CVO103: Programming Languages

Lecture 8 - Design and Implementation of PLs (3) States

Hakjoo Oh
2018 Spring

Review: Our Language So Far

Our language has expressions and procedures.
Syntax

$$
\begin{array}{lll}
\boldsymbol{P} & \rightarrow \boldsymbol{E} \\
\boldsymbol{E} & \rightarrow \boldsymbol{n} \\
& \boldsymbol{x} \\
& \boldsymbol{E}+\boldsymbol{E} \\
& \boldsymbol{E}-\boldsymbol{E} \\
& \text { iszero } \boldsymbol{E} \\
& \text { if } \boldsymbol{E} \text { then } \boldsymbol{E} \text { else } \boldsymbol{E} \\
& \text { let } \boldsymbol{x}=\boldsymbol{E} \text { in } \boldsymbol{E} \\
& \text { read } \\
& \text { letrec } \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{E} \text { in } \boldsymbol{E} \\
& \operatorname{proc} \boldsymbol{x} \boldsymbol{E} \\
\boldsymbol{E} \boldsymbol{E}
\end{array}
$$

Review: Our Language So Far

Semantics

$$
\begin{aligned}
& \overline{\rho \vdash n \Rightarrow n} \quad \overline{\rho \vdash x \Rightarrow \rho(x)} \quad \frac{\rho \vdash E_{1} \Rightarrow n_{1} \quad \rho \vdash E_{2} \Rightarrow n_{2}}{\rho \vdash E_{1}+E_{2} \Rightarrow n_{1}+n_{2}} \\
& \frac{\rho \vdash E \Rightarrow 0}{\rho \vdash \text { iszero } E \Rightarrow \text { true }} \quad \frac{\rho \vdash E \Rightarrow n}{\rho \vdash \text { iszero } E \Rightarrow \text { false }} n \neq 0 \quad \overline{\rho \vdash \text { read } \Rightarrow n} \\
& \frac{\rho \vdash E_{1} \Rightarrow \text { true } \quad \rho \vdash E_{2} \Rightarrow v}{\rho \vdash \text { if } E_{1} \text { then } E_{2} \text { else } E_{3} \Rightarrow v} \quad \begin{array}{l}
\rho \vdash E_{1} \Rightarrow \text { false } \quad \rho \vdash E_{3} \Rightarrow v \\
\rho \vdash \text { if } E_{1} \text { then } E_{2} \text { else } E_{3} \Rightarrow v
\end{array} \\
& \frac{\rho \vdash E_{1} \Rightarrow v_{1} \quad\left[x \mapsto v_{1}\right] \rho \vdash E_{2} \Rightarrow v}{\rho \vdash \operatorname{let} x=E_{1} \text { in } E_{2} \Rightarrow v} \quad \frac{\left[f \mapsto\left(f, x, E_{1}, \rho\right)\right] \rho \vdash E_{2} \Rightarrow v}{\rho \vdash \operatorname{letrec} f(x)=E_{1} \text { in } E_{2} \Rightarrow v} \\
& \overline{\rho \vdash \operatorname{proc} x} \boldsymbol{E} \Rightarrow(\boldsymbol{x}, \boldsymbol{E}, \boldsymbol{\rho}) \\
& \frac{\rho \vdash E_{1} \Rightarrow\left(x, E, \rho^{\prime}\right) \quad \rho \vdash E_{2} \Rightarrow v \quad[x \mapsto v] \rho^{\prime} \vdash E \Rightarrow v^{\prime}}{\rho \vdash E_{1} E_{2} \Rightarrow v^{\prime}} \\
& \begin{array}{cc}
\rho \vdash E_{1} \Rightarrow\left(f, x, E, \rho^{\prime}\right) \quad \rho \vdash E_{2} \Rightarrow v \quad\left[x \mapsto v, f \mapsto\left(f, x, E, \rho^{\prime}\right)\right] \rho^{\prime} \vdash E \Rightarrow v^{\prime} \\
\rho \vdash E_{1} E_{2} \Rightarrow v^{\prime}
\end{array}
\end{aligned}
$$

