COSE419: Software Verification

Lecture 4 - Propositional Logic

Hakjoo Oh
2024 Spring

Syntax

- Atom: basic elements
- truth symbols \perp ("false") and \top ("true")
- propositional variables P, Q, R, \ldots
- Literal: an atom $\boldsymbol{\alpha}$ or its negation $\neg \boldsymbol{\alpha}$.
- Formula: a literal or the application of a logical connective (boolean connective) to formulas

F	\perp	
	T	
	P	
	$\neg \boldsymbol{F}$	negation ("not")
	$F_{1} \wedge F_{2}$	conjunction ("and")
	$F_{1} \vee F_{2}$	disjunction ("or")
	$F_{1} \rightarrow F_{2}$	implication ("implies")
	$F_{1} \leftrightarrow F_{2}$	iff (" if and only if')

Syntax

- Formula \boldsymbol{G} is a subformula of formula \boldsymbol{F} if it occurs syntactically within \boldsymbol{G}.

$$
\begin{aligned}
\operatorname{sub}(\perp) & =\{\perp\} \\
\operatorname{sub}(\top) & =\{\top\} \\
\operatorname{sub}(P) & =\{P\} \\
\operatorname{sub}(\neg F) & =\{\neg F\} \cup \operatorname{sub}(F) \\
\operatorname{sub}\left(F_{1} \wedge F_{2}\right) & =\left\{F_{1} \wedge F_{2}\right\} \cup \operatorname{sub}\left(F_{1}\right) \cup \operatorname{sub}\left(F_{2}\right)
\end{aligned}
$$

- $F:(P \wedge Q) \rightarrow(P \vee \neg Q)$
- $\operatorname{sub}(F)=$
- The strict subformulas of a formula are all its subformulas except itself.

Syntax

- To minimally use parentheses, we define the relative precedence of the logical connectives from highest to lowest as follows:

$$
\neg \wedge \vee \rightarrow \leftrightarrow
$$

- Additionally, \rightarrow and \leftrightarrow associate to the right, e.g.,

$$
P \rightarrow Q \rightarrow R \Longleftrightarrow P \rightarrow(Q \rightarrow R)
$$

- Examples:
- $(P \wedge Q) \rightarrow(P \vee \neg Q) \Longleftrightarrow P \wedge Q \rightarrow P \vee \neg Q$
- $\left(P_{1} \wedge\left(\left(\neg P_{2}\right) \wedge \top\right)\right) \vee\left(\left(\neg P_{1}\right) \wedge P_{2}\right) \Longleftrightarrow P_{1} \wedge \neg \boldsymbol{P}_{2} \wedge \top \vee \neg \boldsymbol{P}_{1} \wedge \boldsymbol{P}_{\mathbf{2}}$

Semantics

- The semantics of a logic provides its meaning. The meaning of a PL formula is either true or false.
- The semantics of a formula is defined with an interpretation (or assignment) that assigns truth values to propositional variables.
- For example, $\boldsymbol{F}: \boldsymbol{P} \wedge \boldsymbol{Q} \rightarrow \boldsymbol{P} \vee \neg \boldsymbol{Q}$ evaluates to true under the interpretation $I:\{P \mapsto$ true, $Q \mapsto$ false $\}$:

\boldsymbol{P}	\boldsymbol{Q}	$\neg \boldsymbol{Q}$	$\boldsymbol{P} \wedge \boldsymbol{Q}$	$\boldsymbol{P} \vee \neg \boldsymbol{Q}$	\boldsymbol{F}
1	0	1	0	1	1

- The tabular notation is unsuitable for predicate logic. Instead, we define the semantics inductively.

Inductive Definition of Semantics

In an inductive definition, the meaning of basic elements is defined first. The meaning of complex elements is defined in terms of subcomponents.

- We write $\boldsymbol{I} \vDash \boldsymbol{F}$ if \boldsymbol{F} evaluates to true under \boldsymbol{I}.
- We write $\boldsymbol{I} \not \models \boldsymbol{F}$ if \boldsymbol{F} evaluates to false under \boldsymbol{I}.

$$
\begin{array}{ll}
\boldsymbol{I} \vDash \top, \quad I \not \models \perp, & \\
\boldsymbol{I} \vDash \boldsymbol{P} & \text { iff } \boldsymbol{I}[\boldsymbol{P}]=\text { true } \\
\boldsymbol{I} \not \models \boldsymbol{F} & \text { iff } \boldsymbol{I}[\boldsymbol{P}]=\text { false } \\
\boldsymbol{I} \vDash \neg \boldsymbol{F} & \text { iff } \boldsymbol{I} \not \models \boldsymbol{F} \\
\boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{1}} \wedge \boldsymbol{F}_{\mathbf{2}} & \text { iff } \boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{1}} \text { and } \boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{2}} \\
\boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{1}} \vee \boldsymbol{F}_{\mathbf{2}} & \text { iff } \boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{1}} \text { or } \boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{2}} \\
\boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{1}} \rightarrow \boldsymbol{F}_{\mathbf{2}} & \text { iff } \boldsymbol{I} \not \models \boldsymbol{F}_{\mathbf{1}} \text { or } \boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{2}} \\
\boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{1}} \leftrightarrow \boldsymbol{F}_{\mathbf{2}} & \text { iff }\left(\boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{1}} \text { and } \boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{2}}\right) \text { or }\left(\boldsymbol{I} \not \models \boldsymbol{F}_{\mathbf{1}} \text { and } \boldsymbol{I} \not \models \boldsymbol{F}_{\mathbf{2}}\right)
\end{array}
$$

