COSE419: Software Verification

Lecture 4 — Propositional Logic

Hakjoo Oh 2024 Spring

Syntax

- Atom: basic elements
 - ▶ truth symbols ⊥ ("false") and ⊤ ("true")
 - lacktriangledown propositional variables P,Q,R,\ldots
- **Literal**: an atom α or its negation $\neg \alpha$.
- Formula: a literal or the application of a logical connective (boolean connective) to formulas

Syntax

ullet Formula G is a **subformula** of formula F if it occurs syntactically within G.

$$egin{array}{lll} & \mathsf{sub}(\bot) & = & \{\bot\} \ & \mathsf{sub}(\top) & = & \{\top\} \ & \mathsf{sub}(P) & = & \{P\} \ & \mathsf{sub}(\lnot F) & = & \{\lnot F\} \cup \mathsf{sub}(F) \ & \mathsf{sub}(F_1 \land F_2) & = & \{F_1 \land F_2\} \cup \mathsf{sub}(F_1) \cup \mathsf{sub}(F_2) \ & \vdots \end{array}$$

- $\bullet \ F: (P \wedge Q) \to (P \vee \neg Q)$ $\bullet \ \operatorname{sub}(F) =$
- The strict subformulas of a formula are all its subformulas except itself.

Syntax

 To minimally use parentheses, we define the relative precedence of the logical connectives from highest to lowest as follows:

$$\neg \land \lor \rightarrow \leftrightarrow$$

Additionally, → and ↔ associate to the right, e.g.,

$$P \to Q \to R \iff P \to (Q \to R)$$

- Examples:
 - $P \land Q) \to (P \lor \neg Q) \iff P \land Q \to P \lor \neg Q$
 - $(P_1 \wedge ((\neg P_2) \wedge \top)) \vee ((\neg P_1) \wedge P_2) \iff P_1 \wedge \neg P_2 \wedge \top \vee \neg P_1 \wedge P_2$

Semantics

- The semantics of a logic provides its meaning. The meaning of a PL formula is either true or false.
- The semantics of a formula is defined with an interpretation (or assignment) that assigns truth values to propositional variables.
- For example, $F: P \land Q \rightarrow P \lor \neg Q$ evaluates to true under the interpretation $I: \{P \mapsto \mathsf{true}, Q \mapsto \mathsf{false}\}$:

\boldsymbol{P}	$oxed{Q}$	$\neg Q$	$P \wedge Q$	$P \lor \lnot Q$	\boldsymbol{F}
1	0	1	0	1	1

 The tabular notation is unsuitable for predicate logic. Instead, we define the semantics inductively.

Inductive Definition of Semantics

In an inductive definition, the meaning of basic elements is defined first. The meaning of complex elements is defined in terms of subcomponents.

- We write $I \models F$ if F evaluates to **true** under I.
- We write $I \nvDash F$ if F evaluates to false under I.

```
egin{array}{lll} I artriangleq T, & I 
ot egin{array}{lll} I artriangleq P & & 	ext{iff} & I[P] = 	ext{true} \\ I artriangleq P & & 	ext{iff} & I[P] = 	ext{false} \\ I artriangleq P & & 	ext{iff} & I 
ot F \\ I artriangleq F_1 \wedge F_2 & & 	ext{iff} & I 
ot F_1 	ext{ and } I 
ot F_2 \\ I artriangleq F_1 \rightarrow F_2 & & 	ext{iff} & I 
ot F_1 	ext{ or } I 
ot F_2 \\ I artriangleq F_1 \rightarrow F_2 & & 	ext{iff} & I 
ot F_1 	ext{ and } I 
ot F_2 \\ I artriangleq F_1 \leftrightarrow F_2 & & 	ext{iff} & (I 
ot F_1 	ext{ and } I 
ot F_2 \\ I artriangleq F_1 \leftrightarrow F_2 & & 	ext{iff} & (I 
ot F_1 	ext{ and } I 
ot F_2 \\ I 
ot F_2 & & 	ext{iff} & (I 
ot F_1 	ext{ and } I 
ot F_2 \\ I 
ot F_2 & & 	ext{iff} & (I 
ot F_2 	ext{ and } I 
ot F_2 \\ I 
ot F_2 & & 	ext{iff} & (I 
ot F_2 	ext{ and } I 
ot F_2 \\ I 
ot F_2 & & 	ext{iff} & (I 
ot F_2 	ext{ and } I 
ot F_2 \ext{ array}
```