Today: Adding States to the Language

- So far, our language only had the values produced by computation.
- But computation also has effects: it may change the state of memory.
- We will extend the language to support computational effects:
- Syntax for creating and using memory locations
- Semantics for manipulating memory states

Motivating Example

- How can we compute the number of times f has been called?
let $f=\operatorname{proc}(x)(x)$
in (f (f 1))

Motivating Example

- How can we compute the number of times f has been called?

```
let f = proc (x) (x)
in (f (f 1))
```

- Does the following program work?
let counter $=0$
in let $f=\operatorname{proc}(x)$ (let counter $=$ counter +1 in x)
in let $a=(f(f 1))$
in counter

Motivating Example

- How can we compute the number of times f has been called?

```
let f = proc (x) (x)
in (f (f 1))
```

- Does the following program work?
let counter $=0$

```
in let f = proc (x) (let counter = counter + 1
                                in x)
in let a = (f (f 1))
    in counter
```

- The binding of counter is local. We need global effects.
- Effects are implemented by introducing memory (store) and locations (reference).

Two Approaches

Programming languages support references explicitly or implicitly.

- Languages with explicit references provide a clear account of allocation, dereference, and mutation of memory cells.
- e.g., OCaml, F\#
- In languages with implicit references, references are built-in. References are not explicitly manipulated.
- e.g., C and Java.

A Language with Explicit References

$$
\begin{aligned}
& P \rightarrow E \\
& E \rightarrow n \mid x \\
& \boldsymbol{E}+\boldsymbol{E} \mid \boldsymbol{E}-\boldsymbol{E} \\
& \text { iszero } \boldsymbol{E} \mid \text { if } \boldsymbol{E} \text { then } \boldsymbol{E} \text { else } \boldsymbol{E} \\
& \text { let } \boldsymbol{x}=\boldsymbol{E} \text { in } \boldsymbol{E} \\
& \operatorname{proc} \boldsymbol{x} \boldsymbol{E} \mid \boldsymbol{E} \boldsymbol{E} \\
& \text { ref } \boldsymbol{E} \\
& \text { ! } E \\
& E:=E \\
& \text { E; } E
\end{aligned}
$$

- ref \boldsymbol{E} allocates a new location, store the value of \boldsymbol{E} in it, and returns it.
- ! \boldsymbol{E} returns the contents of the location that \boldsymbol{E} refers to.
- $\boldsymbol{E}_{1}:=\boldsymbol{E}_{2}$ changes the contents of the location $\left(\boldsymbol{E}_{\mathbf{1}}\right)$ by the value of $\boldsymbol{E}_{\boldsymbol{2}}$.
- $\boldsymbol{E}_{1} ; \boldsymbol{E}_{\mathbf{2}}$ executes \boldsymbol{E}_{1} and then $\boldsymbol{E}_{\boldsymbol{2}}$ while accumulating effects.

Example 1

- let counter = ref 0

$$
\begin{aligned}
& \text { in let } f=\operatorname{proc}(x) \text { (counter }:=\text { !counter }+1 ; \text { !counter) } \\
& \text { in let } a=(f 0) \\
& \text { in let } b=(f 0) \\
& \text { in }(a-b)
\end{aligned}
$$

Example 1

- let counter = ref 0

$$
\begin{aligned}
& \text { in let } f=\text { proc }(x) \text { (counter }:=\text { ! counter }+1 \text {; !counter) } \\
& \text { in let } a=(f 0) \\
& \text { in let } b=(f 0) \\
& \text { in }(a-b)
\end{aligned}
$$

- let $f=$ let counter $=$ ref 0 in proc (x) (counter := !counter + 1; !counter)
in let $a=(f 0)$

$$
\begin{gathered}
\text { in let } b=(f 0) \\
\text { in }(a-b)
\end{gathered}
$$

Example 1

- let counter = ref 0

$$
\begin{aligned}
& \text { in let } f=\text { proc }(x) \text { (counter }:=\text { ! counter }+1 ; \text { ! counter) } \\
& \text { in let } a=(f 0) \\
& \text { in let } b=(f 0) \\
& \text { in }(a-b)
\end{aligned}
$$

