
p e

m a
x - m

e m
o r y

m a
x - s

y m
- a r

r a y
- s i

z e
m a

x - s
t a t

i c -
f o r

k - p
c t

m a
x - s

t a t
i c -

s o
l v e

- p c
t

m a
x - s

t a t
i c -

c p
f o r

k - p
c t

m a
x - i

n s
t r u

c t i o
n - t

i m
e

b a
t c h

- i n
s t r

u c
t i o

n s
s i m

p l i f
y - s

y m
- i n

d i c
e s

e x
t e r

n a
l - c

a l l s
s y m

- f i l
e s

s y m
- s t

d i n
u s

e - c
e x

- c a
c h

e
m a

x - m
e m

o r y
- i n

h i b
i t

u s
e - f

o r k
e d

- s o
l v e

r
o p

t i m
i z e

s y m
- s t

d o
u t

2 0 0 0

2 4 0 0

2 8 0 0

g r e p - 3 . 4

o
f C

ov
ere

d B
ran

ch
es

Figure 4: The average branch coverage achieved by tuning only individual parameter on the three largest benchmarks

parameters is still more effective than trying various parameters in-
discriminately. As future work, to further improve the effectiveness
of SymTuner when running it in parallel, we plan to apply the core
ideas of the existing techniques such as swarm testing [26, 31].

4.3 Bug-finding

Table 3 shows that SymTuner also has considerable promise in
improving the bug-finding ability of KLEE. In summary, SymTuner
detected 11 different real-bugs from four open-source programs
while the best one among three baselines, RandTuner, found just
six of them.

Columns in Table 3 denote the benchmark program, error-type,
error-location, bug-triggering test case produced by SymTuner,
and indication of success (✔) or failure (✘) for each technique.
In particular, we note that the failure mark ‘✘’ indicates that the
corresponding technique completely failed to find the bug within
40 hours (10h × 4 repetitions). Conversely, if succeeding on the bug
detection at least once during the four trials, we marked the result
as ‘success’ (✔).

Our approach (Klee+SymTuner) found 11 different bugs in to-
tal, and we classified them into three error-types: abnormal ter-
mination, segmentation fault, and memory exhaustion. The first

two error-types cause the program to crash while the third one is
a performance bug. For example, the bug-triggering input ("@/"
"--at=5") generated by Klee+SymTuner for the program gcal
causes a segmentation fault which terminates the program abnor-
mally. Klee+SymTuner also found fatal bugs in combine; the in-
put ("-ecut" "--fiel" "8,--1") leads to a serious performance
degradation which consumes all available memory of the machine.
These bug-triggering test cases in Table 3 are easily reproducible.
For example, on gawk-5.1.0, executing the command (./gawk "-W"
"nost") will abort the program execution immediately. An unex-
pected result in Table 3 is that RandTuner failed to find a bug that
Klee

hand
discovered in gcal; that is, RandTuner is unstable even

in terms of bug-finding capability.
Additionally, we also investigated whether RandTuner could

find more bugs when running it in parallel with multiple CPU cores.
Compared to running RandTuner on a single core, using 10 cores
in parallel was able to find more bugs, but it still failed to find some
bugs which were discovered by SymTuner (e.g., the bug found in
the file ‘strncasecmp.c’ of gcal). When we executed RandTuner
for much longer (e.g., 20h) using 10 cores in parallel, RandTuner
was eventually able to find all bugs that SymTuner found with a
single core for 10 hours.

SymTuner: Maximizing the Power of Symbolic Execution by Adaptively Tuning External Parameters ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

154 318229

322

107 106

2459

SymTunerspaces SymTuner

SymTunerparams

xorriso-1.5.2

179 462223

168

100 180

2684

SymTunerspaces SymTuner

SymTunerparams

gcal-4.1

271 38144

335

141 285

2603

SymTunerspaces SymTuner

SymTunerparams

grep-3.4

228 222113

46

116 148

3326

SymTunerspaces SymTuner

SymTunerparams

gawk-5.1.0

Figure 5: Venn-diagrams illustrating the sets of branches covered by SymTuner with different parameter spaces

52 903381

Chameleon Chameleon+SymTuner

gawk-3.0.3

47 531506

Chameleon Chameleon+SymTuner

sed-1.17

21 182218

Chameleon Chameleon+SymTuner

grep-2.2

Figure 6: Venn-diagrams depicting the sets of covered branches by Chameleon with/without SymTuner

4.4 Impact of Parameters and their Spaces

Impact of Individual Parameters. We investigated which of
the 20 parameters in Table 1 had the greatest impact on the per-
formance of symbolic execution for the three largest benchmarks,
xorriso, gcal, and grep. To do so, we performed symbolic exe-
cution while tuning each parameter one by one, and reported the
average branch coverage for each parameter-tuning with the same
setting of SymTuner (10h × 4 repetitions).

