COSE419: Software Verification

Lecture 1 — Introduction to Software Analysis

Hakjoo Oh
2024 Spring

Hakjoo Oh COSEA419 2024 Spring, Lecture 1 March 7, 2024 1/25

Software Analysis

@ Technology for catching bugs or proving correctness of software

— .\7 _ ‘ Bugs found

= —
— L ~ Safety proved

code

@ Widely used in software industry

& 0O Meta amazon @§
@ Go g|€ B Microsoft T\

Hakjoo Oh COSEA419 2024 Spring, Lecture 1 March 7, 2024 2/25

A Hard Limit

@ The Halting problem is not computable

Alan Turing (1936)

@ If exact analysis is possible, we can solve the Halting problem

0%, |

V — halt

program —| (program; true+1|) — M \
Sap~

run
—>

forever

@ Rice's theorem (1951): any non-trivial semantic property of a
program is undecidable

Hakjoo Oh COSEA419 2024 Spring, Lecture 1 March 7, 2024 3/25

Tradeoff

@ Three desirable properties

» Soundness: all program behaviors are captured
» Completeness: only program behaviors are captured
» Automation: without human intervention

@ Achieving all of them is generally infeasible

Sound Sound Sound
Automatic Complete Automatic Complete Automatic Complete
Sound
Automatic Complete

Hakjoo Oh COSEA419 2024 Spring, Lecture 1 March 7, 2024 4/25

Basic Principle

@ Observe the program behavior by “executing” the program
» Report errors found during the execution
» When no error is found, report “verified”

@ Three types of program execution:

» Concrete execution
» Symbolic execution
» Abstract execution
» and their combinations, e.g., concolic execution

Hakjoo Oh COSEA419 2024 Spring, Lecture 1 March 7, 2024 5/25

Software Analysis based on Concrete Execution

@ Execute the program with concrete inputs, analyzing individual
program states separately

error zone

io ..
il
i2
i3

error zone

Hakjoo Oh COSE419 2024 Spring, Lecture 1

Example: Random Testing / Fuzzing

int double (int v) { |. Error-triggering test?
return 2xv;

}
void testme(int x, int y) {

z := double (y);

if (z==x) { 2. Probability of the error?

(assume 0 < x,y < 10,000)
if (x>y+10) {
Error;
¥
}
)

Hakjoo Oh COSEA419 2024 Spring, Lecture 1 March 7, 2024 7/25

Types of Fuzzing

@ Blackbox fuzzing
o Greybox fuzzing
o Whitebox fuzzing

Hakjoo Oh COSE419 2024 Spring, Lecture 1

Industrial Use Cases

o AFL (https://github.com/google/AFL)
@ OSS-Fuzz (https://github.com/google/oss-fuzz)

[Upstream project BY PATRICE GODEFROID
b rom. Builder
(Cloud Build) -
google/oss-fuzz Gesbucket u z ZI n n
. bowniesd
O) e ClusterFuzz u

1wt urzers
2. Commit b confgs e, ac
Ve faes y
ammbgs | ()
T e Tackdeadiines r a n
Developer Sheriffbot A y
A .

Google OSS-Fuzz

Microsoft -

Hakjoo Oh COSEA419 2024 Spring, Lecture 1 March 7, 2024 9/25

https://github.com/google/AFL
https://github.com/google/oss-fuzz

Software Analysis based on Symbolic Execution

@ Execute the program with symbolic inputs, analyzing each program
path only once

error zone

i0,i4 .

il,i5

i2,i6
i3,i7,i8

error zone

Hakjoo Oh COSE419 2024 Spring, Lecture 1

Example: Symbolic Execution

xa,y:f
pc: true

int double (int v) {
return 2xv;

}
void testme(int x, int y) { e e e e e 2
1 pc: true
z := double (y); I////////\\\\\\\
2
if (z==x) {
3 6
if (x>y+10) {
4 Error;
} else { 5 ..}
}
6} x:a,y: f,z: 20 x:a,y: p,z: 2f

pc:2f=ana>pf+10 pc:2f=ana<f+10

Hakjoo Oh COSE419 2024 Spring, Lecture 1

Example: Concolic Testing

Concrete

int double (int v) { State
return 2xv;

