
Problem Set

CVO 103, Spring 2018

Hakjoo Oh

Due: 06/12 (in class)

Problem 1 The Fibonacci numbers can be defined as follows:

fib(n) =

 0 if n = 0
1 if n = 1
fib(n− 1) + fib(n− 2) otherwise

Write in OCaml the function
fib: int -> int

that computes the Fibonacci numbers.

Problem 2 Consider the following triangle (it is called Pascal’s triangle):

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
· · ·

where the numbers at the edge of the triangle are all 1, and each number inside the triangle is the
sum of the two numbers above it. Write a function

pascal: int * int -> int

that computes elements of Pascal’s triangle. For example, pascal should behave as follows:

pascal (0,0) = 1

pascal (1,0) = 1

pascal (1,1) = 1

pascal (2,1) = 2

pascal (4,2) = 6

Problem 3 Consider the task of computing the exponential of a given number. We would like to
write a function that takes as arguments a base b and a positive integer exponent n to compute
bn. Read the remaining problem description carefully and devise an algorithm that has time
complexity of Θ(log n).

One simple way to implement the function is via the following recursive definition:

b0 = 1
bn = b · bn−1

which translates into the OCaml code:
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let rec expt b n =

if n = 0 then 1

else b * (expt b (n-1))

However, this algorithm is slow; it takes Θ(n) steps.
We can improve the algorithm by using successive squaring. For instance, rather than comput-

ing b8 as
b · (b · (b · (b · (b · (b · (b · b))))))

we can compute it using three multiplications as follows:

b2 = b · b
b4 = b2 · b2
b8 = b4 · b4

This method works only for exponents that are powers of 2. We can generalize the idea via the
following recursive rules:

bn = (bn/2)2 if n is even
bn = b · bn−1 if n is odd

Use the rules to write a function fastexpt that computes exponentials in Θ(log n) steps:

fastexpt: int -> int -> int

Problem 4 Write a function

smallest divisor: int -> int

that finds the smallest integral divisor (greater than 1) of a given number n. For example,

smallest divisor 15 = 3

smallest divisor 121 =11

smallest divisor 141 = 3

smallest divisor 199 = 199

Ensure that your algorithm runs in Θ(
√
n) steps.

Problem 5 Write a function
prime: int -> bool

that checks whether a number is prime (n is prime if and only if n is its own smallest divisor). For
example,

prime 2 = true

prime 3 = true

prime 4 = false

prime 17 = true

Problem 6 Write a function

sigma : (int -> int) -> int -> int -> int

such that sigma f a b computes
b∑

i=a

f(i).

For instance,
sigma (fun x -> x) 1 10

evaulates to 55 and
sigma (fun x -> x*x) 1 7

evaluates to 140.
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Problem 7 Write a higher-order function

product : (int -> int) -> int -> int -> int

such that product f a b computes
b∏

i=a

f(i).

For instance,
product (fun x -> x) 1 5

evaulates to 120. In general, we can use product to define the factorial function:

fact n = product (fun x -> x) 1 n

Problem 8 Use product to define a function

dfact : int -> int

that computes double-factorials. Given a non-negative integer n, its double-factorial, denoted n!!,
is the product of all the integers of the same parity as n from 1 to n. That is, when n is even

n!! =

n/2∏
k=1

(2k) = n · (n− 2) · (n− 4) · · · 4 · 2

and when n is odd,

n!! =

(n+1)/2∏
k=1

(2k − 1) = n · (n− 2) · (n− 4) · · · 3 · 1

For example, 7!! = 1× 3× 5× 7 = 105 and 6!! = 2 ∗ 4 ∗ 6 = 48.

Problem 9 Define the function iter:

iter : int * (int -> int) -> (int -> int)

such that
iter(n, f) = f ◦ · · · ◦ f︸ ︷︷ ︸

n

.

When n = 0, iter(n, f) is defined to be the identity function. When n > 0, iter(n, f) is the
function that applies f repeatedly n times. For instance,

iter(n, fun x -> 2+x) 0

evaluates to 2× n.