Example

Consider the formula

$$F: P \wedge Q o P ee
eg Q$$

and the interpretation

$$I:\{P\mapsto \mathsf{true}, Q\mapsto \mathsf{false}\}$$

The truth value of F is computed as follows:

- 1. $I \models P$ since I[P] = true2. $I \not\models Q$ since I[Q] = false3. $I \models \neg Q$ by 2 and semantics of \neg 4. $I \not\models P \land Q$ by 2 and semantics of \land 5. $I \models P \lor \neg Q$ by 1 and semantics of \lor
- **6.** $I \models F$ by 4 and semantics of \rightarrow

Satisfiability and Validity

- A formula F is **satisfiable** iff there exists an interpretation I such that $I \models F$.
- A formula F is **valid** iff for all interpretations I, $I \models F$.
- Satisfiability and validity are dual¹:

F is valid iff $\neg F$ is unsatisfiable

- Proof: exercise
- We can check satisfiability by deciding validity, and vice versa.

¹In logic, functions (or relations) A and B are dual if $A(x) = \neg B(\neg x)$

Deciding Validity and Satisfiability

Two approaches to show F is valid:

• Truth table method performs exhaustive search: e.g., $F: P \wedge Q \rightarrow P \vee \neg Q$.

P	\boldsymbol{Q}	$P \wedge Q$	$\neg Q$	P ee eg Q	F
0	0	0	1	1	1
0	1	0	0	0	$\mid 1 \mid$
1	0	0	1	1	$\mid 1 \mid$
1	1	1	0	1	$oxed{1}$

Non-applicable to logic with infinite domain (e.g., first-order logic).

- Semantic argument method uses deduction:
 - Assume F is invalid: $I \nvDash F$ for some I (falsifying interpretation).
 - ▶ Apply deduction rules (proof rules) to derive a contradiction.
 - ightharpoonup If every branch of the proof derives a contradiction, then F is valid.
 - ▶ If some branch of the proof never derives a contradiction, then *F* is invalid. This branch describes a falsifying interpretation of *F*.

Deduction Rules for Propositional Logic

$$\begin{array}{ccc} I \vDash \neg F & I \nvDash \neg F \\ I \nvDash F & I \vDash F \\ & I \vDash F \land G \\ I \vDash F, I \vDash G & I \nvDash F \land G \\ & I \nvDash F \mid I \vDash G \\ & I \vDash F \lor G \\ & I \vDash F \mid I \vDash G & I \nvDash F \lor G \\ & I \nvDash F \mid I \vDash G & I \nvDash F \land G \\ & I \nvDash F \mid I \vDash G & I \vDash F, I \nvDash G \\ & I \vDash F \leftrightarrow G \\ & I \vDash F \land G \mid I \vDash \neg F \land \neg G & I \vDash F \land \neg G \mid I \vDash \neg F \land G \\ & I \vDash F & I \nvDash F \\ & I \vDash I & I \vDash F \\ & I \vDash I & I \end{cases}$$

Example 1

To prove that the formula

$$F: P \wedge Q o P ee
eg Q$$

is valid. assume that it is invalid and derive a contradiction:

1.
$$I \nvDash P \land Q \rightarrow P \lor \neg Q$$

- 2. $I \models P \land Q$
- 3. $I \nvDash P \vee \neg Q$
- 4. $I \models P$
- 5. $I \nvDash P$
- 6. $I \models \bot$

- assumption
- by 1 and semantics of \rightarrow
- by 1 and semantics of \rightarrow
- by 2 and semantics of \wedge
- by 3 and semantics of \vee
- 4 and 5 are contradictory