}

void testme(int x, int y) {
x=22,y=7
z := double (y);

if (z==x) {

if (x>y+10) {
Error;
}
}
}

Hakjoo Oh COSEA419 2024 Spring, Lecture 1

Symbolic
State

x=a,y=B

true

March 7, 2024

12/25

Example: Concolic Testing

Concrete
int foo (int v) { State
return hash(v);
}
void testme(int x, int y) {
x=22,y=7
z := foo (y);
if (z==x) {

if (x>y+10) {
Error;
}
}
}

Hakjoo Oh COSEA419 2024 Spring, Lecture 1

Symbolic
State

x=a,y=f

true

March 7, 2024

13/25

Industrial Use Cases

D01:10.1145/2093548.2083556

and s users milionsof dolas. If 3

[iy v monthly security update costs you
SD001 (o senth f e senty n ot

SAGE has had a remarkable
impact at Microsoft.

| BY PATRICE GODEFROID, MICHAEL Y. LEVIN, AND DAVID MOLNAR

SAGE:
Whitebox
Fuzzing for
Security
Testing

MOST COMMUNICATIONS READERS might think of
“program verification research” as mostly theoretical
with little impact on the world at large. Think again.
Ifyou are reading these lines on a PC running some
form of Windows (like over 93% of PC users—that is,
more than one billion people), then you have been
affected by this line of work—without knowing it,
which is precisely the way we want it to be.

Every second Tuesday of every month, also known
as “Patch Tuesday,” Microsoft releases a list of
security bulletins and associated security patches to
be deployed on hundreds of millions of machines
worldwide. Each security bulletin costs Microsoft

40 coumumearions oF e AGK | waREH I 1Sk s A0

Hakjoo Oh

this number multiplicd by one bil
lion peaple is S1 million. Of course, if
‘malware were spreading on your ma-
chine, possibly leaking some of your

y for

Testing in Practice —

Preliminary Assessment

Corina S. Pasareanu*
CMUINASA Ames.

privat ata, the

e than 50.001. This is why
we st mngly encourage you to apply
those pesky security updates.

Many sccurity valnerabilities are a
result of programming errors in code
for parsing fles and packets that are
transmitted over the Internet. For ex-
ample, Microsoft Windows includes
pasers for hundreds o e formas,

1f you are reading this article on o
computer, then the picture shown in
Figure 1 is displayed on your sereen
it a Jpg parser (ypically par of

possibly malicious and hidden in the
g data el

his is Just one example of a pos
ible secirty wunerabily and at
tack scenario. The security bugs dis
cussed throughout the rest of this
article are mostly buffer overflows.

Huning or Mlcs-llar Bugs
Today, hackers find s

ity vulnes
ilites in software products asing o

underying tochni
eral popula esing tools, masy of them opensourc

Cristian Cadar Patrice Godefroid Sar'raz Khurshid
Impare Cotogevcon st e Tenas at Austn
Koushik Sen Nikolai Tillmann Willem Visser
U.C. Berkeley Microsoft Research Stellenbosch University
ABSTRACT S)mhwlm ‘execution is now the
Wo e sl o th “lmpact Projct Focus Aren” on
the bt of symbalic exection o . safowne v NASM Symbolc
e o e s L b O T

e, i ol e e mrcsed iy
of computational pow it solving technology.
Wo roview classical symbolic exccution and some modern
extensions such as generalized sy
namic st generation. We also give a preliminary assess-
ment of the use in academnis, research labe, and industry.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Symbolic execition

General Terms
Rliability

Keywords

Generalized symbalic execution, dyn:

i test generati

it i the 70 615315, o s o

Spection of binaries (with a good dis-
assembler, binary code is like source
code).