Figure 4 shows that the most influential parameters tend to be
similar across the three programs, but the least influential ones are
different depending on the target program. The two parameters,
symbolic command-line arguments (‘--sym-arg’) and seed input (‘--
seed-file’), were consistently included in the top-4 most influential
parameters for all the benchmarks. Also, the most crucial parameter
for gcal and grep was equal as search strategy (‘--search’), but the
search strategy parameter was not included even in top-10 impor-
tant parameters for xorriso, which means that every important
parameter was not shared across all the programs. Likewise, the
forth most important parameter (‘--batch-instructions’) on gcal
was the most unimportant one on xorriso. On the other hand,
the least influential parameter for each program is different as:
‘--batch-instructions’ (xorriso), ‘--use-cex-cache’ (gcal), and ‘--
sym-stdin’ (grep). These results support our claim that we should
take a program-adaptive method to tune various parameters for
symbolic execution.

An unexpected observation from Figure 4 is that the parameter
type itself seems to be related to its importance. First, the string-
type parameters (e.g., ‘--search’, ‘--seed-file’) ranked the most in
the most important top-4 parameters while none of the parameters
belonged to the least important top-4 parameters; that is, the string-
type parameter is important to tune carefully. Second, boolean type

Table 4: 14 Parameter spaces added for SymTunerParams

Boolean Boolean Integer or (Double)

use-branch-cache cex-cache-exp redzone-size ({5, 10, 15, 20, 25, 30},1)
use-constant-arrays cex-cache-superset seed-time ({5, 10, 15, 20, 25, 30},1)
solver-optimize-divides cex-cache-try-all max-stack-frames ({6000, 7000, 8000, 9000, 10000},1)
allocate-determ equality-substitution allocate-determ-size ({50, 100, 150, 200, 250},1)
rewrite-equalities max-static-cpsolve-pct ({0.25, 0.5, 1, 2, 4},1)

parameters are less valuable to tune than the other type parame-
ters as boolean types account for 50% of the least important top-4
parameters.

The results in Figure 4 also demonstrate that tuning only the
most influential parameter is less beneficial than SymTuner which
adjusts the 20 parameters simultaneously. In particular, SymTuner
covered 11.5% more branches on grep than tuning only the most
influential parameter (‘--search’). Also, in terms of bug-finding
capability, we found that tuning only the most influential parameter
on gcal was able to discover only a single bug located in ‘/src/file-
io.c’ among the total 5 bugs found by SymTuner on gcal in Table 3.

Impact of Parameter Spaces. We evaluated how the perfor-
mance of SymTuner changes depending on different parameter
spaces. To do so, we compared SymTuner with its two variants,
SymTunerSpaces and SymTunerParams, having different parameter
spaces. The former (SymTunerSpaces) is a variant that doubles each
space of the 10 parameters with integer or double type defined
in Section 4.1.1, respectively. For example, the space of Sargs of
SymTuner is between 1 and 10, but the space for SymTunerSpaces
will be between 1 and 20. That is, the parameter spaces for the first
variant will be 210 ∗ 1016, which is about 1,000 times larger than
the spaces for SymTuner. The latter (SymTunerParams) is another
variant that tunes more parameters than the 20 parameters to be

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sooyoung Cha, Myungho Lee, Seokhyun Lee, and Hakjoo Oh

tuned originally in SymTuner. More specifically, this variant aimed
to simultaneously tune a total of 34 parameters, including the 20
parameters that SymTuner tuned and the 14 additional parameters
in Table 4; we manually added the 14 parameters that are likely to
affect the performance of symbolic execution among the total pa-
rameters provided to KLEE. We evaluated the two variants with the
same settings (e.g, 10h × 4 repetitions) as SymTuner on 4 largest
benchmarks, and reported the average results.