Example 2

To prove that the formula

$$F:(P o Q) \wedge (Q o R) o (P o R)$$

is valid, assume that it is invalid and derive a contradiction:

1.
$$I \nvDash F$$

$$2.\quad I\vDash (P\to Q)\wedge (Q\to R)$$

$$3.\quad I \nvDash P \to R$$

4.
$$I \models P$$

5.
$$I \nvDash R$$

6.
$$I \models P \rightarrow Q$$

7.
$$I \models Q \rightarrow R$$

assumption

by 1 and semantics of \rightarrow by 1 and semantics of \rightarrow

by 3 and semantics of \rightarrow

by 3 and semantics of \rightarrow

2 and semantics of \wedge

2 and semantics of \wedge

Two cases to consider from 6:

- **1** $I \nvDash P$: contradiction with 4.
- 2 $I \models Q$: two cases to consider from 7:
 - $\mathbf{0}$ $I \nvDash Q$: contradiction
 - **2** $I \models R$: contradiction with 5.

Proof Tree

A proof evolves as a tree.

- A *branch* is a sequence descending from the root.
- A branch is *closed* if it contains a contradiction. Otherwise, the branch is *open*.
- ullet It is a proof of the validity of $m{F}$ if every branch is closed; otherwise, each open branch describes a falsifying interpretation of $m{F}$.

Exercise

Use the semantic argument method to prove that the following ${m F}$ is valid.

$$F:P\vee Q\to P\wedge Q$$

Derived Rules

The proof rules are sufficient, but **derived rules** can make proofs more concise. E.g., the rule of modus ponens:

$$egin{array}{ccc} I Dots F & I Dots F
ightarrow G \ I Dots G \end{array}$$

The proof of the validity of the formula:

$$F: (P \to Q) \land (Q \to R) \to (P \to R)$$

1.	$I ot \vdash F$	assumption
2.	$I Dash (P o Q) \wedge (Q o R)$	by 1 and semantics of $ ightarrow$
3.	I ot P o R	by 1 and semantics of $ ightarrow$
4.	$\boldsymbol{I} \vDash \boldsymbol{P}$	by 3 and semantics of $ ightarrow$
5.	$I ot \vdash R$	by 3 and semantics of $ ightarrow$
6.	$I \vDash P \to Q$	2 and semantics of \land
7.	$I \vDash Q \to R$	2 and semantics of \land
8.	$I \vDash Q$	by 4, 6, and modus ponens
9.	$I \vDash R$	by 8, 7, and modus ponens
10.	$I \vDash \bot$	5 and 9 are contradictory

Equivalence and Implication

ullet Two formulas F_1 and F_2 are equivalent

$$F_1 \iff F_2$$

iff $F_1 \leftrightarrow F_2$ is valid, i.e., for all interpretations I, $I \vDash F_1 \leftrightarrow F_2$.

ullet Formula F_1 implies formula F_2

$$F_1 \implies F_2$$

iff $F_1 o F_2$ is valid, i.e., for all interpretations I, $I \vDash F_1 o F_2$.

- ullet $F_1 \iff F_2$ and $F_1 \implies F_2$ are not formulas. They are semantic assertions.
- We can check equivalence and implication by checking satisfiability.

Examples

- \bullet $P \iff \neg \neg P$
- $\bullet \ P \to Q \iff \neg P \lor Q$

Exercise

Prove that

$$R \wedge (\neg R \vee P) \implies P$$

Substitution

• A substitution σ is a mapping from formulas to formulas:

$$\sigma: \{F_1 \mapsto G_2, \dots, F_n \mapsto G_n\}$$

• The domain of σ , $dom(\sigma)$, is

$$\mathsf{dom}(\sigma):\{F_1,\ldots,F_n\}$$

while the range $range(\sigma)$ is

$$\mathsf{range}(\sigma): \{G_1, \ldots, G_n\}$$

- The application of a substitution σ to a formula F, $F\sigma$, replaces each occurrence of F_i with G_i . Replacements occur all at once.
- When two subformulas F_j and F_k are in $dom(\sigma)$ and F_k is a strict subformula of F_j , then F_j is replaced first.

