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Software Analysis

@ Technology for catching bugs or proving correctness of software

— .\7 _ ‘ Bugs found

= —
— L ~ Safety proved

code

@ Widely used in software industry
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A Hard Limit

@ The Halting problem is not computable

Alan Turing (1936)

@ If exact analysis is possible, we can solve the Halting problem

0%, |

V — halt

program —| (program; true+1|) — M \
Sap~

run
—>

forever

@ Rice's theorem (1951): any non-trivial semantic property of a
program is undecidable
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Tradeoff

@ Three desirable properties

» Soundness: all program behaviors are captured
» Completeness: only program behaviors are captured
» Automation: without human intervention

@ Achieving all of them is generally infeasible

Sound Sound Sound
Automatic Complete Automatic Complete Automatic Complete
Sound
Automatic Complete
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Basic Principle

@ Observe the program behavior by “executing” the program
» Report errors found during the execution
» When no error is found, report “verified”

@ Three types of program execution:

» Concrete execution
» Symbolic execution
» Abstract execution
» and their combinations, e.g., concolic execution
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Software Analysis based on Concrete Execution

@ Execute the program with concrete inputs, analyzing individual
program states separately

error zone
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Example: Random Testing / Fuzzing

int double (int v) { |. Error-triggering test?
return 2xv;

}
void testme(int x, int y) {

z := double (y);

if (z==x) { 2. Probability of the error?

(assume 0 < x,y < 10,000)
if (x>y+10) {
Error;
¥
}
)
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Types of Fuzzing

@ Blackbox fuzzing
o Greybox fuzzing
o Whitebox fuzzing
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Industrial Use Cases

o AFL (https://github.com/google/AFL)
@ OSS-Fuzz (https://github.com/google/oss-fuzz)
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https://github.com/google/AFL
https://github.com/google/oss-fuzz

Software Analysis based on Symbolic Execution

@ Execute the program with symbolic inputs, analyzing each program
path only once

error zone
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Example: Symbolic Execution

xa,y:f
pc: true

int double (int v) {
return 2xv;

}
void testme(int x, int y) { e e e e e 2
1 pc: true
z := double (y); I////////\\\\\\\
2
if (z==x) {
3 6
if (x>y+10) {
4 Error;
} else { 5 ..}
}
6} x:a,y: f,z: 20 x:a,y: p,z: 2f

pc:2f=ana>pf+10 pc:2f=ana<f+10
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Example: Concolic Testing

Concrete

int double (int v) { State
return 2xv;

}

void testme(int x, int y) {
x=22,y=7
z := double (y);

if (z==x) {

if (x>y+10) {
Error;
}
}
}
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Example: Concolic Testing

Concrete
int foo (int v) { State
return hash(v);
}
void testme(int x, int y) {
x=22,y=7
z := foo (y);
if (z==x) {

if (x>y+10) {
Error;
}
}
}
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Industrial Use Cases
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MOST COMMUNICATIONS READERS might think of
“program verification research” as mostly theoretical
with little impact on the world at large. Think again.
Ifyou are reading these lines on a PC running some
form of Windows (like over 93% of PC users—that is,
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Example: Symbolic Verification

Program P \)\\\sl* Verified
Property ® SMT(P A= ) Counter-example

@ Represent program behavior and property as a formula in logic

@ Determine the satisfiability of the formula
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Example 1

int f(bool
int f(bool a) { Verification Condition:

X=0;y=0;
if (@) 1 O aax)v(-anr-x)n
x = 1; > (@A) v (an-y A
} -(x ==y)
if (o) {
y =1
1 ) SMT solver: unsatisfiable!
assert (x ==y)

}
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Example 2

in)iz f(g, b) {0. Verification Condition:
if_(as )’E - @) ((aAX)Vv (=aA-x))A
. \::> ((bAy)v (=bA=-y))a
} x = 1’ _‘(X == )’)
if (b) {
! y=151 @ SMT solver:

assert (x == y) satisfiable when a=1 and b=0
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Challenge: Loop Invariant
@ Property that holds at the beginning of every loop iteration

i=0;
Jj=20;
while @(i==j)
(i <10) {
i++;
J++s
}
assert (i-j==0)