Problem 10 Write a function

double: (’a -> ’a) -> ’a -> ’a

that takes a function of one argument as argument and returns a function that applies the original
function twice. For example,
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# let inc x = x + 1;;

val inc : int -> int = <fun>

# let mul x = x * 2;;

val mul : int -> int = <fun>

# (double inc) 1;;

- : int = 3

# (double inc) 2;;

- : int = 4

# ((double double) inc) 0;;

- : int = 4

# ((double (double double)) inc) 5;;

- : int = 21

# (double mul) 1;;

- : int = 4

# (double double) mul 2;;

- : int = 32

Problem 11 Write two functions

max: int list -> int

min: int list -> int

that find maximum and minimum elements of a given list, respectively. For example max [1;3;5;2]

should evaluate to 5 and min [1;3;2] should be 1.

Problem 12 Write the function filter

filter : (’a -> bool) -> ’a list -> ’a list

Given a predicate p and a list l, filter p l returns all the elements of the list l that satisfy the
predicate p. The order of the elements in the input list is preserved. For example,

# filter (fun x -> x mod 2 = 0) [1;2;3;4;5];;

- : int list = [2; 4]

# filter (fun x -> x > 0) [5;-1;0;2;-9];;

- : int list = [5; 2]

# filter (fun x -> x * x > 25) [1;2;3;4;5;6;7;8];;

- : int list = [6; 7; 8]

Problem 13 Write a function drop:

drop : ’a list -> int -> ’a list

that takes a list l and an integer n to take all but the first n elements of l. For example,

drop [1;2;3;4;5] 2 = [3; 4; 5]

drop [1;2] 3 = []

drop ["C"; "Java"; "OCaml"] 2 = ["OCaml"]

Problem 14 Write a function

zipper: int list * int list -> int list

which receives two lists a and b as arguments and combines the two lists by inserting the ith
element of a before the ith element of b. If b does not have an ith element, append the excess
elements of a in order. For example,
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# zipper ([1;3;5],[2;4;6]);;

- : int list = [1; 2; 3; 4; 5; 6]

# zipper ([1;3],[2;4;6;8]);;

- : int list = [1; 2; 3; 4; 6; 8]

# zipper ([1;3;5;7],[2;4]);;

- : int list = [1; 2; 3; 4; 5; 7]

Problem 15 Write a function

unzip: (’a * ’b) list -> ’a list * ’b list

that converts a list of pairs to a pair of lists. For example,

unzip [(1,"one");(2,"two");(3,"three")] = ([1;2;3],["one";"two";"three"])

Problem 16 We can define the propositional formula as follows:

type formula =

True

| False

| Neg of formula

| Or of formula * formula

| And of formula * formula

| Imply of formula * formula

| Equiv of formula * formula

1. Write a function
eval : formula -> bool

that evaluates a given propositional formula.

2. Write a function
eval : formula -> formula list

that computes the set of all subformulas of a given propositoinal formula.

Problem 17 Consider the following propositional formula:

type formula =

| True

| False

| Not of formula

| AndAlso of formula * formula

| OrElse of formula * formula

| Imply of formula * formula

| Equal of exp * exp

and exp =

| Num of int

| Plus of exp * exp

| Minus of exp * exp

Write the function
eval : formula -> bool

that computes the truth value of a given formula. For example,

eval (Imply (Imply (True,False), True))

evaluates to true, and

eval (Equal (Num 1, Plus (Num 1, Num 2)))

evaluates to false.
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Problem 18 Natural numbers can be defined as follows:

type nat = ZERO | SUCC of nat

For instance, SUCC ZERO denotes 1 and SUCC (SUCC ZERO) denotes 2. Write two functions that
add and multiply natural numbers:

natadd : nat -> nat -> nat

natmul : nat -> nat -> nat

For example,

# let two = SUCC (SUCC ZERO);;

val two : nat = SUCC (SUCC ZERO)

# let three = SUCC (SUCC (SUCC ZERO));;

val three : nat = SUCC (SUCC (SUCC ZERO))

# natmul two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC (SUCC ZERO)))))

# natadd two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC ZERO))))

Problem 19 Let us define simple arithmetic expressions:

type exp =

Const of int

|Minus of exp

|Plus of exp * exp

|Mult of exp * exp

Write the function
calc: exp -> int

that computes the value of expressions. For example,

calc (Plus (Const 1, Const 2))

evaluates to 3.