Example

Consider formula

$$F: P \wedge Q \to P \vee \neg Q$$

and substitution

$$\sigma: \{P \mapsto R, P \land Q \mapsto P \to Q\}$$

Then,

$$F\sigma:(P o Q) o Ree
eg Q$$

Note that $F\sigma
eq (R o Q) o R ee
eg Q.$

Substitution

- A variable substitution is a substitution in which the domain consists only of propositional variables.
- When we write $F[F_1, \ldots, F_n]$, we mean that formula F can have formulas F_1, \ldots, F_n as subformulas.
- ullet If σ is $\{F_1\mapsto G_1,\ldots,F_n\mapsto G_n\}$, then

$$F[F_1,\ldots,F_n]\sigma:F[G_1,\ldots,G_n]$$

• For example, in the previous example, writing

$$F[P,P\wedge Q]\sigma:F[R,P o Q]$$

emphasizes that P and $P \wedge Q$ are replaced by R and $P \rightarrow Q$, respectively.

Semantic Consequences of Substitution

Proposition (Substitution of Equivalent Formulas)

Consider substitution $\sigma: \{F_1 \mapsto G_1, \dots, F_n \mapsto G_n\}$ such that for each $i, F_i \iff G_i$. Then, $F \iff F\sigma$.

For example, applying $\sigma:\{P o Q\mapsto \neg P\lor Q\}$ to F:(P o Q) o R produces $(\neg P\lor Q) o R$ that is equivalent to F.

Proposition (Valid Template)

If F is valid and $G = F\sigma$ for some variable substitution σ , then G is valid.

For example, because $F:(P \to Q) \leftrightarrow (\neg P \lor Q)$ is valid, every formula of the form $F_1 \to F_2$ is equivalent to $\neg F_1 \lor F_2$, for arbitrary formulas F_1 and F_2 .

Proving the validity of ${m F}$ proves the validity of an infinite set of formulas

Composition of Substitutions

Given substitutions σ_1 and σ_2 , their composition $\sigma=\sigma_1\sigma_2$ ("apply σ_1 and then σ_2 ") is computed as follows:

- **①** Apply σ_2 to each formula of the range of σ_1 , and add the results to σ .
- ② If F_i of $F_i\mapsto G_i$ appears in the domain of σ_2 but not in the domain of σ_1 , then add $F_i\mapsto G_i$ to σ .

For example,

$$\begin{split} \sigma_1 \sigma_2 : \{P \mapsto R, P \wedge Q \mapsto P \to Q\} \{P \mapsto S, S \mapsto Q\} \\ &= \{P \mapsto R\sigma_2, P \wedge Q \mapsto (P \to Q)\sigma_2, S \mapsto Q\} \\ &= \{P \mapsto R, P \wedge Q \mapsto S \to Q, S \mapsto Q\} \end{split}$$

Normal Forms

A normal form of formulas is a syntactic restriction such that for every formula of the logic, there is an equivalent formula in the normal form. Three useful normal forms in logic:

- Negation Normal Form (NNF)
- Disjunctive Normal Form (DNF)
- Conjunctive Normal Form (CNF)

Negation Normal Form (NNF)

- NNF requires that ¬, ∧, and ∨ are the only connectives (i.e., no → and ↔) and that negations are only applied to variables.
 - $P \wedge Q \wedge (R \vee \neg S)$
 - $\neg P \lor \neg (P \land Q)$
 - ightharpoonup $\neg \neg P \wedge Q$
- Transforming a formula F to equivalent formula F' in NNF can be done by repeatedly applying (left-to-right) the following template equivalences:

Exercise

Convert $F : \neg (P \rightarrow \neg (P \land Q))$ into NNF.