- let $f=$ let counter $=$ ref 0 in proc (x) (counter := !counter + 1; !counter)
in let $a=(f 0)$

$$
\begin{gathered}
\text { in let } b=(f 0) \\
\text { in }(a-b)
\end{gathered}
$$

- let $f=\operatorname{proc}(x)$ (let counter $=$ ref 0
in (counter := !counter + 1; !counter))

$$
\begin{gathered}
\text { in let } a=\left(\begin{array}{l}
f \\
\text { in let } b
\end{array}=(f 0)\right. \\
\text { in }(a-b)
\end{gathered}
$$

Example 2

We can make chains of references:

```
let x = ref (ref 0)
in (!x := 11; !(!x))
```


Semantics

Memory is modeled as a finite map from locations to values:

$$
\begin{aligned}
\text { Val } & =\mathbb{Z}+\text { Bool }+ \text { Procedure }+ \text { Loc } \\
\text { Procedure } & =\text { Var } \times \boldsymbol{E} \times \text { Env } \\
\rho \in \text { Env } & =\text { Var } \rightarrow \text { Val } \\
\sigma \in \text { Mem } & =\text { Loc } \rightarrow \text { Val }
\end{aligned}
$$

Semantics rules additionally describe memory effects:

$$
\rho, \sigma \vdash E \Rightarrow v, \sigma^{\prime}
$$

Semantics

Existing rules are enriched with memory effects:

$$
\begin{gathered}
\overline{\rho, \sigma \vdash n \Rightarrow n, \sigma} \quad \begin{array}{c}
\rho, \sigma \vdash x \Rightarrow \rho(x), \sigma \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow n_{1}, \sigma_{1}}{\rho, \sigma_{0} \vdash E_{1}+E_{2} \Rightarrow n_{1}+n_{2}, \sigma_{2}} \\
\frac{\rho, \sigma_{1} \vdash E_{2} \Rightarrow \sigma_{2}}{\rho, \sigma_{0} \vdash \text { iszero } E \Rightarrow \text { true, } \sigma_{1}} \quad \frac{\rho, \sigma_{0} \vdash E \Rightarrow n, \sigma_{1}}{\rho, \sigma_{0} \vdash \text { iszero } E \Rightarrow \text { false, } \sigma_{1}} \\
\frac{\rho, \sigma_{0} \vdash E \Rightarrow 0, \sigma_{1}}{} \neq 0 \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow \text { true, } \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}}{\rho, \sigma_{0} \vdash \text { if } E_{1} \text { then } E_{2} \text { else } E_{3} \Rightarrow v, \sigma_{2}} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow \text { false, } \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{3} \Rightarrow v, \sigma_{2}}{\rho, \sigma_{0} \vdash \text { if } E_{1} \text { then } E_{2} \text { else } E_{3} \Rightarrow v, \sigma_{2}} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow v_{1}, \sigma_{1} \quad\left[x \mapsto v_{1}\right] \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}}{\rho, \sigma_{0} \vdash \text { let } x=E_{1} \text { in } E_{2} \Rightarrow v, \sigma_{2}} \\
\frac{\rho, \sigma \vdash \text { proc } x E \Rightarrow(x, E, \rho), \sigma}{\rho, \sigma_{0} \vdash E_{1} \Rightarrow\left(x, E, \rho^{\prime}\right), \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}} \quad[x \mapsto v] \rho^{\prime}, \sigma_{2} \vdash E \Rightarrow v^{\prime}, \sigma_{3} \\
\rho, \sigma_{0} \vdash E_{1} E_{2} \Rightarrow v^{\prime}, \sigma_{3}
\end{array}
\end{gathered}
$$

