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Software Analysis

Technology for catching bugs or proving correctness of software

Widely used in software industry

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 2 / 25



A Hard Limit

The Halting problem is not computable

If exact analysis is possible, we can solve the Halting problem

Rice’s theorem (1951): any non-trivial semantic property of a
program is undecidable
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Tradeoff

Three desirable properties
▶ Soundness: all program behaviors are captured
▶ Completeness: only program behaviors are captured
▶ Automation: without human intervention

Achieving all of them is generally infeasible
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Basic Principle

Observe the program behavior by “executing” the program
▶ Report errors found during the execution
▶ When no error is found, report “verified”

Three types of program execution:
▶ Concrete execution
▶ Symbolic execution
▶ Abstract execution
▶ and their combinations, e.g., concolic execution
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Software Analysis based on Concrete Execution

Execute the program with concrete inputs, analyzing individual
program states separately
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Example: Random Testing / Fuzzing
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Types of Fuzzing

Blackbox fuzzing

Greybox fuzzing

Whitebox fuzzing
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Industrial Use Cases

AFL (https://github.com/google/AFL)

OSS-Fuzz (https://github.com/google/oss-fuzz)
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Software Analysis based on Symbolic Execution

Execute the program with symbolic inputs, analyzing each program
path only once
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Example: Symbolic Execution

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 11 / 25



Example: Concolic Testing
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Example: Concolic Testing
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Industrial Use Cases
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Example: Symbolic Verification

Represent program behavior and property as a formula in logic

Determine the satisfiability of the formula
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Example 1
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Example 2
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Challenge: Loop Invariant

Property that holds at the beginning of every loop iteration

Infinitely many invariants exist for a loop. Need to find one strong
enough to prove the given property.
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Industrial Use Cases

The Dafny programming language used in Amazon
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Industrial Use Cases
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Software Analysis based on Abstract Execution (Static
Analysis)

Execute the program with abstract inputs, analyzing all program
behaviors simultaneously
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Principles of Abstract Interpretation

30 × 12 + 11 × 9 =?

Dynamic analysis (testing): 459

Static analysis: a variety of answers
▶ “integer”, “odd integer”, “positive integer”, “400 ≤ n ≤ 500”, etc

Static analysis process:
1 Choose abstract value (domain), e.g., V̂ = {⊤, e, o,⊥}
2 Define the program execution in terms of abstract values:

×̂ ⊤ e o ⊥
⊤
e
o
⊥

+̂ ⊤ e o ⊥
⊤
e
o
⊥

3 “Execute” the program:

e ×̂ e +̂ o ×̂ o = o
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Principles of Abstract Interpretation

By contrast to testing, static analysis can prove the absence of bugs:

void f (int x) {

y = x * 12 + 9 * 11;

assert (y % 2 == 0);

}

Instead, static analysis may produce false alarms:

void f (int x) {

y = x + x;

assert (y % 2 == 0);

}

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 23 / 25



Industrial Use Cases
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Summary: Software Analysis

Basically classified based on how programs are interpreted:
▶ Techniques based on concrete execution
▶ Techniques based on symbolic execution
▶ Techniques based on abstract execution

Each approach has its own strengths and weaknesses: e.g.,
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