
COSE419: Software Verification

Lecture 1 — Introduction to Software Analysis

Hakjoo Oh
2024 Spring

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 1 / 25



Software Analysis

Technology for catching bugs or proving correctness of software

Widely used in software industry

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 2 / 25



A Hard Limit

The Halting problem is not computable

If exact analysis is possible, we can solve the Halting problem

Rice’s theorem (1951): any non-trivial semantic property of a
program is undecidable

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 3 / 25



Tradeoff

Three desirable properties
▶ Soundness: all program behaviors are captured
▶ Completeness: only program behaviors are captured
▶ Automation: without human intervention

Achieving all of them is generally infeasible

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 4 / 25



Basic Principle

Observe the program behavior by “executing” the program
▶ Report errors found during the execution
▶ When no error is found, report “verified”

Three types of program execution:
▶ Concrete execution
▶ Symbolic execution
▶ Abstract execution
▶ and their combinations, e.g., concolic execution

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 5 / 25



Software Analysis based on Concrete Execution

Execute the program with concrete inputs, analyzing individual
program states separately

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 6 / 25



Example: Random Testing / Fuzzing

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 7 / 25



Types of Fuzzing

Blackbox fuzzing

Greybox fuzzing

Whitebox fuzzing

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 8 / 25



Industrial Use Cases

AFL (https://github.com/google/AFL)

OSS-Fuzz (https://github.com/google/oss-fuzz)

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 9 / 25

https://github.com/google/AFL
https://github.com/google/oss-fuzz


Software Analysis based on Symbolic Execution

Execute the program with symbolic inputs, analyzing each program
path only once

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 10 / 25



Example: Symbolic Execution

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 11 / 25



Example: Concolic Testing

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 12 / 25



Example: Concolic Testing

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 13 / 25



Industrial Use Cases

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 14 / 25



Example: Symbolic Verification

Represent program behavior and property as a formula in logic

Determine the satisfiability of the formula

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 15 / 25



Example 1

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 16 / 25



Example 2

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 17 / 25



Challenge: Loop Invariant

Property that holds at the beginning of every loop iteration

Infinitely many invariants exist for a loop. Need to find one strong
enough to prove the given property.

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 18 / 25



Industrial Use Cases

The Dafny programming language used in Amazon

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 19 / 25



Industrial Use Cases

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 20 / 25



Software Analysis based on Abstract Execution (Static
Analysis)

Execute the program with abstract inputs, analyzing all program
behaviors simultaneously

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 21 / 25



Principles of Abstract Interpretation

30 × 12 + 11 × 9 =?

Dynamic analysis (testing): 459

Static analysis: a variety of answers
▶ “integer”, “odd integer”, “positive integer”, “400 ≤ n ≤ 500”, etc

Static analysis process:
1 Choose abstract value (domain), e.g., V̂ = {⊤, e, o,⊥}
2 Define the program execution in terms of abstract values:

×̂ ⊤ e o ⊥
⊤
e
o
⊥

+̂ ⊤ e o ⊥
⊤
e
o
⊥

3 “Execute” the program:

e ×̂ e +̂ o ×̂ o = o

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 22 / 25



Principles of Abstract Interpretation

By contrast to testing, static analysis can prove the absence of bugs:

void f (int x) {

y = x * 12 + 9 * 11;

assert (y % 2 == 0);

}

Instead, static analysis may produce false alarms:

void f (int x) {

y = x + x;

assert (y % 2 == 0);

}

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 23 / 25



Industrial Use Cases

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 24 / 25



Summary: Software Analysis

Basically classified based on how programs are interpreted:
▶ Techniques based on concrete execution
▶ Techniques based on symbolic execution
▶ Techniques based on abstract execution

Each approach has its own strengths and weaknesses: e.g.,

Hakjoo Oh COSE419 2024 Spring, Lecture 1 March 7, 2024 25 / 25