Example

Consider the formula

$$
F: P \wedge Q \rightarrow P \vee \neg Q
$$

and the interpretation

$$
I:\{P \mapsto \text { true }, Q \mapsto \text { false }\}
$$

The truth value of \boldsymbol{F} is computed as follows:

$$
\begin{array}{lll}
\text { 1. } & \boldsymbol{I} \vDash \boldsymbol{P} & \text { since } \boldsymbol{I}[\boldsymbol{P}]=\text { true } \\
\text { 2. } & \boldsymbol{I} \not \vDash \boldsymbol{Q} & \text { since } \boldsymbol{I}[\boldsymbol{Q}]=\text { false } \\
\text { 3. } & \boldsymbol{I} \vDash \neg \boldsymbol{Q} & \text { by } 2 \text { and semantics of } \neg \\
\text { 4. } & \boldsymbol{I} \not \vDash \boldsymbol{P} \wedge \boldsymbol{Q} & \text { by } 2 \text { and semantics of } \wedge \\
\text { 5. } & \boldsymbol{I} \vDash \boldsymbol{P} \vee \neg \boldsymbol{Q} & \text { by } 1 \text { and semantics of } \vee \\
\text { 6. } & \boldsymbol{I} \vDash \boldsymbol{F} & \text { by } 4 \text { and semantics of } \rightarrow
\end{array}
$$

Satisfiability and Validity

- A formula \boldsymbol{F} is satisfiable iff there exists an interpretation \boldsymbol{I} such that $\boldsymbol{I} \vDash \boldsymbol{F}$.
- A formula \boldsymbol{F} is valid iff for all interpretations $\boldsymbol{I}, \boldsymbol{I} \vDash \boldsymbol{F}$.
- Satisfiability and validity are dual ${ }^{1}$:
\boldsymbol{F} is valid iff $\neg \boldsymbol{F}$ is unsatisfiable
- Proof: exercise
- We can check satisfiability by deciding validity, and vice versa.

[^0]
Deciding Validity and Satisfiability

Two approaches to show \boldsymbol{F} is valid:

- Truth table method performs exhaustive search: e.g., $F: P \wedge Q \rightarrow P \vee \neg Q$.

P	Q	$P \wedge Q$	$\neg Q$	$P \vee \neg Q$	F
0	0	0	1	1	1
0	1	0	0	0	1
1	0	0	1	1	1
1	1	1	0	1	1

Non-applicable to logic with infinite domain (e.g., first-order logic).

- Semantic argument method uses deduction:
- Assume \boldsymbol{F} is invalid: $\boldsymbol{I} \not \models \boldsymbol{F}$ for some \boldsymbol{I} (falsifying interpretation).
- Apply deduction rules (proof rules) to derive a contradiction.
- If every branch of the proof derives a contradiction, then \boldsymbol{F} is valid.
- If some branch of the proof never derives a contradiction, then \boldsymbol{F} is invalid. This branch describes a falsifying interpretation of \boldsymbol{F}.

Deduction Rules for Propositional Logic

$$
\begin{array}{cl}
\frac{\boldsymbol{I} \vDash \neg \boldsymbol{F}}{\boldsymbol{I} \not \models \boldsymbol{F}} & \frac{\boldsymbol{I} \not \models \neg \boldsymbol{F}}{\boldsymbol{I} \vDash \boldsymbol{F}} \\
\frac{\boldsymbol{I} \vDash \boldsymbol{F} \wedge \boldsymbol{G}}{\boldsymbol{I} \vDash \boldsymbol{F}, \boldsymbol{I} \vDash \boldsymbol{G}} & \frac{\boldsymbol{I} \not \models \boldsymbol{F} \wedge \boldsymbol{G}}{\boldsymbol{I} \not \models \boldsymbol{F} \mid \boldsymbol{I} \not \models \boldsymbol{G}} \\
\frac{\boldsymbol{I} \vDash \boldsymbol{F} \vee \boldsymbol{G}}{\boldsymbol{I} \vDash \boldsymbol{F} \mid \boldsymbol{I} \vDash \boldsymbol{G}} & \frac{\boldsymbol{I} \not \models \boldsymbol{F} \vee \boldsymbol{G}}{\boldsymbol{I} \not \models \boldsymbol{F}, \boldsymbol{I} \not \models \boldsymbol{G}} \\
\frac{\boldsymbol{I} \vDash \boldsymbol{F} \rightarrow \boldsymbol{G}}{\boldsymbol{I} \not \models \boldsymbol{F} \mid \boldsymbol{I} \vDash \boldsymbol{G}} & \frac{\boldsymbol{I} \not \models \boldsymbol{F} \rightarrow \boldsymbol{G}}{\boldsymbol{I} \vDash \boldsymbol{F}, \boldsymbol{I} \not \models \boldsymbol{G}} \\
\boldsymbol{I} \vDash \boldsymbol{F} \leftrightarrow \boldsymbol{G} & \frac{\boldsymbol{I} \not \models \boldsymbol{F} \leftrightarrow \boldsymbol{G}}{\boldsymbol{I} \vDash \boldsymbol{F} \wedge \boldsymbol{G} \mid \boldsymbol{I} \vDash \neg \boldsymbol{F} \wedge \neg \boldsymbol{G}} \\
\frac{\boldsymbol{I} \vDash \boldsymbol{F}}{\boldsymbol{I} \vDash \perp} \boldsymbol{I \not \models \boldsymbol { F }}
\end{array}
$$

Example 1

To prove that the formula

$$
F: P \wedge Q \rightarrow P \vee \neg Q
$$

is valid, assume that it is invalid and derive a contradiction:

Example 2

To prove that the formula

$$
F:(P \rightarrow Q) \wedge(Q \rightarrow R) \rightarrow(P \rightarrow R)
$$

is valid, assume that it is invalid and derive a contradiction:

$$
\begin{array}{lll}
\text { 1. } & \boldsymbol{I} \not \models \boldsymbol{F} & \text { assumption } \\
\text { 2. } & \boldsymbol{I} \neq(\boldsymbol{P} \rightarrow \boldsymbol{Q}) \wedge(\boldsymbol{Q} \rightarrow \boldsymbol{R}) & \text { by } 1 \text { and semantics of } \rightarrow \\
\text { 3. } & \boldsymbol{I} \not \models \boldsymbol{P} \rightarrow \boldsymbol{R} & \text { by } 1 \text { and semantics of } \rightarrow \\
\text { 4. } & \boldsymbol{I} \nLeftarrow \boldsymbol{P} & \text { by } 3 \text { and semantics of } \rightarrow \\
\mathbf{5 .} & \boldsymbol{I} \not \models \boldsymbol{R} & \text { by } 3 \text { and semantics of } \rightarrow \\
\mathbf{6 .} & \boldsymbol{I} \neq \boldsymbol{P} \rightarrow \boldsymbol{Q} & \text { 2 and semantics of } \wedge \\
\mathbf{7 .} & \boldsymbol{I} \notin \boldsymbol{Q} \rightarrow \boldsymbol{R} & \text { 2 and semantics of } \wedge
\end{array}
$$

Two cases to consider from 6:
(1) $\boldsymbol{I} \not \models \boldsymbol{P}$: contradiction with 4 .
(2) $I \vDash \boldsymbol{Q}$: two cases to consider from 7:
(1) $I \not \models Q$: contradiction
(2) $\boldsymbol{I} \vDash \boldsymbol{R}$: contradiction with 5 .

Proof Tree

A proof evolves as a tree.

- A branch is a sequence descending from the root.
- A branch is closed if it contains a contradiction. Otherwise, the branch is open.
- It is a proof of the validity of \boldsymbol{F} if every branch is closed; otherwise, each open branch describes a falsifying interpretation of \boldsymbol{F}.

Exercise

Use the semantic argument method to prove that the following \boldsymbol{F} is valid.

$$
F: P \vee Q \rightarrow P \wedge Q
$$

Derived Rules

The proof rules are sufficient, but derived rules can make proofs more concise. E.g., the rule of modus ponens:

$$
\frac{\boldsymbol{I} \vDash \boldsymbol{F} \quad \boldsymbol{I} \vDash \boldsymbol{F} \rightarrow \boldsymbol{G}}{\boldsymbol{I} \vDash \boldsymbol{G}}
$$

The proof of the validity of the formula:

$$
F:(P \rightarrow Q) \wedge(Q \rightarrow R) \rightarrow(P \rightarrow R)
$$

1. $I \not \not \nvdash F$
2. $\quad I \vDash(P \rightarrow Q) \wedge(Q \rightarrow R)$
3. $\quad I \nvdash P \rightarrow R$
4. $\quad I \vDash P$
5. $\quad I \not \models R$
6. $\quad I \vDash P \rightarrow Q$
7. $\quad I \vDash Q \rightarrow R$
8. $\quad I \vDash Q$
9. $\quad I \vDash R$
10. $I \vDash \perp$
assumption
by 1 and semantics of \rightarrow
by 1 and semantics of \rightarrow
by 3 and semantics of \rightarrow
by 3 and semantics of \rightarrow
2 and semantics of \wedge
2 and semantics of \wedge
by 4,6 , and modus ponens
by 8,7 , and modus ponens
5 and 9 are contradictory

Equivalence and Implication

- Two formulas $\boldsymbol{F}_{\mathbf{1}}$ and $\boldsymbol{F}_{\mathbf{2}}$ are equivalent

$$
F_{1} \Longleftrightarrow F_{2}
$$

iff $F_{1} \leftrightarrow F_{\mathbf{2}}$ is valid, i.e., for all interpretations $\boldsymbol{I}, \boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{1}} \leftrightarrow \boldsymbol{F}_{\mathbf{2}}$.

- Formula $\boldsymbol{F}_{\mathbf{1}}$ implies formula $\boldsymbol{F}_{\mathbf{2}}$

$$
F_{1} \Longrightarrow F_{2}
$$

iff $\boldsymbol{F}_{\mathbf{1}} \rightarrow \boldsymbol{F}_{\mathbf{2}}$ is valid, i.e., for all interpretations $\boldsymbol{I}, \boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{1}} \rightarrow \boldsymbol{F}_{\mathbf{2}}$.

- $\boldsymbol{F}_{1} \Longleftrightarrow \boldsymbol{F}_{2}$ and $\boldsymbol{F}_{1} \Longrightarrow \boldsymbol{F}_{\mathbf{2}}$ are not formulas. They are semantic assertions.
- We can check equivalence and implication by checking satisfiability.

Examples

- $\boldsymbol{P} \Longleftrightarrow \neg \neg P$
- $P \rightarrow Q \Longleftrightarrow \neg P \vee Q$

Exercise

Prove that

$$
R \wedge(\neg R \vee P) \Longrightarrow P
$$

Substitution

- A substitution σ is a mapping from formulas to formulas:

$$
\sigma:\left\{F_{1} \mapsto G_{2}, \ldots, F_{n} \mapsto G_{n}\right\}
$$

- The domain of $\sigma, \operatorname{dom}(\sigma)$, is

$$
\operatorname{dom}(\sigma):\left\{F_{1}, \ldots, F_{n}\right\}
$$

while the range range (σ) is

$$
\operatorname{range}(\sigma):\left\{G_{1}, \ldots, G_{n}\right\}
$$

- The application of a substitution $\boldsymbol{\sigma}$ to a formula $\boldsymbol{F}, \boldsymbol{F} \boldsymbol{\sigma}$, replaces each occurence of $\boldsymbol{F}_{\boldsymbol{i}}$ with $\boldsymbol{G}_{\boldsymbol{i}}$. Replacements occur all at once.
- When two subformulas $\boldsymbol{F}_{\boldsymbol{j}}$ and $\boldsymbol{F}_{\boldsymbol{k}}$ are in $\boldsymbol{\operatorname { d o m }}(\boldsymbol{\sigma})$ and $\boldsymbol{F}_{\boldsymbol{k}}$ is a strict subformula of $\boldsymbol{F}_{\boldsymbol{j}}$, then $\boldsymbol{F}_{\boldsymbol{j}}$ is replaced first.