@ Infinitely many invariants exist for a loop. Need to find one strong
enough to prove the given property.
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Industrial Use Cases

@ The Dafny programming language used in Amazon

Dafny

U] Promptt " Mhcronet v S Crpmmenta s e Ay P s ox
T Y O e Pt P e TP —
= . . . n N

1 method BinarySearch(a: array<int>, key: int) returns (r: int) :

2 requires forall i,j :: @ <= i < j < a.Length ==> a[i] <= a[j] .~

3 ensures @ <= r ==> r < a.length && a[r] == key

4 ensures r < @ ==> forall i :: @ <= i < a.lLength ==> a[i] != key

5 B{

6 var lo, hi := @, a.lLength;

7 while lo < hi

8 invariant @ <= lo <= hi <= a.lLength |

9 invariant forall i 0 <= 1i < lo ==> a[i] != key

10 invariant forall i :: hi <= i < a.Length ==> a[i] != key

11 { :

12 var mid := (lo + hi) / 2;

13 if key < a[mid] {

14

hi := mid;
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Industrial Use Cases
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Software Analysis based on Abstract Execution (Static
Analysis)

@ Execute the program with abstract inputs, analyzing all program
behaviors simultaneously

error zone

T

€rror zone
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Principles of Abstract Interpretation

30 X 12 4+ 11 x 9 =7

e Dynamic analysis (testing): 459
@ Static analysis: a variety of answers

> “integer”, “odd integer”, "positive integer’, “400 < n < 500", etc
@ Static analysis process:

@ Choose abstract value (domain), e.g., V. = {T,e,0, L}
© Define the program execution in terms of abstract values:

X | Tlelo|L]||] + | Tle|lo]| L
T T
e e
o o
1 1

© “Execute”’ the program:
exetoxXxo=o0
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Principles of Abstract Interpretation

@ By contrast to testing, static analysis can prove the absence of bugs:
void f (int x) {
y =x % 12 + 9 x 11;
assert (y h 2 == 0);
}

@ Instead, static analysis may produce false alarms:

void f (int x) A
y = x + X;
assert (y h 2 == 0);
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Industrial Use Cases
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Key lessons for designing static analyses tools
deployed to find bugs i

integrated in th by se-
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For a static analysis project to succeed,

of lines of code.

BY DINO DISTEFANO, MANUEL FAHNDRICH,
FRANCESCO LOGOZZO, AND PETER W. O'HEARN

feel they benefit from
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technical challenges encountered and

lessons we have lesmed in developing

Scaling Static
Analyses
at Facebook

|— Infer

STATIC ANALYSISTOOLS are programs that examine, and
attempt to draw conclusions about, the source of other
programs without running them. At Facebook, we
have been investing in advanced static analysis tools
that employ reasoning techniques similar to those
from program verification. The tools we describe in
this article (Infer and Zoncolan) target issues related
to crashes and to the security of our services, they
perform sometimes complex reasoning spanning
many procedures or files, and they are integrated into
engineering workflows in a way that attempts to bring
value while minimizing friction.
These tools run on code modifications, participating
as bots during the code review process. Infer targets
our mobile apps as well as our backend C++ code,
codebases with 10s of millions of lines; it has seen
over 100 thousand reported issues fixed by developers
before code reaches production. Zoncolan targets the
100-million lines of Hack code, and is additionally
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Static Analysis
Tools at Google
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Summary: Software Analysis

@ Basically classified based on how programs are interpreted:

» Techniques based on concrete execution
» Techniques based on symbolic execution
» Techniques based on abstract execution

@ Each approach has its own strengths and weaknesses: e.g.,

Automatic Sound Complete

Testing/Fuzzing

Symbolic
Execution

Static Analysis

Program
Verification

?
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