Figure 5 shows the Venn-diagrams which describe the relation-
ships in terms of the sets of branches reached by each technique.
The results show that SymTuner is able to cover different code
areas of the target program effectively depending on the parameter
spaces to be tuned. In terms of the total number of covered branches,
SymTuner achieved the highest branch coverage on gcal and
the lowest coverage on grep. Exactly opposite, SymTunerParams

achieved the lowest branch coverage on gcal and the highest cov-
erage on grep. Figure 5 also shows that there exist many branches
that SymTuner and its two variants are able to exclusively reach.
For example, SymTunerSpaces exclusively covered 271 branches
on grep, and SymTunerParams succeeded in covering 332 unique
branches on xorriso. That is, the potential of SymTuner may vary
depending on different parameter spaces.

4.5 Generality of SymTuner

We checked if our approach is applicable to concolic testing [25,
53], another major approach to dynamic symbolic execution. We
applied SymTuner to CREST [21] as it is a publicly available tool
and Chameleon [16], the state-of-the-art technique for tuning
search heuristics for concolic testing, is implemented on top of
CREST [58]. Hence, our approach (Chameleon+SymTuner) aims
to tune the other parameters while letting Chameleon tune search
strategies in its own way. To do so, we implemented SymTuner on
top of Chameleon, and figured out whether SymTuner was able
to enhance Chameleon.

Unlike KLEE, CREST only provides three external parameters;
others are hard-coded inside the tool and difficult to tune from
the outside. In our experiments, we tried to tune all of the three
parameters: symbolic command-line argument, seed input, and
the number of program executions. On the basis of the parameter
values used in Chameleon [58], we defined their spaces as follows:

Sargs = ({12, 14, 16, 18, 20, 22, 24, 26, 28, 30}, 1),
Sseed = ({𝐼0}, 1),
Sexecution = ({3000, 3500, 4000, 4500, 5000}, 1)

In particular, we first initialized the space Sseed with an initial input
(𝐼0) provided in Chameleon [58], and let it be dynamically decided
during concolic testing like the space Sseed in Section 4.1.1. For
evaluation, we used the same three benchmark programs taken from
Chameleon, allocated the time budget to 10 hours, and reported
the number of covered branches averaged over 5 times.

Figure 6 shows that our approach (Chameleon+SymTuner) has
its own benefit in terms of exclusively covered branches. For the
three benchmarks, Chameleon+SymTuner succeeded in covering
about 30% more unique branches than Chameleon alone. We ex-
pect that the usefulness of SymTuner will be greater if various
parameters provided in KLEE are also added to CREST in the fu-
ture. Note that since SymTuner uses a symbolic execution tool

(e.g., KLEE and CREST) as a blackbox, we expect that applying
SymTuner to other symbolic execution tools [51, 56] does not re-
quire much effort.

4.6 Threats to Validity

(1) We evaluated SymTuner only for KLEE and CREST. We chose
them as they are the representative symbolic executors for C pro-
grams, but the results reported in this paper may not be valid for
other testing tools such as EVOSUITE [24], a widely used unit test-
ing tool. (2) We manually defined the 20 parameter spaces of KLEE
by choosing 5–10 values around the value used in Figure 1. How-
ever, these predefined spaces may not be appropriate for the other
target programs beyond our 12 benchmarks. (3) Our approach (Al-
gorithm 2) involves hyper-parameters, e.g., 𝜂ratio and 𝜂step, which
were selected heuristically. These values may need to be set prop-
erly for target programs. (4) We used 12 programs including the
largest real-world programs (up to 161KLoC) among those used in
prior works [14, 16, 17, 47, 54] for evaluating KLEE. However, these
might not be representative enough.

5 RELATEDWORK

Improving Symbolic Execution. To our knowledge, SymTuner is
the first technique to tune general parameters of symbolic execu-
tion automatically. Over the past decade, a lot of research has been
conducted to advance symbolic execution, and they can be clas-
sified into three groups according to the main approach: search
strategies [10, 45, 54, 62], pruning techniques [6, 9, 34, 66], and
constraint solving techniques [23, 35, 52, 65]. First, prior works
on search strategies aim to preferentially explore the execution
paths of the program that are likely to maximize the performance
(e.g., code coverage). For example, the CFDS strategy [10] prior-
itizes the program’s paths closest to the branches that have not
yet been reached, and the CGS strategy [54] favors exploring the
paths with a new context (i.e., new sequence of branches). Second,
path-pruning techniques focus on removing the redundant paths
of the program based on the predefined criteria. For instance, Jaf-
far et al. [34] presented a criterion that eliminates the execution
paths guaranteed not to reach the error locations. Lastly, diverse
techniques have emerged to reduce the cost for constraint solving,
one major bottleneck in symbolic execution, by simplifying the
array constraints [52] or reusing the constraint solutions [35, 65].
SymTuner is orthogonal to the above three approaches and we be-
lieve that SymTuner can further enhance the existing approaches
by automatically tuning external parameters.