Disjunctive Normal Form (DNF)

 A formula is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals:

$$\bigvee_i \bigwedge_j l_{i,j}$$

To convert a formula F into an equivalent formula in DNF, transform
 F into NNF and then distribute conjunctions over disjunctions:

$$\begin{array}{ccc} (F_1 \vee F_2) \wedge F_3 & \Longleftrightarrow & (F_1 \wedge F_3) \vee (F_2 \wedge F_3) \\ F_1 \wedge (F_2 \vee F_3) & \Longleftrightarrow & (F_1 \wedge F_2) \vee (F_1 \wedge F_3) \end{array}$$

Exercise

To convert

$$F:(Q_1 \lor \lnot \lnot Q_2) \land (\lnot R_1 \to R_2)$$

into DNF,

- first transform it into NNF:
- then apply distributivity:

Conjunctive Normal Form (CNF)

 A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals:

$$igwedge_iigwedge_j l_{i,j}$$

where each disjunction of literals is called a clause.

ullet To convert a formula ullet into an equivalent formula in DNF, transform ullet into NNF and distribute disjunctions over conjunctions:

$$(F_1 \wedge F_2) \vee F_3 \iff (F_1 \vee F_3) \wedge (F_2 \vee F_3)$$

 $F_1 \vee (F_2 \wedge F_3) \iff (F_1 \vee F_2) \wedge (F_1 \vee F_3)$

ullet Exercise) Convert $F:(Q_1\wedge
eg
eg Q_2) \lor (
eg R_1 o R_2)$ into CNF

Decision Procedures

- A decision procedure decides whether F is satisfiable after some finite steps of computation.
- Approaches for deciding satisfiability:
 - ▶ **Search**: exhaustively search through all possible assignments
 - Deduction: deduce facts from known facts by iteratively applying proof rules
 - ► **Combination**: Modern SAT solvers are based on DPLL that combines search and deduction in an effective way

Exhaustive Search

• The recursive algorithm for deciding satisfiability:

```
let rec SAT F= if F=\top then true else if F=\bot then false else let P=\mathsf{Choose}(\mathsf{vars}(F)) in (\mathsf{SAT}\ F\{P\mapsto \top\}) \lor (\mathsf{SAT}\ F\{P\mapsto \bot\})
```

• When applying $F\{P \mapsto \top\}$ and $F\{P \mapsto \bot\}$, the resulting formulas should be simplified using template equivalences on PL:

• •

Example

$$F:(P o Q)\wedge P\wedge
eg Q$$

ullet Choose variable $oldsymbol{P}$ and

$$F\{P \mapsto \top\} : (\top \to Q) \land \top \land \neg Q$$

which simplifies to

$$F_1:Q\wedge \neg Q$$

- $ullet F_1\{Q\mapsto op \}:oldsymbol{\perp} F_1\{Q\mapsto oldsymbol{\perp}\}:oldsymbol{\perp}$
- Recurse on the other branch for P in F:

$$F\{P \mapsto \bot\} : (\bot \to Q) \land \bot \land \neg Q$$

which simplifies to \perp .

All branches end without finding a satisfying assignment.

Example

$$F:(P o Q)\wedge
eg P$$

• Choose P and recurse on the first case:

$$F\{P \mapsto \top\} : (\top \to Q) \land \neg T$$

which is equivalent to \perp .

• Try the other case:

$$F\{P \to \bot\} : (\bot \to Q) \land \neg \bot$$

which is equivalent to \top .

ullet Arbitrarily assigning a value to Q produces the satisfying interpretation:

$$I: \{P \mapsto \mathsf{false}, Q \mapsto \mathsf{true}\}.$$

Equisatisfiability

- SAT solvers convert a given formula F to CNF.
- Conversion to an equivalent CNF incurs exponential blow-up in worst-case.
- F is converted to an equisatisfiable CNF formula, which increases the size by only a constant factor.
- ullet F and F' are **equisatisfiable** when F is satisfiable iff F' is satisfiable.
- Equisatisfiability is a weaker notion of equivalence, which is still useful when deciding satisfiability.