The second is blackbox fuzzing,
a form of blackbox random testing,

freveyoes)

Wtk Matt Dwyer for i advice

program inputs and then tests the

@201 ACM scknowledgs
{63 conibaton was swore or Coraahored by 4 conrcor or Hise
o

rosft (Pex, SAGE (20, YOGI” and
PREX 10, 151 (Apollo . NASA and Fujitsu (Sym-
ol PuhFder), and aleo for o bey gt of the com-
mercal testing tool suites from Parasoft and other cor
nies [60]

‘Althotugh we acknowledgo that the impact of symbolic ex-
ecution in software practice is stil limited, e believe that

i he ot consraints
lic exccution can also be
checks for run-time ertons or

assert

those crrors,

The original approaches to symblic execution [8,13,31,35,
[T ———— R —

ity
Bhvip/ sk ca. . sta/“semn/cute)

e S, Government

hoping to trigger a bug such as a buf-

COSEA419 2024 Sprin

o Al b o

o Goveancht peposs oy
ICSEE Moy 325, J0LT Wk, Hoasula, 11 USA
Copyeght 011 ACNIOT5.1- 4505 G4 01105 5100

i o vrle. s
e

we/peogocts/pess
erossts confonslpeapocentyot

March 7, 2024

14 /25

Example: Symbolic Verification

Program P \)\\\sl* Verified
Property ® SMT(P A=) Counter-example

@ Represent program behavior and property as a formula in logic

@ Determine the satisfiability of the formula

Hakjoo Oh COSEA419 2024 Spring, Lecture 1 March 7, 2024 15/25

Example 1

int f(bool
int f(bool a) { Verification Condition:

X=0;y=0;
if (@) 1 O aax)v(-anr-x)n
x = 1; > (@A) v (an-y A
} -(x ==y)
if (o) {
y =1
1) SMT solver: unsatisfiable!
assert (x ==y)

}

Hakjoo Oh COSEA419 2024 Spring, Lecture 1 March 7, 2024 16 /25

Example 2

in)iz f(g, b) {0. Verification Condition:
if_(as)’E - @) ((aAX)Vv (=aA-x))A
. \::> ((bAy)v (=bA=-y))a
} x = 1’ _‘(X ==)’)
if (b) {
! y=151 @ SMT solver:

assert (x == y) satisfiable when a=1 and b=0

Hakjoo Oh COSEA419 2024 Spring, Lecture 1 March 7, 2024 17 /25

Challenge: Loop Invariant
@ Property that holds at the beginning of every loop iteration

i=0;
Jj=20;
while @(i==j)
(i <10) {
i++;
J++s
}
assert (i-j==0)

@ Infinitely many invariants exist for a loop. Need to find one strong
enough to prove the given property.

Hakjoo Oh COSEA419 2024 Spring, Lecture 1 March 7, 2024 18 /25

Industrial Use Cases

@ The Dafny programming language used in Amazon

Dafny

U] Promptt " Mhcronet v S Crpmmenta s e Ay P s ox
T Y O e Pt P e TP —
= . . . n N

1 method BinarySearch(a: array<int>, key: int) returns (r: int) :

2 requires forall i,j :: @ <= i < j < a.Length ==> a[i] <= a[j] .~

3 ensures @ <= r ==> r < a.length && a[r] == key

4 ensures r < @ ==> forall i :: @ <= i < a.lLength ==> a[i] != key

5 B{

6 var lo, hi := @, a.lLength;

7 while lo < hi

8 invariant @ <= lo <= hi <= a.lLength |

9 invariant forall i 0 <= 1i < lo ==> a[i] != key

10 invariant forall i :: hi <= i < a.Length ==> a[i] != key

11 { :

12 var mid := (lo + hi) / 2;

13 if key < a[mid] {

14

hi := mid;