Software Testing with Learning. Our approach follows a re-
cent trend in software testing that leverages machine learning [14–
18, 42, 44, 55, 57]. ParaDySE [14] boosts concolic testing by automat-
ically generating search strategy via offline learning. Using online
learning technique, Chameleon [16] adaptively switches the search
strategies of concolic testing. LEO [18] aims to improve the efficacy
of symbolic execution by learning how to use compiler optimiza-
tions for code transformation. In Android GUI testing, QBE [42]
uses reinforcement learning to explore GUI actions that are likely to
detect bugs and increase activity coverage. RETECS [57] learns how
to preferentially select buggy test cases in Continuous Integration

SymTuner: Maximizing the Power of Symbolic Execution by Adaptively Tuning External Parameters ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

based on reinforcement learning. In this paper, we use learning for
a novel application, i.e., tuning symbolic execution parameters.

Search-based Software Testing. Our work can be considered an
instance of search-based software testing (SBST) [1, 4, 27, 46] using
meta-heuristic search technique in the field of search-based soft-
ware engineering [3, 28–30]. SBST aims to find good solutions from
an extremely large search space in a reasonable time for enhancing
testing efficacy. To do so, each technique in SBST defines its own
optimization problem and proposes a fitness function specialized
for solving the problem. In our work, we formulated the problem of
tuning parameter values of symbolic execution as an optimization
problem that maximizes both the number of covered branches and
found bugs, and presented a specialized algorithm to solve it.

Automatic Parameter Tuning. Automatic parameter tuning has
been studied extensively in various fields. For example, researchers
have developed domain-specific algorithms for database systems [22,
61], web systems [8, 64], image segmentation [59], and big data
processing systems [20, 43]. Our work lies in this line of research
and presents an algorithm specialized for symbolic execution. Ex-
isting frameworks for algorithm configuration (e.g., ParamILS [33],
OpenTuner [2]) are inappropriate for our purpose. Note that these
are offline approaches; they aim to discover good parameter set-
tings of algorithms and the same settings are used without change
at runtime. By contrast, the main benefit of SymTuner comes from
adaptively adjusting the parameter values online (during symbolic
execution), which is crucial in our case as optimal parameter values
vary significantly depending on the target programs (Section 4.4).
Also, using these tools effectively often requires domain exper-
tise [2]; our goal is to enable users to use symbolic execution with-
out any prior knowledge.

6 CONCLUSION

Automatic tuning of symbolic execution parameters has received
little attention despite its importance in practice. In this paper, we
called for attention to this problem and presented SymTuner for
automatically tuning parameters of symbolic execution via online
learning. Experimental results showed that running KLEE in con-
cert with SymTuner leads to sharp increases in branch coverage
and found bugs. We hope that SymTuner will help end-users to
maximally benefit from powerful yet difficult-to-use modern sym-
bolic execution tools.

ACKNOWLEDGMENTS

This work was supported by Samsung Research Funding & In-
cubation Center of Samsung Electronics under Project Number
SRFC-IT1701-51. This work was partly supported by Institute of
Information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government(MSIT) (No.2020-0-
01337,(SW STAR LAB) Research on Highly-Practical Automated
Software Repair) and the MSIT(Ministry of Science and ICT), Korea,
under the ICT Creative Consilience program (IITP-2022-2020-0-
01819) supervised by the IITP(Institute for Information & commu-
nications Technology Planning & Evaluation). This work was sup-
ported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No.2021R1A5A1021944,
No.NRF-2021R1C1C2006410).

REFERENCES

[1] Wasif Afzal, Richard Torkar, and Robert Feldt. 2009. A systematic review of
search-based testing for non-functional system properties. Information and
Software Technology (2009), 957–976.

[2] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U. O’Reilly,
and S. Amarasinghe. 2014. OpenTuner: An extensible framework for program
autotuning. In 2014 23rd International Conference on Parallel Architecture and
Compilation Techniques (PACT’14). 303–315.