Semantics

Rules for new constructs:

$$
\begin{gathered}
\frac{\rho, \sigma_{0} \vdash E \Rightarrow v, \sigma_{1}}{\rho, \sigma_{0} \vdash \operatorname{ref} E \Rightarrow l,[l \mapsto v] \sigma_{1}} l \notin \operatorname{Dom}\left(\sigma_{1}\right) \\
\frac{\rho, \sigma_{0} \vdash E \Rightarrow l, \sigma_{1}}{\rho, \sigma_{0} \vdash!E \Rightarrow \sigma_{1}(l), \sigma_{1}} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow l, \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}}{\rho, \sigma_{0} \vdash E_{1}:=E_{2} \Rightarrow v,[l \mapsto v] \sigma_{2}} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow v_{1}, \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v_{2}, \sigma_{2}}{\rho, \sigma_{0} \vdash E_{1} ; E_{2} \Rightarrow v_{2}, \sigma_{2}}
\end{gathered}
$$

Example

$$
\rho, \sigma_{0} \vdash \text { let } \mathrm{x}=\mathrm{ref}(\mathrm{ref} 0) \text { in }(!\mathrm{x}:=11 ;!(!\mathrm{x})) \Rightarrow
$$

Exercise

Extend the language with recursive procedures:

$$
\begin{array}{ll}
\boldsymbol{P} & \rightarrow \boldsymbol{E} \\
\boldsymbol{E} & \rightarrow \boldsymbol{n} \mid \boldsymbol{x} \\
& \boldsymbol{E}+\boldsymbol{E} \mid \boldsymbol{E}-\boldsymbol{E} \\
& \text { iszero } \boldsymbol{E} \mid \text { if } \boldsymbol{E} \text { then } \boldsymbol{E} \text { else } \boldsymbol{E} \\
& \text { let } \boldsymbol{x}=\boldsymbol{E} \text { in } \boldsymbol{E} \\
& \text { letrec } \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{E} \text { in } \boldsymbol{E} \\
\mid & \operatorname{proc} \boldsymbol{x} \boldsymbol{E} \mid \boldsymbol{E} \boldsymbol{E} \\
& \operatorname{ref} \boldsymbol{E} \\
! & \boldsymbol{E} \\
\mid & \boldsymbol{E}:=\boldsymbol{E} \\
\boldsymbol{E} ; \boldsymbol{E}
\end{array}
$$

Exercise (Continued)

- Domain:

$$
\begin{aligned}
\text { Val } & =\mathbb{Z}+\text { Bool }+ \text { Procedure }+ \text { Loc } \\
\text { Procedure } & =\text { Var } \times \boldsymbol{E} \times \text { Env } \\
\rho \in \text { Env } & =\text { Var } \rightarrow \text { Val } \\
\sigma \in \text { Mem } & =\text { Loc } \rightarrow \text { Val }
\end{aligned}
$$

- Semantics rules:

$$
\overline{\rho, \sigma_{0} \vdash \text { letrec } f(x)=E_{1} \text { in } E_{2} \Rightarrow}
$$

$$
\overline{\rho, \sigma_{0} \vdash E_{1} E_{2} \Rightarrow}
$$

A Language with Implicit References

$$
\begin{array}{ll}
\boldsymbol{P} & \rightarrow \boldsymbol{E} \\
\boldsymbol{E} & \rightarrow \boldsymbol{n} \mid \boldsymbol{x} \\
& \boldsymbol{E}+\boldsymbol{E} \mid \boldsymbol{E}-\boldsymbol{E} \\
& \text { iszero } \boldsymbol{E} \mid \text { if } \boldsymbol{E} \text { then } \boldsymbol{E} \text { else } \boldsymbol{E} \\
& \text { let } \boldsymbol{x}=\boldsymbol{E} \text { in } \boldsymbol{E} \\
& \operatorname{proc} \boldsymbol{x} \boldsymbol{E} \mid \boldsymbol{E} \boldsymbol{E} \\
& \text { set } \boldsymbol{x}=\boldsymbol{E} \\
& \boldsymbol{E} ; \boldsymbol{E}
\end{array}
$$

- In this design, every variable denotes a reference and is mutable.
- set $\boldsymbol{x}=\boldsymbol{E}$ changes the contents of \boldsymbol{x} by the value of \boldsymbol{E}.