Hakjoo Oh COSE419 2024 Spri

Lecture 1

March 7, 2024

19/25

Industrial Use Cases

Code-Level Model Checking in the 100
D 80
Nathan Chong Byron Cook Konstantinos Kallas § 60
Amazon ‘Amazon Universityof Pennsylvania =
ucL 40
Kareem Khazem Felipe R. Mom.eim Daniel Schwartz-Narbonne 20
“Amazon ‘Amazon
Serdar Tasiran MJchx:l T:uwl:hmg Mark R. Tuttle Feb’19 Apr'19 Jun'19 Aug'19 Oct’'19
Amazon Amazon
vy Uyt Lenion Figure 1: Cumulative number of LOC proven.
ABSTRACT et frmpesaonof ol s e, -
o acode
‘checking developed over the course of four years at Amazon Web ‘base. They improve code q"""y by ummnx '-hll the program’s
s i 80 -
of hy encr &
e b TP T 2T o o b s s o et ponve 10
‘methodology, we find that w can pro of industrial . § 60
et £ o
The deviopr]
aabieon Gl el mena model of e cod htcxplin why andwnder 3 30
ot oo s ot Howener, s ol ypcalyreaims 4 50
CCS CONCEPTS Know ony o e developer. At bet, it may e parialycapred
hrough ol ode commets nd designdocuments.As el 10
ressoning. of developing Feb’19 Apr’19 Jun*19 Aug’19 Oct’19
rerth soue offouryearsdevlopiag codevel prcts i
KEYWORDS o ot ey Amazon Web Services (AWS), we have developed a proof methodol- Figure 2: Cumulative number of issues found.
M Rt Format o Forcxample,wing es chnigues, o fll e verifcaion
o — o nern wer bl 0 sectyand vy 171 ey . .
m::::.’:;,,m::"m S o, Mk T, PO over 9 key modues i the AWS C Comment libary over a Table 1: Severity and root cause of issues found.
Derdpes this irary). Al specf oo
20 Moy 33.3 2000, Sou. Repbl o Ko ACH, New Yotk NY. " .
us nd Severity
are publicly available at hutps:/github.com/awslabs/aws-c-common/. #i His 1
| INTRODUCTION e Root cause issues High Medium Low
Thsle g ming ol e vl e Sliog oy iy el of i mcasm Integer overflow — 10(12%) 2 8 0
it e e s Null-poi f. 5769%) 0 “ 4
A SEmlcanposn it on e gty o s oI St s Wo o it of ey it Functional 1113%) 0 4 7
Memory safety 5(6% 0 5 0
contact the owne . N Initiall
S b33 S S Bl of K Vlchon o 1o it e n wring peifcaion for e Total B 31 50
ot ool G0 G0 6%
e e [e——
Hakjoo Oh COSE419 2024 Spri Lecture 1

Software Analysis based on Abstract Execution (Static
Analysis)

@ Execute the program with abstract inputs, analyzing all program
behaviors simultaneously

error zone

T

€rror zone

Hakjoo Oh COSE419 2024 Spring, Lecture 1

Principles of Abstract Interpretation

30 X 12 4+ 11 x 9 =7

e Dynamic analysis (testing): 459
@ Static analysis: a variety of answers

> “integer”, “odd integer”, "positive integer’, “400 < n < 500", etc
@ Static analysis process:

@ Choose abstract value (domain), e.g., V. = {T,e,0, L}
© Define the program execution in terms of abstract values:

X | Tlelo|L]||] + | Tle|lo]| L
T T
e e
o o
1 1

© “Execute”’ the program:
exetoxXxo=o0

Hakjoo Oh COSEA419 2024 Spring, Lecture 1 March 7, 2024 22/25

Principles of Abstract Interpretation

@ By contrast to testing, static analysis can prove the absence of bugs:
void f (int x) {
y =x % 12 + 9 x 11;
assert (y h 2 == 0);
}

@ Instead, static analysis may produce false alarms:

void f (int x) A
y = x + X;
assert (y h 2 == 0);

Hakjoo Oh COSEA419 2024 Spring, Lecture 1 March 7, 2024 23/25

Industrial Use Cases

oorto.1s/3n20112

Key lessons for designing static analyses tools
deployed to find bugs i

integrated in th by se-

of fxesofsecurity and privacy bugs,out:

For a static analysis project to succeed,

of lines of code.