[3] Andrea Arcuri and Gordon Fraser. 2013. Parameter tuning or default values? An
empirical investigation in search-based software engineering. Empirical Software
Engineering (2013), 594–623.

[4] Andrea Arcuri and Xin Yao. 2008. Search based software testing of object-oriented
containers. Information Sciences (2008), 3075–3095.

[5] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput.
Surv. 51, 3, Article 50 (May 2018), 39 pages. https://doi.org/10.1145/3182657

[6] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. 2008. RWset: Attacking
path explosion in constraint-based test generation. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’08).
351–366.

[7] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. 1975. SELECT–a Formal
System for Testing and Debugging Programs by Symbolic Execution. SIGPLAN
Not. (1975), 234–245.

[8] Xiangping Bu, Jia Rao, and Cheng-Zhong Xu. 2009. A Reinforcement Learning
Approach to Online Web Systems Auto-Configuration. In Proceedings of the 2009
29th IEEE International Conference on Distributed Computing Systems (ICDCS ’09).
2–11.

[9] Suhabe Bugrara and Dawson Engler. 2013. Redundant State Detection for Dy-
namic Symbolic Execution. In Proceedings of the 2013 USENIX Conference on
Annual Technical Conference (USENIX ATC’13). 199–212.

[10] Jacob Burnim and Koushik Sen. 2008. Heuristics for Scalable Dynamic Test Gen-
eration. In Proceedings of 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE ’08). 443–446.

[11] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI ’08). 209–224.

[12] C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu, K. Sen, N. Tillmann, and W.
Visser. 2011. Symbolic execution for software testing in practice: preliminary
assessment. In 2011 33rd International Conference on Software Engineering (ICSE).
1066–1071.

[13] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Commun. ACM 56, 2 (2013), 82–90.

[14] Sooyoung Cha, SeongjoonHong, Junhee Lee, and Hakjoo Oh. 2018. Automatically
Generating Search Heuristics for Concolic Testing. In Proceedings of the 40th
International Conference on Software Engineering (ICSE ’18). 1244–1254.

[15] Sooyoung Cha, Seonho Lee, and Hakjoo Oh. 2018. Template-guided Concolic
Testing via Online Learning. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE ’18). 408–418.

[16] Sooyoung Cha and Hakjoo Oh. 2019. Concolic Testing with Adaptively Changing
Search Heuristics. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’19). 235–245.

[17] Sooyoung Cha and Hakjoo Oh. 2020. Making Symbolic Execution Promising by
Learning Aggressive State-Pruning Strategy. In The 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’20).

[18] Junjie Chen, Wenxiang Hu, Lingming Zhang, Dan Hao, Sarfraz Khurshid, and Lu
Zhang. 2018. Learning to accelerate symbolic execution via code transformation.
In 32nd European Conference on Object-Oriented Programming (ECOOP ’18).

[19] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,
Tao Wei, and Long Lu. 2020. SAVIOR: Towards Bug-Driven Hybrid Testing. In
2020 IEEE Symposium on Security and Privacy (S&P ’20). 1580–1596.

[20] Dazhao Cheng, Jia Rao, Yanfei Guo, and Xiaobo Zhou. 2014. Improving MapRe-
duce Performance in Heterogeneous Environments with Adaptive Task Tuning.
In Proceedings of the 15th International Middleware Conference (Middleware ’14).
97–108.

[21] CREST. A concolic test generation tool for C. 2008. https://github.com/jburnim/
crest.

[22] SongyunDuan, Vamsidhar Thummala, and Shivnath Babu. 2009. TuningDatabase
Configuration Parameters with ITuned. Proc. VLDB Endow. (2009), 1246––1257.

[23] Oscar Soria Dustmann, Klaus Wehrle, and Cristian Cadar. 2018. PARTI: A
Multi-Interval Theory Solver for Symbolic Execution. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (ASE ’18).
430–440.

https://doi.org/10.1145/3182657
https://github.com/jburnim/crest
https://github.com/jburnim/crest

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sooyoung Cha, Myungho Lee, Seokhyun Lee, and Hakjoo Oh

[24] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-Oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (ESEC/FSE ’11). 416–419.

[25] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05). 213–223.

[26] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. 2012.
Swarm Testing. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis (ISSTA ’12). 78–88.