Examples

Computing the number of times f has been called:

- let counter $=0$

$$
\begin{aligned}
& \text { in let } f=\text { proc (} x \text {) (set counter }=\text { counter }+1 \text {; counter) } \\
& \text { in let } a=(f 0) \\
& \text { in let } b=(f 0) \\
& \text { in }(a-b)
\end{aligned}
$$

Examples

Computing the number of times f has been called:

- let counter $=0$

$$
\begin{aligned}
& \text { in let } f=\text { proc }(x) \text { (set counter }=\text { counter }+1 \text {; counter) } \\
& \text { in let } a=(f 0) \\
& \text { in let } b=(f 0) \\
& \text { in }(a-b)
\end{aligned}
$$

- let $f=$ let counter $=0$ in proc (x) (set counter = counter + 1; counter)
in let $a=(f 0)$

$$
\begin{aligned}
& \text { in let } b=(f 0) \\
& \text { in }(a-b)
\end{aligned}
$$

Examples

Computing the number of times f has been called:

- let counter $=0$

$$
\begin{aligned}
& \text { in let } f=\text { proc }(x) \text { (set counter }=\text { counter }+1 \text {; counter) } \\
& \text { in let } a=(f 0) \\
& \text { in let } b=(f 0) \\
& \text { in }(a-b)
\end{aligned}
$$

- let $f=$ let counter $=0$ in proc (x) (set counter = counter + 1; counter)
in let $a=(f 0)$

$$
\begin{aligned}
& \text { in let } b=(f 0) \\
& \text { in }(a-b)
\end{aligned}
$$

- let $f=\operatorname{proc}(x)$ (let counter $=0$
in (set counter = counter + 1; counter))

$$
\begin{aligned}
& \text { in let } a=\left(\begin{array}{l}
f \\
\text { in let } b=(f 0) \\
\text { in }(a-b)
\end{array}\right.
\end{aligned}
$$

Exercise

What is the result of the program?

```
let f = proc (x)
    proc (y)
        (set x = x + 1; x - y)
in ((f 44) 33)
```


Semantics

References are no longer values and every variable denotes a reference:

$$
\begin{aligned}
\text { Val } & =\mathbb{Z}+\text { Bool }+ \text { Procedure } \\
\text { Procedure } & =\text { Var } \times \boldsymbol{E} \times \text { Env } \\
\rho \in \text { Env } & =\text { Var } \rightarrow \text { Loc } \\
\sigma \in M e m & =\text { Loc } \rightarrow \text { Val }
\end{aligned}
$$

Semantics

$$
\begin{gathered}
\overline{\rho, \sigma \vdash n \Rightarrow n, \sigma} \quad \overline{\rho, \sigma \vdash x \Rightarrow \sigma(\rho(x)), \sigma} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow n_{1}, \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow n_{2}, \sigma_{2}}{\rho, \sigma_{0} \vdash E_{1}+E_{2} \Rightarrow n_{1}+n_{2}, \sigma_{2}} \quad \frac{\rho, \sigma_{0} \vdash E \Rightarrow 0, \sigma_{1}}{\rho, \sigma_{0} \vdash \text { iszero } E \Rightarrow t r u e, \sigma_{1}} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow \text { true, } \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}}{\rho, \sigma_{0} \vdash \text { if } E_{1} \text { then } E_{2} \text { else } E_{3} \Rightarrow v, \sigma_{2}} \\
\frac{\rho, \sigma_{0} \vdash E \Rightarrow v, \sigma_{1}}{\rho, \sigma \vdash \operatorname{proc} x E \Rightarrow(x, E, \rho), \sigma} \quad \frac{\rho, \sigma_{0} \vdash \operatorname{set} x=E \Rightarrow v,[\rho(x) \mapsto v] \sigma_{1}}{\rho, \sigma_{0} \vdash E_{1} \Rightarrow v_{1}, \sigma_{1} \quad[x \mapsto l] \rho,\left[l \mapsto v_{1}\right] \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}} l \not l \operatorname{Dom}\left(\sigma_{1}\right) \\
\rho, \sigma_{0} \vdash \operatorname{let} x=E_{1} \text { in } E_{2} \Rightarrow v, \sigma_{2} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow\left(x, E, \rho^{\prime}\right), \sigma_{1}}{\rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}} \\
{[x \mapsto l] \rho^{\prime},[l \mapsto v] \sigma_{2} \vdash E \Rightarrow v^{\prime}, \sigma_{3}} \\
\rho, \sigma_{0} \vdash E_{1} E_{2} \Rightarrow v^{\prime}, \sigma_{3} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow v_{1}, \sigma_{1}}{\rho, \sigma_{0} \vdash E_{1} ; E_{2} \Rightarrow v_{2}, \sigma_{2}} \\
\frac{\rho, E_{2} \Rightarrow v_{2}, \sigma_{2}}{}
\end{gathered}
$$