Problem 20 Write a function

diff : aexp * string -> aexp

that differentiates the given algebraic expression with respect to the variable given as the second
argument. The algebraic expression aexp is defined as follows:

type aexp =

| Const of int

| Var of string

| Power of string * int

| Times of aexp list

| Sum of aexp list

For example, x2 + 2x + 1 is represented by

Sum [Power ("x", 2); Times [Const 2; Var "x"]; Const 1]

and differentiating it (w.r.t. “x”) gives 2x + 2, which can be represented by

Sum [Times [Const 2; Var "x"]; Const 2]

Note that the representation of 2x + 2 in aexp is not unique. For instance, the following also
represents 2x + 2:
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Sum

[Times [Const 2; Power ("x", 1)];

Sum

[Times [Const 0; Var "x"];

Times [Const 2; Sum [Times [Const 1]; Times [Var "x"; Const 0]]]];

Const 0]

Problem 21 Binary trees can be defined as follows:

type btree =

Empty

|Node of int * btree * btree

For example, the following t1 and t2

let t1 = Node (1, Empty, Empty)

let t2 = Node (1, Node (2, Empty, Empty), Node (3, Empty, Empty))

are binary trees. Write the function

mem: int -> btree -> bool

that checks whether a given integer is in the tree or not. For example,

mem 1 t1

evaluates to true, and
mem 4 t2

evaluates to false.

Problem 22 A binary mobile consists of two branches, a left branch and a right branch. Each
branch is a rod of a certain length, from which hangs either a weight or another binary mobile. In
OCaml datatype, a binary mobile can be defined as follows:

type mobile = branch * branch (* left and rigth branches *)

and branch = SimpleBranch of length * weight

| CompoundBranch of length * mobile

and length = int

and weight = int

A branch is either a simple branch, which is constructed from a length together with a weight, or a
compound branch, which is constructed from a length together with another mobile. For instance,
the mobile

is represented by the following:

(CompoundBranch (3,

(CompoundBranch (2, (SimpleBranch (1, 1), SimpleBranch (1, 1))),

SimpleBranch (1, 4))),

SimpleBranch (6, 3))
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Define the function
balanced : mobile -> bool

that tests whether a binary mobile is balanced. A mobile is said to be balanced if the torque applied
by its top-left branch is equal to that applied by its top-right branch (that is, if the length of the
left rod multiplied by the weight hanging from that rod is equal to the corresponding product for
the right side) and if each of the submobiles hanging off its branches is balanced. For example,
the example mobile above is balanced.

Problem 23 Consider the following expressions:

type exp = X

| INT of int

| ADD of exp * exp

| SUB of exp * exp

| MUL of exp * exp

| DIV of exp * exp

| SIGMA of exp * exp * exp

Implement a calculator for the expressions:

calculator : exp -> int

For instance,
10∑
x=1

(x ∗ x− 1)

is represented by
SIGMA(INT 1, INT 10, SUB(MUL(X, X), INT 1))

and evaluating it should give 375.

Problem 24 Consider the following language:

type exp = V of var

| P of var * exp

| C of exp * exp

and var = string

In this language, a program is simply a variable, a procedure, or a procedure call.
Write a checker function

check : exp -> bool

that checks if a given program is well-formed. A program is said to be well-formed if and only if
the program does not contain free variables; i.e., every variable name is bound by some procedure
that encompasses the variable. For example, well-formed programs are:

• P ("a", V "a")

• P ("a", P ("a", V "a"))

• P ("a", P ("b", C (V "a", V "b")))

• P ("a", C (V "a", P ("b", V "a")))

Ill-formed ones are:

• P ("a", V "b")

• P ("a", C (V "a", P ("b", V "c")))

• P ("a", P ("b", C (V "a", V "c")))
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