[27] Mark Harman, Yue Jia, and Yuanyuan Zhang. 2015. Achievements, open problems
and challenges for search based software testing. In 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST ’15). 1–12.

[28] Mark Harman and Bryan F Jones. 2001. Search-based software engineering.
Information and software Technology (2001), 833–839.

[29] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based
software engineering: Trends, techniques and applications. ACM Computing
Surveys (CSUR) (2012), 1–61.

[30] Mark Harman, Phil McMinn, Jerffeson Teixeira De Souza, and Shin Yoo. 2010.
Search based software engineering: Techniques, taxonomy, tutorial. In Empirical
software engineering and verification. 1–59.

[31] Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. 2011. Swarm Verification
Techniques. IEEE Transactions on Software Engineering (2011), 845–857.

[32] W. E. Howden. 1977. Symbolic Testing and the DISSECT Symbolic Evaluation
System. IEEE Transactions on Software Engineering (1977), 266–278.

[33] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. 2009.
ParamILS: an automatic algorithm configuration framework. Journal of Artificial
Intelligence Research (2009), 267–306.

[34] Joxan Jaffar, Vijayaraghavan Murali, and Jorge A. Navas. 2013. Boosting Concolic
Testing via Interpolation. In Proceedings of the 9th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE ’13). 48–58.

[35] Xiangyang Jia, Carlo Ghezzi, and Shi Ying. 2015. Enhancing Reuse of Constraint
Solutions to Improve Symbolic Execution. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis (ISSTA ’15). 177–187.

[36] Yue Jia, Myra B. Cohen, Mark Harman, and Justyna Petke. 2015. Learning Com-
binatorial Interaction Test Generation Strategies Using Hyperheuristic Search. In
Proceedings of the 37th International Conference on Software Engineering - Volume
1 (ICSE ’15). 540–550.

[37] Timotej Kapus, Frank Busse, and Cristian Cadar. 2020. Pending Constraints in
Symbolic Execution for Better Exploration and Seeding. In Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE ’20).
115––126.

[38] Timotej Kapus and Cristian Cadar. 2019. A Segmented Memory Model for Sym-
bolic Execution. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Ma-
chinery, New York, NY, USA, 774–784. https://doi.org/10.1145/3338906.3338936

[39] Timotej Kapus, Martin Nowack, and Cristian Cadar. 2019. Constraints in Dynamic
Symbolic Execution: Bitvectors or Integers?. In Tests and Proofs, Dirk Beyer and
Chantal Keller (Eds.). Springer International Publishing, Cham, 41–54.

[40] Richard M Karp. 1972. Reducibility among combinatorial problems. In Complexity
of computer computations. 85–103.

[41] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (1976), 385–394.

[42] Yavuz Koroglu, Alper Sen, Ozlem Muslu, Yunus Mete, Ceyda Ulker, Tolga Tan-
riverdi, and Yunus Donmez. 2018. QBE: QLearning-based exploration of android
applications. In 2018 IEEE 11th International Conference on Software Testing, Veri-
fication and Validation (ICST ’18). 105–115.

[43] Min Li, Liangzhao Zeng, Shicong Meng, Jian Tan, Li Zhang, Ali R. Butt, and
Nicholas Fuller. 2014. MRONLINE: MapReduce Online Performance Tuning. In
Proceedings of the 23rd International Symposium on High-Performance Parallel and
Distributed Computing (HPDC ’14). 165–176.

[44] Xin Li, Yongjuan Liang, Hong Qian, Yi-Qi Hu, Lei Bu, Yang Yu, Xin Chen, and
Xuandong Li. 2016. Symbolic Execution of Complex Program Driven by Ma-
chine Learning Based Constraint Solving. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE ’16). 554–559.

[45] You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. 2013. Steering Symbolic
Execution to Less Traveled Paths. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages, and
Applications (OOPSLA ’13). 19–32.

[46] Phil McMinn. 2011. Search-based software testing: Past, present and future. In
2011 IEEE Fourth International Conference on Software Testing, Verification and

Validation Workshops. 153–163.
[47] Sergey Mechtaev, Alberto Griggio, Alessandro Cimatti, and Abhik Roychoud-

hury. 2018. Symbolic Execution with Existential Second-Order Constraints. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
’18). 389–399.

[48] M. Nowack. 2019. Fine-Grain Memory Object Representation in Symbolic Exe-
cution. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 912–923.