Example

Consider formula

$$
F: P \wedge Q \rightarrow P \vee \neg Q
$$

and substitution

$$
\sigma:\{P \mapsto R, P \wedge Q \mapsto P \rightarrow Q\}
$$

Then,

$$
F \sigma:(P \rightarrow Q) \rightarrow R \vee \neg Q
$$

Note that $\boldsymbol{F} \boldsymbol{\sigma} \neq(\boldsymbol{R} \rightarrow \boldsymbol{Q}) \rightarrow \boldsymbol{R} \vee \neg \boldsymbol{Q}$.

Substitution

- A variable substitution is a substitution in which the domain consists only of propositional variables.
- When we write $\boldsymbol{F}\left[\boldsymbol{F}_{\mathbf{1}}, \ldots, \boldsymbol{F}_{\boldsymbol{n}}\right]$, we mean that formula \boldsymbol{F} can have formulas $\boldsymbol{F}_{1}, \ldots, \boldsymbol{F}_{\boldsymbol{n}}$ as subformulas.
- If σ is $\left\{F_{1} \mapsto G_{1}, \ldots, F_{n} \mapsto \boldsymbol{G}_{\boldsymbol{n}}\right\}$, then

$$
F\left[F_{1}, \ldots, F_{n}\right] \sigma: F\left[G_{1}, \ldots, G_{n}\right]
$$

- For example, in the previous example, writing

$$
F[P, P \wedge Q] \sigma: F[R, P \rightarrow Q]
$$

emphasizes that \boldsymbol{P} and $\boldsymbol{P} \wedge \boldsymbol{Q}$ are replaced by \boldsymbol{R} and $\boldsymbol{P} \rightarrow \boldsymbol{Q}$, respectively.

Semantic Consequences of Substitution

Proposition (Substitution of Equivalent Formulas)

Consider substitution $\sigma:\left\{\boldsymbol{F}_{\mathbf{1}} \mapsto \boldsymbol{G}_{\mathbf{1}}, \ldots, \boldsymbol{F}_{\boldsymbol{n}} \mapsto \boldsymbol{G}_{\boldsymbol{n}}\right\}$ such that for each $\boldsymbol{i}, \boldsymbol{F}_{\boldsymbol{i}} \Longleftrightarrow \boldsymbol{G}_{\boldsymbol{i}}$. Then, $\boldsymbol{F} \Longleftrightarrow \boldsymbol{F} \boldsymbol{\sigma}$.

For example, applying $\sigma:\{P \rightarrow Q \mapsto \neg P \vee Q\}$ to $\boldsymbol{F}:(\boldsymbol{P} \rightarrow \boldsymbol{Q}) \rightarrow \boldsymbol{R}$ produces $(\neg \boldsymbol{P} \vee \boldsymbol{Q}) \rightarrow \boldsymbol{R}$ that is equivalent to \boldsymbol{F}.

Proposition (Valid Template)

If \boldsymbol{F} is valid and $\boldsymbol{G}=\boldsymbol{F} \boldsymbol{\sigma}$ for some variable substitution $\boldsymbol{\sigma}$, then \boldsymbol{G} is valid.

For example, because $\boldsymbol{F}:(\boldsymbol{P} \rightarrow \boldsymbol{Q}) \leftrightarrow(\neg \boldsymbol{P} \vee \boldsymbol{Q})$ is valid, every formula of the form $\boldsymbol{F}_{\mathbf{1}} \rightarrow \boldsymbol{F}_{\mathbf{2}}$ is equivalent to $\neg \boldsymbol{F}_{\mathbf{1}} \vee \boldsymbol{F}_{\mathbf{2}}$, for arbitrary formulas \boldsymbol{F}_{1} and $\boldsymbol{F}_{\mathbf{2}}$.

Proving the validity of \boldsymbol{F} proves the validity of an infinite set of formulas

Composition of Substitutions

Given substitutions σ_{1} and σ_{2}, their composition $\sigma=\sigma_{1} \sigma_{2}$ ("apply σ_{1} and then $\sigma_{2}{ }^{\prime \prime}$) is computed as follows:
(1) Apply σ_{2} to each formula of the range of σ_{1}, and add the results to σ.
(2) If $\boldsymbol{F}_{\boldsymbol{i}}$ of $\boldsymbol{F}_{\boldsymbol{i}} \mapsto \boldsymbol{G}_{\boldsymbol{i}}$ appears in the domain of $\boldsymbol{\sigma}_{\boldsymbol{2}}$ but not in the domain of σ_{1}, then add $\boldsymbol{F}_{i} \mapsto \boldsymbol{G}_{\boldsymbol{i}}$ to $\boldsymbol{\sigma}$.
For example,

$$
\begin{aligned}
& \sigma_{1} \sigma_{2}:\{P \mapsto R, P \wedge Q \mapsto P \rightarrow Q\}\{P \mapsto S, S \mapsto Q\} \\
& \quad=\left\{P \mapsto R \sigma_{2}, P \wedge Q \mapsto(P \rightarrow Q) \sigma_{2}, S \mapsto Q\right\} \\
& \quad=\{P \mapsto R, P \wedge Q \mapsto S \rightarrow Q, S \mapsto Q\}
\end{aligned}
$$

Normal Forms

A normal form of formulas is a syntactic restriction such that for every formula of the logic, there is an equivalent formula in the normal form. Three useful normal forms in logic:

- Negation Normal Form (NNF)
- Disjunctive Normal Form (DNF)
- Conjunctive Normal Form (CNF)

Negation Normal Form (NNF)