BY DINO DISTEFANO, MANUEL FAHNDRICH,
FRANCESCO LOGOZZO, AND PETER W. O'HEARN

feel they benefit from

ssed at Facebook
ties. We will describe the human and
technical challenges encountered and

lessons we have lesmed in developing

Scaling Static
Analyses
at Facebook

|— Infer

STATIC ANALYSISTOOLS are programs that examine, and
attempt to draw conclusions about, the source of other
programs without running them. At Facebook, we
have been investing in advanced static analysis tools
that employ reasoning techniques similar to those
from program verification. The tools we describe in
this article (Infer and Zoncolan) target issues related
to crashes and to the security of our services, they
perform sometimes complex reasoning spanning
many procedures or files, and they are integrated into
engineering workflows in a way that attempts to bring
value while minimizing friction.
These tools run on code modifications, participating
as bots during the code review process. Infer targets
our mobile apps as well as our backend C++ code,
codebases with 10s of millions of lines; it has seen
over 100 thousand reported issues fixed by developers
before code reaches production. Zoncolan targets the
100-million lines of Hack code, and is additionally

Hakjoo Oh

There has been 4 tremendous
amount of work on static analysis,
both n industryand acadernis, and we
rvey chat material
e present our rationale
for, and resultsfrom, sing Lechniques
simila to ones that might be encou
cered at the edge of the research liter

fore ot ol aimple techniques that
are much easier lo make scale. Our
goal is t0 complement ather reports
En il e sl ared formal
methods 55" and we hope that such
perspetves canprovide input ot 0
fu carch and to further indus
n..l.m of et

e discuss the three dimen-

ioms tht v ur work: buge that
mater, pople, and acionemised
bugs. The remainder of
scribes our: rxyenenc«\evelnmnxnnd

deploying the analyses, their impact,
and e echniques tat underpin ot
ool

Context for Static
Analysis at Facebook
Matter We use saticanalsis o

and enjoy using it.

BY CAITLIN SADOWSKI, EDWARD AFTANDILIAN, ALEX EAGLE,
LIAM MILLER-CUSHON, AND CIERA JASPAN

Lessons

from Building
Static Analysis
Tools at Google

SOFTWARE BUGS cosT developers and software

+ L o000 d

ot integrated. The tool s not ince

v v
s, nd we el on our engineers Judg-
ment s wel s dta from prodoction to
telusthe bugs that matierthe most.
& key insights

eat deal of time and money. For example,
in 2014, a bugin a widely used SSL implementation
(“goto fail”) caused it to accept invalid SSL certificates,*

akes too long
Notationebl Thewarnings arenot
actionable;
ot trustwordhy. Users do not trust

and a bug related a aused a large-scale

Not manifest in practic. The repore-

Twitter outage.”’ Such t ft
andare, in fact, obvious upon reading the code or
yet still make it into production software.

= Stati antyses shoutd s

COSEA419 2024 Sprin

Previous work has reported on experience applying
bug-detection tools to production software.
Although there are many such success stories for
developers using static analysis tools, there are also
reasons engineers do not always use static analysi
tools or ignore their warnings, % including:

‘problem does no acaually manifest in
practice;

key insights

= St anatyssautorsshout o
e developer and sen o e feediack.
= Carsul develaper workfiow intsration

16y for satc anyss ot sdopion.

= St ansyss toks com sy
rowisauring i devsopment.

1 March 7, 2024

4

24 /25

Summary: Software Analysis

@ Basically classified based on how programs are interpreted:

» Techniques based on concrete execution
» Techniques based on symbolic execution
» Techniques based on abstract execution

@ Each approach has its own strengths and weaknesses: e.g.,

Automatic Sound Complete

Testing/Fuzzing

Symbolic
Execution

Static Analysis

Program
Verification

?

Hakjoo Oh COSEA419 2024 Spring, Lecture 1 March 7, 2024 25/25