Conversion to an Equisatisfiable Formula in CNF

- Introduce new variables for each subformula of F with extra clauses to assert that these variables are equivalent to the subformulas that they represent.
- Example: $F: P \vee Q \rightarrow \neg (P \wedge \neg R)$

▶ **F** is equisatisfiable to

$$P_1 \wedge P_1 \leftrightarrow (P_2 \rightarrow P_3) \wedge P_2 \leftrightarrow (P \vee Q) \wedge P_3 \leftrightarrow \neg P_4 \wedge P_4 \leftrightarrow (P \wedge P_5) \wedge P_5 \leftrightarrow \neg R$$

► In CNF:

$$P_1 \wedge (\neg P_1 \vee \neg P_2 \vee P_3) \wedge (P_2 \vee P_1) \wedge (\neg P_3 \vee P_1) \wedge \dots$$

Conversion to an Equisatisfiable Formula in CNF

Convert F into

$$F': \mathsf{Rep}(F) \wedge igwedge_{G \in \mathsf{sub}(F)} \mathsf{En}(G)$$

- Rep : $PL \rightarrow V \cup \{\top, \bot\}$
 - ► The representative function that maps PL formulas to propositional variables V, T, and ⊥.
 - In the general case, it maps F to its representative propositional variable P_F such that the truth value of P_F is the same as that of F.
- En : $PL \rightarrow PL$
 - ▶ The encoding function that maps PL formulas to PL formulas.
 - ▶ It maps a PL formula F to a PL formula F' in CNF that asserts that F's representative, P_F , is equivalent to F: "Rep $(F) \leftrightarrow F$ ".

Conversion to an Equisatisfiable Formula in CNF

$$\begin{split} \operatorname{Rep}(\top) &= \top & \operatorname{Rep}(\bot) = \bot & \operatorname{Rep}(P) = P & \operatorname{Rep}(F) = P_F \\ \operatorname{En}(\top) &= \top & \operatorname{En}(\bot) = \top & \operatorname{En}(P) = \top \\ \end{split}$$

$$\begin{aligned} &\operatorname{En}(F_1 \wedge F_2) &= \\ &\operatorname{let} P = \operatorname{Rep}(F_1 \wedge F_2) \operatorname{in} \\ &(\neg P \vee \operatorname{Rep}(F_1)) \wedge (\neg P \vee \operatorname{Rep}(F_2)) \wedge (\neg \operatorname{Rep}(F_1) \vee \neg \operatorname{Rep}(F_2) \vee P) \\ \end{aligned}$$

$$\begin{aligned} &\operatorname{En}(\neg F) &= \\ &\operatorname{let} P = \operatorname{Rep}(\neg F) \operatorname{in} \\ &(\neg P \vee \neg \operatorname{Rep}(F_1)) \wedge (P \vee \operatorname{Rep}(F)) \\ \end{aligned}$$

$$\begin{aligned} &\operatorname{En}(F_1 \vee F_2) &= \\ &\operatorname{let} P = \operatorname{Rep}(F_1 \vee F_2) \operatorname{in} \\ &(\neg P \vee \operatorname{Rep}(F_1) \vee \operatorname{Rep}(F_2)) \wedge (\neg \operatorname{Rep}(F_1) \vee P) \wedge (\neg \operatorname{Rep}(F_2) \vee P) \\ \end{aligned}$$

$$\begin{aligned} &\operatorname{En}(F_1 \to F_2) &= \\ &\operatorname{let} P = \operatorname{Rep}(F_1 \to F_2) \operatorname{in} \\ &(\neg P \vee \neg \operatorname{Rep}(F_1) \vee \operatorname{Rep}(F_2)) \wedge (\operatorname{Rep}(F_1) \vee P) \wedge (\neg \operatorname{Rep}(F_2) \vee P) \\ \end{aligned}$$