- NNF requires that \neg, \wedge, and \vee are the only connectives (i.e., no \rightarrow and $\leftrightarrow)$ and that negations are only applied to variables.
- $P \wedge Q \wedge(R \vee \neg S)$
- $\neg P \vee \neg(P \wedge Q)$
- $\neg \neg P \wedge Q$
- Transforming a formula \boldsymbol{F} to equivalent formula \boldsymbol{F}^{\prime} in NNF can be done by repeatedly applying (left-to-right) the following template equivalences:

$$
\begin{aligned}
\neg \neg \boldsymbol{F}_{\mathbf{1}} & \Longleftrightarrow \boldsymbol{F}_{1} \\
\neg \top & \Longleftrightarrow \perp \\
\neg \perp & \Longleftrightarrow \top \\
\neg\left(\boldsymbol{F}_{1} \wedge \boldsymbol{F}_{2}\right) & \Longleftrightarrow \neg \neg \boldsymbol{F}_{1} \vee \neg \boldsymbol{F}_{\mathbf{2}} \\
\neg\left(\boldsymbol{F}_{\mathbf{1}} \vee \boldsymbol{F}_{\mathbf{2}}\right) & \Longleftrightarrow \boldsymbol{F}_{1} \wedge \neg \boldsymbol{F}_{2} \\
\boldsymbol{F}_{\mathbf{1}} \rightarrow \boldsymbol{F}_{\mathbf{2}} & \Longleftrightarrow \boldsymbol{F}_{1} \vee \boldsymbol{F}_{\mathbf{2}} \\
\boldsymbol{F}_{1} \leftrightarrow \boldsymbol{F}_{\mathbf{2}} & \left.\Longleftrightarrow \boldsymbol{F}_{1} \rightarrow \boldsymbol{F}_{\mathbf{2}}\right) \wedge\left(\boldsymbol{F}_{2} \rightarrow \boldsymbol{F}_{\mathbf{1}}\right)
\end{aligned}
$$

Exercise

Convert $F: \neg(P \rightarrow \neg(P \wedge Q))$ into NNF.

Disjunctive Normal Form (DNF)

- A formula is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals:

$$
\bigvee_{i} \bigwedge_{j} l_{i, j}
$$

- To convert a formula \boldsymbol{F} into an equivalent formula in DNF, transform \boldsymbol{F} into NNF and then distribute conjunctions over disjunctions:

$$
\begin{aligned}
& \left(F_{1} \vee F_{2}\right) \wedge F_{3} \Longleftrightarrow\left(F_{1} \wedge F_{3}\right) \vee\left(F_{2} \wedge F_{3}\right) \\
& F_{1} \wedge\left(F_{2} \vee F_{3}\right) \quad \Longleftrightarrow\left(F_{1} \wedge F_{2}\right) \vee\left(F_{1} \wedge F_{3}\right)
\end{aligned}
$$

Exercise

To convert

$$
F:\left(Q_{1} \vee \neg \neg Q_{2}\right) \wedge\left(\neg \boldsymbol{R}_{1} \rightarrow \boldsymbol{R}_{2}\right)
$$

into DNF,

- first transform it into NNF:
- then apply distributivity:

Conjunctive Normal Form (CNF)

- A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals:

$$
\bigwedge_{i} \bigvee_{j} l_{i, j}
$$

where each disjunction of literals is called a clause.

- To convert a formula \boldsymbol{F} into an equivalent formula in DNF, transform \boldsymbol{F} into NNF and distribute disjunctions over conjunctions:

$$
\begin{aligned}
& \left(F_{1} \wedge F_{2}\right) \vee F_{3} \quad \Longleftrightarrow\left(F_{1} \vee F_{3}\right) \wedge\left(F_{2} \vee F_{3}\right) \\
& F_{1} \vee\left(F_{2} \wedge F_{3}\right) \quad \Longleftrightarrow\left(F_{1} \vee F_{2}\right) \wedge\left(F_{1} \vee F_{3}\right)
\end{aligned}
$$

- Exercise) Convert $\boldsymbol{F}:\left(\boldsymbol{Q}_{1} \wedge \neg \neg \boldsymbol{Q}_{2}\right) \vee\left(\neg \boldsymbol{R}_{1} \rightarrow \boldsymbol{R}_{2}\right)$ into CNF

Decision Procedures

- A decision procedure decides whether \boldsymbol{F} is satisfiable after some finite steps of computation.
- Approaches for deciding satisfiability:
- Search: exhaustively search through all possible assignments
- Deduction: deduce facts from known facts by iteratively applying proof rules
- Combination: Modern SAT solvers are based on DPLL that combines search and deduction in an effective way

Exhaustive Search

- The recursive algorithm for deciding satisfiability:

let rec SAT $\boldsymbol{F}=$

$$
\text { if } \boldsymbol{F}=\top \text { then true }
$$

$$
\text { else if } \boldsymbol{F}=\perp \text { then false }
$$

else
let $\boldsymbol{P}=\mathbf{C h o o s e}(\operatorname{vars}(\boldsymbol{F}))$ in
$($ SAT $\boldsymbol{F}\{\boldsymbol{P} \mapsto \top\}) \vee($ SAT $\boldsymbol{F}\{\boldsymbol{P} \mapsto \perp\})$

- When applying $\boldsymbol{F}\{\boldsymbol{P} \mapsto \top\}$ and $\boldsymbol{F}\{\boldsymbol{P} \mapsto \perp\}$, the resulting formulas should be simplified using template equivalences on PL:

Example

$$
F:(P \rightarrow Q) \wedge P \wedge \neg Q
$$

- Choose variable \boldsymbol{P} and

$$
\boldsymbol{F}\{\boldsymbol{P} \mapsto \top\}:(\top \rightarrow Q) \wedge \top \wedge \neg Q
$$

which simplifies to

$$
F_{1}: Q \wedge \neg Q
$$

- $F_{1}\{Q \mapsto \top\}: \perp$
- $F_{1}\{Q \mapsto \perp\}: \perp$
- Recurse on the other branch for \boldsymbol{P} in \boldsymbol{F} :

$$
F\{P \mapsto \perp\}:(\perp \rightarrow Q) \wedge \perp \wedge \neg Q
$$

which simplifies to \perp.