Example

$$
\begin{aligned}
& \text { let } \mathrm{f}=\text { let count }=0 \\
& \text { in proc }(x) \text { (set count }=\text { count }+1 \text {; count) } \\
& \text { in let } a=(f 0) \\
& \text { in let } b=(f 0) \\
& \text { in } a-b
\end{aligned}
$$

Exercise

Extend the language with recursive procedures:

$$
\begin{array}{ll}
\boldsymbol{P} & \rightarrow \boldsymbol{E} \\
\boldsymbol{E} & \rightarrow \boldsymbol{n} \mid \boldsymbol{x} \\
& \boldsymbol{E}+\boldsymbol{E} \mid \boldsymbol{E}-\boldsymbol{E} \\
& \text { iszero } \boldsymbol{E} \mid \text { if } \boldsymbol{E} \text { then } \boldsymbol{E} \text { else } \boldsymbol{E} \\
& \text { let } \boldsymbol{x}=\boldsymbol{E} \text { in } \boldsymbol{E} \\
& \text { letrec } \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{E} \text { in } \boldsymbol{E} \\
& \operatorname{proc} \boldsymbol{x} \boldsymbol{E} \mid \boldsymbol{E} \boldsymbol{E} \\
& \text { set } \boldsymbol{x}=\boldsymbol{E} \\
\boldsymbol{E} ; \boldsymbol{E}
\end{array}
$$

Exercise (Continued)

- Domain:

$$
\begin{aligned}
\text { Val } & =\mathbb{Z}+\text { Bool }+ \text { Procedure } \\
\text { Procedure } & =\text { Var } \times \boldsymbol{E} \times \text { Env } \\
\rho \in \text { Env } & =\text { Var } \rightarrow \text { Loc } \\
\sigma \in \text { Mem } & =\text { Loc } \rightarrow \text { Val }
\end{aligned}
$$

- Semantics rules:

$$
\overline{\rho, \sigma_{0} \vdash \text { letrec } f(x)=E_{1} \text { in } E_{2} \Rightarrow}
$$

$$
\overline{\rho, \sigma_{0} \vdash E_{1} E_{2} \Rightarrow}
$$

Parameter-Passing Variations

- Our current strategy of calling a procedure is call-by-value. The formal parameter refers to a new location containing the value of the actual parameter:

$$
\begin{gathered}
\rho, \sigma_{0} \vdash E_{1} \Rightarrow\left(x, E, \rho^{\prime}\right), \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2} \\
{[x \mapsto l] \rho^{\prime},[l \mapsto v] \sigma_{2} \vdash E \Rightarrow v^{\prime}, \sigma_{3}} \\
\rho, \sigma_{0} \vdash E_{1} E_{2} \Rightarrow v^{\prime}, \sigma_{3} \\
l \notin \operatorname{Dom}\left(\sigma_{2}\right)
\end{gathered}
$$

- The most commonly used form of parameter-passing.

Parameter-Passing Variations

- Our current strategy of calling a procedure is call-by-value. The formal parameter refers to a new location containing the value of the actual parameter:

$$
\begin{array}{rl}
\rho, \sigma_{0} \vdash E_{1} \Rightarrow & \left(x, E, \rho^{\prime}\right), \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2} \\
{[x \mapsto l] \rho^{\prime},[l \mapsto v] \sigma_{2} \vdash E \Rightarrow v^{\prime}, \sigma_{3}} \\
\rho, \sigma_{0} \vdash E_{1} E_{2} \Rightarrow v^{\prime}, \sigma_{3} & l \notin \operatorname{Dom}\left(\sigma_{2}\right)
\end{array}
$$