$$\begin{aligned} &\operatorname{En}(F_1 \leftrightarrow F_2) &= \\ &\operatorname{let} P = \operatorname{Rep}(F_1 \leftrightarrow F_2) \operatorname{in} \\ &(\neg P \vee \neg \operatorname{Rep}(F_1) \vee \operatorname{Rep}(F_2)) \wedge (\neg P \vee \operatorname{Rep}(F_1) \vee \neg \operatorname{Rep}(F_2)) \\ &\wedge (P \vee \neg \operatorname{Rep}(F_1) \vee \neg \operatorname{Rep}(F_2)) \wedge (P \vee \operatorname{Rep}(F_1) \vee \operatorname{Rep}(F_2)) \end{aligned}$$

Example

$$F:(Q_1\wedge Q_2)\vee (R_1\wedge R_2)$$

is converted into

$$F': P_F \wedge igwedge_{G \in \mathsf{sub}(F)} \mathsf{En}(G)$$

where
$$\mathsf{sub}(F) = \{Q_1, Q_2, R_1, R_2, Q_1 \wedge Q_2, R_1 \wedge R_2, F\}$$
 and

$$\begin{split} \mathsf{En}(Q_1) &= \mathsf{En}(Q_2) = \mathsf{En}(R_1) = \mathsf{En}(R_2) = \top \\ \mathsf{En}(Q_1 \land Q_2) &= (\neg P_{(Q_1 \land Q_2)} \lor Q_1) \land (\neg P_{(Q_1 \land Q_2)} \lor Q_2) \\ & \land (\neg Q_1 \lor \neg Q_2 \lor P_{(Q_1 \land Q_2)}) \\ \mathsf{En}(R_1 \land R_2) &= (\neg P_{(R_1 \land R_2)} \lor R_1) \land (\neg P_{(R_1 \land R_2)} \lor R_2) \\ & \land (\neg R_1 \lor \neg R_2 \lor P_{(R_1 \land R_2)}) \\ \mathsf{En}(F) &= (\neg P_F \lor P_{(Q_1 \land Q_2)} \lor P_{(R_1 \land R_2)}) \\ & \land (\neg P_{(Q_1 \land Q_2)} \lor P_F) \land (\neg P_{(R_1 \land R_2)} \lor P_F) \end{split}$$

The Resolution Procedure

- Applicable only to CNF formulas.
- Observation: to satisfy clauses $C_1[P]$ and $C_2[\neg P]$ that share variable P but disagree on its value, either the rest of C_1 or the rest of C_2 must be satisfied. Why?
- The clause $C_1[\bot] \lor C_2[\bot]$ (with simplification) can be added as a conjunction to F to produce an equivalent formula still in CNF.
- The proof rule for clausal resolution:

$$\frac{C_1[P] \quad C_2[\neg P]}{C_1[\bot] \lor C_2[\bot]}$$

The new clause $C_1[\bot] \lor C_2[\bot]$ is called the **resolvent**.

• If ever \bot is deduced via resolution, F must be unsatisfiable. Otherwise, if no further resolutions are possible, F must be satisfiable.

Examples

$$F: (\neg P \lor Q) \land P \land \neg Q$$

From resolution

$$\frac{(\neg P \lor Q) \qquad P}{Q},$$

construct $(\neg P \lor Q) \land P \land \neg Q \land Q$. From resolution

$$\frac{\neg Q \qquad Q}{\bot}$$

deduce that F is unsatisfiable.

Examples

$$F: (\neg P \lor Q) \land \neg Q)$$

• The resolution procedure yields

$$(\neg P \lor Q) \land \neg Q \land \neg P$$

No further resolutions are possible. F is satisfiable.

• A satisfying interpretation:

$$I: \{P \mapsto \mathsf{false}, Q \mapsto \mathsf{false}\}$$

A CNF formula that does not contain the clause
 \(\perp \) and to which no more resolutions are applicable represents all possible satisfying interpretations.

DPLL

 The Davis-Putnam-Logemann-Loveland algorithm (DPLL) combines the enumerative search and a restricted form of resolution, called unit resolution:

$$\frac{l \quad C[\neg l]}{C[\bot]}$$

where l is a literal $(l = P \text{ or } l = \neg P)$.