- All branches end without finding a satisfying assignment.

Example

$$
F:(P \rightarrow Q) \wedge \neg P
$$

- Choose \boldsymbol{P} and recurse on the first case:

$$
F\{P \mapsto \top\}:(\top \rightarrow Q) \wedge \neg T
$$

which is equivalent to \perp.

- Try the other case:

$$
F\{P \rightarrow \perp\}:(\perp \rightarrow Q) \wedge \neg \perp
$$

which is equivalent to T.

- Arbitrarily assigning a value to Q produces the satisfying interpretation:

$$
I:\{P \mapsto \text { false, } Q \mapsto \text { true }\}
$$

Equisatisfiability

- SAT solvers convert a given formula \boldsymbol{F} to CNF.
- Conversion to an equivalent CNF incurs exponential blow-up in worst-case.
- \boldsymbol{F} is converted to an equisatisfiable CNF formula, which increases the size by only a constant factor.
- \boldsymbol{F} and $\boldsymbol{F}^{\boldsymbol{\prime}}$ are equisatisfiable when \boldsymbol{F} is satisfiable iff $\boldsymbol{F}^{\boldsymbol{\prime}}$ is satisfiable.
- Equisatisfiability is a weaker notion of equivalence, which is still useful when deciding satisfiability.

Conversion to an Equisatisfiable Formula in CNF

- Introduce new variables for each subformula of \boldsymbol{F} with extra clauses to assert that these variables are equivalent to the subformulas that they represent.
- Example: $\boldsymbol{F}: P \vee Q \rightarrow \neg(P \wedge \neg R)$

- \boldsymbol{F} is equisatisfiable to

$$
\begin{aligned}
& P_{1} \wedge P_{1} \leftrightarrow\left(P_{2} \rightarrow P_{3}\right) \wedge P_{2} \leftrightarrow(P \vee Q) \wedge \\
& P_{3} \leftrightarrow \neg P_{4} \wedge P_{4} \leftrightarrow\left(P \wedge P_{5}\right) \wedge P_{5} \leftrightarrow \neg R
\end{aligned}
$$

- In CNF:

$$
P_{1} \wedge\left(\neg P_{1} \vee \neg P_{2} \vee P_{3}\right) \wedge\left(P_{2} \vee P_{1}\right) \wedge\left(\neg P_{3} \vee P_{1}\right) \wedge \ldots
$$

Conversion to an Equisatisfiable Formula in CNF

Convert \boldsymbol{F} into

$$
F^{\prime}: \operatorname{Rep}(F) \wedge \bigwedge_{G \in \operatorname{sub}(F)} \operatorname{En}(G)
$$

- Rep : $\mathrm{PL} \rightarrow \mathrm{V} \cup\{\top, \perp\}$
- The representative function that maps PL formulas to propositional variables \mathbf{V}, \top, and \perp.
- In the general case, it maps \boldsymbol{F} to its representative propositional variable $\boldsymbol{P}_{\boldsymbol{F}}$ such that the truth value of $\boldsymbol{P}_{\boldsymbol{F}}$ is the same as that of \boldsymbol{F}.
- En : PL \rightarrow PL
- The encoding function that maps PL formulas to PL formulas.
- It maps a PL formula \boldsymbol{F} to a PL formula \boldsymbol{F}^{\prime} in CNF that asserts that \boldsymbol{F} 's representative, $\boldsymbol{P}_{\boldsymbol{F}}$, is equivalent to \boldsymbol{F} : $" \operatorname{Rep}(\boldsymbol{F}) \leftrightarrow \boldsymbol{F}$ ".

Conversion to an Equisatisfiable Formula in CNF

```
\(\operatorname{Rep}(\top)=\top \quad \operatorname{Rep}(\perp)=\perp \quad \operatorname{Rep}(P)=P \quad \operatorname{Rep}(F)=P_{F}\)
    \(\operatorname{En}(\top)=\top \quad \operatorname{En}(\perp)=\top \quad \operatorname{En}(P)=\top\)
\(\operatorname{En}\left(F_{1} \wedge F_{2}\right)=\)
    let \(\boldsymbol{P}=\boldsymbol{\operatorname { R e p }}\left(\boldsymbol{F}_{\mathbf{1}} \wedge \boldsymbol{F}_{\mathbf{2}}\right)\) in
    \(\left(\neg P \vee \operatorname{Rep}\left(F_{1}\right)\right) \wedge\left(\neg P \vee \operatorname{Rep}\left(F_{2}\right)\right) \wedge\left(\neg \operatorname{Rep}\left(F_{1}\right) \vee \neg \operatorname{Rep}\left(F_{2}\right) \vee P\right)\)
\(\operatorname{En}(\neg \boldsymbol{F})=\)
    let \(\boldsymbol{P}=\operatorname{Rep}(\neg \boldsymbol{F})\) in
    \(\left(\neg P \vee \neg \operatorname{Rep}\left(F_{1}\right)\right) \wedge(P \vee \operatorname{Rep}(F))\)
\(\operatorname{En}\left(\boldsymbol{F}_{1} \vee \boldsymbol{F}_{2}\right)=\)
    let \(\boldsymbol{P}=\boldsymbol{\operatorname { R e p }}\left(\boldsymbol{F}_{\mathbf{1}} \vee \boldsymbol{F}_{\mathbf{2}}\right)\) in
    \(\left(\neg P \vee \operatorname{Rep}\left(F_{1}\right) \vee \operatorname{Rep}\left(F_{2}\right)\right) \wedge\left(\neg \operatorname{Rep}\left(F_{1}\right) \vee P\right) \wedge\left(\neg \operatorname{Rep}\left(F_{2}\right) \vee P\right)\)
\(\operatorname{En}\left(F_{1} \rightarrow F_{2}\right)=\)
    let \(P=\operatorname{Rep}\left(F_{1} \rightarrow F_{2}\right)\) in
    \(\left(\neg P \vee \neg \operatorname{Rep}\left(F_{1}\right) \vee \operatorname{Rep}\left(F_{2}\right)\right) \wedge\left(\operatorname{Rep}\left(F_{1}\right) \vee P\right) \wedge\left(\neg \operatorname{Rep}\left(F_{2}\right) \vee P\right)\)
\(\operatorname{En}\left(F_{1} \leftrightarrow F_{2}\right)=\)
    let \(\boldsymbol{P}=\operatorname{Rep}\left(\boldsymbol{F}_{\mathbf{1}} \leftrightarrow \boldsymbol{F}_{\mathbf{2}}\right)\) in
    \(\left(\neg P \vee \neg \operatorname{Rep}\left(F_{1}\right) \vee \operatorname{Rep}\left(F_{2}\right)\right) \wedge\left(\neg P \vee \operatorname{Rep}\left(F_{1}\right) \vee \neg \operatorname{Rep}\left(F_{2}\right)\right)\)
    \(\wedge\left(P \vee \neg \operatorname{Rep}\left(F_{1}\right) \vee \neg \operatorname{Rep}\left(F_{2}\right)\right) \wedge\left(P \vee \operatorname{Rep}\left(F_{1}\right) \vee \operatorname{Rep}\left(F_{2}\right)\right)\)
```