- The most commonly used form of parameter-passing.
- For example, the assignment to x has no effect on the contents of a :

```
let p = proc (x) (set x = 4)
in let a = 3
    in ((p a); a)
```


Parameter-Passing Variations

- Our current strategy of calling a procedure is call-by-value. The formal parameter refers to a new location containing the value of the actual parameter:

$$
\begin{gathered}
\rho, \sigma_{0} \vdash E_{1} \Rightarrow\left(x, E, \rho^{\prime}\right), \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2} \\
{[x \mapsto l] \rho^{\prime},[l \mapsto v] \sigma_{2} \vdash E \Rightarrow v^{\prime}, \sigma_{3}} \\
\rho, \sigma_{0} \vdash E_{1} E_{2} \Rightarrow v^{\prime}, \sigma_{3} \\
l \notin \operatorname{Dom}\left(\sigma_{2}\right)
\end{gathered}
$$

- The most commonly used form of parameter-passing.
- For example, the assignment to x has no effect on the contents of a :

$$
\begin{aligned}
& \text { let } p=\operatorname{proc}(x)(\text { set } x=4) \\
& \text { in let } a=3 \\
& \text { in }((p a) ; a)
\end{aligned}
$$

- Under call-by-reference, the assignment changes the value of a after the call.

Call-By-Reference Parameter-Passing

The location of the caller's variable is passed, rather than the contents of the variable.

- Extend the syntax:

- Extend the semantics:

What is the benefit of call-by-reference compared to call-by-value?

Examples

- let $p=\operatorname{proc}(x)(\operatorname{set} x=4)$
in let $a=3$
in ($(\mathrm{p}<\mathrm{a}>)$; a$)$

Examples

- let $p=\operatorname{proc}(x)(\operatorname{set} x=4)$
in let $a=3$
in ($(\mathrm{p}<\mathrm{a}>)$; a$)$
- let $f=\operatorname{proc}(x)($ set $x=44)$
in let $g=\operatorname{proc}(y)(f\langle y\rangle)$
in let $\mathrm{z}=55$
in ($(\mathrm{g}\langle\mathrm{z}\rangle) ; \mathrm{z})$

Examples

- let $p=\operatorname{proc}(x)(\operatorname{set} x=4)$

$$
\text { in let } a=3
$$

$$
\text { in }((p<a>) ; a)
$$

- let $f=\operatorname{proc}(x)($ set $x=44)$
in let $g=\operatorname{proc}(y)(f<y>)$
in let $\mathrm{z}=55$
in ($(\mathrm{g}\langle\mathrm{z}\rangle) ; \mathrm{z})$
- let swap $=$ proc (x) proc (y)

$$
\text { let temp }=x
$$

$$
\text { in (set } x=y ; \text { set } y=\text { temp) }
$$

$$
\text { in let } \mathrm{a}=33
$$

$$
\text { in let } b=44
$$

$$
\text { in }(((\text { swap <a>)); (a-b)) }
$$

Variable Aliasing

More than one call-by-reference parameter may refer to the same location:

```
let b = 3
in let p = proc (x) proc (y)
    (set x = 4; y)
    in ((p <b>) <b>)
```

- A variable aliasing is created: x and y refer to the same location
- With aliasing, reasoning about program behavior is very difficult, because an assignment to one variable may change the value of another.

Lazy Evaluation

- So far all the parameter-passing strategies are eager in that they always evaluate the actual parameter before calling a procedure.
- In eager evaluation, procedure arguments are completely evaluated before passing them to the procedure.
- On the other hand, lazy evaluation delays the evaluation of arguments until it is actually needed. If the procedure body never uses the parameter, it will never be evaluated.
- Lazy evaluation potentially avoids non-termination:

```
letrec infinite(x) = (infinite x)
in let f = proc (x) (1)
    in (f (infinite 0))
```

- Lazy evaluation is popular in functional languages, because lazy evaluation makes it difficult to determine the order of evaluation, which is essential to understanding a program with effects.

Summary

Our language is now (somewhat) realistic:

- expressions, procedures, recursion,
- states with explicit/implicit references
- parameter-passing variations