[49] OSDI’08_Coreutil_Experiments. 2008. https://klee.github.io/docs/coreutils-
experiments.

[50] Awanish Pandey, Phani Raj Goutham Kotcharlakota, and Subhajit Roy. 2019.
Deferred Concretization in Symbolic Execution via Fuzzing. In Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’19). 228–238.

[51] Corina S Păsăreanu and Neha Rungta. 2010. Symbolic PathFinder: symbolic exe-
cution of Java bytecode. In Proceedings of the IEEE/ACM international conference
on Automated software engineering (ASE ’10). 179–180.

[52] David M. Perry, Andrea Mattavelli, Xiangyu Zhang, and Cristian Cadar. 2017.
Accelerating Array Constraints in Symbolic Execution. In Proceedings of the 26th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
’17). 68–78.

[53] Koushik Sen, DarkoMarinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing
Engine for C. In Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE ’05). 263–272.

[54] Hyunmin Seo and Sunghun Kim. 2014. How We Get There: A Context-guided
Search Strategy in Concolic Testing. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE ’14). 413–
424.

[55] Shiqi Shen, Shweta Shinde, Soundarya Ramesh, Abhik Roychoudhury, and Pra-
teek Saxena. 2019. Neuro-Symbolic Execution: Augmenting Symbolic Execution
with Neural Constraints.. In Proceedings of the Symposium on Network and Dis-
tributed System Security (NDSS ’19).

[56] Jiri Slaby, Jan Strejček, and Marek Trtík. 2013. Symbiotic: synergy of instrumen-
tation, slicing, and symbolic execution. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS ’13). 630–632.

[57] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Re-
inforcement Learning for Automatic Test Case Prioritization and Selection in
Continuous Integration. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’17). 12–22.

[58] Chameleon. A tool that performs concolic testingwith adaptively changing search
heuristics. 2019. https://github.com/kupl/chameleon.

[59] Thomas Torsney-Weir, Ahmed Saad, Torsten Moller, Hans-Christian Hege, Britta
Weber, Jean-Marc Verbavatz, and Steven Bergner. 2011. Tuner: Principled param-
eter finding for image segmentation algorithms using visual response surface
exploration. IEEE Transactions on Visualization and Computer Graphics (2011),
1892–1901.

[60] David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian Cadar. 2018.
Chopped Symbolic Execution. In Proceedings of the 40th International Conference
on Software Engineering (ICSE ’18). 350–360.

[61] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-Scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data (SIGMOD ’17). 1009–1024.

[62] Xinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, and Yun Lin.
2018. Towards Optimal Concolic Testing. In Proceedings of the 40th International
Conference on Software Engineering (ICSE ’18). 291–302.

[63] E. Wong, L. Zhang, S. Wang, T. Liu, and L. Tan. 2015. DASE: Document-
Assisted Symbolic Execution for Improving Automated Software Testing. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE
’15). 620–631.

[64] Bowei Xi, Zhen Liu, Mukund Raghavachari, Cathy H. Xia, and Li Zhang. 2004.
A Smart Hill-Climbing Algorithm for Application Server Configuration. In Pro-
ceedings of the 13th International Conference on World Wide Web (WWW ’04).
287–296.

[65] Guowei Yang, Corina S Păsăreanu, and Sarfraz Khurshid. 2012. Memoized sym-
bolic execution. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis (ISSTA ’12). 144–154.

[66] Qiuping Yi, Zijiang Yang, Shengjian Guo, Chao Wang, Jian Liu, and Chen Zhao.
2018. Eliminating Path Redundancy via Postconditioned Symbolic Execution.
IEEE Transactions on Software Engineering (2018), 25–43.

https://doi.org/10.1145/3338906.3338936
https://klee.github.io/docs/coreutils-experiments
https://klee.github.io/docs/coreutils-experiments
https://github.com/kupl/chameleon

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic Symbolic Execution
	2.2 Parameters of Symbolic Execution

	3 Our Approach
	3.1 Parameter Space
	3.2 Symbolic Execution with SymTuner
	3.3 SymTuner

	4 Experiments
	4.1 Experimental Settings
	4.2 Branch Coverage
	4.3 Bug-finding
	4.4 Impact of Parameters and their Spaces
	4.5 Generality of SymTuner
	4.6 Threats to Validity

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