Example

$$
F:\left(Q_{1} \wedge Q_{2}\right) \vee\left(R_{1} \wedge R_{2}\right)
$$

is converted into

$$
F^{\prime}: P_{F} \wedge \bigwedge_{G \in \operatorname{sub}(F)} \operatorname{En}(G)
$$

where $\operatorname{sub}(F)=\left\{Q_{1}, Q_{2}, R_{1}, R_{2}, Q_{1} \wedge Q_{2}, R_{1} \wedge R_{2}, F\right\}$ and

$$
\begin{aligned}
\operatorname{En}\left(Q_{1}\right)= & \operatorname{En}\left(Q_{2}\right)=\operatorname{En}\left(R_{1}\right)=\operatorname{En}\left(R_{2}\right)=\top \\
\operatorname{En}\left(Q_{1} \wedge Q_{2}\right)= & \left(\neg P_{\left(Q_{1} \wedge Q_{2}\right)} \vee Q_{1}\right) \wedge\left(\neg P_{\left(Q_{1} \wedge Q_{2}\right)} \vee Q_{2}\right) \\
& \wedge\left(\neg Q_{1} \vee \neg Q_{2} \vee P_{\left(Q_{1} \wedge Q_{2}\right)}\right) \\
\operatorname{En}\left(R_{1} \wedge R_{2}\right)= & \left(\neg P_{\left(R_{1} \wedge R_{2}\right)} \vee R_{1}\right) \wedge\left(\neg P_{\left(R_{1} \wedge R_{2}\right)} \vee R_{2}\right) \\
& \wedge\left(\neg R_{1} \vee \neg R_{2} \vee P_{\left(R_{1} \wedge R_{2}\right)}\right) \\
\operatorname{En}(F)= & \left(\neg P_{F} \vee P_{\left(Q_{1} \wedge Q_{2}\right)} \vee P_{\left(R_{1} \wedge R_{2}\right)}\right) \\
& \wedge\left(\neg P_{\left(Q_{1} \wedge Q_{2}\right)} \vee P_{F}\right) \wedge\left(\neg P_{\left(R_{1} \wedge R_{2}\right)} \vee P_{F}\right)
\end{aligned}
$$

The Resolution Procedure

- Applicable only to CNF formulas.
- Observation: to satisfy clauses $C_{1}[P]$ and $C_{2}[\neg P]$ that share variable \boldsymbol{P} but disagree on its value, either the rest of $\boldsymbol{C}_{\mathbf{1}}$ or the rest of C_{2} must be satisfied. Why?
- The clause $C_{1}[\perp] \vee C_{2}[\perp]$ (with simplification) can be added as a conjunction to \boldsymbol{F} to produce an equivalent formula still in CNF.
- The proof rule for clausal resolution:

$$
\frac{C_{1}[P] \quad C_{2}[\neg P]}{C_{1}[\perp] \vee C_{2}[\perp]}
$$

The new clause $C_{1}[\perp] \vee C_{2}[\perp]$ is called the resolvent.

- If ever \perp is deduced via resolution, \boldsymbol{F} must be unsatisfiable. Otherwise, if no further resolutions are possible, \boldsymbol{F} must be satisfiable.

Examples

$$
F:(\neg P \vee Q) \wedge P \wedge \neg Q
$$

- From resolution

$$
\frac{(\neg P \vee Q) \quad P}{Q}
$$

construct $(\neg P \vee Q) \wedge P \wedge \neg Q \wedge Q$. From resolution

deduce that \boldsymbol{F} is unsatisfiable.

Examples

$$
F:(\neg P \vee Q) \wedge \neg Q)
$$

- The resolution procedure yields

$$
(\neg P \vee Q) \wedge \neg Q \wedge \neg P
$$

No further resolutions are possible. \boldsymbol{F} is satisfiable.

- A satisfying interpretation:

$$
I:\{P \mapsto \text { false }, Q \mapsto \text { false }\}
$$

- A CNF formula that does not contain the clause \perp and to which no more resolutions are applicable represents all possible satisfying interpretations.

DPLL

- The Davis-Putnam-Logemann-Loveland algorithm (DPLL) combines the enumerative search and a restricted form of resolution, called unit resolution:

$$
\frac{l \quad C[\neg l]}{C[\perp]}
$$

where \boldsymbol{l} is a literal $(\boldsymbol{l}=\boldsymbol{P}$ or $\boldsymbol{l}=\neg \boldsymbol{P})$.