- Because $C[\bot]$ is a subset of $C[\neg l]$, $C[\neg l]$ is replaced by $C[\bot]$. Also, l is removed as it must be assigned true.
- ullet Thus, performing unit resolution is identical to replacing $oldsymbol{l}$ by true in the original formula.
- The process of applying this resolution as much as possible is called Boolean constraint propagation (BCP).

BCP Example

$$F:(P)\wedge (\neg P\vee Q)\wedge (R\vee \neg Q\vee S)$$

Apply unit resolution

$$\frac{P \qquad (\neg P \vee Q)}{Q}$$

to produce $F':Q \wedge (R \vee \neg Q \vee S)$. Applying unit resolution

$$\frac{Q \qquad R \vee \neg Q \vee S}{R \vee S}$$

produces $F'': R \vee S$, ending this round of BCP.

DPLL

DPLL is similar to SAT, except that it begins by applying BCP:

```
let rec DPLL F = let F' = \mathsf{BCP}(F) in if F' = \top then true else if F' = \bot then false else let P = \mathsf{Choose}(\mathsf{vars}(F')) in (\mathsf{DPLL}\ F'\{P \mapsto \top\}) \lor (\mathsf{DPLL}\ F'\{P \mapsto \bot\})
```

Pure Literal Elimination (PLE)

- If variable P appears only positively or only negatively in F, remove all clauses containing an instance of P.
 - ▶ If P appears only positively (i.e. no $\neg P$ in F), replace P by \top .
 - ▶ If P appears only negatively (i.e. no P in F), replace P by \bot .
- ullet The resulting formula F' is equisatisfiable to F.
- When only such pure variables remain, the formula must be satisfiable. A full interpretation can be constructed by setting each variable's value based on whether it appears only positively (true) or only negatively (false).

Example) $F: (\neg P \lor Q) \land (R \lor \neg Q \lor S)$.

ullet P appears only negatively in F

$$F':(R\vee \neg Q\vee S)$$

ullet R and S appear only positively in F

$$F': (\neg P \lor Q)$$

DPLL with PLP

```
let rec DPLL F = let F' = \mathsf{PLE}(\mathsf{BCP}(F)) in if F' = \top then true else if F' = \bot then false else let P = \mathsf{Choose}(\mathsf{vars}(F')) in (\mathsf{DPLL}\ F'\{P \mapsto \bot\}) \lor (\mathsf{DPLL}\ F'\{P \mapsto \bot\})
```

Example 1

$$F: P \wedge (\neg P \vee Q) \wedge (R \vee \neg Q \vee S)$$

Applying BCP produces

$$F'':R\vee S$$

- A satisfying interpretation:

$$\{P \mapsto \mathsf{true}, Q \mapsto \mathsf{true}, R \mapsto \mathsf{true}, S \mapsto \mathsf{true}\}$$

Example 2

$$F: (\neg P \lor Q \lor R) \land (\neg Q \lor R) \land (\neg Q \lor \neg R) \land (P \lor \neg Q \lor \neg R)$$

- No BCP and PLP are applicable.
- Choose Q to branch on:

$$F\{Q \mapsto \top\} : R \wedge (\neg R) \wedge (P \vee \neg R)$$

The unit resolution with R and $\neg R$ deduces \bot , finishing this branch.

• On the other branch for Q:

$$F\{Q\mapsto ot\}: (\lnot P\lor R)$$

 ${m P}$ and ${m R}$ are pure, so the formula is satisfiable. A satisfying interpretation:

$$I: \{P \mapsto \mathsf{false}, Q \mapsto \mathsf{false}, R \mapsto \mathsf{true}\}$$

Summary

- Syntax and semantics of propositional logic
- Satisfiability and validity
- Equivalence, implications, and equisatisfiability
- Substitution
- Normal forms: NNF, DNF, CNF
- Decision procedures for satisfiability