- Because $C[\perp]$ is a subset of $C[\neg l], C[\neg l]$ is replaced by $C[\perp]$. Also, l is removed as it must be assigned true.
- Thus, performing unit resolution is identical to replacing l by true in the original formula.
- The process of applying this resolution as much as possible is called Boolean constraint propagation (BCP).

BCP Example

$$
F:(P) \wedge(\neg P \vee Q) \wedge(R \vee \neg Q \vee S)
$$

- Apply unit resolution

$$
\frac{P \quad(\neg P \vee Q)}{Q}
$$

to produce $\boldsymbol{F}^{\prime}: Q \wedge(\boldsymbol{R} \vee \neg \boldsymbol{Q} \vee \boldsymbol{S})$. Applying unit resolution

$$
\begin{array}{ll}
Q & R \vee \neg Q \vee S \\
\hline & R \vee S
\end{array}
$$

produces $\boldsymbol{F}^{\prime \prime}: \boldsymbol{R} \vee \boldsymbol{S}$, ending this round of BCP.

DPLL

DPLL is similar to SAT, except that it begins by applying BCP:

$$
\begin{aligned}
& \text { let rec } \mathbf{D P L L} \boldsymbol{F}= \\
& \text { let } \boldsymbol{F}^{\prime}=\mathbf{B C P}(\boldsymbol{F}) \text { in } \\
& \text { if } \boldsymbol{F}^{\prime}=\top \text { then true } \\
& \text { else if } \boldsymbol{F}^{\prime}=\perp \text { then false } \\
& \text { else } \\
& \quad \text { let } \boldsymbol{P}=\mathbf{C h o o s e}\left(\operatorname{vars}\left(\boldsymbol{F}^{\prime}\right)\right) \text { in } \\
& \quad\left(\mathrm{DPLL} \boldsymbol{F}^{\prime}\{\boldsymbol{P} \mapsto \top\}\right) \vee\left(\mathbf{D P L L} \boldsymbol{F}^{\prime}\{\boldsymbol{P} \mapsto \perp\}\right)
\end{aligned}
$$

Pure Literal Elimination (PLE)

- If variable \boldsymbol{P} appears only positively or only negatively in \boldsymbol{F}, remove all clauses containing an instance of \boldsymbol{P}.
- If \boldsymbol{P} appears only positively (i.e. no $\neg \boldsymbol{P}$ in \boldsymbol{F}), replace \boldsymbol{P} by T .
- If \boldsymbol{P} appears only negatively (i.e. no \boldsymbol{P} in \boldsymbol{F}), replace \boldsymbol{P} by \perp.
- The resulting formula \boldsymbol{F}^{\prime} is equisatisfiable to \boldsymbol{F}.
- When only such pure variables remain, the formula must be satisfiable. A full interpretation can be constructed by setting each variable's value based on whether it appears only positively (true) or only negatively (false).
Example) $\boldsymbol{F}:(\neg P \vee Q) \wedge(R \vee \neg Q \vee S)$.
- \boldsymbol{P} appears only negatively in \boldsymbol{F}

$$
F^{\prime}:(R \vee \neg Q \vee S)
$$

- \boldsymbol{R} and \boldsymbol{S} appear only positively in \boldsymbol{F}

$$
F^{\prime}:(\neg P \vee Q)
$$

DPLL with PLP

```
let rec DPLL \(\boldsymbol{F}=\)
    let \(\boldsymbol{F}^{\boldsymbol{\prime}}=\operatorname{PLE}(\operatorname{BCP}(\boldsymbol{F}))\) in
    if \(\boldsymbol{F}^{\prime}=\top\) then true
    else if \(\boldsymbol{F}^{\prime}=\perp\) then false
    else
    let \(\boldsymbol{P}=\mathbf{C h o o s e}\left(\operatorname{vars}\left(\boldsymbol{F}^{\prime}\right)\right)\) in
    \(\left(\right.\) DPLL \(\left.\boldsymbol{F}^{\prime}\{\boldsymbol{P} \mapsto \top\}\right) \vee\left(\right.\) DPLL \(\left.\boldsymbol{F}^{\prime}\{\boldsymbol{P} \mapsto \perp\}\right)\)
```


Example 1

$$
F: P \wedge(\neg P \vee Q) \wedge(R \vee \neg Q \vee S)
$$

(1) Applying BCP produces

$$
F^{\prime \prime}: R \vee S
$$

(2) All variables occur positively, so \boldsymbol{F} is satisfiable.
(3) A satisfying interpretation:

$$
\{P \mapsto \text { true }, Q \mapsto \text { true, } R \mapsto \text { true, } S \mapsto \text { true }\}
$$

Example 2

$$
F:(\neg P \vee Q \vee R) \wedge(\neg Q \vee R) \wedge(\neg Q \vee \neg R) \wedge(P \vee \neg Q \vee \neg \boldsymbol{R})
$$

- No BCP and PLP are applicable.
- Choose \boldsymbol{Q} to branch on:

$$
F\{Q \mapsto \top\}: R \wedge(\neg R) \wedge(P \vee \neg R)
$$

The unit resolution with \boldsymbol{R} and $\neg \boldsymbol{R}$ deduces \perp, finishing this branch.

- On the other branch for \boldsymbol{Q} :

$$
F\{Q \mapsto \perp\}:(\neg P \vee R)
$$

\boldsymbol{P} and \boldsymbol{R} are pure, so the formula is satisfiable. A satisfying interpretation:

$$
I:\{P \mapsto \text { false, } Q \mapsto \text { false, } R \mapsto \text { true }\}
$$

Summary

- Syntax and semantics of propositional logic
- Satisfiability and validity
- Equivalence, implications, and equisatisfiability
- Substitution
- Normal forms: NNF, DNF, CNF
- Decision procedures for satisfiability

[^0]: ${ }^{1}$ In logic, functions (or relations) \boldsymbol{A} and \boldsymbol{B} are dual if $\boldsymbol{A}(\boldsymbol{x})=\neg \boldsymbol{B}(\neg \boldsymbol{x})$

